= o
v A
a |

Atalasoft DotImage
Developer's Guide

Version: 11.5.0

Date: 2024-05-24

f\\
’?Atalasoﬂ

A Kofax Company

© 2024 Tungsten Automation. All rights reserved.

Tungsten and Tungsten Automation are trademarks of Tungsten Automation Corporation,
registered in the U.S. and/or other countries. All other trademarks are the property of their
respective owners. No part of this publication may be reproduced, stored, or transmitted in any
form without the prior written permission of Tungsten Automation.

Table of Contents

[T o R 12
Related dOCUMENTATION...cc.cciiirieieeete ettt sttt sttt b e st e be st et eneneen 12
RESOUICES......eeeeeeeeeeee ettt sttt et et r e e st e st e e me e s st e s bt e saneesmeeeemeesaseesareesaseesneeesneenane 12

Chapter 1: Atalasoft DOtIMAQGE.........ccoceieiieiiniieiiiieiieinetiesaetssssessssasesesssessesssessssasssessssssssasssssassses 13
Atalasoft DOtIMAGE PROTO.......ciiriiiierirteteeenese sttt st s s e e e s e sbesbessessasseessensensens 13

ol o I= T ¢ o LTSRS PSSRSO 14
SAMPIE CO..eneeee ettt ettt b e st s ettt se et e s b e sbe e st e st et e e eneeneens 14
Atalasoft DOtIMAGE PROTO Pro.......ciiieiiiiiiiiiienineseseseseessessesiesses e ssesesssessessessessessessessssssessenes 14
ol o I= T o o LTS PSSRSO 15
Atalasoft DotImage Document IMaging......ccccererirereneneeeetestenie ettt see s sse et eens 15
R el=T o T [0 1T USSP P OSSOSO PRSP 16
Atalasoft DOtIMAge Add-0NS. ..ottt ettt sttt et b sbe s b sae et et eneen 17
BarCOAEREAAEN ...ttt ettt ettt b e s b bttt aes 17
BarCOA WITING...cocvivierrerinieniseseeteseesiesiesestessesseeseeessessessessessessessssssessessessessessessesssessensensens 18
OCRu ettt ettt ettt ettt et e st e st e e s et e st e b et e s et et e ne e s et e st e R s e Rt e R e s e st e s e et et e st et et eneeseneeneetans 18
TEXE LrANSIATON ...ttt ettt st sttt s b s bt bttt neen 20
PDF TraNSIator..c.ceueeuiieuerieeietriesietet et ettt et ettt ettt b et et sttt b et et b e e e e b e b et enenean 20
PDF REAGET ..ttt ettt ettt sttt et ettt et s b s b s b s st et et et e st e besbesbesaeenaeaeen 21
JPEG2000 COURC....cuiuiruirieieirienieteientet st ste et tet et ste st et s be st et sbe st et sbe st et e be st et ebesbe st eseebentenerean 22
DICOM COARC...cuiriiieuinriieenieteteiestetereste et ste st ebesbe st st sbe e esesbe e esesbe e esesbesbe st sbenaeaeebenseneebensenis 23
Advanced DoCUMENT ClEANUP...cceriririeieteniertese sttt ettt sttt ettt sbe st sae s e saeeneen 23
Advanced Photo EffECtS.....oii ittt 26
DWG AECOUEBN ...ttt ettt ettt ettt b ettt et be bt ae b e e b b et e st sbe e eneene 27
OFfiC8 DBCOUE ..ttt ettt sttt ettt et s b s b st s st st et et e besbesbesaesae et entesenes 27
OffiCEATAPLEIDECOTE ...ttt sttt ettt st be b b ettt ee e ae e 28
COMIMON DECOUEIS. ...ttt ettt ettt ettt et et b e st e e b e sa et ebe st et e st seeneene 32
Atalasoft DOtIMAQGE ISIS......coiiiiiiieieteeese ettt sttt ettt sbe s b b eeaeens 32

Chapter 2: Use Atalasoft DOtIMAQE........cueiiiiuiiiiiiiiiiieiinieiinnetiesaeiessecsesasssssasessssssesessssssssseseses 34
Atalasoft DotImage dOCUMENTATION......ciiiveririeteiererese et er e seesresressessseseessessessesbessesssesaessens 34
Atalasoft DotImage NUGEL PaACKAGES.....ccoveririeriririeteiestesiesie ettt ettt sre s s e sttt esenaesaens 34

Visual Studio Activation Wizard EXtENSION......ccceveriririirrieiererereseeee et 34
Getting Started With WED CaptUre.......occiirininerineeieiesiesesesesesseesseseessessessessessessessssseessessesses 35
Atalasoft DOtIMAgE dEMOS......cocuiriirieriirteeetetete ettt st sttt et st b sre b en 35
SEL UP @ NEW PrOJECE..c.uiiiiiieiteiteieeteete ettt sttt st sre s s sbe e sbesmae s e esnesneens 35

Atalasoft DotImage Developer's Guide

Add the Web Document Viewer handler.........cocoieiiienieneeeeeeeseeseseseeeeene 37

Add the Web Capture NandIer ..ot see s e se e ssesssessessenes 37

Set up the scanning coNtrols aNd VIEWENccevireririrnieiterteenese ettt 40

VWP UP ittt sttt s s s e a e st sbe e saas 41
Deploy on MUItiUSEr ENVIFONMENT......cccvivieririeririseseetetesiesiese e sesessessessessessessessessesseens 42
Configure Kofax IMpPort CONNECLON.......oiuiierirenereetetetete ettt et be e 43
Upload SizeS and IIMITS.....oceriiiriieieeeeeee ettt ettt 44
DOCUMENT MANAGEMENT.....ciiiiieiieeteecte et etee sttt eetesreesteestesssee s seesreesaseesusessneesseesseesaseesnsesnns 46
Capture and view documents with a scanning clieNt.......c.cocoeveverinvnnieneneneneneneneeeene 46
Submit captured documents to a central database repository.......cccceccevveverenenenceennen. 52

View documents from a central database repository in a browser.........cccocevvevvevceniennnns 59
Collaborate on documents using AJAX-enabled annNotations.........cccoceveverenenenierienneens 62
Chapter 3: Program with Atalasoft DotIMage..........civvveiiiieiiniieininneinnnieieseesesaesssseesesaesessanes 66
GELEING STAME...cuiiiiiirireeeeeetee ettt sttt s bt e st s b e s e st e e e s et e b e sbessessassaeseessansensessassessesnesnes 66
Core Atalasoft DotImage editionsS.......ccocueverirerinenteietee ettt 66
Add-0N MOAUIES.....eoiieeee ettt ettt s b b e sttt e e b sbesbesaeeme s 67

NET @SSEMDBIIES....vciiiiiiicic s 68
CrEAte IMAGES. . tieieieeteete ettt st sttt e s et s e e saee s st e sbesaeesmeesbee b e s asesueesneesesasesnsenns 71

(0] o<1 I 0 g =T =S P TP PO PP TRTRRPON 72

SAVE IMNAGES...euteteereetenteseertt et ste st e ste s te st e st esbeesbesstesssessaebesssesasessaessesssesssesssensasssesssesssensens 73
Process and Clean UP IMAgES.....ccevirerirerinintetetere ettt ettt sae s b st es et sse e 74
Image controls for Windows FOrms appliCations.........ccceeerererenneneneeseeneneneseseeeeene 75
Image controls for web appliCations.........ccvevirrierieniniininnererrereeree e seeaes 76
TWAIN SCANNING..citiiiirieriieitetentestesre et steseesreeteseesseesseesbeesesaeesseesesasesntesseesseensesaeesseessenas 78
IMAGING ettt b s e sre e s e res 79
[Y1 =T [Vo PO OO OT USROS 79

(@o] 001 0 =15 (0] o TSRS S PPRURPROPT 80
ASYNCAroNOUS IMAQge PrOCESSING...iiieirietetetertertesrertteteeee e stesteseessesresse et esteseessessessesseeneens 81
RESAMIPIING..cutiiiriiriiirteteteene ettt ettt e s e st et e e et e s s e sbesbessesseeseessessensessessessesssensenes 82
IMOTPRNOIOY ... ittt sttt et st s bt st et et e b et e b e sbesbesae s st et et enaensens 84

BEST PraCLiCOS. ..ottt s bbb e r e snne et 88
MEMOIY MANAGEMENT....ciiiiiiieeiteerteett ettt e rree st e s st e ee e ee s st e s neesseessseesnaessneesseesaseesanes 88

PIXEI IMIBIMIONY ittt sttt ettt sbe st s a st e b e sbesbesbesbe st et enaensens 89
IMAGE SOUFCE....ceeiieiteteee ettt et a e s s bt b e s a e s e beene s 96
AACCESS IMNMAGES...eutetieieeteetertertteteste st e sbeestesutesteesbeesesatesseessesssesasesasessaessesssesssesseensessessessaessesssenns 112
Read and write images to @ database.......cocvevirirviinienienieeeeetee e 112
ACCESS MUITIPAGE IMAGES.c ittt sttt ettt st be et eeee e 113

Add sUPPOrt FOr RAW IMAgES......coviieriirinienineseseseesseseessesiessessessesssessessessessessessessassassasns 113

Atalasoft DotImage Developer's Guide

Get iMage INFOrMAtION.. ...ttt st 114
VIBW IMAGES. . eiiieieeririeeterteesie et ste st esteebestesutesteesbesssesutessaesesssesnsesssessaensesssesssesseenseessesnsesssensasses 114
ASP.NET WebFOIrmM CONLIOlS......couiriirieiiieteieestereeen ettt ettt s 114
WiINAOWS fOIM CONEIOL...ciiiieiieieeeeeeeee ettt s 177
WOIK With WPF IMages....cciviviiiiiieeiinieninesese s eseseessesiessessessesseessessessessessessessesssessessenss 183
Use ASP.NET WebFOIrmM CONLIOIS......coiriiviiiiieniinenenteteteteste sttt ettt ees 184
IMAGE CAPTUIE...eeeiteeee ettt s st b e s e s e e bbb s e e s e e be e e e sns 192
WED SCANNING ...ttt st sttt et e s b e sbessesse s e e s essessessessessessessssssensensan 192
TWAIN SCANNING..cittiiirieniteiteeterte et et seestesseessestesseesbeesbeeasesaeesseesesasesasesaeesseensesasessaenses 193
ISIS SCANNING ettt st s st b st s s b besae s 200
Image processing and ClE@ANUP........coeviriririrtrierteresese st seeeessesee e ssessessessasssessessessessessessesseens 204
Manipulate colors with LOOKUP Tables.......o.eeiriiiiiiiriiinireneetetetetese e 204
RESIZE IMAGES....iieiiieieee ettt s st b e s e s s st b s ae e e sbe e 205
Process an image using @ Workspace ODjJECt.......cvvivierininenirieniinieneneneseseseseenneeens 207
Process an image using the Apply Method........cccocoiriinininininnneeeeeeeeeeene 208
Process a Bitmap iMage.....ccciieiiiiiiiiiieieeeeneete et s 208
Extend IMageComMmMandS.......cocvivereiiereenenenenieseseesessessessessesesesesssessessessessessessessasseens 208
Upload an iMage tO @ SEIVENcoiiiirierierientenereet ettt sttt st ettt s sbe st e e e e enens 214
FN a1 g o] =Y] o SO R OO P PP PTTTRPR 216
ANNOTATIONS. ...ttt ettt et b b s bttt e e nesnesnesreene s 216
Import and exXport aNNOTAtIONS........ccciiviirirenirtrtetet ettt ettt sttt see e 217
Create an annotation enabled CONLIOl. ... 224
ANNOTALION ASSEMDIIES.....ciiiiiiiriirieier ettt sttt et 225
Create a template anNOTAtiON......cocuiviiriirieereree ettt ettt 226
PriNt @NNOTAtIONS....c..oiiiiiiiieee et 226
Serialize t0 XMP ANd WANG data......ccceveruerererienininieieeneteenieeee et see e eveseeeenes 227
WOrK With UNit SYSTEMIS...couiiiiirieeieteteeee ettt ettt sb s s a e 228
RENAEI CUSTOM GFiPS. eeeuiiueeuteietetertesterie st ettt ettt s besbesre ettt e et e saesbesbe st e st et e e eeeneens 229
RESPONT £ BVENES.c..iitiriiiirteteriese sttt e st et eseestesbestesre s e s s e sessessessessessessnesseseessansansens 231
Add a context menu to an anNNOTAtION......ccevireririreeteere ettt 232
Highlight @ dOCUMENTttt st e 232
WOrk wWith 1ayers and groUPS.....cceceririninireneetereneseseseseeeeeessessessessessessessessssssessenses 233
Create a CUSEOM @NNOTAION....c.covierieereete ettt st st sae e re e re e s 233
Password-based authentiCatioN. ..ottt 237
Create @ STICKY NOT..ciiiiririresereee ettt sttt et st sbesre e s e e s e ssesaesbesbessnssaessensensansens 238
WOrK With UNit SYSTEMIS...ccciiiiiirieieteteee ettt ettt s sb s st eens 239
Annotate MUItiPage dOCUMIENTES.....cocuiiiiirereree ettt see e 239
IMEEAAALA. .ttt ettt ettt et et b et b bbbt b e s b et e a e bbbt et b et et e b b et enenaen 240

Atalasoft DotImage Developer's Guide

SUPPOrted MEtadata tYPES.ottt ettt sbe s s be sttt ee 240
Image formats supporting Metadata......cccoeecerireniniinenereseererresesese e seseesseseessens 241
IPTC MEtA0Ata.. ittt ettt et b e s b st sttt et b e s b e sbesaesae et et et enees 241
EXIF MEtadata...cccueeeeeeiieeeeee ettt ettt ettt sttt nae e 243
COM TOXEuueveuteueeienieteierteteie st et ettt e bt e b et e e be s b et e st s b et enesbe b e st eb e b et ebe b et esesbensenesbenseneene 244
L L S =T [PPSR PSP ROPRUPRRPRO 244
XIMIP ettt ettt bt st h et et h e b et bt e b et ae b et et bt e st b et et e be st et e nban 247
Save metadata With @n IMaAge......cciveiiriiririrerinesne sttt se e e e e saesaesaens 247
Retrieve metadata from an iMage.......ccovireririrrteieeseseee sttt seens 248
Set Metadata ValUES.... ..ottt ettt be st 248
Attach mMetadata to ODJECES....ciciiiiriierirerrer et s e sre s e nennens 250
Retrieve @ dOCUMENT Tl ...iiiiiiieieie ettt sttt 251
Read EXIF iNfOrmMatioN. ..ottt sttt sae s st st 251
Read EXIF thUmMBNailS......coeoieireieeneieereerete ettt sttt 251
Store EXIF iNFOrMatioN....cocciiiiiiiiiierieeeetet ettt ettt st ettt et eaes 252
Add an object to document Metadata........cocceverererenenireeeee e 252
Obtain DPI information from @ .PSD File.....ccccveiieinenieieeeeneenenieeseieeeesee e 253
LOSSIESSlY COPY MEtAAAta...coieieiiieteieieeieree ettt ettt ettt st e e 253
Document and iMage fOrmMatS... ..ottt sttt sbe s b sttt 254
Introduction to PDF tEChNOIOGY....cciviririiiiieienienenesenese sttt sse s e sesaesaesnes 254
B0 I L T =TSRSS 272
DICOM..ctiieieiitet ettt ettt ettt ettt et e b et et s b et et b et et e b et et s be st et e ae st et ebe st et ebe st et eaesbenteneaee 284
JPEG2000 - @NCOAING IMAGES...ccirireriirieririineseseseseestessessessesesessessessessessessessessessasssenes 287
INtrodUCiON O JBIGZ.....ui ittt ettt ettt e et e e te s teesraeeebeeeraeere e saeesaeeeneennns 291
Custom cOdecCS - IMAGE COURC.....cuiuiiriniinirietetete ettt ettt sbesse s b s st eens 292
Bar COAE MBATING.....cicviieiiriinierirteertetet ettt st st e s et e st e sbesbessasseeseessessessessessessessesseensensensen 299
UPGrade tiPS...coeeieieieniirientetet ettt sttt et et e et be b st et et et et e b e s b e sbe st e st et e b et enreee 300
Use the BarCOAEREATE ..ottt st 301
Read a bar code With OPLIONS SET......cciviiririirieiererenenese st e e e s e ssesaesres 301
Render a bar code into an Atalalmage........ccocevirvierineninineeteetee et 302
Verify a bar code can represent @ StriNg....coeeeeererereneneneeeteeee e 302
BarCOA WITING...cioiirierieriiserireetesiesiese st sesrese et et essessesbessessessssssessessessessessessesssessensensessessessasssessens 303
DEPIOYMEBNT ..ttt ettt sttt sttt et et sbe s b st st ettt b e b s ae et et e e eten 303
Use the BarCode WIILeIccoiierireeeetetete ettt ettt sttt sae b st 303
OCR document design CONSIAEIatioNS.......cccvverveerierenierienienereseetessessessesesessessesseessessessessessesses 304
Use the factory property to construct @ doCUMENTt.......ccevveririrerieieereeneeeese e 304
LOAA OCR FESOUICES.....eiueeuieueeietertenteste st est et et e testeseesbesse s bt s st et et et e sesbesaesbesseene et et ensensenees 305
Stages iN OCR translatioN........ccciiiniiinercrterereese s ss et e ssessesaesbessessesaeseessessassens 309

Atalasoft DotImage Developer's Guide

AN S AT Or LY PES. ettt a ettt e be s b s bt bt ettt saesbesbesaeene s 311
Pag@ FEGION (Y PES..i ittt sttt sttt e et e st e st e sbe e besatesatesbessesasesasessaessasasessaensens 312
OCR BNGINE....ciiieieeeeeitete ettt e st s e st e st e be st e st e s se e be s besaeesaeesseeasesatesseesseeseensesaeesseens 313
GlYPNREAAEr ENGINE. ... ittt ettt ae sttt seesne s 315
TESSErACt ENGINEC....uiiiiiiirieiieieetert ettt et e s te st e s bt e be e b e st e ssaesbesssesnsesasessaessesnsesssenses 317
OMNIPAGE ENQINE....uiiiiiiiieieeeeiereete ettt st sttt st e st e be b e st saeesneebesmeesmeesseensens 319
USE @N OCR ENGINE.....iiiiiiiiieieeertete ettt st s s s a e sree e sne e ene 324
Get and SEt ENGINE OPTIONS...cviviriririrerereeeertesrese e sresesessessessessessessessessssseessessansessenes 324
Determine if an engine sUPPOItS @ MIME LYPE..ccciiirierirerererenteterene et eeeens 325
Alter the interpretation of page elements.........cccovirrnnrnenereeeee e 325
Determine translation fYPE. ..ttt e s ssessesae s e sse s e s e ensenseneas 326
Distinguish between OCR region tYPeS.....ouveririrrtenienieneneneseeteterte sttt ee e eees 326
Clean up after tranSIatioN. ...ttt 327
Traverse an OCR dOCUMENL........ccviiiiiniiiiiiiic e s 327
CaNCEl OCR IN PrOgIeSS...ccuecuirieruiriietetertesteniesie st st ste st estestestessesbesst st et etessessessessessesnseneenes 328
Track page progress iN @ ULttt sttt ae e sne 328
USE PAGE AESKEW BVENTS.....ivieeiiriereerenienieniesesesiesseessessessessessessessesssessessessessessessessesssessessens 330
Deploy an OCR ENGINE....coiiiiieieieiereseeee ettt st sttt et st sbe b s s sat e et et enaenes 330
Access document information Properties..... ..o vererrrrerierereneseseeee et 332
(0o] (o] gl o =T a = To [T 0 o= o | SO OO OO SRR 333
(60] (o] g o] {0} 1= =SSNSO OO O OO O PSP PR PIPIPOPO 333
CIMYK IMIGGES. .ottt sttt st st st b e s s bbb s b sree s bt e besaaesmnennis 333
Draw ON the CANVAS.......ccviiiiiniiiiiniiircete ettt 334
TIRE CANVAS....iiitiiirietete ettt ettt ettt st s ettt st e s beshesae et et et e besbesaesbesseeaeentansans 334
Atalasoft Dotlmage drawing versus GDIH........ccccociierininininieneeeesesese et 334
DIraW TEXE...cuiiiiiiiiiiiiiiicici s 335
DIraW SNAPES...c.eiieiiieeeetetete ettt ettt st sttt et et b e s b a e s ae et ettt e s resaenaes 335
Draw With rubber Dands.........co oo 336
Interoperability - WOrk with GDI+ imMages......cccuvercieriirieniniineneseseensessessesiesesesssssessessessessessens 336
Create a COPY Of the data........ccevireririeeeeeeeee ettt see s 337
Pass the data directly to the Atalalmage CONStrUCLON......coirieieceeniereneneneeeeee e 337
Interoperability - WOrk with WPF imMages.......ccovvvierierieniiniinenineseeneessessessesesessseessessens 337
FOIMS PrOCESSING...ueiitiiiiieiieierteett et sttt ettt st st e s bt e ee st e s st e b e e b e s tesae e s bt easesaeessaesseesseensesneesseensesnes 339
Align an image to @ teMPIAte......cceiiieeee ettt 339
Disable alignment rejection heUIISTICS......ccvviirireriininirtrerrerese s see e 339
Use the OMR engine to recognize mMarks 0N @ PAge......ccceverererereeneeneenienenenesieeseeneens 340
Create and save an OMR temMPIate.. ..ottt 340
Perform additional preprocessing in the OMR engine.........cccovevvervieveenenenienieniesreniennees 341

Atalasoft DotImage Developer's Guide

CaNCEl OMR N PrOGI@SS..cueruieuerueruietetententertessestestetesteseessesressesse st et esteseessessessessesseeneeneenes 341

Track OMR engine page progress iN @ UL......ccvivininenininnenenenineseseseessessessensessennes 342

WED DOCUMENE VIBWETuiitiieietirieeteite ettt sttt sttt et et e st b s it st e et e st e besbesaesae et et et esenes 343
Chapter 4: Deploy Atalasoft DOtIMAQE..........ceeveiiiiiinniieiinnieiiineeiesseesssaessssasesessseesessesssssseseses 344
Visual C++ RUNEIME dEPENAENCIES......coceviiieiirieriniseststetetesee e sre e sre e seessessessessessessessessesnnens 344
Deploy Atalasoft DotImage iN ASP.NET ..ottt sttt et st sb s s 344
Dependencies using Atalasoft DotImage class library.....c.cccevveveiennenncnncnseeneeene 344
Dependencies using Atalasoft DotImage with WebControls..........ccceevevinencrienrenrnennennen 344
GENEIAtING [ICENSES ..ttt ettt sttt sttt et et st e s b s bt bt st et et e b e sbesbesaesaeeatensensens 345
Chapter 5: Program With DOtPdf..........cciiiiiimiiiiiiniicincetnetset et sase e 347
Mathematical MOdEl........cccoiiiiiniiiiiiiiii e 348
TrANSTOIMIATIONS. .. ettt ettt ettt s b s bt s ae st et et et e st e sbesbesaesseeateneeneen 349
PAfGENEratedD OCUMENT.....c ittt ettt st st s bt sttt et et e s b sbe e bt e st et e e eneeeens 351
P AgES. . ettt st st e st sebe e b e st e e st e e e at e e nee s beesaree st e eenteeneesrae e 351
SEANAAId PAGE SIZES...ceiiiieriirieetet ettt ettt ettt ettt s b b a e s a et e b et et sbesaesae e e eaeen 352
Create STALIONEIY . .ci ittt s s s b e s e s e bbb smae s e nre s 352
(61110 o] 1 a o U OO T PRSPPI 354
(60 (o] =TSO OO TSSO RSO PPU OO RRTPRIPRPI 355
RENABIING .ttt ettt s b ettt e b e b e s b e s b e e bt e ae et et et e b e st e sbe s bt e st et et e e enee 356
RESOUICES. ...ttt bbb b s ensen 356
FONT FESOUITES....ciiieeee ettt ettt st s s s e st e s bt e s e e s ee s emee s meesneesmnes 357

Type 1 symbol fONt @NCOAING. ittt 358
EMDEA FONTS....omiiiiiiicic e 361

COlOr SPACE MESOUICES.....evietirierieeieetetenteste st ste st et et et et e sbesbessesbe s st e st e st etessessessessesseenteneensen 361
IMAGE FESOUICES. ..ottt ettt st st sre e s b e sb e saae s e e snees 362
TEMPIATE FESOUITES...c.viveriiriereriteeeterieste st st st et e stestestessesbessesseessessessessessessesssessessensensensesses 363
SIS ...ttt ettt b e s he b e h e e a e et e e e b e b e be s b e s aeeat et et et e benbesaesaees 363
PAFPALN..c.tiet e 363
PATRECEANGIE. .. ittt sttt et et s bt st e st st e e e s e e esaesbessessaeseeseensensansens 366
PAfROUNAEARECLANGIE......oueeiiieieteteeee ettt ettt sttt se e 367
PTGl ettt ettt b sttt b e bbbt ee 367
PAFAIC et 367
PATIMAgESNAPE. ... ciieieie ettt sttt ettt st n 367

PDF eXE SNAPES. .. eiietieteeieeeete ettt ettt sttt ettt bbbt ettt ee e sbe b ne et en 369
PAFTADIE. ... 370

PO TEMPIAtESNAPE. .. ettt ettt ettt aeeaes 371
POStNEtBarcOdeSNAPE.co.i et 374
GSAVE / GRESTOIE.....oiuiiiiiiiiiiii e 374

Atalasoft DotImage Developer's Guide

NS ONM ettt et ettt sb e s bt ettt et et e b e s b s be et e e e aee 375
MArKed CONEENT....ceiuiiiieieice ettt sttt ettt sb ettt e s bt e sbesaenes 375
MaKe CUSTOM SNAPES......coiiiiieteinteeereet ettt sttt ettt st sbe sttt a et e ssesnes 376
ROUNG triP AOCUMEBNES... ittt ettt ettt ettt st ettt e b st s b s b et et e e e e e naenbenbens 379
INtegrate With DOTIMAGE......ciciiiiiiiiierineserte e sre s st essaessessesbesbassesses e essessessessessessnsssennens 380
Yot i o SRS USSP PRSP 381
PAFACTION. ..ttt ettt et e bbbt bt et e e e e e nnes 382
GO TO VIEW GCLIONS.c..eniiieteeeietenieeieetei ettt ettt sb et st sresnennes 382
URL @CHIONS. .ttt ettt sttt et s e st e bt b e e e st e sseebe s s e smeesreesbesasesaeesseensesasens 383
JAVASCIIPE @CLIONS. ..ottt 383
SOUNA GCHIONS ...ttt ettt ettt ettt et s b et b et et bt e e be st et sbesbenene 383
SROW/HIAE @CHION....cotiiiiieteteteeee ettt st ettt et sbe s b s 384
NAMEA GCHIONS. ..ttt ettt ettt b e s b b s bt ettt e b e besbesbe s st eneeneens 385
SUDMIE FOIM ACHIONS ...ttt ettt ettt ettt sbese et sbe st et besse e ebens 386
RESEE FOIM ACHION.....eiiiiiieiteeeertete ettt st st sat b b s esae e s st e sbesaeesmeenis 386
ANNOTATIONS. c..eiitiiieeecteeee ettt st e b e s e s e s bt bt et s e e s st e b e s b e s b e sreesre e besaaeenees 386
Properties common t0 all @aNNOTAtiONS......ccvvirivirierintereeene et sseenes 387
Properties common to all mark up annotations.........cecevevervrinneenienenenese et 390
Properties common to all widget annotations.......cc.cceeererenninnenereresene e 391
GeNEral ANNOTATIONS. ...ccveietiieeriertete ettt ettt sttt sttt b et sb et be st e sbe b e e sbessenes 392
Markup @NNOTATIONS.ooiirieriirterteteteterteee ettt ettt st e sbe bt s et ettt e besbesae st e e e e enes 395
Widget @anNOTAtIONS.coueierieeeeceee ettt sttt ettt sttt aeneenne e 406
USE GNNOTALIONS....ciiieiiieeeeeeteteer ettt ettt sr e sttt ae b e sne s bt st s e seeeenes 415
Place an @nNOLAtioN.....cc.ivieieieieterierenes ettt sttt et ettt et b e s b sttt aeees 415
Create an annotation with @ custom border........ccccooeierirerininreeeeee e 416
Add a pop-up to @ MAarkup annNOtaAtiON......cccverererreererenere e sre e sre e sresseens 417
Create an annotation With tranSPareNCy........coeeirveerierierienieneneneeeete et 418
SKIN @N @NNOTATION. ..ottt ettt et et s e st se et et see e snas 419
Make an annotation with a rollover appearanCe........ccceverererreeneneneneneseeesssessessenns 420
Make a Sticky NOte @aNNOLALION.....cocuiviirierireetetete ettt ettt eaes 421
Add a review state to @ StICKY NOTE......coiiieiiiieeeec et 421
Make a highlight @annOtatioN......cccevivirinenirereceee e a e sees 422
Set @ FEAACTION @I a....icuiruieeieieiietetertere ettt et st sttt et te b sbesbesbesse et et ennens 426
Use JavaScript to Calculate ValUes.........cociiiieiieiirineeeeee ettt 427
PDF FOIMIS ettt st et sr e s st s b s aa e st e bt s b ssb e sanesreesne s b e sas 429
PATFOIM ettt ettt s s a ettt et e b s b st et et e s e s e e ae 430
NOAE FOrM FIIAS. ..ottt b e st 431
Leaf fOrM fIEldS. ..o ettt s 431

Atalasoft DotImage Developer's Guide

VISITING NOTES....ceiiiieeee ettt sttt ettt r e b b st ettt ee b e st e sbesaeeme s 431

FOIM @CLIONS...ciiiiiiiiiiiiii bbb b 432
MEIGE PDF fOIMIS....iitiieteriinteettrtee ettt sttt ettt et st s b she st st et et et esbesbesbe s st sae et eatensansens 433
IMPOIT PAGES ettt st sttt be s s es 434
IMIBIGE TOIMIS.c.iiiiiiiiieteiere sttt sttt ettt s bt s e st et e b e sbesbassessessaessessassessessessnssesseessensansens 434
Default MEIGING....cociiieieerieee ettt sttt ettt sbe s st et e e e e e nae b 435
DOtP AT FEP@IN .ttt ettt ettt b ettt et b e s b bt e h ettt s besbesae et aeen 435
DOtP A FEPAIN PrOCESS.c.uicvirtiriertiteterertese st et ee e te e e st s e s e s aessessessessessessessasssensessensensens 435
DTy =T ot =T o =P P PRSPPI 436
REPIT BITOIS ettt ettt st st s bbbt b s e e sme e besneens 437
REPAIT BVENES. ...ttt sttt et e st s e st e s bt e s s e e b e s see s seesabeesaseesnsessneesnnes 437
REPAIT FIIEEIING.ceititeeeeeeee ettt st ettt sae b s b s e et ens 438
STIUCTUNE OPTIONS.c.eiiiiiteiteitee ettt s s st b e s e s e snes 439
ATTAY OPLIONS eeiiieieiteiteieet sttt ettt et et e st e s e esbe s besabesaeesbeessesntesssessasssesasesssensasssesnees 441
PrOPEITY FBP@IN . iiiieiietereece ettt sttt s e st e bt e st e s st e be s b e et e saeesseesesaeesanesnes 441
DiIgiItal SIGNATUIES.....eeieietieteet ettt ettt ettt s sbe st et et ee s b s be s bt s bt e me et et eaenbenaennes 442
Certify AOCUMIEBNTS...cuivieietererienese sttt sttt st e s sre e st e e e e estessesbesbessesseesnessessessensensesses 443

Get SIgNer INFOrMAtION......civiiriirier ettt st et ettt st sbe s s eae 445
Document SigNiNg OPEratioNS.......ccceveriiiiiiireenteeee sttt 448
CuStOMize SIgNAtUIe PP AIANCE......civirierrterterreesteetestesreerestestessesssessesssesseessessessaessens 451
Certify a document with PAfDOCUMENT.........cociriiriirirenirtreeteteeeeese et 452
Determine if a document is certified Or SIgNed........ccceverinerininreeeeereeeeeeee 452

Fill fields of a certified dOCUMENT.......cccceueiviiiiiniiii e 453

Sign a document with an existing SIgNatUure...........cocvvevienierinineneneeeeeeee e 453

Add a signature t0 @ dOCUMENT.....c.iiiiiieeeee ettt ettt sre e s 453
LINEAMIZEA PDF ..ottt 454
PdfDocument and PdfGeneratedDocument integraton.......cccoeeererverieerieneenenenenennene 454
PAfENCOAEr INtEGIatiON...coiiieieterteetee ettt sttt et sae s 455
PDF/A ittt e bbb e b e s 455
PDF/A IN PAfDOCUMENT..c..iitiiiiteieteierieteste ettt ettt sttt sttt ettt s b sae st st e saesaesae s 455
PDF/A data in PAfDocumentMetadata.......cccceveeveereerenenineneeeeeeeseseeseseeeee et 458
PDF/A in PdfGeneratedDOCUMENT.........cccoiviiiniiiiiniicinicnceet e 458

PDF 2.0 ettt ettt ettt e et R et R et s e r et r e ns 466
Document upgrade t0 PDF 2.0....cc.coiiiieireeenieeeeee ettt sttt sb s 467
CRapPLer 6: DOLTWAIN......ccccecceiirrerrenrnereesneressnnnscssnssossansssssnsassssnsssssansssssnsasssansssssnsassssnsassssasssssassssssnss 468
ADOUL DOTTWAIN...cetititieiteitetetetete ettt ettt sttt ettt et s b b e s bt s bt st et et e besbesaesaeene et et ensenes 469
ACGUITE IMIAGES. ettt sttt sttt st e st bt et s e e sbe e b e s b e saaesreesreebesnaesnnes 469
Document feeder CONLIOL.......occciviiiiniiiniii e 469

10

Atalasoft DotImage Developer's Guide

Navigating fileS iN @ CAMIBIa.....coci ittt et 470
ActiveX control API refer@nCe.........cciiiiniiiiiiiiitc s 470
ClASS BVENES ...ttt ettt sttt et ettt et st e bt s bt s at et et et et e besbesae st et et enes 471
GEING STAMTEA. ..ttt ettt s b s bt bttt et e b e sbe s bt s st et et et e naeeas 471
Add DotTwain to the tOOIDOX.......cccciviiuiviiiiiiiiiiicc e 471

Set application INFOrMAatioN.......coiviiiiireeee ettt 472
MOdEl @CQUISITION.....etitieeerieeieteteeet ettt sttt ettt b sttt see e sbe b b emeene 472

SEU UP BVENES....iiiiieeiteeiteetteett et eete st e st e st e st sssee s bee s bt e s seessseessee s see s seessseesaseesnsessneessnes 472

Show the Select SOUrce dialog......ccviririeiiriiniernreeeee ettt 473
PrOPEITIES ettt s e s s be e neene 473
ACQUITE @N IMIAGE....iiiiriirienieeierrtesteseesieestestestesseestessesasesseessesssesssessasssesssessesssessesssesssesses 473
Acquire images WIth TWAIN.....c..oiriiiiieeierenre ettt sttt ss e s st aee 474
Acquire a select region of the deViCe.......co e 474
Acquire and save images directly to a fil.....ccoivirininininineeree e 475
Detect @ CamMEra AEVICE.....cviiiiieieieiereetee ettt ettt et be b s bt sttt e a e e e 476
Upload an iMage t0 @ SEIVEN ..ottt ettt sttt s sse b st eeeen 477
DEPIOY DOLTWAIN.c..iitirrerieriiiterierienieseseseseeeeseessessessessessessessessesssessessessessessessesssessensessensassens 478
Chapter 7: OCR @NQINE.......uiiiiiiiiiiiiinntieistiessastesssssessstsessnstsssssssessasssessasssssansssssassssssnssssssnssossassss 479
TESSEIACE ENGINE.c.ueiiiiiiiiieee ettt st sttt sb e e b e s e s e b et esmaesreenes 480
FEATUIES...cuiiiiiiiiicc b 480
SUPPOItE laNQUAGES.... .ottt ettt ettt sttt et s te st s b sae st st st et eeesbesbesaens 480
Supported OULPUL FOrMAtLErsS. ..ot s 4381
DEPIOYMENT...c.iitirtirerieteresere sttt ettt st s e st s te s e et e e e b e s b e sbesbessesseessessessessessessesseensensensans 481

1

Preface

The Atalasoft DotImage Developer's Guide contains information about how to install and customize
your Atalasoft DotImage installation. This guide explains how to:

Use .NET assemblies to acquire, read, write, display, annotate, or process images
Use WebForms controls to scan, display, and manipulate images and documents
Add .NET controls to WinForms, WPF, and WebForms projects

Related documentation

In addition to this guide, the Atalasoft DotImage documentation set includes the following:

API Reference: Gives the complete Atalasoft DotImage class library in online help format.
API Reference (.chm file): Gives the complete Atalasoft Dotlmage class library for offline use.

Atalasoft DotImage Release Notes: Contains late-breaking product information not included in this
guide. You can download the release notes from the Atalasoft Web site at www.atalasoft.com.
View the release notes from the Support pages.

Atalasoft DotImage Demos

Resources

The following resources are available for Atalasoft products:

Purchase Atalasoft DotImage
Knowledgebase

Atalasoft DotImage Feature Matrix
Atalasoft DotImage Support
Sample applications

Atalasoft DotImage Dev Team Blog
Contact information.

12

https://docshield.tungstenautomation.com/AtalasoftDotImage/en_US/11.5.0-8wax4k031j/help/DotImage/html/Atalasoft_DotImage_Welcome.htm
https://docshield.kofax.com/AtalasoftDotImage/en_US/11.5.0-8wax4k031j/help/ApiReference.chm
https://www.atalasoft.com/
http://github.com/Atalasoft/
http://www.atalasoft.com/buy/dotimage
https://www.atalasoft.com/kb2/
http://www.atalasoft.com/Technical-Details/net-technical
http://www.atalasoft.com/support/
https://www.atalasoft.com/Support/Sample-Applications
https://atalasoft.github.io/
http://www.atalasoft.com/Contact

Chapter 1

Atalasoft DotImage

Atalasoft DotImage is a suite of .NET assemblies to use in projects to acquire, read, write, display,
annotate or process images. Atalasoft Dotimage assemblies can be used in desktop and ASP.NET
projects and the various objects and methods are accessible from any .NET-compliant language
including C# and Managed C++.

Atalasoft DotImage WebForms controls include innovative AJAX controls for scanning, displaying
and manipulating images and documents, all with a minimal or no client-side footprint.

Images used in Atalasoft DotImage controls or objects can come from files or databases, as well as
from scanners or cameras.

In addition to standard objects, Atalasoft DotImage includes .NET controls you can add to
WinForms, WPF, and WebForms projects. These controls make it easy to create applications that
display or edit images.

Atalasoft DotImage Photo

Atalasoft DotImage Photo is a raster imaging toolkit that can add advanced image viewing, editing,
and printing to an application. Atalasoft DotImage compliments GDI+ in .NET by adding more
advanced codecs, image processing, and UI controls. Atalasoft DotImage Photo includes an
imaging class library, and a Windows Forms control library. The Atalasoft DotImage class library is
used for all image processing, encoding, and decoding, in Windows Forms or ASP.NET WebForms
applications. It is broken up into logical namespaces such as Imaging, Codecs, Drawing, and
ImageProcessing. The Windows Forms library includes visual UI controls for viewing, printing, and
rubberbanding images.

The toolkit includes the following features:

+ Read write, and convert to popular image formats such as JPEG, PNG, BMP, DIB, TIFF, GIF, PCX,
TGA, PSD, WBMP, EMF, WMF, TLA, PCD, PCD, with a plug-in interface to add new ones.

« Compress images using algorithms such as JPEG, LZW, Deflate/ZIP, RLE, Packbits, CCIT Group 3/4,
and Huffman.

+ Over 100 image processing commands to apply filters, effects, and transforms to images.

» Over 20 different resampling commands for fast or high quality enlargements or thumbnail
creation.

+ Advanced image viewing, scrolling, zooming, and rubberbanding with the BitmapViewer,
ImageViewer, and WorkspaceViewer controls.

» Control over printing single or multiple images with the ImagePrintDocument component
including properties to center, fit to margins, and fit to edges.

13

Atalasoft DotImage Developer's Guide

» Support for streaming images to any .NET Stream or byte arrays to support saving and retrieving
images from SQL, Access, Oracle, and other databases using binary streams.

+ Load or save images from HTTP or FTP. Includes an HTTP Post object for posting images directly
to a server.

» A Workspace object for easily handling and processing images with no need to worry about
memory cleanup.

+ Full alpha transparency support.

Scenarios

Atalasoft DotImage Photo is used in a variety of imaging applications and industries. some sample
scenarios include:

+ Digital imaging applications

+ Stock photo Web sites

» Employee photo ID application

+ Advanced photo resizing

Sample code

This example demonstrates how to open a TIFF image, apply a marble transform, save it as a JPEG
with a quality of 90, and stream to the browser for display.

C#

myWorkspace.Open ("myimage.tif") ;
myWorkspace.ApplyCommand (

new MarbleTransform(l.4, new Size (5, 5))):
Response.ContentType = "image/jpeg";
myWorkspace.Save (Response.OutputStream,
new JpegEncoder (90)) ;

Atalasoft DotImage Photo Pro

Atalasoft DotlImage Photo Pro is an advanced raster imaging toolkit that can add image viewing,
editing, printing, and metadata support to an application. Atalasoft Dotlmagee compliments

GDI+ in .NET by adding more advanced codecs, image processing, and UI controls. Atalasoft
DotImage Photo Pro includes all the features of Atalasoft DotImage Photo as well as high-end
photographic/prepress support, and an AJAX enabled ASP.NET Server- Side Image Viewer. Full
documentation is integrated into Microsoft Visual Studio .NET. See Atalasoft DotImage Document
Imaging for document imaging functionality and support. For the high-end photography and pre-
press market, the Atalasoft DotImage Advanced Photo Effects Module is an add-on that can be used
to automatically enhance digital photos without laborious manual touch-ups.

In addition to the features included in Atalasoft DotImage Photo , Photo Pro includes the following:
» Support for 32-bit CMYK images.
» Support for 16-bit grayscale, 48-bit RGB, and 64-bit RGBA color depths.

14

Atalasoft DotImage Developer's Guide

+ An ASP.NET AJAX-enabled server-side image viewer to view, pan, zoom, process, and rubberband
images without the need for client applets or plug-ins. New AJAX controls for viewing thumbnails
and editing images on the with full scrolling support and on-demand tiled loading.

+ Support for reading over 100 RAW digital camera formats including support for decoding the
DNG RAW image format.

+ A multi-threaded Thumbnail List Viewer control to display thumbnails from custom sources, or
list thumbnail images from a directory with horizontal or vertical scrolling support, and ability to
customize thumbnail size, position, and style.

+ A composite printing component that will print multiple images as a photo composite or contact
sheet.

» Support for reading metadata such as EXIF, IPTC, XMP, TIFF Tags, COM Markers, Adobe
Photoshop Resources, and Eastman WANG annotations.

» Support for writing metadata such as EXIF, IPTC, XMP, TIFF Tags, COM Markers, Adobe Photoshop
Resources, and Eastman WANG annotations as well as creating EXIF Thumbnails in TIFF images.

+ Full color management support including the ability to extract and embed ICC color profiles,
automatically adjust colors based on target and destination color profiles and create virtual
proofs.

+ AutolLevels, AutoColor, Curves, and Levels commands that automatically adjust colors, just like
the Adobe Photoshop equivalent functions.

* Red Eye Removal.
+ Dust and Scratch Removal.
* Region of Interest Processing.

Scenarios

Atalasoft DotImage Photo Pro is used in a variety of imaging applications and industries. In addition
to the features included in Atalasoft DotImage Photo, Photo Pro includes the following scenarios.

» Pre-press printing application.

» Online image viewing application.

Atalasoft DotlImage Document Imaging

Atalasoft DotImage Document Imaging is an advanced document imaging toolkit that can add
high performance image viewing, editing, printing, scanning, and annotating support to an
application. The toolkit includes an imaging class library, a Windows Forms control library, an
ASP.NET AJAX-Enabled Server-Side Image Viewer, DotTwain for advanced TWAIN scanning, and
advanced annotations support for both Windows Forms and ASP.NET WebFormes.

In addition to all features in Atalasoft DotImage Photo Pro and the AJAX-enabled thin-client image
viewer, the toolkit includes the following features:

» Multipage TIFF encode and decode with support for many obscure flavors of TIFF (including most
Old Style JPEG-In-TIFF images).

» Multipage PDF Encoding Support (embedded images only) | TWAIN Scanning support with the
included DotTwain SDK* | Advanced Windows Forms Annotations support webForms Annotations
support featuring AJAX technology*.

15

Atalasoft DotImage Developer's Guide

TIFF Directory manipulation controls for inserting, removing, and reordering TIFF pages in a
multipage TIFF without re-encoding the entire image.

Advanced TIFF Tag editing support to edit standard and arbitrary TIFF Tags.
Optimized Scale to Gray display, fastest in the industry.

Optimized Scale to Gray display when viewing 1-bit documents using the AJAX- enabled thin client
image viewer.

Document Processing Functions including:

+ Fast Auto-Deskew for binary images.

« Despeckle binary images.

« Remove noise from binary images.

« Auto border detection and removal

» Adaptive and Global Thresholding to convert grayscale or color images to binary.
« Binary Morphological Filters (Erode, Dilate, Boundary Extraction, Thinning).

Render FAX images with different X and Y resolutions properly (both WinForm and WebForm
controls).

Thresholding Commands optimized for multi-core processors.

The Advanced Document Cleanup (ADC) add-on module providing the ability to auto- matically
remove specks, borders, lines, blobs, hole punches, and halftones for improved image quality
using unique proprietary algorithms.

The ADC add-on also provides blank page detection, as well as the ability to auto-negate inverted
text and inverted documents.

High quality character recognition with the GlyphReader OCR add-on module, a highly accurate
and cost-effective OCR engine. Provides a generic interface for OCR with integration with other
industry leading OCR engines.

A Searchable PDF add-on module for OCR that generates high-quality searchable PDF documents
from any Atalasoft DotImage-supported OCR engine. Produces documents with hidden text
behind image for color, gray, or bitonal images. Supports JBIG2 and JPEG2000 compression.

View PDF documents with the PDF Reader add-on module.
Recognize 1D and 2D bar codes with the BarcodeReader add-on module.

*Requires additional licensing for production server distribution.

Scenarios

Atalasoft DotImage Document Imaging is used in a variety of imaging applications and industries.
Some sample scenarios include:

Medical records

Insurance documents Management Solution
Mailroom document application

Check management in financial/banking industries
Online Mechanical Drawing Viewer

See our online AJAX Image Viewer for an example on how to use Atalasoft DotImage on the to view
and cleanup multipage documents.

16

Atalasoft DotImage Developer's Guide

Atalasoft DotImage add-ons

You can enhance the capabilities of Atalasoft DotImage by using add-ons such as Barcode Reader,
Barcode Writer, OCR, PDF Reader, JPEG2000 Codec, |JBIG2 Codec, DICOM Codec, DWG Decoder, and
Atalasoft DotImage ISIS.

BarcodeReader

The Atalasoft DotImage BarcodeReader add-on provides advanced bar code image recognition
for your .NET applications. This component is very easy to use and designed specifically for
Microsoft .NET.

i J Licensing is runtime royalty free for desktop applications.

Features

Recognizes all bar codes in an image
Returns the string value of each bar code recognized

Reads twenty-one industry 1D symbologies as well as QR Code, PDF417 and DataMatrix 2D
symbologies

Automatically detects orientation of bar code (East, South, West, North)
Returns the bounding rectangle of all recognized bar codes

Returns the coordinates of the start and end lines, can be used to construct a polygon
encompassing the bar code area

Detects the type of bar code recognized

Integrates with Atalasoft DotImage with the ability to include an image viewer and pre-
processing capabilities such as deskew, despeckle, and annotations. Returns position of
checksum character (if present)

Returns any supplemental bar codes
Deploys as a single managed assembly alongside Atalasoft DotImage dependencies

Supported symbologies

1D Barcodes

Codabar Code93 Patch code RM4SCC (Royal Mail)
code 11 EAN-13 Planet Telepen

code 128 EAN-8 Plus 2 UPC-A

code 32 Interleaved 2 of 5 Plus 5 UPCE-E

code 39 ITF-14 Postnet

2D Barcodes

Aztec

DataMatrix

17

Atalasoft DotImage Developer's Guide

2D Barcodes
PDF417
QR Code

Deployment
When using the BarcodeReader, the assemblies that need to be copied with your application

include:

Assembly Description

Atalasoft.Shared.dll Shared classes such as licensing
management

Atalasoft.dotImage.Lib.dll DotImage low level library assembly

Atalasoft.dotImage.dll DotImageAtalasoft DotImage class library
assembly

Atalasoft.dotImage.Barcoding.Reading.dll Barcode Recognition Engine

Barcode Writing

The DotIlmage Barcode Writing assembly is designed to be a simple set of classes that make it easy
to create bar codes within a .NET application. There are objects that are designed for writing directly
into Graphics objects and corresponding Win Forms Controls that allow bar codes to appear in
window-based applications.

The Barcode Writing classes can be used for many common 1-D bar code types as well as PDF417
and DataMatrix bar codes.

Deployment
When using Barcode Writing, the assemblies that need to be copied with your application include:
Assembly Description
Atalasoft.Shared.dll Shared classes such as licensing management
Atalasoft.dotImage.Barcoding.Reading.dll Barcode Writing Engine

OCR

Atalasoft DotImage OCR is an adapter module for Microsoft .NET developers that allows
programmers to add character recognition (OCR) to their applications.

The Atalasoft.Ocr namespace contains a set of classes for managing and processing documents

to be processed for optical character recognition (OCR). These classes provide the functionality
necessary for OCR, without being tied directly to any particular OCR engine. This allows client code
to be insulated from changes in the underlying engine, and makes it easy to test and evaluate
different OCR engines.

18

Atalasoft DotImage Developer's Guide

OCR engines are supported through engine-specific add-ons that fit into the Atalasoft DotImage
OCR framework.

Engine Add-Ons

You can add these corresponding OCR engines:
+ GlyphReader Engine Add-on

+ Tesseract Engine Add-on

+ OmniPage Engine Add-on

Features
+ Fully extensible file and stream export

» OCR Engine neutral, open API

+ Built-in image preprocessing

+ Fully overridable image preprocessing

» Easy event model for tracking progress and reporting/modifying document layout
+ Fully extensible document and page model

+ Font management and abstraction

» Confidence level provided at region, line, word, and glyph levels

» OCR capability for any image that can be read by Atalasoft DotImage
+ Easy integration with DotTwain

» Images can come from any source, not just files

+ Output formats specified by MIME standard

+ Built-in Text Translator for formatted text output

+ Searchable PDF module for outputting results in highly compressed JBIG2 Adobe PDF as Text
Only, or Hidden Text Underneath Image

» Supports engines that automatically identify regions (or zones) of an image, or manually zone
images yourself

Licensing

To use OCR functionality, you must have an Atalasoft DotImage license, licenses for any OCR Engine
Add-On(s) you use, and a license for any OCR engines you use.

© A license to use an Atalasoft DotImage OCR Add-On is not a license to use the corresponding
3rd-party OCR engine.

There is also an add-on module to generate searchable PDF documents from OCR.

Output Formats

Atalasoft DotImage OCR provides a flexible means for translating OCR output to alternative
document formats. Client code requests a mime type that represents the desired output format and
specifies whether the output should go to a file or stream. If the engine can provide the requested
output format, it goes ahead with the work. The output translation mechanism is fully extensible
and changeable by client code.

Broadly speaking, there are two different types of translators: native and foreign. Native translators
are built into a particular OCR engine, foreign translators are those that are supplied from outside
of an engine. Typically, native translation avoids the overhead of constructing an OcrDocument and

19

Atalasoft DotImage Developer's Guide

foreign translation always requires construction of an OcrDocument. Foreign translators are like to
be flexible in their configuration and output styles but can be less efficient when used with some
engines because they operate at a significantly higher level than native translators.

This distinction allows us to publish low-level engine translators and to provide a means of adding
other translators that are treated as first class objects.

Text translator

A TextTranslator class implements a foreign translator that is used to generate text files from an
OCR engine. The TextTranslator has properties to control how much the TextTranslator attempts to
mimic the layout and format of the original document.

PDF Translator

The PdfTranslator class allows client applications to generate high quality PDF documents from
scanned documents.

Features

+ Ability to set PDF Metadata fields

» High quality thumbnail images

+ Accurate text placement

+ Text-Under-Image placement

» Optional placement of picture regions

» Automatic or client-controlled image compression

» Advanced codec support (JBIG2, JPEG 2000)

+ Insertion of client synthesized pages

» Generation of PDF/A-1b and PDF/A-2b compliant documents with embedded fonts and color
profiles

Font Building

Atalasoft DotImage OCR defines an IFontBuilder interface which is used to construct fonts in
documents. Since the elements within a document page can come from many different sources,
it is advantageous to have a central resource location for fonts. The FontBuilder allows fonts to
be retrieved for every text element without the need to construct any more font objects than are
needed for the page. If a document needs to enumerate all the font resources on a page, itis
possible to do so by scanning every font in the document and then enumerating those objects
within the FontBuilder.

Atalasoft DotImage OCR provides a simple implementation of the IFontBuilder interface called
BasicFontBuilder. This object caches font building requests and only returns one instance of a font
for every unique font requested.

Font Mapping
When recognizing a document, it is necessary to create fonts associated with text

elements. There is, however, no guarantee that an identified font in a given document is available
on the computer that is doing the recognition. Further, some engines might not be able to do any
better than "this font looks like it has serifs" or "this font looks like it is monospaced." For those
reasons, every engine build contains a FontMapper object which can be used to map one set of

20

Atalasoft DotImage Developer's Guide

font characteristics to another. This makes it possible to turn a generic "sans serif" font into, for
example, Gill Sans or Helvetica, rather than Arial. It also makes it possible to strip out all "strike out"
font characteristics.

When constructing an OcrDocument, the engine's FontMapper determines which font should
be used for a page element. You may supply your own FontMapper to replace the standard font
mapper.

Atalasoft DotImage provides a simple implementation of the IFontMapper interface called
BasicFontMapper. This object attempts to map a requesting font to a matching system font, using
Arial as the default when no font matches are present.

Metadata

The OcrPage object includes a property called Metadata which is reserved for holding metadata
associated with a given page. At present, only the PdfTranslator uses the Metadata property, but
the same conventions applied to the OcrDocument metadata should be honored: client code should
only use add values using non-integral keys, such as strings.

PDF Reader

Atalasoft DotImage PDF Reader (formerly PDF Rasterizer) quickly decodes PDF documents into color
or grayscale raster images. It seamlessly integrates into Atalasoft DotImage and associated image
viewing components as an image decoder.

PDF Reader supports simple image-only PDF's as well as complicated PDF's with vectors, text,
patterns, and transparency. You can:

+ Rasterize any PDF to an image

» Extractimages from a PDF document

« Extract text and text locations from a PDF document
» Search for text in a PDF document

* Render a PDF directly to a printer

Atalasoft DotImage PDF Reader provides a PdfDecoder which seamlessly integrates into Atalasoft
DotImage and associated image viewing components.

To use PDF Reader to rasterize images:
1. Add an instance of the decoder to the Decoders collection.

2. Open the PDF with Workspace.Open(), new Atalalmage(), or any Atalasoft DotImage method
that takes a stream containing an image.

For further details, see How to: View a PDF Image.

Features
+ Add high speed viewing of PDF documents to your applications

« Convert PDF's to raster images in the Atalasoft DotImage Image Viewers without the Adobe
Acrobat SDK

« Extracts and searches for text in a PDF document

+ Print PDF Documents using the Atalasoft DotImage Printing components or by rendering onto a
printer graphics object.

21

Atalasoft DotImage Developer's Guide

Convert PDF Documents into any supported Atalasoft DotImage image format (multipage TIFF,
JPEG, etc).

Integrates with our AJAX enabled Web Image viewer for server-side viewing, panning, and
zooming of PDF documents

Extract all images from a specified PDF page to their native bit depth

Specify a resolution to use when rasterizing the PDF for instant PDF thumbnails
Supports CCIT G3, G4, Flate, and JPEG embedded images

Support for JBIG2 and JPEG2000 compressed images

Supports PDF Specification versions 1.3, 1.4, 1.5, and 1.6

Supports all font types: Type1, TrueType, Type0, Type3

Supports all text rendering modes (full, stroke, clipping)

Supports tiling patterns and shadings

Supports all colorspaces: RGB, Gray, CMYK, ICCBased, Lab, Indexed, and Separation
Runtime Royalty Free Desktop Licensing

Deployment
When using PDFReader, the assemblies you need to copy with your application include these:

Assembly Description

Atalasoft.Shared.dll Shared classes such as licensing management
Atalasoft.dotImage.Lib.dll Low level Atalasoft DotImage Library
Atalasoft.dotImage.dll Atalasoft DotImage class library
Atalasoft.dotImage.PdfReader.dll PDF Decoder

When using other Atalasoft DotImage functionality, such as WinControls, those assemblies must be
distributed as well.

JPEG2000 Codec

Atalasoft DotImage JPEG2000 codec can be used to decode and encode JPEG2000 images using
the Microsoft .NET Framework. It uses wavelet compression technology to compress photographic
images further then any other available compression scheme. The codec is available as a plug-in
and integrates with Atalasoft DotImage seamlessly. Atalasoft DotImage JPEG2000 is based off of
Luratech's Lurawave.jp2 wavelet compression technology.

i) Licensing is runtime royalty free for desktop applications.

Features
Standard Edition

Ability to decompress JPEG2000 images stored in any compatible jp2, j2k, or jpc code stream
Supports decoding directly to 8-bit grayscale, 24-bit RGB, 16-bit grayscale, and 48-bit RGB
Supports encoding 8-bit grayscale and 24-bit RGB to jp2 code stream

Specify compression ratio (0 - 100)

Lossless compression

22

Atalasoft DotImage Developer's Guide

+ Integrated with Atalasoft DotImage's PdfEncoder to encode PDF images with JPEG2000
Compression.

+ Integrated withAtalasoft Dotlmage's searchable PDF module for OCR to encode PDF images
with JPEG2000 Compression

* Runtime Royalty Free Desktop Licensing

Professional Edition

» Supports decoding to CMYK colorspace

+ Supports encoding 16-bit grayscale and CMYK images

+ Full Metadada support, such as IPTC, XMP, XML Box, and UUID Boxes
+ Precise control over the decoder and encoder settings

» Progressive Decoding Support

DICOM Codec

Atalasoft DotImage DICOM codec can be used to decode DICOM images and metadata using the
Microsoft .NET Framework. DICOM stands for Digital Imaging and Communications in Medicine and
is typically used to hold medical images and information about a patient. Our DICOM Decoder has
the ability to decode images compressed with JPEG2000, JPEG, JPEG Lossless, and RLE.

i] Licensing is runtime royalty free for desktop applications.

The Atalasoft DotImage DICOM Codec is an add-on module to Atalasoft DotImage for viewing
medical images and requires a Atalasoft DotImage license. Add DICOM viewing to your applications
when integrating with our AJAX-Enabled Image Viewing technology for ASP.NET.

Features

Views both old and new style DICOM Formats

Decodes images into 8-bit Gray, 16-bit gray, 24-bit RGB, or 48-bit RGB colorspaces
Supports 10-bit, 12-bit, and 14-bit gray promoting them to 16-bit gray for viewing
Read all patient metadata from the image

Supports advanced JPEG2000 compression

Reads a specified frame in a multi-framed DICOM image

Full Annotations support

Integrates with the Atalasoft DotlImage image processing and windows based or based
component features

Supports access to raw images for efficiently applying repeated window and leveling operations

Advanced Document Cleanup

The Advanced Document Cleanup (ADC) add-on provides document cleanup algorithms you
can apply applied to scanned documents to clean them up for better compression and archival,
increased readability, and for improved OCR accuracy.

23

Atalasoft DotImage Developer's Guide

Atalasoft DotImage ADC uses proprietary algorithms developed by our research and development
team that are designed to automatically select the best parameters to apply for fast and accurate

processing. The commands included in ADC extend the command interfaces in Atalasoft Dotlmage

and can easily be applied to an existing application built with Atalasoft DotImage.

ADC features

Atalasoft DotImage Advanced Document Cleanup (ADC) provides the features listed below. These
commands can all be applied to an entire image or to a region of interest.

Binarize

Binarize uses your choice of three thresholding methods (adaptive, global, or simple) to efficiently
and accurately convert a color or grayscale image to binary.

Binarize often results in better bi-tonal documents than those obtained when scanning directly to
black and white.

Advanced Border Removal

Advanced Border Removal removes black borders from a bi-tonal image using a sophisticated
object detection algorithm. This is useful because scanning documents often results in an
unnecessary border around the image.

24

Atalasoft DotImage Developer's Guide

Margin Crop

Removes margins (white space) from each side of an image. Useful for decreasing image size, and
isolating relevant features on an image for processing.

Auto Border Crop

Auto Border Crop is similar to Advanced Border Removal, but crops the border as opposed to
removing the feature. It uses a higher speed algorithm than Advanced Border Removal.

Speck Removal

Removes specks of a specified size from a bi-tonal image. Useful for removing noise from an image
introduced by a scanner or when thresholding from a color or grayscale image.

Hole Punch Removal

Detects and removes hole punch artifacts from a bi-tonal image. Will automatically remove round
hole punches from bi-tonal images from any of the 4 sides that appear when these documents are
scanned.

25

Atalasoft DotImage Developer's Guide

Blob Removal
Removes arbitrary blobs of a specified size from a bi-tonal image.

Blank Page Detection

Automatically detects if a bi-tonal document is blank using a sophisticated object detection
algorithm. Useful when scanning duplex (both sides) when the back side of the document is blank.

Automatic Page Inversion

Automatically detects and optionally inverts an image when the background is black and the
foreground is white. Useful when a scanner mistakenly inverts image data, or if the image was
saved with incorrect tags resulting in inverted data.

Automatic Text Inversion

Detects inverted text regions in a bi-tonal image and automatically inverts them so that OCR
engines can recognize the text.

Line Removal

Automatically removes horizontal or vertical lines from a bi-tonal image and reconnects broken
characters. Useful for pre-processing a form prior to OCR.

Halftone Removal

Detects and removes shaded regions in a bitonal image, created when thresholding color or gray
images to bitonal with shaded image areas. Often referred to as Dot Shade Removal.

Auto Deskew

Detects skew in a bi-tonal document and corrects the image by rotating it. Useful for deskewing
scanned documents.

Advanced Photo Effects

The Atalasoft DotImage Advanced Photo Effects (APE) add-on automatically corrects digital
photographs. Using proprietary algorithms, functions that typically require many manual steps
when carried out in a photo editing tool such as Adobe Photoshop can be accomplished with a
single line of code.

Features

» Automatic color correction

« Automatic skin tone correction

+ Manual/Automatic levels adjustment
« Portrait enhancement effect

» Color warming and cooling

* ND Gradient filters

+ Photo Color Magic *

26

Atalasoft DotImage Developer's Guide

* Automatically enhances the colors in a photographic image. Designed to improve the colors in any
photograph - Results are nearly always better than Automatic levels adjustment.

Examples of these effects can be found in the Photo Effect Demo on the Atalasoft DotImage
website.

DWG decoder

Use DWG codec to decode AutoCad DWG and DXF images using the Microsoft .NET Framework.

DWG and DXF files are vector images that are used in CAD/CAM applications for designing or
visualizing objects, architecture, maps, or other drawings.

This is an Atalasoft DotImage add-on module for viewing CAD images. In addition to the DWG codec
licenses, you must also have a license for Atalasoft DotImage Document Imaging.

Features

+ Views both DWG and DXF format files

» Decodes into 24 bit images with arbitrary image resolution

» Decodes at any zoom factor, including automatic "fit-to-page" viewing

+ Selectable background color

* Reads individual layouts within a file as frames

» Provides access to names and dimensions of available layouts within a file

+ Integrates with the Atalasoft DotImage image processing and windows based or based
component features

Office Decoder

The OfficeDecoder codec can be used to decode MS Office documents using the Microsoft .NET
Framework. Unlike OfficeAdapterDecoder, it does not require that MS Office be installed.

OfficeDecoder derives the ImageDecoder class and acts like any other Atalasoft DotImage decoder
in that it has a Read() method which returns an Atalalmage of the decoded document. It can be
included in the RegisteredDecoders collection which allows to open office documents using the
Atalalmage constructor.

OfficeDecoder supports Microsoft Office Word, Excel, PowerPoint, Visio, and Email (.msg)
documents using the following formats:

« Office 97-2003 Document (.doc)

+ Office 97-2003 Document Template (.dot)

+ Office Open XML Document (.docx)

+ Office Open XML Document Template (.dotx)
» Office Word XML Document (.xml)

» Rich Text Format (.rtf)

+ Open Document Text Format (.odt)

+ Office 97-2003 Spreadsheet (.xls)

27

Atalasoft DotImage Developer's Guide

+ Office 97-2003 Spreadsheet Template (.xlt)

+ Office XML Spreadsheet (.xIsx)

+ Office XML Spreadsheet Template (.xItx)

+ Microsoft Powerpoint (.ppt)

+ Office 97-2003 Presentation (.ppt)

+ Office 97-2003 Presentation Template (.pot)

+ Office XML Presentation (.pptx)

+ Office XML Presentation Template (.potx)

+ Message objects, including email, appointments, and contacts (.msg)
+ Visio drawings and templates (.vdx, .vsd, .vsdx)

In order to work properly the following modules should be installed along with
Atalasoft.dotImage.Office assembly:

e ISYS1lldf.dll
¢ ISYSreaders.dll
¢ ISYSreadershd.dll

* Perceptive.DocumentFilters.dll
The modules are available for both x86 and x64 platforms.

Note the following when using .msg files in OfficeDecoder:

+ Attachments are shown as a list in the result image. Inline attached images are shown in the
message body of the result image.

+ HTML content has the following limitations:
» Only CSS2 styles are supported. CSS 2.1, CSS 2.2, and CSS3 styles are not supported.
« Only inline styles and local CSS files are supported.
« JavaScript is not supported. Visible content from JavaScript code is not decoded.

OfficeAdapterDecoder

Atalasoft DotImage Office decoders can be used to decode Word, Excel, and PowerPoint
documents. The codec is available as a plug-in that integrates with Atalasoft DotImage seamlessly.

The Office assembly includes the OfficeAdapterDecoder class which derives from the
ImageDecoder. This class implements the Read method to use Microsoft Office to render pages
from the document. It acts like any other Atalasoft DotImage decoder in that it has a Read()
method which returns an AtalalImage of the decoded document. It also can be included in

the RegisteredDecoders collection which is used when opening images using the AtalaImage
constructor.

It supports Microsoft Office Word and Excel, and Powerpoint using the following formats:
« Office 97-2003 Document (.doc)

+ Office 97-2003 Document Template (.dot)

» Office Open XML Document (.docx)

+ Office Open XML Document Template (.dotx)

» Office Word XML Document (.xml)

28

Atalasoft DotImage Developer's Guide

* Rich Text Format (.rtf)

+ Open Document Text Format (.odt)

+ Office 97-2003 Spreadsheet (.xls)

+ Office 97-2003 Spreadsheet Template (.xlt)
+ Office XML Spreadsheet (.xIsx)

+ Office XML Spreadsheet Template (.xItx)

+ Microsoft Powerpoint (.ppt)

+ Office 97-2003 Presentation (.ppt)

+ Office 97-2003 Presentation Template (.pot)
+ Office XML Presentation (.pptx)

+ Office XML Presentation Template(.potx)

Example how to register the OfficeAdapterDecoder:;

RegisteredDecoders.Decoders.Add (new OfficeAdapterDecoder());

OfficeSession

For situations where the OfficeAdapterDecoder will be used to read a batch of documents, it is
recommended that the OfficeSession class be used. The OfficeSession class will keep Office loaded
in the background ready to render documents and will remain open until its Close method is called
or it is disposed.

If an OfficeSession is not provided to the OfficeAdapterDecoder, the Read method will create
and release a new instance of Office each time it is called, which can have a negative impact on
performance.

An OfficeSession is created by the static Open method. Alternately, the OpenCached method will
create an OfficeSession which will cache the documents it reads, consuming more memory but
providing faster performance for subsequent reads on the same stream.

How to: Convert an Office document to an AtalaImage

The OfficeAdapterDecoder class can be used in the same was as any other ImageDecoder. The
following C# code demonstrates using the OfficeAdapterDecoder to create a method which will
convert a document stream and page index to an Atalalmage.

AtalaImage RenderDocument (Stream documentStream, int pagelndex)

{

OfficeAdapterDecoder decoder = new OfficeAdapterDecoder () ;

return decoder.Read(documentStream, pagelndex, null);

}

How to: Convert a collection of Office documents to Atalalmages using an OfficeSession

The OfficeAdapterDecoder has an overloaded constructor which takes an OfficeSession to
use to perform rendering.

IEnumerable<AtalalImage> RenderDocuments (Stream[] documentStreams)

29

Atalasoft DotImage Developer's Guide

Atalasoft DotImage Developer's Guide

Atalasoft DotImage Developer's Guide

Common Decoders

The Atalasoft.dotImage.CommonDecoders assembly provides decoders for several popular file
formats.

CommonDecoders derives the ImageDecoder class and acts like any other Atalasoft DotImage
decoder in that it has a Read() method which returns an AtalalImage of the decoded document. It
can be included in the RegisteredDecoders collection which allows to open office documents using
the Atalalmage constructor.

CommonDecoders include decoders for the following formats:

+ EmlDecoder: Decodes email message files (.eml) from supported email programs like Microsoft
Office and Apple Mail. The file can contain the sender, recipients, subject, message content, and
any attachments.

» TxtDecoder: Decodes plain text files (.txt) and XML files (.xml).
» HtmlDecoder: Decodes HTML files (.html), including all formatting, hyperlink, and text formatting.
» WebpDecoder: Decodes WebP (.webp) image files.

In order to work properly the following modules should be installed along with
Atalasoft.dotImage.CommonDecoders assembly:

e ISYSlldf.dll
¢ ISYSreaders.dll
¢ ISYSreadershd.dll

* Perceptive.DocumentFilters.dll
The modules are available for both x86 and x64 platforms.

Note the following when using CommonDecoders:

+ Attachments in .eml files are shown as a list in the result image. Inline attached images are
shown in the message body of the result image.

+ Only static .webp files are supported. Animated .webp images are not supported.

* HTML content (.html files and .eml and .msg message files in HTML format) has the following
limitations:

» Only CSS2 styles are supported. CSS 2.1, CSS 2.2, and CSS3 styles are not supported.
« Only inline styles and local CSS files are supported.
+ JavaScript is not supported. Visible content from JavaScript code is not decoded.

Atalasoft DotImage ISIS

Atalasoft DotImage ISIS is a .NET component for capturing images from scanners that use an ISIS
driver. It takes advantage of the speed and stability of ISIS drivers available from most scanner
manufacturers.

Supported Features
+ Direct in-memory scanning
» Scanning directly to a variety of file formats (provided through ISIS drivers)

32

Atalasoft DotImage Developer's Guide

+ Access to dozens of scanner property values

+ Automatic Document Feeder support

+ Supports custom interface creation or, use the default driver interface
+ Support for saving and restoring scanner settings to a file or stream

+ Barcode detection (when supported by the scanner)

+ In-memory images can be returned as a .NET Bitmap or an Atalalmage
» Use the IsisController for more direct lower-level scanner control

33

Chapter 2

Use Atalasoft DotImage

This chapter describes information resources that are available to help you learn about Atalasoft
DotImage.

Atalasoft DotImage documentation

The Atalasoft DotImage documentation provides detailed information on how to develop Windows
Form and ASP.NET WebForm applications using the Atalasoft DotImage SDK.

We recommend that you read the Getting Started section before beginning your first project.
Atalasoft DotImage has many classes and namespaces. This section should help you gain an
understanding of where to start and of the classes that are relevant to your specific imaging needs.

The documentation covers the Atalasoft Dotlmage Photo, Atalasoft DotImage Photo Pro, and
Atalasoft DotImage Document Imaging products as well as all Atalasoft DotImage Add-ons. The
Atalasoft DotImage documentation is available as an HTML Help collection and as a PDF suitable for
printing.

Atalasoft DotImage NuGet Packages

NuGet is a deployment mechanism for development artifacts (.NET assemblies, JavaScript files, etc.).
It is the standard deployment option for Microsoft products, and even for the .NET Framework itself.

By introducing NuGet packages for Atalasoft DotImage, it becomes possible for users to install
Atalasoft DotImage components right from within Visual Studio, eliminating the need to provide
a complete Atalasoft DotImage installer. This streamlines the whole development process. NuGet
packages also simplify upgrading to newer versions of the packages.

Note that you cannot use the NuGet infrastructure to generate a Atalasoft DotImage license.
Historically, Activation Wizard tools were part of the complete installation package and were not
available otherwise. To accommodate Atalasoft Dotimage NuGet packages and simplify the license
generation process, Activation Wizard is provided as an extension for Visual Studio, so clients can
request trial or generate Atalasoft Dotlmage licenses without a complete installation of Atalasoft
DotImage SDK in their environment.

Visual Studio Activation Wizard Extension

For convenience, the Activation Wizard is ported to a VSIX, so NuGet package consumers do not
have to download a full installer for the Atalasoft DotImage SDK to get the Activation Wizard.

34

Atalasoft DotImage Developer's Guide

The Activation Wizard extension can be installed or upgraded right from within Visual Studio, using
Tools -> Extension and Updates.

After installing Atalasoft DotImage or downloading the Atalasoft DotImage NuGet packages, you
need to activate your serial number. You can do this using the "Activate Atalasoft Dotlmage.." item
from the Visual Studio Tools menu.

The activation process varies with your situation:

+ If you have not yet purchased Atalasoft Dotimage, select the Request 30-day Evaluation radio
button and follow the instructions in Requesting an Evaluation License.

 If you have purchased Atalasoft Dotlmage, or related toolkits, you need your serial number to
continue with the activation process.

Your Atalasoft DotImage serial number belongs only to you and must be kept in a safe place. You
need this serial number to request license files. The activation wizard will generate the necessary
license files (.lic) in your Local Application Data folder, located at:

$LOCALAPPADATAS\Atalasoft\DotImage X.Y

Where X and Y are the major and minor versions of the release covered by the license.

Getting Started with Web Capture

Follow these steps to create a new capture-enabled Web project. Topics include adding the
document viewer and scanning controls to your Web page, and handling uploaded content on the
server. Several steps will contain cross-references to other sections with more detailed information.

This guide is intended to be followed exactly, but it is not intended to give you a solution that is
ready to deploy. Once you have succeeded building the example project, you can begin modifying it
to fit your organization.

Make sure you read the Atalasoft DotImage Technical Specifications for supported products and
versions.

Atalasoft DotImage demos

The demo programs provided at our demo gallery demonstrate the wide range of capabilities
available to you while developing applications with Atalasoft DotImage.

These demos are designed as a reference and an evaluation tool, and are provided as compiled
executables, as well as Visual Studio projects in C# and VB.NET in Visual Studio. The executables
generally run without a license, but licenses are required to compile the source code.

To view a complete list of demos, go to: http://www.atalasoft.com/Support/Sample-Applications.

Set up a new project

A capture-enabled application requires these basic elements:
+ Aclient-side ASPX page containing the scanning controls and document viewer.

35

http://www.atalasoft.com/Support/Sample-Applications

Atalasoft DotImage Developer's Guide

+ Aserver-side ASHX handler for the Web Document Viewer.
+ Aserver-side ASHX handler for the Web Capture back end.
WebCapture and WebDocumentViewer resources files.

» An upload location for scanned documents.

Start by creating a new ASP.NET Web Application in Visual Studio.

O 1 the following instructions the project is called BasicWebCapture.

Visual Studio automatically gives you Default.aspx as a page, which we will use for placing the
scanning controls and viewer.

Modify the MSBuild project file when using .NET 6

If you are using .NET 6, you need to modify the MSBuild project file (which has a .csproj extension)
to add Windows Forms support and enable Atalasoft Dotimage libraries to be imported.

Search the MSBuild project file to see if <UseWindowsForms> is already in the file. If so, change
false to true. If not, add the following line to the file:

<UseWindowsForm>true</UseWindowsForm>

Add assembly references

Add the following DotImage assemblies to your project:
+ Atalasoft.dotImage.WebControls

+ Atalasoft.Shared

In a default installation, these assemblies can be found in the following folders:

* .NET Framework 4.6.2 (64-bit): C:\Program Files (x86)\Atalasoft\DotImage 11.5\bin
\4.6.2\x64

* NET Framework 4.6.2 (32-bit): C:\Program Files (x86)\Atalasoft\DotImage 11.5\bin
\4.6.2\x86

« .NET Framework 3.5 (64-bit): C:\Program Files (x86)\Atalasoft\DotImage 11.5\bin
\3.5\x64

* NET Framework 3.5 (32-bit): C:\Program Files (x86)\Atalasoft\DotImage 11.5\bin
\3.5\x86

There may be further dependencies on any of the remaining DotImage assemblies. Include all
DotImage assemblies in your project if there are problems resolving them.
Copy resources

DotImage comes with two sets of resources: WebCapture and WebDocumentViewer. In a
default .Net installation, these directories are located in C: \Program Files (x86)\Atalasoft
\DotImage 11.5\bin\WebResources.

Copy the WebCapture and WebDocumentViewer directories into the root of your project.

Create the upload location

Create a new directory in the root of your project called atala-capture-upload. This is the default
path that will be used for storing images uploaded by the scanning controls.

If you need to change the location of the upload path (for example, to place it in a location outside
of your document root), you can set an atala uploadpath value in the appSettings section of
either your web.config Or app.config.

36

Atalasoft DotImage Developer's Guide

<appSettings>
<add key="atala uploadpath" value="c:\path\to\location"/>
</appSettings>

Add the Web Document Viewer handler

The Web Document Viewer handler is responsible for communicating with the Web Document
Viewer embedded in your page, and is separate from the capture handler.

Add a new Generic Handler to your project. For the purposes of this guide, it is assumed this file will
be called WwebDocViewerHandler.

Change the class definition to extend WebDocumentRequestHandler (part of
Atalasoft.Imaging.WebControls). Your handler should resemble the following example.

C#

using Atalasoft.Imaging.WebControls;
namespace BasicWebCapture

{

public class WebDocViewerHandler : WebDocumentRequestHandler
{}
}

There is no need for further modification to your handler.

Add the Web Capture handler

The Web Capture handler is responsible for handling file uploads from the scanning controls
embedded in your page, and routing them to their next destination along with any necessary
metadata. It is also responsible for supplying the scanning controls with the available content and
document types, and status information.

For this guide, we will create a custom handler that provides a few static content and document
types, and saves uploaded files to another location. Using this baseline, you can continue modifying
the handler to suit your own document handling needs.

If your organization uses Kofax Import Connector (KIC), Dotimage ships with handlers to connect to
the service.

O Kofax Import Connector handlers are only supported with .NET Framework 3.5 and 4.6.2.

Create a handler

Add a new Generic Handler to your project. For the purposes of this guide, it is assumed this file will
be called webCaptureHandler.ashx

The handler should be modified to extend from WebCaptureRequestHandler (part of
Atalasoft.Imaging.WebControls.Capture), and should not implement the IHttpHandler interface, as
is done when a generic handler is first created. Instead your handler will need to override several
methods of WebCaptureRequestHandler. Your handler should resemble the following example.

C#

using System;

37

Atalasoft DotImage Developer's Guide

using System.Collections.Generic;

using System.IO;

using System.Web;

using Atalasoft.Imaging.WebControls.Capture;

namespace BasicWebCapture
{ public class WebCaptureHandler : WebCaptureRequestHandler
{ protected override List<string> GetContentTypelList (HttpContext context)
{ //
}

protected override List<Dictionary<string, string>>
GetContentTypeDescription (HttpContext context, String contentType)
{
//
}

protected override Dictionary<string, string> ImportDocument (HttpContext
context, string filename,
string contentType, string contentTypeDocumentClass, string
contentTypeDescription)
{
//
}

}

The three stubs represent the minimum number of methods that must be implemented for basic
functionality, but there are other methods available in the public API that can also have their
behavior overridden, such as methods to generate IDs or query the status of documents. Refer to
the accompanying object reference for the complete WebCaptureRequestHandler APIL.

GetContentTypelList

This method returns the collection of available content types that can be used to organize scanned
and uploaded documents. Content types are the top-level organizational unit, and each one has its
own collection of document types (also called document classes) below it.

For this example, GetContentTypelList will be implemented to return a fixed list of two types:
Accounts and HR. In a real system, this would probably query a database or other data source
instead. In the KIC handler, this method queries the system for these values.

C#

protected override List<string> GetContentTypelList (HttpContext context)

{

return new List<string>() { "Accounts", "HR" };

}
GetContentTypeDescription

This method returns a collection of data describing all the document types under a single content
type. The return data is a list of dictionaries, where each dictionary contains a set of properties
describing a single document type. In this example, the only property returned for a document type
is its documentClass, which serves as its name.

C#

protected override List<Dictionary<string, string>>
GetContentTypeDescription (HttpContext

38

Atalasoft DotImage Developer's Guide

context, String contentType)
{
switch (contentType)
{

case "Accounts":
return CreateDocumentClassDictionarylList (new stringl]
{ "Invoices",
"Purchase Orders" });
case "HR":
return CreateDocumentClassDictionarylList (new stringl]
{ "Resumes" });
default:
return base.GetContentTypeDescription (context, contentType) ;

}

private List<Dictionary<String, String>>
createDocumentClassDictionaryList (String[] docList)

{

return doclList.Select (doc => new Dictionary<String, String> {{"documentClass",
doc}}) .ToList () ;

}

A helper method is provided to produce the actual list of document types, while
GetContentTypeDescription switches on a given content type to determine what document types
should be included in the list. As with content types, it is expected that this data will originate from
another data source, instead of being hard-coded.

ImportDocument

This method is responsible for actually moving a document and its metadata to its real destination,
which could be a directory, database, or system such as KIC.

C#

protected override Dictionary<string, string> ImportDocument (HttpContext context,
string filename,
string contentType, string contentTypeDocumentClass, string
contentTypeDescription)
{
string docId = Guid.NewGuid () .ToString/() ;
string importPath = @"C:\DocumentStore";

importPath = Path.Combine (importPath, contentType) ;

importPath = Path.Combine (importPath, contentTypeDocumentClass) ;

importPath = Path.Combine (importPath, docId + "." +
Path.GetExtension (filename)) ;

string uploadPath = Path.Combine (UploadPath, filename) ;
File.Copy (uploadPath, importPath);

return new Dictionary<string, string>()
{
{ "success", "true" },
{ "id", docId },
{ "status", "Import succeeded" },
}i
}

In this example, imported documents are copied into a directory tree rooted at C:\DocumentStore,
using the content type and document class as subdirectories for organizing files. The imported file
is copied and given a new name based on a GUID, which is also passed back to the client in the "id"

39

Atalasoft DotImage Developer's Guide

field of a dictionary. The id could be used by the client to query the handler at a future time for the
status of the imported document, but this functionality is not included in the guide.

Set up the scanning controls and viewer

The setup for scanning just requires placing some JavaScript, CSS, and HTML into your page. The
page itself could be HTML, ASPX, JSP, or anything else, as the client-side technology is not directly
tied to .NET or IIS. For this guide however, we will update the document Default.aspx, which was
originally included in the new project.

Include the resources
Include the following script and link tags in your page's head section to include the necessary Web
Document Viewer and Web Capture code and dependencies.

HTML

<!-- Script includes for Web Viewing -->
<script src="WebDocViewer/jquery-3.4.1.min.js" type="text/javascript"></script>
<script src="WebDocViewer/atalaWebDocumentViewer.js" type="text/javascript"></

script>

<!-- Style for Web Viewer -->

<link href="WebDocViewer/jquery-ui-1.12.1.custom.css" rel="Stylesheet" type="text/
css" />

<link href="WebDocViewer/atalaWebDocumentViewer.css" rel="Stylesheet" type="text/
css" />

<!-- Script includes for Web Capture -->

<script src="WebCapture/atalaWebCapture.js" type="text/javascript"></script>

Configure the controls

The scanning and viewing controls need to be initialized and configured to set up connections to
the right handlers, specify behavior for events, and so forth. This can be done with another block
of JavaScript, either included or pasted directly within your page's head somewhere below the
included dependencies.

JavaScript

<script type="text/javascript">
// Initialize Web Scanning and Web Viewing
S (function () {
try {
var viewer = new Atalasoft.Controls.WebDocumentViewer ({

parent: $('.atala-document-container'),
toolbarparent: $('.atala-document-toolbar'),
serverurl: 'WebDocViewerHandler'

1)

Atalasoft.Controls.Capture.WebScanning.initialize ({
handlerUrl: 'WebCaptureHandler',
onUploadCompleted: function (eventName, eventObj) {

if (eventObj.success) {
viewer.OpenUrl ("atala-capture-upload/" +
eventObj.documentFilename) ;
Atalasoft.Controls.Capture.CaptureService.documentFilename
= eventObj.documentFilename;
}
by
scanningOptions: { pixelType: 0 }

40

Atalasoft DotImage Developer's Guide

1)

Atalasoft.Controls.Capture.CaptureService.initialize ({
handlerUrl: 'WebCaptureHandler.'
1)
}
catch (error) {
alert ('Thrown error: ' + error.description);

}
});
</script>

Note that the URL for the WebDocViewer handler is specified once and the URL for the WebCapture
handler is specified twice, since two capture services must be initialized.

There are several additional options and handlers that can be specified in the initialization routines
for scanning and viewing. This example represents the minimal configuration necessary for
scanning with an integrated document viewer.

Add the UI

Add the following HTML to your project to create a basic viewer Ul This includes the Web Document
Viewer, drop-down boxes to choose scanners, content types, and document types, and buttons to
drive the Ul The scanning demos included with DotImage also include more complete examples.

HTML

<p>Select Scanner:

<select class="atala-scanner-list" disabled="disabled" name="scannerList"
style="width: 22em">

<option selected="selected">(no scanners available)</option>

</select>
</p>
<p>Content Type:

<select class="atala-content-type-list" style="width:30em"></select>
</p>
<p>Document Type:

<select class="atala-content-type-document-1list" style="width:30em"></select>
</p>
<p>

<input type="button" class="atala-scan-button" value="Scan" />

<input type="button" class="atala-import-button" value="Import" />
</p>
<div>

<div class="atala-document-toolbar" style="width: 670px;"></div>

<div class="atala-document-container" style="width: 670px; height: 500px;"></div>
</div>

Wrap-up

Your project should be ready to deploy to an app server. It is also ready to run from your developing
environment, for testing purposes.

Web server Upload size limits

By default, IIS limits uploads to 30MB. Estimate the maximum upload size your application could
generate, and adjust the server limits accordingly.

41

Atalasoft DotImage Developer's Guide

Deploy on multiuser environment

There are scenarios where Web Capture Service is used on multiuser environments (MS Terminal
Server, Citrix). On these environments, multiple users work with Web Capture Service at the same
time from different Windows logon sessions. We need to support such environments and provide
the same experience as on single-user machine.

Terminal server

When using a terminal server, users can connect to the scan server simultaneously and perform
scanning tasks or import files in parallel.

In this case, the Web Capture Service Host determines who exactly has made a request to it, and
forwards the request to the appropriate Web Capture Service Worker which, in turn, works with
devices and files that are available to the specific user. For the end user, this detection process is
transparent, and takes the same as in the simple single-user environment.

Web Capture Service can work only with scanners attached to a remote Terminal Server. Locally
connected scanners are not available in this scenario. The same goes for file import — Web Capture
Service provides access to files on a Terminal Server.

Citrix

The major difference, in comparison with the standalone scenario, when both the Browser app
and Web Capture Service are installed on client machine, is that Web Capture Service is physically
running on a remote Citrix server, while a scanner is connected to the client user’'s computer. This
works transparently for Web Capture Service when Citrix TWAIN Redirection is enabled.

Installation

Web Capture Service can be installed as a Windows Service, enabling the multiuser support features
described above by using the INSTALLASSERVICE command line option as shown below:

msiexec /I Kofax.WebCapture.Installer.msi INSTALLASSERVICE=1

The same command line parameter should be passed to upgrade Web Capture Service installed as
Windows Service.

Administrator rights are required to deploy and upgrade Web Capture Service installed as Windows
Service; therefore it is the responsibility of server Administrator to deploy/upgrade it.

Upgrade

You cannot upgrade Web Capture Service installed as a Windows Service to the standalone version.
The following error message is shown if you try to do so:

This application can't be installed because you already have Web Capture
Service install as Windows service.

42

Atalasoft DotImage Developer's Guide

However, upgrading from the standalone installation to Windows Service is supported and works as
expected.

Configure Kofax Import Connector

This is not intended to be a full set of instructions to install, set up, and maintain a Kofax Import
Connector server. The following information provides the minimum amount of configuration
needed for the DotImage Web Scanning Control to successfully connect, and import into Kofax
Import Connector.

For information on connecting to an already configured Kofax Import Connector server, see
Connect to Kofax Import Connector (KIC) Web Services.

O Kofax Import Connector handlers are only supported with .NET Framework 3.5 and 4.6.2.

Required license

For the KIC server to accept documents imported from the DotImage assembly, a KIC — Electronic
Documents — Web Service interface.

The license must be installed on your KIC server.

To verify that the correct minimum license has been installed go to the Message Connector Monitor,
which by default is located on the KIC server at https://localhost:25086/file/index.html where under
the Status->license section.

Configure the service

The DotImage Web scanning control connects via KIC's service via a server-side handler that
extends the KicHandler found in the Atalasoft.dotimage.WebControls assembly.

Once in the message connector, go to the “General” section, and verify that the “.

1. From the App Programs list, select Kofax > KIC Electronic Documents > Message Connector
Configuration.
The message connector opens.

2. in the General section, verify the Own Computer Name is filled in with the current server’s
domain qualified name.

3. Next, go to the Web-Service Input section.
« Ifonly a HTTP based connection is desired set the HTTPS port to 0

This will be the port which the endpoint in the application's web. config will point to. If
HTTPS is desired, then enter the port which will be used.

« IfHTTPS is enabled the HTTP port will not be able to be connected to, and the endpoint in
the application's web.config will need to point at the URL using the HTTPS port.

4. Once all of the desired changes to the KIC Message Connector have been made save, and
restart the Message Connector service.

43

Atalasoft DotImage Developer's Guide

Configure the Electronic Documents plugin

In the Kofax Capture (KC) Administration application, open the 'Electronic Documents-
>Configuration' window, and configure the necessary Connections, and Destinations.

When finished, stop and start the service.

Test the configuration

To test that the KIC server has been minimally configured correctly in a browser either on the
server, or at a client that might connect to the server enter the following URLs (all on one line of
course):

HTTP enabled webservice

http://[kic_servername]: [http port]/soap/tsl/Import?<OwnerReference>myref</
OwnerReference>
<Address>importaddr</Address><Part><ContentType>text/plain</ContentType>
<Content><Text>hello</Text></Content></Part>

HTTPS enabled webservice

https://[kic_servername]: [https port]/soap/tsl/Import?<OwnerReference>myref</
OwnerReference>
<Address>importaddr</Address><Part><ContentType>text/plain</ContentType>
<Content><Text>hello</Text></Content></Part>

Upload sizes and limits

By default, IIS limits uploads to 30MB. If your application may sometimes generate larger uploads,
you will need to adjust this limit for the server, or at least for your application.

Estimate upload sizes

The size of an upload is approximately the sum of the compressed sizes of the uploaded images x
4/3 (1.333).

The calculations below are for images. Remember that duplex scanning generates two images per
page, minus any blank sides discarded by setting discardBlankPages:true.

Raw uncompressed image size

Uncompressed image size in bytes = (width x DPI x height x DPI x depth) / 8

Where depth is 24 for color, 8 for grayscale, and 1 for B&W images.

Example, an 8.5" x 11" color page, scanned at 200 DPI: (8.5 x 200 x 11 x 200 x 24) / 8 = 11,220,000
bytes (~11MB)

Compression ratios

Typical office documents in B&W will compress by ~10X. White space increases the compression,
lots of text or detailed graphics of any kind decreases the compression. 50KB per compressed B&W
image is not a bad average, 70KB is conservative.

Grayscale and color images will compress by 20X-30X, sometimes more. As with B&W, blank paper
compresses more, detailed content compresses less.

44

Atalasoft DotImage Developer's Guide

For our example 8.5" x 11" color page scanned at 200 DPI, with a raw size of 11MB we estimate a
compressed size in the range 374KB - 560KB.

Factor in Base64 encoding

We multiply by 4/3 (1.33) because uploads are encoded in Base64, which encodes 3 binary bytes as
4 text characters.

Adjust the IIS upload limit

I1S, by default, limits any single upload to 30MB. If you attempt a larger upload, the server will
(oddly) return a 404 error.

If you expect to upload larger files, you will need to increase this limit

Edit web.config
(from http://www.webtrenches.com/post.cfm/iis7-file-upload-size-limits)
Add to web.config

<system.webServer>
<security>
<requestFiltering>
<requestLimits maxAllowedContentLength="524288000"/>
</requestFiltering>
</security>
</system.webServer>

If you add the above code to the web. config file for your site, you can control the maximum
upload size for your site. In many cases, the system.webServer node will already be in the file, so
just add the security node within that.

O The maxAllowedContentLength isin BYTES not kilobytes.

You may also need to restart your Web site (not the whole server) to enable the setting.

Configure interactivity
The limit can also be changed interactively (quoting from the same blog post)

1. OpenIIS 7 SnaplIn.
2. Select the Web siteyou want enable to accept large file uploads.

3. In the main window double-click Request filtering.
The Request filtering window opens.
The tab list shows options such as file name extensions, rules, and hidden segments.

4. Select one fo the tabs. and in the main window right-click and select Edit Feature Settings.
5. Modify the Maximum allowed content length (bytes).

In-Memory limitation

Note that you should not expect Atalasoft DotImage to collect and upload a set of images that
exceeds (approximately) 500MB of memory when uncompressed, whether the uploaded file is

45

Atalasoft DotImage Developer's Guide

compressed or not. This corresponds to approximately 20 pages of 200 DPI full-color US Letter or
A4 size. Grayscale images use 1/3 the space of color images, and B&W images use 1/24.
Server timeouts

With larger uploads, you may need to also increase the Params.serverTimeout: Integer value, which
is 20 seconds by default.

Document management

The following set of tutorials are designed to teach you how to use Atalasoft DotImage by taking
you through the development of a real world application, an enterprise document management
solution.

To complete the tutorial, you need the following:
+ Atalasoft DotImage installed on your computer
» Supported versions of Visual Studio and .NET (see the Atalasoft DotImage Technical Specifications)

Off-the-shelf document management solutions for your business may never meet all of your
company’s requirements, can be painful to deploy, expensive to train your users on, and costly to
license. Atalasoft Dotimage Document Imaging enables .NET developers to quickly and easily build
document management solutions that meet 100% of your company’s requirements with reasonable
licensing, and with advanced Enterprise 2.0 features typically not found in off-the-shelf solutions.

This step-by-step tutorial demonstrates how to build an n-tier enterprise client-server document
capture and viewing application in just a few hours. The tutorial describes the following:

+ Building an application that captures documents from a scanner.

+ Submitting those documents to a server via services.

+ Storing the document and associated metadata into a database.

+ Viewing the documents in a zero footprint web-client.

+ Adding collaboration features with web-based annotations support.

To get started, continue to the next section.

Capture and view documents with a scanning client

This tutorial builds a windows forms application that can be deployed via an MSI installer or .NET
Click-Once deployment.

This tutorial consists of the following lessons:
* Create the Windows Forms project

» Design the user Interface

+ Add toolstrip controls

+ Open a multipage docment from a file

» Configure AutoZoom and image scaling

» Save a multipage document to a file

+ Capture documents from a scanner

46

Atalasoft DotImage Developer's Guide

Create the Windows Forms project

1.
2.

Create a new Windows Forms project called CaptureClient.
Choose the language you wish to code in, such as C#.

Design the user interface

1.
2.

Add a ToolStrip control to the top of the form by dragging it from the Visual Studio Toolbox.
Drag a DocumentViewer control from the Visual Studio Toolbox Atalasoft DotImage tab.

Use this control to open, view, navigate, and save a multipage document.

Select Fill from the Dock property located in the property grid of the DocumentViewer control.
This docks the DocumentViewer to the form so that resizing the form, also resizes the control.

Drag an Acquisition Component from the same Atalasoft DotImage tab in the toolbox.
This component acquires images from scanners.

The Atalasoft DotImage references added to your project up to this point include:
+ Atalasoft.dotimage

+ Atalasoft.dotImage.WinControls

+ Atalasoft.DotTwain

+ Atalasoft.Shared

The form created should have a Thumbnail Viewer in the left pane and an ImageViewer on the
right.

Add toolstrip controls

In this lesson you add the toolstrip control that allows the user to interact with your application.

When complete, your toolstrip should have the six commands listed in the table. You also need to
set the ToolStrip ImageScalingSize to 24,24 and name each control in the toolstrip as shown in the

table.
Control Name
Open from a file tsbOpen
Save to a file tsbSave
Choose a scanner tsbChooseScanner
Scan tsbScan
Fit to width tbsFitToWidth
View full size tbsFullSize
1. Select ComboBox from the Add ToolStripButton menu.

2.

You need the ComboBox for the "Choose a scanner" control.
Represent your commands using images from your own icon library or use text.

47

Atalasoft DotImage Developer's Guide

Open a multipage document from a file

After the user interface is finished, use this procedure to start coding.

1. Add "using" ("Imports" in VB) statements to the form as shown in the following C# example.
This prevents you from having to declare the entire namespace for each class reference.

using System.IO;

using Atalasoft.Imaging;

using Atalasoft.Imaging.Codec;
using Atalasoft.Twain;

2. Drag an OpenFileDialog from the Visual Studio Toolbox to your form.
Double-click the Open button.
4. Add the following code in the event handler:

w

private void tsbOpen Click (object sender, EventArgs e)
{ if (openFileDialogl.ShowDialog(this) == DialogResult.OK)
{ documentViewerl.Open (new FileSystemImageSource (new string[]
{ openFileDialogl.FileName }, true));
: }

This code presents an Open File dialog box. If an image is selected, it loads the image into
the DocumentViewer control using a FileSystemImageSource. An ImageSource is designed to
efficiently manage multiple images, keeping in memory only those that are necessary. This is
the ideal way to navigate a multipage document such as a TIFF or PDF.

5. Build and run your project.

a. Open a multipage TIFF such as the one found in Images\Documents under the Atalasoft
DotImage installation folder.

b. Use your toolstrip to open, view and navigate the pages of any supported image format.

Configure AutoZoom and image scaling

In this lesson, you add two buttons. Each affects document scaling by using the AutoZoom setting.
* The first button makes the entire document width visible in the viewer.
» The second button restores the document to full size view.

The first button is implemented by setting the AutoZoom property to the FitToWidth setting to make
the entire document width visible in the viewer.

The Full Size View button sets the AutoZoom property to None and the Zoom property to 1.0.

© When users view a page at a zoom level less than 1.0, the control uses the fast ScaleToGray
resampling on 1-bit black and white images when the AntialiasDisplay property for the
DocumentViewer is set to a value other than none.

1. Double-click each button.
2. Add the following event handler to your application to configure these buttons:

48

Atalasoft DotImage Developer's Guide

private void tsbFitToWidth Click(object sender, EventArgs e)
{

documentViewerl.ImageControl.AutoZoom =
Atalasoft.Imaging.WinControls.AutoZoomMode.FitToWidth;

}

private void tsbFullSize Click(object sender, EventArgs e)
{
documentViewerl.ImageControl.AutoZoom =
Atalasoft.Imaging.WinControls.AutoZoomMode.None;
documentViewerl.ImageControl.Zoom = 1.0;

}
You now have a simple, fast, and useful multipage document viewer.

Save a multipage document to a file

Use this procedure to save a multipage document to a file.

1.
2.

Drag a SaveFileDialog from the Visual Studio Toolbox to your form.

As the Save() method of the DocumentViewer handles all of the complexities involved in
efficiently saving a multipaged document, you need only invoke the Save() method and pass
in the file name or stream as well as an instance of ImageEncoder of the format in which you
want to save.

Double-click the Save button.
Add the following code in the event handler:

private void tsbSave Click(object sender, EventArgs e)
{
if (saveFileDialogl.ShowDialog(this) == DialogResult.OK)
{
documentViewerl. Save (saveFileDialogl.FileName, new TiffEncoder());
}
}

Capture documents from a scanner

In this lesson, you add the capability of capturing documents from a scanner to your application.
The lesson uses DotTwain to scan documents directly into the DocumentViewer control.

1.

Double-click the Acquisition control that you dropped onto the form in an earlier lesson. This
creates the event handler for ImageAcquired. That event is fired for each image captured while
the document is being scanned.

DotTwain stores images as .NET bitmaps. Therefore you must translate them to an Atalalmage
using Atalalmage.FromBitmap. Images are added to the Document Viewer with the Add()
method in the Source property. The Add() method accepts a filename, stream, or an in-memory
Atalalmage object. Add the following code to the ImageAcquired event handler.

privatevoid acquisitionl ImageAcquired(object sender,
AcquireEventArgs e)

{
documentViewerl.Add (AtalaImage.FromBitmap (e.Image)) ;

}

49

Atalasoft DotImage Developer's Guide

3. Now that the scan handling is in place, you must initiate the scan.
a. Double-click the Scan button in the ToolStrip.

b. Invoke the Acquire() method of the acquisition object as shown here. The code starts the
scan using the default scanner and displays the scanner's default dialog box.

private void tsbScan Click (object sender, EventArgs e)

{
acquisitionl.Acquire () ;

}

Select a scanner

As many systems have more than one TWAIN device configured and the default device may not be
the one the user needs to use for capture, you must populate the drop-down box previously added
to the ToolStrip with all the TWAIN drivers configured on the current system.

This enables the user to select the device from which images are scanned.
1. Change the DropDownStyle property in the tsbChooseScanner control to DropDownlList.
2. Add code to populate the drop-down menu with the names of all configured scanners.

public Forml ()
{

InitializeComponent () ;
if (acquisitionl.SystemHasTwain)

{

foreach (Device dev in acquisitionl.Devices)

{
tsbChooseScanner.Items.Add (dev.Identity.ProductName) ;

}
if (acquisitionl.Devices.Count > 0)
tsbChooseScanner.SelectedItem =
acquisitionl.Devices.Default.Identity.ProductName;
else

{

tsbChooseScanner.Enabled = false;
tsbScan.Enabled = false;

}

3. Change the acquisition code to use the selected device. Loop through the devices collection, in
a manner similar to that used in the preceding code.

private void tsbScan Click(object sender, EventArgs e)

{

foreach (Device dev in acquisitionl.Devices)

{
if (dev.Identity.ProductName == tsbChooseScanner.SelectedItem.ToString())

{

dev.Acquire () ;

}

}

You now have a full-featured capture application that can use any installed scanner, open any
multipage document, and save the captured document as a TIFF.

50

Atalasoft DotImage Developer's Guide

To see the full solution for this lesson, go to Application Source Code.

You have now completed all of the lessons in part 1 of this tutorial. For suggestions on
enhancing this application, see Recommendations. To continue to the next part, go to Tutorial:
Submit Captured documents to a central database repository.

Application source code

Developing a fully featured capture application such as this one is easy using Atalasoft Dotlmage
Document Imaging. The easy to use API, and visual controls enable us to configure this application
with minimal code.

The entire code for this application is as follows:

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;
using System.IO;

using Atalasoft.Imaging;

using Atalasoft.Imaging.Codec;
using Atalasoft.Twain;

namespace CaptureClient
{
public partial class Forml : Form
{
public Forml ()
{
InitializeComponent () ;
if (acquisitionl.SystemHasTwain)
{
foreach (Device dev in acquisitionl.Devices)
{
tsbChooseScanner.Items.Add (dev.Identity.ProductName) ;
}
if (acquisitionl.Devices.Count > 0)
tsbChooseScanner.SelectedItem =
acquisitionl.Devices.Default.Identity.ProductName;
else
{
tsbChooseScanner.Enabled = false;
tsbScan.Enabled = false;

}

private void tsbOpen Click (object sender, EventArgs e)
{
if (openFileDialogl.ShowDialog(this) == DialogResult.OK)

{
documentViewerl.Open (new FileSystemImageSource (new string(]
{ openFileDialogl.FileName }, true));
}
}

private void tsbSave Click (object sender, EventArgs e)

51

Atalasoft DotImage Developer's Guide

if (saveFileDialogl.ShowDialog(this) == DialogResult.OK)

documentViewerl.Save (saveFileDialogl.FileName, new TiffEncoder());

}

private void acquisitionl ImageAcquired(object sender, AcquireEventArgs e)

{

nu, nu);

documentViewerl.Add (AtalaImage.FromBitmap (e.Image),

}

private void tsbScan Click (object sender, EventArgs e)
{

foreach (Device dev in acquisitionl.Devices)

{
if (dev.Identity.ProductName ==

tsbChooseScanner.SelectedItem.ToString())
{

dev.Acquire () ;

}
}

private void tsbFitToWidth Click(object sender, EventArgs e)
{

documentViewerl.ImageControl.AutoZoom =
Atalasoft.Imaging.WinControls.AutoZoomMode.FitToWidth;

}

private void tsbFullSize Click(object sender, EventArgs e)

{

documentViewerl.ImageControl.AutoZoom =
Atalasoft.Imaging.WinControls.AutoZoomMode.None;
documentViewerl.ImageControl.Zoom = 1.0;

}

Recommendations

You can enhance this application simply by setting some properties or by writing just a small
amount of code.

For example:

+ Add AutoDeskew functionality as the image is scanned.

+ Set the AutoDragDrop property of the ThumbnailControl to allow for the reordering of pages.
» Add additional navigation capabilities.

+ Add mouse tools such as zoom and zoom to area.

» Generate searchable PDFs.

Submit captured documents to a central database repository

In the previous tutorial, you built a scanning client using Atalasoft DotImage that saves captured
images to the local file system. In an enterprise capture application, however, documents need to
be stored in a central database.

Atalasoft DotImage Developer's Guide

In the spirit of developing a true Enterprise 2.0 application with a Service Oriented Architecture,
services should be the public interface to the database repository.

This tutorial demonstrates how to configure services to transmit images from a client application to
a service and into a SQL database.

You must complete the steps in Lesson 1 before continuing with this lesson. This lesson uses very
little Atalasoft DotImage code: refer to the MSDN documentation and Microsoft support for issues
that do not directly involve Atalasoft Dotlmage code.

This tutorial consists of the following lessons:

Create the SQL database
Create the data abstraction layer

Create the service

Connect the capture client to the service

Show progress while the document loads

Create the SQL database

Be sure that SQL Express is installed on your computer before beginning this lesson.

1.

Add a new ASP.NET site to the solution.

2. Add a new item to the ASP.NET site. This creates the database that stores the multipaged

document and associated metadata.

3. Select SQL Database, and name it ImageDatabase.mdf.
4. When prompted, select To add the database to the App Data folder in the site.

6
7
8

Create a table with the fields and field types shown in the table.

Column Name Data Type Allow Nulis
ImagelD uniqueidentifier No
ImageData varbinary(MAX) Yes
PageCount int No
DateTimeCreated datetime No

Name nvarchar(50) Yes

. Set the default value of DateTimeCreated to getdate().
. Set the default value of PageCount to 0.
. Select ImagelD as the primary key.

Create the data abstraction layer

In this lesson, you submit captured documents to a central database repository. Begin by adding
the ImageDatabaseTableAdapter command to your ImageDatabase.

1

2
3.
4

. Use Add New Item to add a new DataSet to your Web siteproject.

. Name the newly added item "ImageDatabase".

If the TableAdapter Configuration Wizard appears, click Cancel.

. Drag the ImageDatabase table from the Server Explorer to the ImageDatabase.xsd window.

53

Atalasoft DotImage Developer's Guide

5.

6.

Create two new queries by right-clicking the ImageDatabaseTableAdapter and selecting
AddQuery.

Use the following SQL code to name the first query CreateRecord.

INSERT INTO ImageDatabase (ImageID, Name) VALUES (@ImagelD,
@Name)

Use the following SQL code to name the second query UpdateImageData.

UPDATE ImageDatabase
SET ImageData = @ImageData, PageCount
WHERE (ImageID = @ImagelD)

Create the service

In this lesson, you will submit captured documents to a central database repository.

1.

2.
3.

Right-click the Atalasoft DotlImage WebServer project.

Select Add New Item.

Choose Web Service and give your service the name ImageUpLoadService.

This creates a new service in the Web site, with the code in the App_Code folder. You will use the
service to submit chunks of each page of the captured document located at the client. To do this,
you need to create three methods:

 StartUpload
+ AppendChunk
+ FinishUpload

1.

Add the following skeleton code to the service. Be sure to delete the Hello World default
method.

WebMethod

public string StartUpload(string name)
{}

public void AppendChunk (string uid, byte[] buffer, long offset)
{}

public void FinishUpload(string uid, byte[] md5hash)
{}

Before you write the service code, add a reference to Atalasoft.dotImage, which is used to
determine the number of pages that are in the submitted document.

Create an upload folder in the website's root to store the documents as they are uploaded.
Name the folder as Upload.
Ensure that the ASPNET user has modify privileges.

Add the following configuration setting to the configuration tag at the bottom of the
web.config file.

54

Atalasoft DotImage Developer's Guide

<appSettings> <add key = "UploadPath" value="Upload"/> </appSettings>
6. Begin by creating the required using statements as shown here.

using System.IO;

using Atalasoft.Imaging;

using Atalasoft.Imaging.Codec;
using System.Configuration;

using System.Security.Cryptography;
using ImageDatabaseTableAdapters;

7. Add a helper method to assist in error handling as shown here.

public Exception CustomSoapException (string message)
{

return new SoapException (message, new
System.Xml.XmlQualifiedName ("ImageUploadService")) ;
}

8. In the webservice constructor, define the upload path and ensure that it exists. Throw off an
error if it does not.

string uploadPath;
public ImageUploadService ()
{
// check that the upload folder exists
string uploadConfigSetting =
ConfigurationManager.AppSettings["UploadPath"].ToString() ;
if (Path.IsPathRooted (uploadConfigSetting))
_uploadPath = uploadConfigSetting;
else
_uploadPath = Server.MapPath (uploadConfigSetting) ;
if (!Directory.Exists(uploadPath))
throw CustomSoapException ("Upload Folder not found");

9. Create the StartUpload() method.

The StartUpload() method initiates the upload process. It creates a unique GUID stored as both
the primary key in the database and as the temporary file name. This is also where the client
defines the name of the document being uploaded. This information is stored as a database
record which is later updated with the image data once uploading is complete.

StartUpload() returns the unique GUID string that will be used to identify each chunk.

public string StartUpload(string name)
{
Guid guid = Guid.NewGuid() ;
string uid = guid.ToString() ;
using (Stream stream = File.Create (Path.Combine (uploadPath, uid)))
{

}
using (ImageDatabaseTableAdapter ta = new ImageDatabaseTableAdapter())

{

ta.CreateRecord (guid, name) ;

}

return uid;

10. Call AppendChunk() from the client until the entire document is uploaded.

55

Atalasoft DotImage Developer's Guide

public void AppendChunk (string uid, byte[] buffer, long offset)

{
string filename = Path.Combine(uploadPath, uid);
if (File.Exists(filename))
{

// open a file stream and write the buffer. Don't open with
FileMode.Append because the transfer may wish to start at a different point
using (FileStream fs = new FileStream(filename, FileMode.Open,
FileAccess.ReadWrite, FileShare.Read))

{
fs.Seek (offset, SeekOrigin.Begin);
fs.Write (buffer, 0, buffer.Length);

}

else

{

throw CustomSoapException ("Error Uploading File: cached file is missing");
}
}

11. Implement the FinishUpload() method, which does the following:
+ Verifies that the image data has not been corrupted during transfer by verifying a hash.
« Updates the image field in the database with image data.

Connect the capture client to the service

Before proceeding with this lesson, do the following:
+ Save the ImageUploadService file.
+ In the CaptureClient application completed in the previous part of this tutorial, add a reference to
ImageUploadService just created. Name that connection DotImageWebServer.
1. Create a new button in the ToolStrip named tsbUpload, and double click it to create the event
handler.

2. Create a private constant, _chunkSize, that defines the size of each chunk to be sent to the
service:

const int chunkSize = 16 * 1024; //in bytes (16 KB)

You need to provide a title for each image sent to the service. To do so, add a new Windows
Form, InputForm. Use the button named listed here:

Cancel btnCancel
OK btnOK
textboxtxtTitle
3. Create the Title property for use in accessing the title text.

public string Title

{
get { return txtTitle.Text; }

}

56

Atalasoft DotImage Developer's Guide

Creating the upload code

You are now ready to create the upload code. The code is used at the point where the image
is saved to a stream, and then uploaded, chunk by chunk, to the service. When the process is

complete, a hash is calculated and sent to the service to ensure that the image data on the server is

identical to the image data on the client.

This demo saves the document as a multipage TIFF. Use a temporary file stream to store the data as

it is uploaded. In the handler for the upload button CaptureClient's Form1), you need to add code.

1. Begin by adding the using the statement shown here.
using System.Security.Cryptography;
2. Continue by adding the handler shown here.

private void tsbUpload Click(object sender, EventArgs e)
{
InputForm dialog = new InputForm() ;
if (dialog.ShowDialog(this) == DialogResult.OK)
{
string tempPath = System.IO.Path.GetTempPath();
DotImageWebServer.ImageUploadService service = new
DotImageWebServer.ImageUploadService () ;

service.Credentials = System.Net.CredentialCache.DefaultCredentials;

string guid = service.StartUpload(dialog.Title) ;
string filename = Path.Combine (tempPath, guid);
byte[] hash = null;

try

{

TiffEncoder encoder = new TiffEncoder (TiffCompression.Default) ;

using (Stream stream = File.Create (filename))
{
documentViewerl.Save (stream, encoder) ;
stream.Seek (0, SeekOrigin.Begin) ;

//get hash
MD5CryptoServiceProvider md5

hash = md5.ComputeHash (stream) ;
i

stream.Seek (0, SeekOrigin.Begin) ;
//read stream

long streamlLength = stream.Length;
byte[] buffer = new byte[chunkSize];
int currentOffset = 0;
int bytesRead = 0;
do

{

bytesRead += stream.Read(buffer, 0, chunkSize);
service.AppendChunk (guid, buffer, currentOffset);

currentOffset = bytesRead;
} while (bytesRead < streamLength) ;
}
}
finally
{
if (guid != null)
{
service.FinishUpload (guid, hash);
File.Delete (filename); //delete temp file

new MD5CryptoServiceProvider () ;

57

Atalasoft DotImage Developer's Guide

Running the capture application

You can now run the Capture application. Open or scan a document. The document is submitted to
the service and then stored to the SQL Express database.

Show progress while the document loads

In "Connect the Capture Client to the Web Service", you may have noticed the lack of feedback when
the document is uploading to the server. In this lesson, you enhance the Capture application to
show progress while a document is loading. To do so you will:

+ Add a progress bar.
+ Add a background worker thread enabling the main user interface to continue to respond to
events and to show progress as each chunk in the document is uploaded.
1. From the Toolbox, add a StatusStrip control to the main form.
2. From the StatusStrip pull-down menu, add a progress bar and a status label.
3. Set the status label text to Ready.

Add the background worker thread

1. Add a BackgroundWorker component from the toolbox to the form.
2. In the BackgroundWorker, create event handlers for DoWork and ProgressChanged.
3. Set the WorkerReportsProgress property to true in the Property Grid.

Modify the Upload code to use background worker and report progress

1. Cut and paste all the code with the i f (dialog.ShowDialog ...) tothe
backgroundWorker1_DoWork event handler.
2. Click Upload.

+ Invoke the backgroundWorker1 RunAsyncMethod.
» Passin the Title.

Your code should look similar to the following:

private void tsbUpload Click (object sender, EventArgs e)
{

InputForm dialog = new InputForm() ;
if (dialog.ShowDialog(this) == DialogResult.OK)

{
backgroundWorkerl.RunWorkerAsync (dialog.Title) ;

}
}

Update the event handler

1. In the backgroundWorker1_DoWork event handler, change the dialog.Title to (string)
e.Argument.

2. Add code to report progress. Start by adding this code at the beginning of the DoWork event
handler.

58

Atalasoft DotImage Developer's Guide

backgroundWorkerl.ReportProgress (0, "Connecting to Web Service...");
3. Add the following code just before the documentViewer1.Save() method.
backgroundWorkerl.ReportProgress (0, "Encoding...");

4. Add the following code after the hash calculation and immediately before the while loop (after
the declarations for reading the stream).

backgroundWorkerl.ReportProgress (0, "Uploading: 0 of " +
Convert.ToInt32 ((double)buffer.Length / 1024) + " KB");

5. Add the following code after service.AppendChunk is called in the while loop.

backgroundWorkerl.ReportProgress (Convert.ToInt32 ((double)
bytesRead / streamLength * 100), "Uploading: " + Convert.ToInt32
(bytesRead / 1024) + "™ of " + Convert.ToInt32 ((double)
streamLength / 1024) + " KB");

6. Add the following code at the end of this method.
backgroundWorkerl.ReportProgress (100, "Done");

7. Add the following code in the backgroundWorker1_ProgressChanged event handler to update
the user interface with progress information.

private void backgroundWorkerl ProgressChanged(object sender,
ProgressChangedEventArgs e)
{
toolStripProgressBarl.Value = e.ProgressPercentage;
if (e.UserState != null)
toolStripStatusLabell.Text = e.UserState.ToString() ;

}

Test your work

O when testing the application, you should see the progress bar move while the document is
uploading. The resulting document appears in the SQL Express Database.

View documents from a central database repository in a browser

In the previous tutorial, you built a capture client that submits documents to a centralized server
via services. You built the database in SQL Express and created the data abstraction layer using the
tools in Visual Studio.

In this tutorial, the capture application and associated service adds data to the database. You need
to develop a viewing application to navigate and view the documents in the database.

In contrast to the capture application that will be distributed to only a handful of clients with
desktop scanners, the viewing application will be used by the entire enterprise. Creating a zero
footprint viewing application reduces the deployment and maintenance costs associated with
installing and supporting a client application.

Be sure that you have completed the previous tutorials before proceeding with this one.

This tutorial consists of the following lessons:
» Configure a Web siteto use Atalasoft DotImage controls

59

Atalasoft DotImage Developer's Guide

+ Add a webThumbnailViewer and WebAnnotationsViewer to the form

» Use a Data-Bound drop-down list to navigate documents stored in the database
» Load documents from database into the viewer

+ Add No-Postback navigation controls to the viewer

Configure a Web siteto use Atalasoft DotImage controls

In this lesson, you configure a Web site to use Atalasoft Dotlmage controls. This requires adding the
ASP.NET WebForm controls to the project and configuring the ImageCache.

1. Give the ASP.NET user modify access to the folder.

2. Add the following XML to the appSetting section of the web.config to define where the
ImageCache exists and to determine how long to keep the images in the cache.

<add key="AtalasoftWebControls Cache" value="ImageCache/"/>
<add key="AtalasoftWebControls CacheLifeTime" value="60"/>

Add a WebThumbnailViewer and WebAnnotationsViewer to the form
In this lesson, you add a WebThumbnailViewer and a WebAnnotationsViewer to the form.

Begin by dragging and dropping a WebThumbnailViewer and a WebAnnotationViewer from the
Visual Studio Toolbox onto the Form.

Setting the ThumbnailViewer properties

1. Position the ThumbnailViewer to the left of the Annotation Viewer using tables.

2. Set the width of the Thumbnail Viewer to 150px and the width of the AnnotationViewer to
100%. Set the height of both controls to 500px.

The controls should now be positioned and sized properly.
Connecting the viewer with the thumbnails

To connect the Viewer with the Thumbnails, type WebAnnotationViewer1 into the ViewerID property
of the WebThumbnailViewer1. By setting that property, clicking a thumbnail automatically displays
the associated image in the viewer.

The HTML code for the viewers should now look similar to the following.

< table > < tr > <td> <ccl:WebThumbnailViewer
ID="WebThumbnailViewerl" runat="server" Width="150px"
Height="500px" ViewerID="WebAnnotationViewerl" /> </td> <td
style="width:100%"> <cc2:WebAnnotationViewer
ID="WebAnnotationViewerl" runat="server" Height="500px"
Width="100%" /> </td> </ tr > </ table >

Use a Data-Bound drop-down to navigate documents stored in the
database

1. Add a drop-down list to the page
2. Bind the list with all documents stored in the database.

60

Atalasoft DotImage Developer's Guide

3. Inthe drop-down list designer, configure the Data Source to use the SQL Database,
the ImageDatabaseConnectionString, and an SQL statement that selects all from the
ImageDatabase.
Here is the SQL statement: SELECT * FROM [ImageDatabase]

4. Set the display field to Name and the value field to Imageld.

5. Select EnableAutoPostback to get a new document whenever the drop-down value is changed.
Your design should look similar to that shown below.
If you run the project, the document names are listed in the drop-down menu but no image is
loaded into the viewer. That is the task of the next lesson, Load Documents from Database into
the Web Viewer.

Load documents from database into the viewer

In this lesson, you load documents from a database into the viewer.

This lesson takes advantage of an Atalasoft Dotimage feature that provides the ability to load
images directly from a database using the DBImageSource class. This class requires a callback to
handle the database access as efficiently as possible.

The requirements for database access include:

A connection string callback

Table name (from Clause)

Image field

Primary Key

Optional order by clause

Frame count (required for performance reasons)

1. The first step is to write a method that loads the image into the WebThumbnailViewer
from DBImageSource, an ImageSource object you need to create. Add the following using
statements at the beginning of the code followed by the Load() method.

using Atalasoft.Imaging.ImageSources;

using Atalasoft.Imaging.ImageSources.Data;

using System.Data.SglClient;

private void LoadImage (string guid)

{
DbSglImageAccessor accessor = new DbSglImageAccessor (new

GetConnectionCallback (GetConn),
false, "ImageData", "ImageID", "ImageDatabase", "ImageID='" + guid + "'",
"DateTimeCreated", "PageCount");
DbImageSource source = new DbImageSource (accessor) ;
this.WebThumbnailViewerl.Open (source) ;

}

2. Create the static callback method for getting the connection for the preceding method to work.
The code for this method is shown here.

private static IDbConnection GetConn ()
{

return new SqglConnection (ConfigurationManager.ConnectionStrings
["ImageDatabaseConnectionString"] .ConnectionString) ;

61

Atalasoft DotImage Developer's Guide

3. Call the LoadImage() method when the drop-down changes. The selected index is databound.

protected void DropDownListl SelectedIndexChanged(object sender, EventArgs e)

{
LoadImage (DropDownListl.SelectedValue.ToString()) ;
WebThumbnailViewerl.SelectedIndex = 0;

}

protected void DropDownListl DataBound (object sender, EventArgs e)

{
LoadImage (DropDownListl.SelectedValue.ToString()) ;
WebThumbnailViewerl.SelectedIndex = 0;

}

4. When the first page loads, the first document is shown in the viewer. You can use the drop-
down to load a different document into the viewer.

Add No-Postback navigation controls to the viewer
In this lesson, you add No-Postback navigation controls to the viewer.

In the Capture application, you added navigation buttons to fit image to width, and to view full size.
In this lesson, you do the same thing with the Web Viewer.

One possible approach is to create server buttons that postback to the server and change the
properties. A better approach is to create an HTML button and use the Viewer's Javascript API to
change the settings without posting back. This lesson takes the latter approach.

Begin by adding two HTML buttons, btnFitToWidth and btnViewFullSize to your form. You can
choose to represent the button as an image or as text. Double-clicking on a button adds its event
handler in JavaScript. Interacting with the JavaScript is similar to working with server-side code, but
all properties begin with set or get. Your JavaScript code should look like the following sample.

<script language="javascript" type="text/javascript">
// <!CDATA][
function btnFitToWidth onclick() {
WebAnnotationViewerl.setAutoZoom (3) ;

}

function btnViewFullSize onclick() {
WebAnnotationViewerl.setAutoZoom (0) ;
WebAnnotationViewerl.setZoom(1.0) ;

}

// &cd;>
</script>

Consult the Atalasoft DotiImage documentation for the full JavaScript API reference.

Collaborate on documents using AJAX-enabled annotations
The previous three tutorials demonstrated how to create a client capture application that submits

multipage document to a service interface to a database. An ASP.NET application navigates and
views the documents from the SQL database repository.

62

Atalasoft DotImage Developer's Guide

This tutorial consists of the following lessons:
» Configure the controls to draw and view annotations

» Configure the application to draw annotations

» Configure the SQL database to store annotations

» Store and load annotations from the database

Configure the controls to draw and view annotations

As the viewer is already functioning at this point in the tutorial, adding annotations is
straightforward.

1.

2.
3.
4.

Set the ShowAnnotations property of the WebThumbnailViewer1 to true.
Set the AutoLinkThumbnailViewer in WebAnnotationsViwer1 to true.
Add an HTML button, btnStickyNote, for sticky note annotations.

Add an HTML button, btnHighlighter, for a highlighter annotation.

Configure the application to draw annotations

In this lesson, configure the application that draws annotations.

1.

3.

Add these using statements to the default.aspx.cs file.

using Atalasoft.Annotate;

using Atalasoft.Annotate.Formatters;
using System.Drawing;

using ImageDatabaseTableAdapters;

In the Page_Load event handler, create default annotations for StickyNote and Highlighter as
shown here.

protected void Page Load(object sender, EventArgs e)

{
//add default annotations
TextData stickynote = new TextData ("Double Click to Edit");
stickynote.Font.Size = 24;
stickynote.Fill = new AnnotationBrush (Color.Yellow) ;
stickynote.Name = "StickyNote";
WebAnnotationViewerl.Annotations.DefaultAnnotations.Add (stickynote) ;

RectangleData highlighter = new RectangleData() ;
highlighter.Translucent = true;
highlighter.Fill = new AnnotationBrush (Color.FromArgb (127, Color.Green)):;
highlighter.Name = "Highlighter";
WebAnnotationViewerl.Annotations.DefaultAnnotations.Add (highlighter) ;

}

In the JavaScript code:
a. Change the InteractMode to Author.
b. Create the annotations.

c. Inthe OnAnnotationCreated event, change the InteractMode back to Modify so that
normal mouse operations once again function.

Here is a sample of these three functions.

63

Atalasoft DotImage Developer's Guide

function OnAnnotationCreated (e)

{
WebAnnotationViewerl.setInteractMode (AnnotationInteractMode.Modify) ;
WebAnnotationViewerl.AnnotationCreated = function () {};

}

function btnStickyNote onclick() {
WebAnnotationViewerl.setInteractMode (AnnotationInteractMode.Author) ;
var ann = WebAnnotationViewerl.CreateAnnotation ('TextData', 'StickyNote');
WebAnnotationViewerl.AnnotationCreated = OnAnnotationCreated;

}

function btnHighlighter onclick() {
WebAnnotationViewerl.setInteractMode (AnnotationInteractMode.Author) ;
var ann = WebAnnotationViewerl.CreateAnnotation ('RectangleData',
'Highlighter') ;
WebAnnotationViewerl.AnnotationCreated = OnAnnotationCreated;

}

After you add the preceding code, clicking on the StickyNote or Highlighter draws
annotations onto the image. You now have annotations support, although the
annotations lack persistence.

Configure the SQL database to store annotations

In this lesson you configure the SQL database to store annotations.

1. Add an annotations field to the database. This allows annotations to be stored separately form
the image data as XML. To do so, add a field called Annotations with type varbinary(MAX).

2. Add a query to the ImageDatabaseTableAdapter called GetAnnotations using the following
SQL:
SELECT Annotations FROM ImageDatabase WHERE ImageID = @ImagelD

3. Add a query called UpdateAnnotations using the following SQL:

UPDATE ImageDatabase SET Annotations = @Annotations WHERE (ImagelID =
@O0riginal ImagelD)

Store and load annotations from the database

In this lesson, you store and load annotations from the database.

Store the annotations

Use this procedure to store annotations in the database.
1. Open the toolbox and drag a button (which is called a server button)onto your form and name
it btnSave.
2. Double-click the button to create the event handler.
3. Add the following code to the handler to save the annotations as XMP and store in the
database using the query created in Configuring the SQL Database to Store Annotations.

protected void btnSave Click (object sender, EventArgs e)

{
XmpFormatter formatter = new XmpFormatter () ;
byte[] annots = WebAnnotationViewerl.Annotations.Save (formatter) ;

using (ImageDatabaseTableAdapter ta = new ImageDatabaseTableAdapter())
{

64

Atalasoft DotImage Developer's Guide

ta.UpdateAnnotations (annots, new Guid (DropDownListl.SelectedValue)) ;

Load the annotations

Add code to load the annotations from the database. Do this after the image is loaded into the
Viewer.
1. Clear the annotations from the previous image by invoking the ClearAnnotations() method of
WebAnnotateViewer.

2. Get the annotations using the Query previously added.

private void LoadImage (string guid)
{

DbSglImageAccessor accessor = new DbSglImageAccessor (new
GetConnectionCallback (GetConn), false, "ImageData", "ImageID", "ImageDatabase",
"ImageID='" + guid + "'", "DateTimeCreated", "PageCount");

DbImageSource source = new DbImageSource (accessor) ;

this.WebAnnotationViewerl.ClearAnnotations () ;

this.WebThumbnailViewerl.Open (source) ;

//get annotation data
byte[] annotations = null;

using (ImageDatabaseTableAdapter ta = new ImageDatabaseTableAdapter())

{

annotations = (byte[])ta.GetAnnotations (new Guid(guid)) ;
}
if (annotations != null)
{

using (MemoryStream ms = new MemoryStream(annotations))

{

WebAnnotationViewerl.LoadAnnotationData (ms) ;

}

Now the application loads the document with annotations that have persisted in the database.

More annotations can be created and saved back to the database.

65

Chapter 3

Program with Atalasoft DotImage

Atalasoft DotImage brings a full-featured advanced imaging solution to your desktop or thin client
application. With a collection of controls for ASP.NET and Windows, Atalasoft DotImage offers a light
and powerful solution that matches your imaging requirements. Licensing is straightforward and
runtime royalty free on the desktop. All Atalasoft DotImage and related assemblies are available as
managed components and are natively built as .NET assemblies. You can choose from three distinct
editions of Atalasoft DotImage as well as many add-on modules.

Getting started

Core Atalasoft DotImage editions

Atalasoft DotImage Photo
Basic color and grayscale image processing.

DotImage Photo Pro
Controls for viewing, editing, and printing images.
Color and grayscale image processing for the photographic and pre-press industry.

Support for EXIF/IPTC/XMP Metadata, Advanced Color Management, regional processing, automatic
color adjustments, and RAW image support.

AJAX ASP.NET Server control for thin client image viewing and editing.

Atalasoft DotImage document imaging
Professional document imaging that includes all the features of Atalasoft DotImage Photo Pro plus:
+ Fast scale to gray display

+ TWAIN scanning

+ Full-featured annotations SDK

+ Auto-deskew

+ Basic document clean-up

+ Thresholding

+ Multipage TIFF support

+ Multipage PDF export

« Full features annotations support

AJAX ASP.NET image viewer, and thumbnail viewer for viewing documents on the without client
postbacks.

66

Atalasoft DotImage Developer's Guide

Add-on modules
Atalasoft DotImage supports a number of add-on modules as detailed in the table that follows.

BarcodeReader
Read 1D and 2D bar codes from any image.

Barcode Writer
Write 1D and 2D bar codes into images.

PDF Reader
Read any PDF document as a raster image without Adobe Acrobat Reader.

JPEG2000 Codec
Read and Write JPEG2000 images. Used to add JPEG2000 support for PDF output.

JBIG2 Codec
Read and Write JPEG2000 images. Used to add JBIG2 support for PDF output

OCR module

Provides a standard interface for OCR engines and built-in translators to generate output files from
the results of OCR.

Includes the open source Tesseract Engine.

GlyphReader OCR engine
Highly accurate lexicon-based OCR engine for European characters.

L.R.I.S. OCR
Interface to the L.R.LS. iDRS multi-language ICR/OCR engine.

Searchable PDF module
Create searchable PDF files from any Atalasoft DotImage OCR engine.

Tesseract OCR engine
Interface to the open source Tesseract OCR engine.

Advanced document cleanup

Provides advanced document cleanup routines such as:
» Border removal

+ Blob and hole punch removal

+ Auto binarization

+ Line removal

» Blank page detection

» Auto text inversion

* Auto negate

+ Speck removal

67

Atalasoft DotImage Developer's Guide

Advanced photo effects

Advanced photo manipulation algorithms for automatically adjusting brightness and contrast of
photos, and applying automatic effects to increase the overall quality of photos taken from both low
resolution camera phones and high end professional cameras.

DICOM Codec

Read DICOM images and access image metadata.

DWG Codec

Read images from DWG and DXF CAD files.

Atalasoft DotImage ISIS
Capture images from ISIS-compatible scanners.

.NET assemblies

The following table lists the .NET assemblies provided with Atalasoft DotImage. These assemblies
are compatible with .NET Framework and .NET 6 unless otherwise noted. For a list of .NET versions
supported by Atalasoft DotImage, see the Atalasoft DotImage Technical Specifications.

Assembly

ASP.NET AJAX
WebForm Controls

DLL

Atalasoft.dotImage.WebControls.dll

Notes

This library contains the
pre-built handlers for the
WebDocumentViewer,
WebAnnotationViewer and
WebCapture.

Advanced
Document Cleanup

Atalasoft.dotImage.AdvancedDocClean.dll

Use AdvancedDocClean's
filters and helper functions to
perform advanced document
cleanup. HolePunchRemoval,
Despeckle, DynamicThreshold,
and Deskew help clean any
scanned paper document for
any downstream recognition
(barcode, ocr, omr, etc.).

Advanced Photo
Effects

Atalasoft.dotImage.AdvancedPhotoEffects.dl]

AdvancedPhotoEffects contains
many programmatic filters
designed to edit photographic
images. Similar to the

filters in any modern photo
manipulation application, the
library contains filters such

as GaussianBlurCommand,
SharpenCommand, and
commands to perform color
correction.

Atalasoft Dotimage
Class Library

Atalasoft.dotImage.dll

Start with this library in your
applications that use images to
save developer time and effort.

68

Atalasoft DotImage Developer's Guide

Assembly DLL Notes

Atalasoft Dotlmage |Atalasoft.dotImage.Isis.dll The ISIS library adds controls

ISIS and support for interacting with
ISIS device drivers allowing
for automated and custom
scanning applications.

Atalasoft dotlmage |Atalasoft.dotImage.Office.dll Atalasoft DotImage Office files

Office decoder decoder.

Atalasoft dotimage |Atalasoft.dotImage.CommonDecoders.dll Atalasoft DotImage decoders

Common Decoders for several common file
formats (.eml, .txt, .xml, .html,
and .webp files).

Atalasoft dotlmage |Atalasoft.PdfDoc.dll Atalasoft DotImage Pdf

Pdf Document Document Model library.

Model

Atalasoft dotimage |Atalasoft.dotImage.PdfDoc.Bridge.dll Atalasoft DotImage and DotPdf

PdfDoc Bridge integration helper functions.

Atalasoft dotimage |Atalasoft.dotImage.Ocr.Tesseract3.dll Atalasoft DotImage libraries for

Tesseract 3 OCR Google's Tesseract version 3

support. engine.

Atalasoft dotimage |Atalasoft.dotImage.Ocr.Tesseract5.dll Atalasoft DotImage libraries for

Tesseract 5 OCR Google's Tesseract version 5

support. engine.

Barcode Reader Atalasoft.dotImage.Barcoding.Reading.dll Atalasoft DotImage's
BarcodeEngine is contained
within this package. It provides
functions and settings to
interact with and extract
bar code data from scanned
images.

Barcode Writer Atalasoft.dotImage.Barcoding.Writing.dll BarcodeWriter is a helper class
that can overlay scanable bar
codes onto digital documents.

DICOM Codec Atalasoft.dotImage.Dicom.dll Use this library to add
the DicomDecoder to
Atalasoft DotImage's
RegisteredDecoders collection
to add support for the Dicom
medical device format.

DWG Codec Atalasoft.dotImage.Dwg.dll Use this library to add

the DwgDecoder to

Atalasoft DotImage's
RegisteredDecoders collection
to add support for AutoCAD's
DWG CAD drawing files.

69

Atalasoft DotImage Developer's Guide

Assembly DLL Notes

DotTWAIN Atalasoft.DotTwain.dll Use this library to enable
interaction with TWAIN drivers
for scanners and cameras to
capture images directly into
custom applications.

Glyph Reader Atalasoft.dotImage.Ocr.GlyphReader.dll Use this library with the

Engine Atalasoft DotImage OCR library
to add the GlyphReader engine
to usable engines.

HEIF Codec Atalasoft.DotImage.Heif.d1ll Use this library to add

the HeifDecoder to

Atalasoft DotImage's
RegisteredDecoders collection
to add support for HEIF files.

Internal Atalasoft.dotImage.Lib.dll Lib contains a majority of the
additional functionality for the
Atalasoft DotImage toolkit.

JBIG2 Codec Atalasoft.dotImage.Jbig2.dll Use this library to add

the JB2Decoder to

Atalasoft DotImage's
RegisteredDecoders collection
to add support for Jbig2
compressed files.

JPEG2000 Codec Atalasoft.dotImage.Jpeg2000.d11 Use this library to add

the Jpeg2000Decoder

to Atalasoft DotImage's
RegisteredDecoders collection
to add support for Jpeg2000
compressed files.

OCR Atalasoft.dotImage.Ocr.dll Use this library to add Optical
Character Recognition (OCR) to
convert scanned images into
their contained text.

PDF Image Encoder |Atalasoft.dotImage.Pdf.dll Atalasoft DotImage's

DotPdf library helps create
programmatic PDF and allows
editing of existing PDF files.

PDF Reader Atalasoft.dotImage.PdfReader.dll Use this library to add

the PdfDecoder to

Atalasoft DotImage's
RegisteredDecoders collection
to add support for Adobe's PDF

files.
Multiprocessing PDF | Atalasoft.dotImage.PdfReader. Use this library to add
Reader Multiprocessing.dll multiprocessing features for

PDF processing.

70

Atalasoft DotImage Developer's Guide

Assembly DLL

Notes

RAW Image Codec |Atalasoft.dotImage.Raw.dll

Use this library to add

the RawDecoder to

Atalasoft DotImage's
RegisteredDecoders collection
to add support for RAW camera
files.

WPF Controls Atalasoft.dotImage.Wpf.dll Atalasoft DotImage viewers
for Windows Presentation
Foundation apps.

Windows Forms Atalasoft.dotImage.WinControls.dll Atalasoft DotImage viewers for

Controls WinForms. AnnotateViewer,

DocumentViewer, and
ImageViewer allow for
displaying all of our image
formats in a windows
application.

Create images

Atalasoft DotImage has one class, Atalalmage, which is used for representing images. An
AtalaImage is an in-memory representation of a raster (or pixel-based) image. An image is defined

by several characteristics as listed in the table below.

Attribute Description

Width The width of the image is in pixels.

Height The height of the image is in pixels.

Resolution The number of pixels per unit of measure, e.g. pixels per inch.
Pixel Format (or Depth) The way the pixels represent color.

Create an image from scratch

You can create Atalalmages from the following:
» From scratch

» From other Atalalmages

* From streams

Atalalmages can represent black and white, gray, and color images in a number of different

formats. They can be converted to and from any format.

Use the following code to create a new image from scratch:

AtalaImage image = new Atalalmage (width, height, PixelFormat.Pixel24bppBgr) ;

This code creates a new blank image of the given width and height in 24 bit per pixel color using the
RGB color model. The image data is set to zeroes, which in this case creates a black image.

71

Atalasoft DotImage Developer's Guide

Copying an image

An image can be copied by using the Clone() method.
AtalaImage newlImage = (AtalaImage)oldImage.Clone();

This code makes a new copy of the old image. Changes to newImage are not seen in oldimage.

Open images

There are several ways to open images in Atalasoft DotImage. For example, use a path to an image
file as shown below.

AtalalImage image = new AtalaImage (pathToAnImage) ;

There is a lot that happens under the hood: first the path is opened into a Stream object, then
Atalasoft DotImage checks to see if there is an ImageDecoder installed that supports this image file
format. If there is, that ImageDecoder is chosen to turn the file contents into an Atalalmage. The
path also can be an URL.

If there is no available decoder, this method fails and throws an ImageReadException. If you need
to check to see if there is an installed decoder for a file you can do the following.

C#

public bool IsImageFormatSupported(string path)

{
try {
ImageInfo info = RegisteredDecoders.GetImageInfo (path) ;
return true;

}
catch (ImageReadException) {
return false;
}
}

RegisteredDecoders is initialized with a large suite of ImageDecoders, including ImagesDecoders
for Windows Bitmap, JPEG, TIFF, and eleven other formats. You can add or remove items from this
collection. If your installation of Atalasoft DotImage includes add-on modules with ImageDecoders
(such as the PDF Reader module), you need to add the decoder to RegisteredDecoders yourself. See
the Atalasoft DotImage Class Library.

C#

You can also work with an ImageDecoder directly. For example, if you were opening only TIFF files,
you could use the TiffDecoder object yourself:

public AtalaImage OpenTiff (string path)
{
using (FileStream stm = new FileStream(path, FileMode.Open,
FileAccess.Read, FileShare.Read)) {
TiffDecoder decoder = new TiffDecoder () ;
if (!decoder.IsValidFormat (stm))
throw new Exception("not a TIFF");
AtalaImage image = decoder.Read(stm, null);
return image;

72

Atalasoft DotImage Developer's Guide

}

This opens a TIFF file and return an Atalalmage for the first page. ImageDecoder.Read() includes
a second argument, ProgressEventHandler. If a non-null ProgressEventHandler is passed in, client
code can receive information on progress in loading an image.

Several image formats include multiple pages in one file. In this case, the ImageDecoder includes
methods that have a frame index argument. Passing in a zero based value returns an Atalalmage
for that frame.

Save images

Saving images is not very different from reading images. Saving an image is done through an
ImageEncoder object. Select an ImageEncoder for the file format that you would like, then use it to
save the image. This can be done with the convenience method, Atalalmage.Save(), or through the
ImageEncoder itself. For example, to save an image as a JPEG, you could do the following:

C#

AtalaImage image = GeneratelImage(); // gets or creates an image
image.Save ("mynewfile.jpg", new JpegEncoder (), null);

Use a ProgressEventHandler to monitor progress.

To use the ImageEncoder directly, you need to use a stream for the output first. The following
method saves an image as a JPEG using the encoder directly:

C#

public void SaveAsJpeg(string path, Atalalmage image)

{
JpegEncoder encoder = new JpegEncoder () ;
AtalaImage savelmage = image;
if (!'encoder.IsPixelFormatSupported (image.PixelFormat)) {

savelmage =

image.GetChangedPixelFormat (encoder.SupportedPixelFormats([0]); // arbitrary choice

}

FileStream stm = null;

try {
stm = new FileStream(path, FileMode.Create);
encoder.Save (stm, image, null);
}
finally {
if (stm != null)
stm.Close () ;
if (savelImage != image)

saveImage.Dispose () ;

}

In addition to saving the image, this method checks the ImageEncoder to determine if it supports
the PixelFormat of the image. If not, it creates a new image in a supported PixelFormat.

In addition to saving single images, many ImageEncoders include options for setting compression,
adding metadata, or multiple pages. See the object reference for each ImageEncoder to see the
specific features available.

73

Atalasoft DotImage Developer's Guide

Process and clean up images

Atalasoft DotImage features the ability to perform operations on the contents of images to
create new image. The basis for this is the ImageCommand object. To process an image, you
create an object derived from ImageCommand, modify its properties, if needed, and then
call the ImageCommand’s Apply() method. For example, to invert an image, you can use the
InvertCommand:

C#

AtalaImage image = Generatelmage () ;
InvertCommand command = new InvertCommand () ;
ImageResults results = command.Apply (image) ;

ImageResults contains the results of performing the command. This includes a property named
Image which is the resulting image. It also includes a boolean, IsimageSourceImage, which
indicates whether the ImageResults.Image property is the same as the original source image.

If IsimageSourcelmage is true, it indicates that the Image property of the ImageResults object

is the same as the source image. If IsimageSourcelmage is false, it indicates that the Image
property of the ImageResults object is a new image. You can check this ahead of time by checking
ImageCommand.InPlaceProcessing. If InPlaceProcessing is true, the command operates on the
source image itself.

Several ImageCommands provide more information than is in an ImageResults object. These
commands return a subclass of ImageResults to expose the extra information.

Dispose objects

Because images take up a great deal of memory, it's a good idea to dispose Atalalmage objects
after you are done with them. For example, if you creating a brand new image by processing and do
not care about the old image anymore, you might want to follow this pattern:

C#

public AtalaImage Process (Atalalmage image, ImageCommand command)
{
ImageResults results = command.Apply (image) ;
if (!'results.IsImageSourcelmage)
image.Dispose () ;
return results.Image;

}

Image commands may not operate on all image formats. You can call
ImageCommand.IsPixelFormatSupported() to determine if a command operates natively on an
particular PixelFormat. In addition, many commands can be induced to operate on any PixelFormat
by setting the property ApplyToAnyPixelFormat to true. When ApplyToAnyPixelFormat is true, the
source image is used to create a new image in an appropriate PixelFormat before performing the
command. While all current Atalasoft DotImage ImageCommands allow this, it is possible for a
command to reject this process by returning false in the property CanApplyToAnyPixelFormat.

You can get a list of all PixelFormats that an ImageCommand supports via the
SupportedPixelFormats property.

Generally speaking, ImageCommands on their own are not thread-safe. That is, if you use the same
ImageCommand object in two or more threads concurrently, the results are unpredictable. It is
recommended instead that you use an ImageCommand for each thread. Generally speaking, it is

74

Atalasoft DotImage Developer's Guide

very cheap to make ImageCommand objects. The constructors typically do very light weight work
and the commands themselves consume very little memory.

ImageCommand objects

Atalasoft DotImage contains more than one hundred ImageCommand objects. They are broken
down into functional groups as listed in the table that follows.

Object Description

Channels Commands that operate on images with multiple components, like color
images

Document Commands that are geared for scanned documents

Effects Perform visual effects on images like mosaic or beveling

Filters Perform mathematical filtering like high or low pass filtering

Threading Commands that can make other commands operate in a multithreaded
environment to improve performance

Transforms Perform coordinate transforms or depth transforms like rotate or ripple

Image controls for Windows Forms applications

Atalasoft DotImage includes controls and components to add imaging GUI functionality to Windows
Forms applications in the Atalasoft.dotImage.WinControls assembly. The following components are

included.

Image viewing

The following images are all displayed in a viewer.

Component

Use

WorkspaceViewer

Displaying, scrolling, and interacting with AtalaImage objects and applying
commands

ImageViewer

Displaying and scrolling AtalaImage objects

BitmapViewer

Displaying .NET Bitmaps and Metafiles

Magnifier

Displaying a magnified, zoomed view of a small section of the image below
the mouse pointer

Thumbnail viewing

Component

Use

ThumbnailView

Display a list of thumbnail images in a single control.

FolderThumbnailView

Display a list of thumbnail images from a folder on the file system in a
single control.

75

Atalasoft DotImage Developer's Guide

RubberBanding

Component Use

RectangleRubberBand Drawing a rectangle rubber band (used for defining rectangular regions
and drawing rectangles on an image)

EllipseRubberBand Drawing an elliptical rubber band (used for defining an elliptical region and
drawing ellipses on an image)

LineRubberBand Drawing lines on an image

RectangleSelection Implementing features such as resizing and animation (derives from

RectangleRubberBand)

Printing

Component Use

ImagePrintDocument Printing single or multipage images directly to a printer

ImageCompositePrintDocument | Printing multiple images as a photo composite at standard sizes and

layouts.

Dialogs

Component Use

OpenlmagekFileDialog L}?adigg aln image from the file system, optionally showing a preview
thumbnai

Image controls for web applications

Atalasoft DotImage provides AJAX-enabled imaging controls for ASP.NET that you can use in web
applications. The controls can be used for image viewing and editing, thumbnails, and annotation.
You can customize these controls to meet the requirements of your applications. Add the controls
by dragging and dropping them on your WebForm.

For all versions of .NET, the Web Document Viewer (WDV) is recommended. The WDV is a JavaScript-
based image viewing control that communicates directly with a WebDocumentRequestHandler on
the server side. You do not need to create a traditional WebServerControl back end.

The following legacy controls are available for .NET Framework. These are not supported by .NET 6,
and you should use the WDV instead.

WebImageViewer

The AJAX enabled WebImageViewer is used to view and edit images in a browser. This control
works by loading tiled sections of an image "On-Demand" when the relevant section of an image
is panned or zoomed into view, converting each tile to a browser friendly format on the fly. It is
especially optimized to view tiled and stripped TIFF's as it selectively decodes tiles from the source
image as it streams them to the client. Perfect for viewing large TIFF images, such as mechanical
CAD drawings, or documents scanned at a high resolution as the bandwidth requirements for the
client are minimal. Also perfect for a universal document and image viewer when combined with
the other supported codecs such as PDF, JPEG2000, and the other built-in formats.

76

Atalasoft DotImage Developer's Guide

This control is also useful for processing images interactively by tying a button to a server method.

The result is that an image updates without a page postback. The rubberband selection feature can

be used for cropping an image, or selecting an area of an image.
WebImageViewer provides the following features:
» Server-Side image viewing and processing with no client dependencies or installs

+ Scale images with optional high-speed Scale-to-Gray display only available when used with
Atalasoft DotImage Document Imaging

* On-demand loading of tiles as image is scrolled or panned

+ Avariety of mouse tools that zoom, pan, zoom to area, select, or center the image without
posting back the entire page

+ Arubberband for selecting an area of the image for navigation, cropping, or basic annotating

+ Access to the full power of Atalasoft DotImage's Image Processing, Document Imaging,
Metadata, Color Management, and other imaging functionality

» Choice of browser output format as JPEG, PNG, or GIF

« The ability to open images from HTTP, HTTPS, FTP, or from the local server

» The ability to print images by streaming as a PDF, or by using the JavaScript Print() method
» Support for viewing TIFF FAX images with different X and Y resolutions

» Very low bandwidth required to view very large images

 Access nearly all functionality through JavaScript with remote invoke methods, requiring no
postback

+ Very efficiently viewing of TIFF's that are saved as tiles or in strips

+ Viewing of PDF's with the PDF Reader Module

+ A'"web" version of the Windows Form WorkspaceViewer Control

» Supports dragging and dropping controls onto an ASP.NET WebForm for design time

WebThumbnailViewer

The AJAX enabled WebThumbnailViewer is used to view multiple thumbnails from images stored
in a multipage document such as a TIFF or PDF, or can be used to view thumbnail images from a
folder. This control works by loading thumbnails "On-Demand" reducing bandwidth requirements
and enabling the control to view thousands of thumbnails that are loaded only when scrolling in
view. This control can be tied with the WebImageViewer for an advanced document image viewer.

WebThumbnail viewer provides the following features:
* On-demand loading of thumbnails as control is scrolled or panned
+ Automatic synchronization of a WebImageViewer to show the selected thumb without any code

+ The ability to place custom captions on each thumbnail with automatic placement of the page
number and filename

+ Select one or multiple Thumbs
* Requires very little bandwidth to view multipage images

+ Access nearly all functionality through JavaScript and remote invoke methods, requiring no
postback

» Supports the "web" version of the Windows Form's ThumbnailViewer Control
+ Supports dragging and dropping controls onto an ASP.NET WebForm for design time support

77

Atalasoft DotImage Developer's Guide

WebAnnotationViewer

The AJAX enabled WebAnnotationViewer is used to annotate images in a browser. As
WebAnnotationViewer is based on WebImageViewer, you get all of WebImageViewerfeatures
(panning, zooming, tiling, and so forth), plus the ability to create, delete, view, and modify
annotations without a postback.

WebAnnotationViewer uses the same rendering and data engine as Atalasoft DotImage
Annotations. Therefore annotations can be created on the and viewed in a WinForms application
and vice-versa. This control is useful for marking up images on the either in a collaborative
environment or in an online image workflow application.

WebAnnotationViewer provides the following features:

+ Access to the full power of Atalasoft DotImage's Annotations component for creating, loading,
and saving annotations

« Users can create annotations with the mouse
» Users can move or resize annotations with the mouse
» User can edit Text Annotations in the browser

+ Saved annotations are interoperable with the WinForms version of Atalasoft DotImage
Annotations

+ Access nearly all functionality through JavaScript and remote invoke methods, requiring no
postback

* The "web" version of the Windows Form's AnnotationViewer Control
« Supports dragging and dropping controls onto an ASP.NET WebForm for design time support

Use WebAnnotationViewer to create:

+ Athin client document viewer to view mechanical drawings from a database

+ Abased FAX image viewing and markup application

+ Abased QA application for manual review comparing original and new scanned images side-by-
side

+ Abrowser based annotations application for marking up documents without affecting the
underlying image data

+ An online image editor for an digital photo gallery

TWAIN scanning

DotTwain is a Managed .NET Windows Form component with fast capturing of digital images from
scanners, cameras, and other devices supporting TWAIN.

DotTwain:
+ Utilizes the improvements of the TWAIN 2.4 specifications for ultra fast scanning.
» Works with a .NET Bitmap object and has no dependencies other then the .NET Framework.

Supported Features

DotTwain:
» Provides full context-sensitive help and documentation.
» Support object-oriented design as it is a TWAIN extension to the .NET Framework.

Atalasoft DotImage Developer's Guide

» Supports the creation of a custom interface to scan images, or the use of the default TWAIN
interface.

» Supports automatic document feeders, with full control of the feeder operations.

» Supports duplex scanning.

 Provides file system support for navigating the internal device memory.

» Supports direct acquisition of images to file utilizing device-supported compression algorithms.
+ Provides frame support, allowing you to select a region of the scanning bed to be acquired.

+ Supports uploading a scanned image to a server with the built in HTTP Post class.

+ Provides simplified automatic capture allowing a device to quickly capture multiple images for
later acquisition.

» Provides Imprinter/Endorser methods allowing a text string ito be stamped onto the acquired
image during the acquisition.

» Provides Barcode/Patchcode classes to access bar code and patch code recognition abilities of
the device

» Provides a low-level class allowing very fine control over the scanning session for advanced users

+ Is extensible allowing for custom driver capabilities access

» Supports image datasets enabling acquisition of specific images from a camera in a single
operation

* Quickly determines the capabilities, compression modes, frame sizes, resolutions and more, that
are supported by a device

» Provides more than 80 properties and 50 methods to give you total control over the image
acquisition

DotTwain has been tested on many industry leading document scanners including those from
Kodak, Fujitsu, Panasonic, Canon, Visioneer, Xerox, and Bell & Howell.

Imaging

Dithering

The DitherCommand gives even finer control over the dithering process. The command includes the
Floyd Steinberg and Ordered Dithering methods and allows for the customization of each.

When converting an image from an RGB or RGBA format, with many millions of possible colors, to

a colormapped format, such as 8-bit or 1-bit format where there are only 256 or 2 colors available,

there is a loss of color information. As a result, there is likely to be a difference (or “error”) for every
pixel color in the original image and the corresponding pixel color in the new image.

There are two ways to deal with this error:
+ Ignore it
» Push a portion of the error onto each of the surrounding pixels

This latter method is called “dithering” or “error diffusion”.

79

Atalasoft DotImage Developer's Guide

By default, when converting to a colormapped format, Atalasoft DotImage uses the Floyd Steinberg
dithering algorithm to spread out color errors as defined in the AtalaPixelFormatChanger. The result
is preferable to ignoring the error totally.

Because of the way we perceive colors, as an error spreads over an area of pixels, that area tends

to resemble the same area in the original image even though there may be significant color errors
on each individual pixel. This effect works much like an ink jet printer--many dots of just a few colors
when placed close to one another look like a completely different color to the eye.

i J Dithering works best for photographic images.

You can control how much dithering takes place with the DitherErrorMax property. Values range
from 0 to 127.

Avalue of 0 is equivalent to ignoring the color error completely. Images generated this way tend to
have large areas of solid color and the transitions between these colors are harsh. The results can
be dramatic, but it is not a good idea to make this your default.

As you increase the DitherErrorMax value, the amount of error that can be spread to other pixels
increases and the resulting images pick up subtle shading and smoother color transitions.

Compression

In a raw state, images can occupy a rather large amount of memory both in RAM and in storage.
Image compression reduces the storage space required by an image and the bandwidth needed
when streaming that image across a network.

Types
+ Lossless: When lossless data is decompressed, the resulting image is identical to the original
» Lossy: Lossy compression algorithms result in loss of data. The decompressed image is not the
same as the original.
Methods
JPEG compression

JPEG compression is the format of choice for photographic color and grayscale images.
JPEG uses a non-linear lossy compression that can achieve high compression ratios. It takes
advantage of the fact that human vision is more sensitive to changes in brightness than in color.

JPEG compression performs well on smooth gradients with gradual changes in color. In images
that contain sharp lines and text, JPEG compression performs less well and "artifacts" can
appear that are visible to the human eye.

Saving a JPEG image always results in some loss in quality and/or image data. Repeatedly

decompressing and recompressing an image with JPEG compression continually degrades the
image.

O 1irr images can be saved with JPEG compression.
Deflate/PNG compression

Deflate compression is a lossless scheme used in standard ZIP files. In imaging, PNG
compression is most commonly used in the PNG format (pronounced "Ping"). Deflate

80

Atalasoft DotImage Developer's Guide

compression works well with blocks of consistent data, and not as well with gradients. As a
result, PNG's are good choice whenever data preservation is critical. For example, it is a good
choice when compressing data for archival purposes and when compressing logos, graphics,
and images within blocks of text.

Atalasoft DotImage also supports the Deflate compression in TIFF images.

CCIT Group 4 / Group 3 compression

CCIT compression is lossless. It is most commonly used for compressing binary images as it was
originally designed for FAX images. CCIT is good at compressing binary data in black and white
images, and is the compression algorithm of choice for document images.

CCIT Group 3 is an older standard and very similar to Group 4.
CCIT compression is available in the TIFF image format.

LZW compression

LZW compression is similar to Deflate but was patented by Terry Welch and his patent was
enforced by Unisys. Unisys's US patent on the LZW algorithm expired in 2003 and for some
other countries in 2004. LZW compression has gained wide use in the GIF format developed
by CompuServe. LZW is also common in TIFF images and like Deflate is always lossless. LZW is
slightly faster than Deflate but generally does not produce the same degree of compression.

Huffman compression

Huffman is lossless compression that relies on identifying repetitive patterns in the data of a
file. CCIT Huffman compression is 1-bit TIFF's support Huffman compression.

RLE compression

Run Length Encoding (RLE) is a simple lossless compression algorithm that works by
representing a sequence of identical values with a counter and a value. RLE works well when
horizontal lines in an image are consistent, but for some images RLE can increase the file size.

The 4-bit or 8-bit BMP, and CCIT RLE for 1-bit TIFF formats all support RLE compression

Wavelet / JPEG2000 compression

Wavelet compression is a newer compression technology that is most commonly used with the
JPEG2000 format. Wavelet compression can yield compression ratios that are greater than JPEG
at the expense of speed.

Wavelet compression is not as widely supported as JPEG and does not always yield a
significantly better compression ratio then standard JPEG.

Wavelet compression is slower then JPEG compression.

Asynchronous image processing

Asynchronous image processing can be advantageous because of the large amount of processing
power required to process, load, and save images. Programs that do not use asynchronous
processing may be rendered unresponsive due to the processing power requirements of image
processing.

For this reason, Atalasoft DotImage provides strong support for asynchronous image processing.
Atalasoft DotImage can process images asynchronously using the Workspace object with no
additional coding required.

81

Atalasoft DotImage Developer's Guide

By setting the Asynchronous property in the Workspace or WorkspaceViewer object to true, all
image operations including opening, saving, and applying commands are performed in a separate
thread.

Process queue
When an image is processed asynchronously, there are special considerations.

For example, a single AtalaImage object cannot perform two operations at once. Performing
multiple operations at the same time yields unpredictable results. When opening, processing, or
saving an image, the operation is entered into the ProcessQueue. This specialized collection ensures
that the operations are performed in sequence. Each call to Open, ApplyCommand, or Save, adds
the operation to the queue, and the operation does not start until all of the items ahead of the
newly queued item are complete.

The queue can be accessed at any time to determine the current state of an operation, or to add or
remove an item from the queue.

When working with a Workspace in Asynchronous mode, any queries to the current AtalaImage
object yields the current state of the object. Suppose you need to check the number of colors
using the Atalalmage.CountColors() method after loading an image. To do so, you must run
synchronously, or else handle the ProcessComplete event and wait until that event is fired before
obtaining information about the processed image.

ThumbnailView control

The ThumbnailView control utilizes asynchronous processing by default. It loads thumbnail images
in a background thread pool. The number of concurrent worker threads can be controlled by the
NumWorkerThreads property.

O 1his property defaults to 3.

Resampling

In signal processing, the act of resizing a stream of data is known as resampling. This means
that you take measurements of the data source at specific intervals in such a way that you can
reproduce the original signal with a different amount of data, within the constraints of your system.

In image processing, one tries to resize a two dimensional image in such a way that the resized

image resembles the original as much as possible, given a limited amount of time and memory.

More specifically,

* When reducing images, the goal is to preserve the character of the source data, but with fewer
points.

+ When enlarging images, the goal is to invent data to fill in the holes where there is no source
data.

In the examples that follow, assume there are Ns samples in the source and there are Nd samples
in the destination, in one dimension. Two dimensional resampling is a natural extension of the one
dimensional process.

ShowNearest neighbor

The easiest way to resample anything is to pick every Floor(Ns/Nd)th sample out of the source. Ex. :
if Ns = 10 and Nd = 5 (you want your output data to be 1/2 the size of the source), you will pick every

82

Atalasoft DotImage Developer's Guide

2nd data point from the source. The math is simple and so, this is a very quick operation. As with
many processes that are both quick and simple, the results are not ideal. This method ignores too
much of the source data to accurately reproduce it.

Even worse, when enlarging, you end up picking the same data points again and again. If Ns =5
and Nd = 20, you end up using a new source pixel every four destination pixels. This leads to the
dreaded "fat pixel" effect.

Strictly speaking, when enlarging with this method, you are in fact preserving the data in the
original image exactly: every source point is used in the destination image and, you are not
introducing any new data into the new image. However, the results are not visually pleasing.

More sophisticated techniques can get rid of the fat pixel effect by making educated guesses as to
what the data points between source pixel N and N+1 would be.

ShowBi-Linear resampling

For every destination pixel, find the location of the ideal source pixel by using the Ns/Nd ratio, as
above. But this time, don't use the Floor function, preserve the fractional information. Ex. if Ns =

5 and Nd = 15 and we're trying to find the 2nd point in the destination, the ideal source point is at
0.666 (2 * (5/15) = 0.666). Because we can't address data at fractional locations, we'll do a weighted
average of the two data points closest to our ideal location: 0 and 1. Our destination pixel is then
0.666 of the data at point 0 and (1.0 - 0.666) of the data at point 1.

This technique is called linear interpolation. If you were to graph the two data points used in the
calculation above, with a line between them, the ideal data value will be somewhere on that line.
Bi-linear means that you do it twice - once horizontally and once vertically. The math is the same in
either direction.

Using this technique on image data gives results that are far better than the nearest neighbor
technique. The images lose the fat pixel effect and you can almost believe that the resizing code has
somehow recovered data that was missing from the source.

ShowBi-Cubic resampling

Cubic interpolation is similar to linear interpolation in that you use your existing data to come up
with an equation to model that data so that you can make an educated guess at what other points
in that data set will be. Linear interpolation uses two data points to generate a simple line, and
you pick your destination data from that line; in cubic interpolation, you use four data points to
generate a 3rd degree equation (of the form axA3 + bxA2 + cx + d) and pick your destination data
from the curve. This makes the math much more complicated.

In linear interpolation, you use two source data points to find one destination point. In cubic
interpolation, you use four source points to find one destination point. So, each destination
point is created from twice as many source points, and a cubic equation can model mathematical
relationships in data much more accurately than a simple line can.

The images that result from bi-cubic interpolation (cubic interpolation performed in both X and Y
directions) are often sharper than bi-linear interpolation because of the higher accuracy possible
with 3rd degree equations and the higher number of source pixels used. The downside is that
the math required to do this is complex and time consuming. You need to be sure the time spent
generating the image is worth the slight visual improvement.

ShowArea averaging

This technique is much different from the resampling techniques described above. In those
techniques, the number of source points per destination point was fixed by the requirements

of the math: 2 for linear resampling, 4 for cubic resampling. The intent of this algorithm is also
different. The resampling techniques are designed to reproduce or mimic the source data as closely
as possible; area averaging is designed to find the average data value in a given range of data.

83

Atalasoft DotImage Developer's Guide

The way it works is simple: divide the source data into Nd regions. Each destination point is the

average data value from the corresponding source region. This is a very intuitive way to reduce

the size of a data stream. Every data point in the source contributes equally to the output: and a
destination pixel is the average of all source pixels that it represents.

Unfortunately, this technique can only be used when reducing images. If Ns < Nd, the source
regions end up being less than one pixel each and the technique degenerates into a nearest-
neighbor equivalent. Also, this technique isn't good when you are only slightly reducing an image:
the regions become too small to do much more than echo single source data points. But, for large
reductions, area-averaging can give results that are equal to or better than any of the resampling
techniques described above.

ShowfFilter resampling

The Filter resizing methods are handled by a single resizing "engine". For each pixel, the engine
combines a number of neighboring pixels in a weighted average to form the output pixel. Each
method uses a different number of neighbor pixels and the weighting for these pixel is determined
by a filtering function; each method uses a different filtering function, ranging in complexity from
trivial to elaborate.

The results from these methods vary dramatically. Some of the methods are suboptimal for most
purposes, while some of the others give results that far exceed any other resizing method. But, as
with all things, the better the results, the longer the calculation takes.

For most purposes, the simple resampling methods (NearestNeighbor, BiLinear, AreaAverage)
give respectable results. If you can afford to wait, the filter resizing methods can give outstanding
results, in particular the LanczosFilter.

Morphology

Morphology is the study of form and structure. In image processing, morphology encompasses a
set of techniques that merge traditional image processing with mathematical set theory. In general,
morphological operations are performed on binary (two-color, 1-bit) images, although we provide
extensions that support grayscale images as well.

All of the morphological operations discussed here are implemented in the Atalasoft Dotimage SDK.

Set theory
Morphology applies these set theory rules to images. Additional rules may also apply.

» The union of two sets, A and B, is the set of all the elements that belong to A or to B, or to both
A and B. When processing two binary images, implement union by merging the images using
logical OR.

« The intersection of two sets is the set of elements that belong to both A and B. None of the
elements that belong to A only or B only are included. When processing two binary images,
implement intersection by merging the images with logical AND.

» The difference of A and B (A - B) is the set of elements in A that are not in B. “A - B” is equivalent
to the intersection of A with the complement of B.

+ The complement of the set A is the set of elements that are not in A (written here as ~A). When
processing binary images, implement complement by using logical NOT.

+ Two sets, A and B, are disjoint if they have no common elements.

Binary processing

84

Atalasoft DotImage Developer's Guide

Binary processing supports the following operations:
+ Dilation

« Erosion

+ Opening and Closing

+ Hit or Miss

+ Boundary Extraction

+ Thinning

Dilation

Dilation is one of the two fundamental morphological operations. It is defined as the set of all
points where the intersection of the structuring element and the image are non-empty. A mask
acting as the structuring element, passes over the image. For each source pixel, if any of the pixels
in the mask are “1” and line up with a source pixel which is also “1”, the output pixel is “1”.

Example 1

The mask is 3x3 with its center at (1,1):
010

111

010

The source image, A, is 4x4 and looks like:
0000

0110

0110

0000

At the first pixel (0,0), with the mask centered on (0,0) none of the mask pixels overlay any
source pixels where both are 1.

In the Atalasoft DotImage implementation, when the mask is off the edge, the nearest edge
pixels stand-in for the pixels off the edge.

With the mask centered at source pixel (1,0), there is a match (mask pixel (1, 2) matches image
pixel (1,1)). Therefore the intersection of A and the mask when the mask is at (1,0) is non-empty.
So, the output pixel at (1,0) is set to “1”.

After processing the entire image, the output is as shown:
0110

1111

1111

0110

The transformation has dilated or expanded the image. It is no accident that the output image
in some ways resembles the mask.

Example 2

If the mask is changed to that shown below:

000

111

000

85

Atalasoft DotImage Developer's Guide

If the same operations performed in Example 1 are repeated, the output is:
0000
1111
1111
0000

In general, the shape of the pixels in the mask has a huge effect on the output image. With an
image this small, the effect is exaggerated as a 3x3 mask only affects pixels on the edges of the
input image. These examples illustrate the fact that dilation increases an object’'s geometric
area.

Erosion

Erosion is the second of the two basic morphological operations. It is defined as the set of all points
z such that the mask, translated by z, is contained in the image, A. In other words, erosion outputs a
zero if any of the input pixels under the "1" pixels in the mask are zero. Formally, erosion can also be
defined as the complement of the dilation of the complement of A with mask, or : Erosion(A, mask)
= ~(Dilation(~A, mask)).

In terms of image processing, erosion reduces an object’s geometric area.

Dilation, erosion, and logical and set theory operations make up the basis for morphological image
processing.

Opening and closing

The opening operation is the dilation of the erosion of the image. It tends to smooth outward
bumps, breaks narrow sections and eliminates thin protrusions. In other words, as the mask is
passed over the image, the output pixel is 1 only if all non-zero elements in the mask match non-
zero elements in A: it is the set of all locations where the mask fits into the input image.

The closing operation is the erosion of the dilation of the image. It tends to eliminate small holes
and remove inward bumps.

Imagine a square; then imagine a smaller circle inside the square. A common analogy for opening
and closing is to imagine a ball rolling around a geometric shape or, in our case, the circle rolling
around inside the square. The opening of the square is all the area the circle can cover inside the
square. This is most of the square except for areas in the corners where the circle does not fit. It is a
square with rounded corners.

Imagine a square inside a square. The circle is inside the inner square and performs the same filling
that it did in the opening example. But, after the circle has filled the square, take the complement
of the inner square and intersect that with the outer square. What you get is a square with rounded
corners inside a larger square. This is the closing.

Hit or miss

The Hit or Miss translation is a basic tool for shape detection. Unlike the previous four operations,
Hit or Miss requires two structure elements. One element defines the foreground features to detect
while the other defines the background features to detect. Strictly speaking, one could be derived
from the other (assuming foreground is always the opposite of the background), but Atalasoft
DotImage allows you to specify both masks explicitly.

Hit or Miss is defined as the intersection of the erosion of A by the first structure element

(SE) and the erosion of the compliment of A by the second structure element: HitOrMiss =
Intersect(Erosion(A, SE1), Erosion(~A, SE2)). So, the output of a Hit or Miss transformation is the
set of points which match the erosion of A by SE1 (the foreground) and those which match the

86

Atalasoft DotImage Developer's Guide

erosion of the compliment of A with SE2 (the background). The result is the matching of certain
edge features (exactly which features depends on the shapes within the two structure elements).

Because the SEs are looking at complimentary features, they should be compliments of each other:
if you have a “1” in SE1, you need to have a “0” in the corresponding location in SE2.
Boundary Extraction

Boundary Extraction is defined as the difference between the image A and the erosion of A with SE:
A - Erosion(A, SE). The SE is usually a solid square of 1’s. The size of the SE determines the thickness
of the border.

Thinning

The morphological thinning operation is defined as the intersection of the image A and the
compliment of the Hit or Miss of A with SE1 and SE2: Thinning = Intersect(A, ~(HitOrMiss(A, SE1,
SE2)). In practice, thinning is applied using a sequence of SE’s (and their complements), where the
definition above is applied iteratively, using each pair of SEs in the sequence.

In practice, the iteration over the sequence of SEs is generally iteratively applied itself (a loop within
a loop) until one of two conditions are reached.

» The output has not changed from one iteration of the outer loop to the next, indicating that
image will not change on the next iteration.

+ The maximum number of iterations allowed have taken place.

Since this can be a lengthy operation, setting a maximum iteration count is often a good idea.
The function in Atalasoft DotImage handles both inner and outer loops for you but, if you want to
handle the outer loop yourself (to show the thinning in progress) you can call it repeatedly with a
maximum iteration count of 1.

Grayscale processing

The set theory definitions above do not translate well to the grayscale world. But, as there are a
number of basic operations that can be defined in slightly different ways we can do similar, though
not identical, operations on grayscale images.

The grayscale processing operations are:
+ Dilation

« Erosion

* Opening and Closing

+ Smoothing

+ Gradient

Dilation

In grayscale, dilation for a grayscale pixel is calculated for each input pixel by adding the value of a
pixel in the SE to the corresponding image pixel beneath and then finding the maximum value of all
the additions.

If all elements in the SE are equal, dilation becomes a simple maximum filter (output is the
maximum pixel value under the filter), plus an offset.
Erosion

In grayscale, erosion for a grayscale pixel is calculated for each input pixel by subtracting the value
of a pixel in the SE from the corresponding image pixel beneath; then finding the minimum value of
all the subtractions.

87

Atalasoft DotImage Developer's Guide

If all elements in the SE are equal, dilation becomes a simple minimum filter (output is the minimum
pixel value under the filter), minus an offset.

Opening and closing

As in the binary case, opening and closing are defined in terms of erosion and dilation. Opening
tends to darken bright details while closing tends to brighten dark details.

Smoothing

A smoothing operation can be defined by performing an opening followed by a closing. Since
opening reduces bright details and closing brightens dark details, the combination of the two yields
an image where the extremes have been smoothed.

Gradient

The gradient is a way to highlight sharp gray level transitions (ie. edges) within an image. It is
defined as the arithmetic difference between the dilation of the image and the erosion of the
image. Because erosion reduces the geometric area and dilation increases the area, the difference
between the two tend to accentuate the edges (where the shrinking and enlarging occurred).

Best practices

Memory management

Garbage collection

In managed code in the .NET framework, memory is allocated from the managed heap. This heap is
controlled by the Garbage Collector.

Microsoft chose to use a Garbage Collector rather than more traditional deterministic finalization
in order to eliminate a layer of memory management responsibility from the programmer.

The Garbage Collector has many benefits, but also some disadvantages. When dealing with normal
classes, objects, and types, you do not need to worry about memory as it is entirely handled by the
Garbage Collector. However, when dealing with un-managed memory such as memory pointers
and handles using GDI or GDI+, because that memory does not reside on the managed heap it
needs to be explicitly disposed. For that reason, many objects in .NET have a dispose() method.

The reference to the object is controlled by the managed heap. When it is time for the Garbage
Collector to collect the reference, it runs the finalization code. As a developer, you have no idea
when this finalization might happen.

When working with large chunks of memory it is a good practice to free that memory as soon as it is
no longer needed by invoking the dispose() method.
Memory allocation

Images can occupy just a few bytes of data or many megabytes. For performance reasons, Atalasoft
DotImage does not use the managed heap to allocate image memory. Instead it by default uses
GlobalAlloc, or System.Runtime.InteropServices.Marshal.AllocHGlobal in the .NET Framework.

Similarly, Atalasoft Dotlmage uses GlobalFree or
System.Runtime.InteropServices.Marshal.FreeHGlobal to free memory when the object is disposed.
This method of allocating memory chunks is very fast and efficient, as long as there is available

88

Atalasoft DotImage Developer's Guide

memory. As soon as the system memory is about to run out, or the memory chunk is extremely
large, the system begins to page to file and cause delays.

Load very large image files

Atalasoft DotImage can display very large TIFF images gigabytes in size using the IScaledDecoder
interface which is applied to the TiffDecoder and JpegDecoder. This interface will load the image at
a scaled size without requiring all the image data to be in memory at once. The IRegionReadable
interface can be used to read a rectangular section of the image without reading the entire image
into memory and is applied to the TiffDecoder.

TIFF Images that are saved as a single strip do not benefit from IScaledDecoder or IRegionReadable
because the entire image must be loaded into memory. We recommend using the default strip size
or saving TIFF images as tiles.

Pixel memory

Memory layout

The Atalasoft DotImage memory layout is described below.
» Animage is broken into a series of scanlines.

» Ascanline contains a number of bytes equal to the width of the image times the number of bits
per pixel divided by eight. This number is rounded up to the next higher multiple of four. For
example, an image that is 1 bit per pixel and 33 pixels wide needs 33/ 1/ 8 = 4.125 bytes - this
then gets rounded up to 8 bytes.

Image type Memory layout

1 bit Highest order bit in a byte is the leftmost in display. The lowest order bit is the
rightmost.

4 bit High order nibble (or group of 4 bits) is the leftmost in display. The low order
nibble is the rightmost.

24 bit Consecutive bytes are blue, green, and red respectively

32 bitrgb Consecutive bytes are blue, green, red, and alpha. If the pixel format doesn't
have an alpha channel, the 4th byte is a placeholder.

32 bit cmyk Consecutive bytes are cyan, magenta, yellow, and black.

16 bit gray with alpha Consecutive bytes are gray and alpha.

16 bit gray Consecutive words are gray

48 bit Consecutive words are blue, green, and red.

64 bit Consecutive words are blue, green, red, and alpha. If the pixel format doesn't

have an alpha channel, the 4th word is a placeholder.

To obtain the width of a row of an Atalalmage in bytes, you can use image.RowStride. To
obtain the width of a row in bytes give a width in pixels and a PixelFormat, use the method
PixelFormatUtilities.RowStride().

The number of bytes needed by an entire image is typically the height times the width in bytes. This
varies with the image representation.

89

Atalasoft DotImage Developer's Guide

Pixel access

In a PixeIMemory object, you can use a PixelAccessor to locate the individual pixels

A PixelAccessor can only be created by a PixelMemory object. Once created, a PixelAccessor is
always tied to that PixelMemory object and therefore to the image that owns the PixelMemory.

A PixelAccessor provides you with the ability to read from and write to individual scanlines within an
image without needing to know about the actual underlying memory implementation.

With a PixelAccessor, you acquire a scanline to work on and when you are done, you release it.
PixelAccessor provides a number of shortcuts to make working with image memory easy and to
make it difficult to inadvertently forget to release a scanline or forget to release the PixelAccessor
itself.

Acquire a Scanline

To acquire a scanline, call AcquireScanline, AcquireNextScanline, or AcquirePrevious scanline. Each
will return an array or bytes that represents the scanline data. Calling ReleaseScanline releases the
last scanline acquired, if any.

As a service, if you call a flavor of AcquireScanline a second time without calling ReleaseScanline,
PixelAccessor does an implicit ReleaseScanline for you. Therefore it is incorrect to do something like
this:

byte[] top, bottom;

top = accesor.AcquireScanline(0); // get the top row

bottom = accessor.AcquireScanline (memory.Height-1); // get the bottom row
// at this point top will have been released and bottom is the active scanline

You should consider PixelAccessors to be cheap resources. Use multiple accessors instead of one
when you need to access multiple scanlines at the same time.
byte[] top, bottom;

top = topAccessor.AcquireScanline(0); // get the top row
bottom = bottomAccessor.AcquireScanline (memory.Height-1); // get the bottom row

Be aware that when you acquire a scanline, you have a non-exclusive lock on that memory. This
means that other PixelAccessors can access the unchanged scanline. When a PixelAccessor releases
a scanline, either implicitly or explicitly, the data is written back into the image. It is up to the client
to ensure that there are no conflicts, especially in a multithreaded environment.

AcquireNextScanline always acquires the scanline after the currently acquired scanline. If there has
been no previous acquisition or the previously acquired scanline was released, AcquireNextScanline
is equivalent to AcquireScanline(0). If there are no more scanlines to acquire, AcquireNextScanline
returns null.

AcquirePreviousScanline always acquires the scanline before the currently acquired scanline. If
there has been no previous acquisition or the previously acquired scanline has been released or
there are no more scanlines to acquire, AcquirePreviousScanline returns null.

It is possible for the PixelMemory object which owns an accessor to be disposed, leaving accessor
that can longer correctly access memory. When a PixelMemory object is disposed, it notifies all its
PixelAccessors that it is going away. At this point all its PixelAccessors are marked as invalid and no
longer function.

For example, doing the following throws an exception:

20

Atalasoft DotImage Developer's Guide

C#

PixelAccessor pa = pixelMemory.AcquirePixelAccessor () ;
pixelMemory.Dispose () ;

// throws - the owning PixelMemory is gone.
pa.AcquireScanline (0) ;

This is considered to be a serious problem and if it occurs, it usually indicates an architectural
problem in client code. It is possible to check the validity of a PixelAccessor using the Valid
property, but you are encouraged to design your code so that you need never check. That is,
you should always know when a PixelAccessor is good.

Since PixelAccessor objects can contain resources, they implement IDisposable. When you are
done with a PixelAccessor, you should Dispose it. If you have not released your last scanline,
PixelAccessor releases it for you when it is disposed.

In addition, PixelAccessor contains a method called Release(). Release() marks the PixelAccessor
as invalid and releases it back to its owning PixelMemory without releasing the last acquired
scanline. This is necessary since Release() may be called by the PixelMemory object itself at a
point when it would be invalid to write back into the image.

In general, it is most convenient to use a PixelAccessor within a using block as shown in the
example below.
Example
Using a PixelAccessor with a Using Block
C#

public void ClearImage (Atalalmage image)
{

using (PixelAccessor pa = image.PixelMemory.AcquirePixelAccessor())
{
byte[] row;
while ((row = pa.AcquireNextScanline()) != null)
{
for (int i1i=0; i < row.Length; i++) row[i] = 0;
}
}
}
Example

The PixelAccessor is disposed when control leaves the using block.

Direct memory access

Sometimes it is necessary to access the memory of an image as directly as possible and without
the overhead of copying it into a buffer. The definition of PixelMemory and PixelAccessor are such
that this is not always possible. It is very straight-forward to design a version of PixelMemory in
which the memory is laid out in many strips or tiles instead of one single block. In most cases,
however, the memory is in one contiguous block. If that is the case, then the PixelMemory object
also implements an interface IDirectScanlineAccess, which provides the means to make this
determination and to get at scanlines through pointers.

IDirectScanlineAccess includes the method GetScanlinePtr(int i), which returns an IntPtr which
points to the first byte in the ith scanline. This gives the direct memory address of any scanline,
regardless of the memory layout. In addition, there is the method IsContiguous, which returns true

91

Atalasoft DotImage Developer's Guide

if the image's memory is in one block and consecutive scanlines follow each other consecutively in
memory.

If IsContiguous is true, then it is possible to treat GetScanlinePtr(0) as a pointer to the beginning of
the image's memory, which every scanline after falling in intervals of the image's RowStride.

o Currently all Atalasoft DotImage built-in commands and codecs require that PixelMemory
implement IDirectScanlineAccess and that IsContiguous returns true. This may not be the case in
the future.

In order to test if it is possible to work directly with memory easily, the PixelMemory class provides
several static utility methods listed in the table below.

Method Description
PixeIMemory.PixelDataFromPixelMemory Returns a pointer to the first scanline in an image.
If the PixelMemory is not contiguous, this method
returns null.
PixelMemory.ThrowOnNonContiguous Throws an exception if the supplied AtalaImage or
PixelMemory is not a contiguous block of memory.

C#

protected override AtalaImage PerformActualCommand (AtalalImage source, Atalalmage dest,
Rectangle imageArea, ref ImageResults results)

{

PixelMemory.ThrowOnNonContiguous (source.PixelMemory) ;
if (dest != null)
{

PixelMemory.ThrowOnNonContiguous (dest.PixelMemory) ;

}

SpecializedCode.PeformUnmanagedWork (PixelMemory.PixelDataFromPixelMemory (source),
imageArea,
source.RowStride, PixelMemory.PixelDataFromPixelMemory (dest), dest.RowStride),
return null;

PixelMemory types

Atalasoft DotImage provides two main PixelMemory types for public use:
+ GlobalAllocPixelMemory
+ BitmapPixelMemory

In GlobalAllocPixelMemory, memory is supplied by the Win32 routine GlobalAlloc and is
subsequently disposed with GlobalFree. GlobalAllocPixelMemory allocates the memory itself, but is
also configurable to work with any block of memory allocated by GlobalAlloc.

As most allocation in Windows code goes through GlobalAllog, this class works under almost all
circumstances. In most cases you only need to supply the total number of bytes for the memory,
the height of the image and the number of bytes per scanline, rounded up to the next multiple of
four bytes.

GlobalAllocPixelMemory can also work under circumstances where the first scanline does not start
at the first byte of the block of allocated memory. Several versions of the constructor include a

922

Atalasoft DotImage Developer's Guide

parameter called offsetToFirstScanline, which indicates how far from the first byte the first scanline
should start. This offset should be a multiple of 4.

BitmapPixelMemory is a variant of PixelMemory that is constructed from a .NET Bitmap object.
Once constructed, the BitmapPixelMemory object owns the Bitmap and will Dispose it when the
PixelMemory is disposed.

Client code is not likely to construct PixelMemory objects directly. Instead, PixelMemory objects are
typically constructed by ImageDecoder objects or by Atalalmage.

Access pixel data

You can access to the image data in an Atalalmage object directly. This data can be accessed in the
following ways:

+ GetPixel and SetPixel to modify the pixel values individually

+ PixelMemory and PixelAccessors to manipulate the image data

Use GetPixel and SetPixel

Image pixels can be accessed with the GetPixelColor and SetPixelColor, or GetPixellndex and
SetPixelIndex: for colormapped images, to easily retreive or set color information in an image.
However, these methods are slow when manipulating many pixels at once (as demonstrated in the
example code below). When processing a 600 x 400 pixel 24-bit image these methods were 56 times
slower then the methods in the next two sections.

Example
Set new pixel color
C#

Color clr;

//loop through the entire image

for (int y = 0; y < image.Height; y++)

{
for (int x = 0; x < image.Width; x++)
{

//darken each channel in an image by a ratio

clr = image.GetPixelColor (x, V);
image.SetPixelColor (x, y, Color.FromArgb(clr.A / 2, clr.R / 2, clr.G / 2,
clr.B / 2));

}
}
Atalasoft DotImage includes classes for addressing memory without resorting to unsafe code.

Every Atalalmage includes a property called PixelMemory which is an object that represents
the memory for an image. The easiest way to manipulate the image data directly is to use a
PixelAccessor object taken from the image's PixelMemory.

PixelMemory and PixelAccessors use an acquire/release model for accessing an image's data. When
you want a PixelAccessor object, you must acquire it from a PixelMemory object. When you are all
done with a PixelAccessor, you must call its Release() method.

To operate on a scanline of image data, you must acquire the scanline from a pixel accessor. When
you are done with the scanline, you must release it.

C#

PixelMemory pm = image.PixelMemory;

93

Atalasoft DotImage Developer's Guide

using (PixelAccessor pa = pm.AcquirePixelAccessor ())
{
for (int y=0; y < image.Height; y++)
{
byte[] row = pa.AcquireScanline (y);
for (int i=0; i < row.Length; i++)
{
row[i] = (byte)row([i] / 2; // dim each byte value by 50% }
pa.ReleaseScanline () ;

}

Prior to Atalasoft DotImage 8.0, it was possible although discouraged to access image memory
directly by using the ImageData property of AtalaImage. In addition to the PixelMemory
abstraction, Atalasoft DotImage added the ability to get the address of a scan line direction.
ImageData is no longer supported and direct scanline access needs to be modified. Atalasoft
DotImage 8.0 introduces the notion of locking memory before accessing it and unlocking it
afterwards. This abstraction allows the notion of memory that is either movable or purgeable
from physical memory when not needed. If you access image memory via PixelAccessor objects
then you do not need to change your code at all. Locking and unlocking happens automatically
as needed. If you used the method PixelMemory.PixelDataFromPixelMemory or used the
IDirectScanlineAccess interface, you need to make some minor changes to your code.

Before calling PixelMemory.PixelDataFromPixeIMemory you must call the Lock method of
PixelMemory. After you are done with the memory, you must call the Unlock method of
PixelMemory. This can be done manually by using a try/finally block to ensure that memory

is locked and unlocked properly or your can embed a PixelMemoryLocker object in a using
statement. We strongly recommend the latter approach. Both approaches are illustrated here:

C#

try

{
image.PixelMemory.Lock () ;
PixelMemory.ThrowOnNonContiguous (image) ;
IntPtr p = PixelMemory.PixelDataFromPixelMemory (image) ;
PerformDirectAccess (p) ;

}
finally
{
image.PixelMemory.Unlock () ;

}
using (PixelMemoryLocker locker = new PixelMemoryLocker (image))
{
PixelMemory.ThrowOnNonContiguous (image) ;
IntPtr p = PixelMemory.PixelDataFromPixelMemory (image) ;
PerformDirectAccess (p) ;

}

The PixelMemoryLocker object implements IDisposable such that on Dispose it unlocks the
PixelMemory. Note that PixelMemoryLocker should never be used outside of a using block.
Also note the check if the memory is contiguous. In the future, it may be the case the image
memory will not consist of a single contiguous block. It is not safe to assume that an offset of
Atalalmage.RowsStride from the first scan line will be a pointer to the second scanline unless the
PixelMemory implements IDirectScanlineAccess and IDirectScanlineAccess.IsContiguous return
true.

Calling PixelMemory.PixelDataFromPixelMemory or IDirectScanlineAccess.GetScanLinePtr
on PixelMemory that is not locked will throw an exception if that operation is undefined.
ManagedPixelMemory will throw a PixelMemoryException if GetScanLinePtr is called on

94

Atalasoft DotImage Developer's Guide

unlocked memory. ManagedPixelMemory used memory in the managed heap. When the
PixelMemory is unlocked, the garbage collector is free to move that memory without warning,
hence the restriction.

Create custom PixelMemory

In rare cases, it is necessary to create a custom PixelMemory implementation. There are two
approaches to creating your own implementation of PixelMemory.

» The first is to subclass PixelMemory
+ The second is to subclass ResidentPixelMemory

Subclass PixelMemory
1. Implement DisposeManagedResource, the method responsible for disposing any objects
contained within your implementation of IDisposable.

2. Implement DisposeUnmanagedResources. The method responsible for disposing any objects
from unmanaged code (such as blocks of memory allocated outside the GC heap).

3. Implement LLGetHeight. The method that returns the height of the image that this memory
object represents.

4. Implement LLGetRowsStride. The method that returns the width of the row in bytes, rounded
up to the next multiple of 4.

5. Implement LLGetPixelAccessor. The method that returns a new PixelAccessor object suitable
for accessing image data in your PixelMemory.

6. Implement LLClone. The method that performs a deep copy of the PixelMemory
7. Implement a suitable PixelAccessor for your PixelMemory.

Create a custom PixelAccessor
1. Implement LLAcquireScanline. The method that acquires a single scanline and returns an IntPtr
to the first byte.
2. Implement LLReleaseScanline. The method that releases a previously acquired scanline.

3. Implement DisposeManagedResources. The method responsible for disposing any objects
contained within your implementation that implement IDisposable.

4. Implement DisposeUnmanagedResources. The method is responsible for disposing any
objects from unmanaged code (such as blocks of memory allocated outside the GC heap).

©® when your subclass of PixelMemory either allocates or frees memory, it should call
appropriate methods in PixelMemoryTracker.Memory to report changes in allocated memory.

Subclass ResidentPixeIMemory

When subclassing ResidentPixelMemory, implement the following methods:
1. Implement LLAllocateMemory. The method allocates a block of memory, optionally clearing it.

2. Implement LLFreeMemory. The method frees a block of memory previously allocated by
LLAllocateMemory.

95

Atalasoft DotImage Developer's Guide

3. Implement LLReallocateMemory - the method resizes a block of memory, either shrinking it or
expanding it as needed.

There is no need to implement a PixelAccessor or track memory within a subclass of
ResidentPixelMemory. That is managed for you.

Image Source

The ImageSource class makes it possible to work effectively with an arbitrary number of images
without worrying about the details of where those images come from and how they are managed.

The ImageSource object allows you to work with a potentially unbounded number of AtalalImage
objects without requiring that all those images be in memory simultaneously.

You can think of ImageSource as half of a source/sink pair. An ImageSource is a place from which
images come. The sink is an application or an image consumer. Images are managed through an
acquire/release model. The ImageSource object performs the following services:

+ Acquire images in order

+ Release images tin any order

» Track available image memory

+ Automatically free released images using either lazy or aggressive mechanisms
+ Allows limited reacquisition of released images

+ Allows reloading mechanism to enable images to be cached

ImageSource does not dictate where or how images are loaded into memory. Instead, it
manages the conditions under which images come and go. The ImageSource subclass
FileSystemImageSource, is one of the subclasses responsible for the actual loading of images.

In this model, an image can be thought of as a resource. Rather than simply being read and used,
an image is acquired from the ImageSource and released when processing is complete. Any
number of consumers can acquire any given image, and it is released only when each Acquire has
been balanced with a Release.

You can configure an ImageSource to aggressively unload images or you can configure the source
to observe memory restrictions. Some ImageSource variants can reload previously unloaded
images or cache images.

© while it appears that an ImageSource could implement IEnumerator or IEnumerable, those
interfaces have facilities which are not guaranteed to function in ImageSource.

Inside the ImageSource class

An image can be thought of as a resource. Rather than simply being read and used, an image is
acquired from the ImageSource and released when finished. Any number of consumers can acquire
any given image and it is released only when each Acquire has been balanced with a Release.

In this way, an ImageSource can be used as follows:

C#

public void ProcessImages (ImageSource source)

926

Atalasoft DotImage Developer's Guide

while (source.HasMoreImages()) {
Atalalmage image = source.AcquireNext () ;
ProcessImage (image) ;
source.Release (image) ;

An image that has been acquired and is not yet released can be acquired any number of times. In
the example above, all the images within the ImageSource are processed serially. You can make this
a parallel process by creating worker threads to perform the processing and allow them to acquire
and release the images as well. Structuring the code as follows makes that possible:

C#
public void ProcessImages (ImageSource source)
{

while (source.HasMoreImages()) {
Atalalmage image = source.AcquireNext () ;

CreateImageWorker (source, image, ProcessImage) ;
source.Release (image) ;

}

private void ProcessImage (ImageSource source, Atalalmage image)

{
// do processing here
source.Release (image) ;

}

public delegate void ProcessImageProc (ImageSource source,
AtalalImage image) ;

public void CreateImageWorker (ImageSource source,
AtalalImage image, ProcessImageProc proc)

{

source.Acquire (image); // Acquire here
Thread t = CreateImageWorkerThread (source, image, proc);
t.Start ();

}

private Thread CreateImageWorkerThread (ImageSource source,
AtalalImage image, ProcessImageProc proc)

{
// threading details left out

}

In the above code, the main loop acquires each image, passes it to CreateImageWorker, then
releases it. CreateImageWorker calls Acquire for a second time, then creates a worker thread to do
the processing, starts it and returns. The worker thread calls ProcessImage which does the work
before calling Release. In this way, the images are processed in parallel.

ImageSource categorizes images into three groups, Acquired, Released, and Culled. An image that
is Acquired is in memory and available for use. An image that is Released is in memory, but should
not be used until it has been reacquired. An image that is Culled is no longer in memory, but may
have the facility to be reloaded.

97

Atalasoft DotImage Developer's Guide

Example:

C#

private void TryOne (ImageSource source

{
source.Reset () ;
Atalalmage image = source.AcquireNext () ;
AtalalImage imagel = source.Acquire (0); // reacquire the 0th image

}

Ifimage is non-null, image1 is always non-null and identical to image.
This code works in most cases:

C#

private void TryTwo (ImageSource source)
{
source.Reset () ;
Atalalmage image = source.AcquireNext () ;
source.Release (image) ;
AtalaImage imagel = source.Acquire(0); // reacquire the 0th image

ImageSource marks image as Released and unless there are severe memory restrictions, the image
can be reacquired. The resulting image, however, should be checked for null.

This code only reliably works if the particular ImageSource implements reloadable images:

C#

private void TryThree (ImageSource source)

{
source.Reset () ;
while (source.HasMoreImages ())
{
AtalaImage image = source.AcquireNext () ;
source.Release (image) ;

}

Atalalmage imagel = source.Acquire(0); // reacquire the 0th image

The ability to reload an image is not defined within ImageSource, but is instead left to a class that
descends from ImageSource.

On its own, ImageSource is geared perfectly for situations where an image can be accessed once
and only once, such as a video source or a scanner with an automatic feeder.

Since not every ImageSource falls into this category, there is an abstract descendant of
ImageSource called RandomAccessImageSource. For a RandomAccessImageSource, any image can
be reliably acquired at any time and in any order. Again, images may be Acquired, Released, and
Culled, but in this case Acquire should always succeed.

RandomAccessImageSource adds the array operator to the object and the Count property. In this
way, it is possible to access the image source as shown below.

98

Atalasoft DotImage Developer's Guide

C#

public void ProcessImages (RandomAccessImageSource source)
{
for (int i=0; i < source.Count; i++) {
AtalaImage image = source[i]; // this does the acquire
ProcessImage (image) ;
source.Release (image) ;

From here it is a short step to get to the main concrete ImageSource class, FileSystemImageSource.
FileSystemImageSource allows a client to iterate over a set of image files as well as multiple frames
within image files that support that. Since it is clearly a variety of ImageSource that can trivially
reload images, it descends from RandomAccessImageSource. As designed, FileSystemImageSource
can iterate over all image files within a folder, all files matching a pattern within a folder or through
a list of files. Optionally, FileSystemImageSource also iterates across all frames.

For better or for worse, pattern matching is limited to that provided by .NET for files. This is not
full regular expression matching. On one hand, it is consistent with the general Windows User
Interface, but on the other hand it is somewhat limited.

To avoid that inherent limitation, yet maintain compatibility, FileSystemImageSource includes a file
filter hook to allow a client to perform all filtration of image files. By setting the FileFilterDelegate
property to a method of the form:

C#

bool MyFilter (string path, int frameIndex, int frameCount)
{
}

A client is able to allow or disallow any file based on its own criteria. By returning true from the
FileFilterDelegate, a file or frame within a file is included. Return false and the file or frame is
ignored.

To implement a custom ImageSource, create a class that inherits from either ImageSource or
RandomAccessImageSource. A class that inherits from ImageSource asserts that it can provide a
sequence of images in order. To do so, a class must implement the following abstract methods:

protected abstract ImageSourceNode LowLevelAcquireNextImage () ;

LowLevelAcquireNextImage gets the next available image in the sequence and returns it packaged
in an ImageSourceNode. An ImageSourceNode is used to manage an image while it is in memory.

The main constructor for ImageSourceNode takes an AtalaImage as an argument and an object
that implements the IImageReloader interface. An IImageReloader is a class that makes it
possible to reload an image into memory. For a typical class inheriting from ImageSource, the
LowLevelAcquireNextImage() returns a new ImageSourceNode with a valid image, but a null
IImageReloader. This indicates that the image cannot be reloaded once it has been culled from
memory. If it is not possible to acquire the next image, LowLevelAcquireNextImage returns null.

protected abstract bool LowLevelHasMoreImages () ;

LowLevelHasMorelmages returns a boolean indicating whether or not there are more images to be
loaded.

929

Atalasoft DotImage Developer's Guide

protected abstract void LowLevelReset () ;

LowLevelReset returns an ImageSource to its starting state, if possible. For some ImageSources,
this is not always possible. If it is not possible to Reset, this method does nothing.

protected abstract void LowLevelSkipNextImage () ;

LowLevelSkipNextImage is called when an image that had previously been loaded is still available.
For example, if ImageSource needs to load an image, it calls LowLevelAcquireNext, but if it

determines that it is not necessary to load an image, it does not call LowLevelAcquireNext. In this
case it is necessary to allow your class to maintain its bookkeeping.

protected abstract void LowLevelDispose() ;
LowLevelDispose is called to allow a class to dispose of any non-reclaimable resources when then

class is garbage collected. This might include closing files, releasing devices, closing network
connections, and so forth.

protected abstract bool LowLevelFlushOnReset () ;

LowLevelFlushOnReset indicates whether or not ImageSource should dump all cached images upon
Reset. For ImageSource varieties that will not return the same sequence of images every single
time, this method should return true. Typically, most classes will return false to take full advantage
of the cache.

protected abstract bool LowLevelTotalImagesKnown () ;

LowLevelTotallImagesKnown returns true if this ImageSource can know a priori how many images
are available, false otherwise.

protected abstract int LowLevelTotalImages () ;

LowLevelTotalImages returns the total number of available images. If LowLevelTotallmagesKnown
returns false, this will never be called.

A RandomAccessImageSource adds one new method to implement:

protected abstract ImageSourceNode LowLevelAcquire (int index) ;

LowLevelAcquire acts just like LowLevelAcquireNext except that it passes in an index. With this
method, it's convenient to implement LowLevelAcquireNext in terms of LowLevelAcquire.

© A class that inherits from RandomAccessImageSource must provide an IImageReloader when
it is asked to load an image. Without this, it is impossible to guarantee robust operation of the
ImageSource.

In addition RandomAccessImageSource implements LowLevelTotallmagesKnown, returning true.

Use an ImageSource

Typically, an image source loops over each element of the ImageSource, working with each image in
turn. The following example illustrates how this might be done.

Loop to process images
You can loop process images using the following example.

100

Atalasoft DotImage Developer's Guide

C#

public void ProcessImages (ImageSource source)
{
while (source.HasMoreImages()) {
AtalalImage image = source.AcquireNext () ;
DoSomeWork (image) ;
source.Release (image) ;

}

Use an image source multiple times
You can use an ImageSource multiple times by employing the Reset method as shown below.
C#

public void ProcessingLoop (ImageSource source)

{
while (NotDone ()) {
ProcessImages (source) ;
source.Reset () ;

© The reset() method can produce unexpected results. Although reset() implies that you are
starting over, some ImageSource objects lack that capability. For example, a live video feed or a
document feeder cannot restart at the beginning since there is no clear beginning. Similarly, In
the case of a live video feed, there is no clear end.

You must call Release for every call to AcquireNext or Acquire.

O when an image is acquired, it is held in memory as long as the ImageSource is in memory.

Create a custom ImageSource

Making a custom ImageSource is a straight-forward process. Management of image coming and
going is taken care of in the base class. This leaves you with the task of bringing the image in and
providing some simple management code.

To create a custom ImageSource, create a class which inherits from ImageSource and which
overrides the following methods:

+ protected abstract ImageSourceNode LowLevelAcquireNextImage();
+ protected abstract bool LowLevelHasMoreImages();

+ protected abstract void LowLevelReset();

+ protected abstract bool LowLevelFlushOnReset();

+ protected abstract void LowLevelSkipNextImage();

« protected abstract void LowLevelDispose();

LowLevelAcquireNextImage gets the next image in the current sequence. The result is returned as
an ImageSourceNode, a simple class for holding images and tracking acquisition information.

101

Atalasoft DotImage Developer's Guide

If you are writing an image source that is reading from a peripheral device, you can implement
LowLevelAcquireNextImage as shown below.

Examples

Acquire an image from a peripheral device
C#

protected override ImageSourceNode LowLevelAcquireNextImage ()
{

AtalalImage image = MyPeripheralGetNthImage (MyImageCount) ;
if (image != null) {
MyImageCount++;
return new ImageSourceNode (image, null) ;
}
return null;

}

Read additional images

LowLevelHasMorelmages is responsible for reporting whether or not there are additional images to
be read. Returns true if there are, false otherwise:
C#

protected override bool LowLevelHasMoreImages ()

{

return MyImageCount < MyPeripheralTotalImageCount () ;
}

Reset image processing state

LowLevelReset provides a way to reset state in your object so that it is ready for reading from the
beginning again. It is not strictly necessary for this method to do anything, as in some cases, it may
not be possible to reset in a meaningful way.

C#

protected override void LowLevelReset ()
{
MyImageCount = 0;
MyPeripheralReset () ;
}

If an ImageSource has been Reset, it is possible to keep old images in the source. In some
cases--file systems, for example-- keeping around old images that have not been unloaded after
a reset results in a significant performance gain. In other cases, keeping old images around can
produce unexpected results. Therefore an image source needs to indicate whether or not old
images should be flushed on reset via the method LowLevelFlushOnReset. Return true, if old
images should be flushed, false otherwise.

Indicating Whether Old Images Should Be Flushed
C#

protected override bool LowLevelFlushOnReset ()
{
return false;

}

102

Atalasoft DotImage Developer's Guide

Track skipped images

If you are returning true in LowLevelFlushOnReset, LowLevelAcquireNextImage is called each
time AcquireNextImage is called. If you are returning false in LowLevelFlushOnReset, then
LowLevelAcquireNextImage may not be called for every call to AcquireNextImage. In this case,
you need to create code in the method LowLevelSkipNextImage() that maintains your own internal
bookkeeping:

C#

protected override bool LowLevelSkipNextImage ()

{

MyImageCount++;

}

Call LowLevelDispose for a device

LowLevelDispose() allows your object an opportunity to release resources, such as open file
handles, that may not be handled by normal garbage collection.

Call LowLevelDispose() only one time.
C#

protected override bool LowLevelDispose ()

{
MyPeripheralDeviceClose () ;

}

Unload an image

When all acquisitions of an image have been released, the ImageSource determines whether to
unload the image from memory based on the setting of the property ImmediateUnload. By default,
the property value is set to true to minimize memory use.

When unloading, ImageSource calls the image's Dispose() method and then drop its reference to
the image. ImageSource does not specifically induce garbage collection. Rather, the decision as to
when garbage collection is run is left to the application and to the CLR.

When ImmediateUnload is set to false, images are kept around. In this case, an image can be
confidently reacquired using the two flavors of Acquire.

Setting ImmediateUnload to false without any other adjustments to the ImageSource is tantamount
to using an ImageCollection which keeps all images in memory at all times. Alternatively, you can
set memory usage limits through the MemoryLimit property. Setting this property to a value greater
than 0 forces ImageSource to unload fully released images if memory usage is greater than the
MemoryLimit. MemoryLimit is not a hard limit. Rather it is a suggestion to ImageSource to attempt
to limit memory use to the specified amount. If client code is careful about releasing images it is
done processing, the limit is more likely to be obeyed. If the client code never releases images, then
ImageSource is not able to comply with the request to unload images.

Example code demonstrating the use of the MemoryLimit property is provided below.

103

Atalasoft DotImage Developer's Guide

Example

Set a memory limit
C#

private Arraylist imageStore;

// process a set of images, keeping 5 around
public void ProcessImages (ImageSource source)

{

source.ImmediateUnload = false;

// 8 megabyte limit

source.MemoryLimit = 1024 * 1024 * 8;

while (source.HasMoreImages()) {
AtalalImage image = source.AcquireNext () ;
StoreAndProcessImage (source, image) ;

}

ReleaseAll (source) ;

}

private void StoreAndProcess (ImageSource source, Atalalmage image)
{
// only keep 5 images
if (imageStore.Count > 5) {
AtalaImage oldImage = (Atalalmage)imageStore[0];
imageStore.RemoveAt (0) ;
source.Release (oldImage) ;
}
imageStore.Add (image) ;
Process (image) ;

}

private void ReleaseAll (ImageSource source)

{

for (int i = 0; i < imageStore.Count; i++)
{

source.Release ((AtalaImage) (imageStore[i])) ;

}

imageStore.Clear () ;
}
It is possible to reaccess a previously unloaded image. Doing so requires that the ImageSource
supply the image with an object that can reload the image as needed. If such an object is
supplied, you can reload a previously released and unloaded image as needed.

Write an ImageSource cache

In many cases, an ImageSource loads images from a source that lacks the ability to retain old
images. In such cases, you may want to cache these images so that they can be loaded and
unloaded at will. The ImageSourceFileCache class makes that task easy.

ImageSourceFileCache is not an ImageSource. Rather, it is an object that can cache an image in
a file and return an IImageReloader that can bring that image back into memory at a later date.
ImageSourceFileCache also manages temporary files and their removal.

Use the following code to create an object of type ImageSourceFileCache in your custom
ImageSource object.

104

Atalasoft DotImage Developer's Guide

Create an image source cache

This example creates an ImageSourceFileCache.
C#

public class MyCustomImageSource : ImageSource
{

private ImageSourceFileCache cache;

public MyCustomImageSource ()
: base ()
{
_cache = new ImageSourceFileCache (null);
}
}

Acquire the next cached image

The cache is also needed to implement of LowLevelAcquireNext as shown below.
C#

public AtalaImage LowLevelAcquireNext ()
{

AtalaImage image = MyPeripheralGetNthImage (MyImageCount) ;
if (image != null) {
MyImageCount++;
IImageReloader reloader = cache.Cache (image) ;
return new ImageSourceNode (image, reloader) ;
}
return null;

}

When _cache.Cache() is called, the image is written out to a temporary file on disk. By default,
this image is written out as a TIFF file, a choice flexible enough to handle most image file

formats. If this is not sufficient, by providing the ImageSourceFileCache with an Encoder object,
you can specify a different file format.

By default, the ImageSourceFileCache stores temporary files in the windows temporary folder
(typically CAWINDOWS\Temp). You can make an alternate choice by passing a path to an
existing writable folder to the constructor of ImageSourceFileCache.

Loop over images in a file system

The FileSystemImageSource object provides a flexible mechanism for looping over image files
contained in a file system. A FileSystemImageSource can be constructed with a path to a directory,
a path to a directory with a search pattern, or an array of paths to files. In addition, if a file contains
multiple images, FileSystemImageSource can optionally look at all frames in a file.

For example, to create a FileSystemImageSource that loops over every file in the root folder of your
C drive, construct it like this:

Loop over every file in the root folder
C#

FileSystemImageSource source = new FileSystemImageSource (@"C:\", true);

//To create a FileSystemImageSource that can loop over all images files presentedby
a digital camera,

//do something along these lines:

105

Atalasoft DotImage Developer's Guide

//FileSystemImageSource source = new FileSystemImageSource (@"E:\DCIM\", "DSC*.*",
true) ;

//To loop over these files, use code like this:
for (int i = 0; 1 < source.Count; i++)
{
Atalalmage image = sourcel[i];
// do something interesting with image
source.Release (image) ;

//The above code is exactly equivalent to the code that follows
while (source.HasMoreImages ())
Atalalmage image = source.AcquireNext () ;

// do something interesting with image
source.Release (image) ;

Filtering

All files in a directory that match the given search pattern or all paths passed in are considered to be
candidates. Before these candidates are used, there are two levels of filtering that happen. First the
candidate is tested to see if it is an image type recognized by Atalasoft Dotlmage. If that's the case,

then the path is passed to a FileFilterDelegate. If the FileFilterDelegate accepts the path, then the
image will be available for acquisition.
In addition, if the ImageSource was constructed with doAllFrames set to true then each frame
within an image file will also be considered a candidate and handed to the FileFilterDelegate.
Since the pattern that can be passed in to the FileSystemConstructor is limited to the * and ?
wildcard characters, it is convenient to be able to apply a more complicated pattern or to filter on
things other than the filename.
For example, the following example shows how a simple filter will turn a regular
FileSystemImageSource into a gray scale image finder:

C#

Use a simple filter to turn a FileSystemImage source into a gray scale image finder:

private bool IsGrayscale(string fileName, int frameIndex, int frameCount

{

ImageInfo info = RegisteredDecoders.GetImageInfo (fileName, framelndex) ;

if (info != null)
{
return info.PixelFormat == PixelFormat.PixellbppIndexed ||
info.PixelFormat == PixelFormat.Pixel8bppGrayscale ||
info.PixelFormat == PixelFormat.Pixell6bppGrayscale;

}

return false;

}

public void MakeGrayscaleImageSource (FileSystemImageSource source)

{

source.FileFilter = new FileSystemImageSource.FileFilterDelegate (IsGrayscale) ;

}

Filtering happens immediately before the very first image the FileSystemImageSource is
used to acquire an image. The candidate files will also be filtered again after calling the
FileSystemImageSource's Reset() method. Note that this exact behavior is described to help
conceptualize the operation of the filtering. It may be subject to change in the future.

106

Atalasoft DotImage Developer's Guide

Events

In addition to the filter delegate, the FileSystemImageSource provides an event called
ImageAcquired. This event is fired every time the ImageSource constructs an image in response to
an Acquire. This sounds complicated, but it's fairly simple. The base class, ImageSource, contains
all the logic for caching and holding onto images. FileSystemImageSource knows nothing about
the caching, so it can only fire and event when it has been requested to retrieve an image. This is
actually convenient in that this event is fired only once for every image. This makes it easy to add a
pre-processing step into an image source or to track images as they go by.

Create an ImageSource to accesses Windows AVI files

The real power in ImageSource is the ability to create new sources that can be used generically.
What follows is a complete example of an ImageSource that can access Windows AVI files.

In this class we want to be able to load every frame of an AVI file. Since AVI files can be read at any
point, this is a good candidate for a RandomAccessImageSource as the base class, although a plain
ImageSource would work.

This class contains a number of PInvoke definitions that link directly to the Win32 AVI calls.
Discussion of the operation of these methods is beyond the scope of this document.

Most of the work is in opening the AVI file and loading a frame. All the rest of the abstract members
of RandomAccessImageSource end up being one line methods. This is a very good thing as it leads
to highly robust software.

C#

usingSystem;
usingSystem.Runtime.InteropServices;
usingAtalasoft.Imaging;

namespaceAviSource
{
public class AviImageSource : RandomAccessImageSource
{
string fileName;
IntPtr aviFileHandle = IntPtr.Zero;

int currentFrame = 0;
int firstFramePosition;
int totalFrames = 0;

IntPtr aviStream = IntPtr.Zero;
AVISTREAMINFO streamInfo = new AVISTREAMINFO () ;

static AviImageSource ()

{
AVIFileInit () ;

}

public AviImageSource (string fileName)

{
_fileName = fileName;
// LowLevelReset will force the file to be loaded
// and will fetch all the relevant information
LowLevelReset () ;

}

protected override void LowLevelReset ()

107

Atalasoft DotImage Developer's Guide

{
// attempt to load the file if we haven't

if (aviFileHandle == IntPtr.Zero)
{
OpenAvi () ;
LoadAviInfo () ;
}
// reset the frame counter
_currentFrame = 0;

}

private void CloseAvi ()

{
// clear everything out
_currentFrame = 0;
_totalFrames = 0;

// if the file handle is non-null, there may be a stream to close

if (aviFileHandle != IntPtr.Zero)
{
// if the stream handle is non-null,
if (_aviStream != IntPtr.Zero)

{

AVIStreamRelease (_aviStream) ;
_aviStream = IntPtr.Zero;

}
AVIFileRelease (aviFileHandle) ;

_aviFileHandle = IntPtr.Zero;

}

private void OpenAvi ()

{

close it

// open the file and get a stream interface

int result = AVIFileOpen(out aviFileHandle, fileName,

32 /*OF SHARE DENY WRITE*/, 0);
if (result != 0)

throw new Exception ("Unable to open avi file " + fileName +

" (" + result + ")");

result = AVIFileGetStream(_ aviFileHandle, out _aviStream,

0x73646976 /* 'vids' -> four char code */, 0);
if (result != 0)

throw new Exception ("Unable to get video stream

+ u)u);

}

private void LoadAviInfo ()

{

if (_aviStream == IntPtr.Zero)
throw new Exception ("LoadAviInfo() :

// get first frame

firstFramePosition = AVIStreamStart (aviStream);

if (_firstFramePosition < 0)
throw new Exception ("LoadAviInfo () :

start position.");

// get total frame count

totalFrames = AVIStreamLength(aviStream);

if (_totalFrames < 0)
throw new Exception ("LoadAviInfo() :

length.");

("

+ result

Bad stream handle.");

Unable to get stream

Unable to get stream

108

Atalasoft DotImage Developer's Guide

// pull in general information

int result = AVIStreamInfo(aviStream, ref streamInfo,

info ("

+ result +

}

Marshal.SizeOf (_streamInfo));
if (result != 0)
throw new Exception ("LoadAviInfo(): unable to get stream

n)n);

// this method retrieves a frame from the file.

// the class is internal because it will be used by
// the AviImageReloader class.

internal AtalaImage GetAviFrame (int frame)

{

// set up a bitmap info header to make a frame request
BITMAPINFOHEADER bih = new BITMAPINFOHEADER() ;
bih.biBitCount = 24;

bih.biCompression = 0; //BI RGB;

bih.biHeight = streamInfo.frameBottom;
bih.biWidth = streamInfo.frameRight;
bih.biPlanes = 1;

bih.biSize = (uint)Marshal.SizeOf (bih) ;

// the getFrameObject is an accessor for retrieving a frame
// from an AVI file. We could make exactly one when the stream
// is opened, but this works just fine.

IntPtr frameAccessor = AVIStreamGetFrameOpen (aviStream, ref bih);
if (frameAccessor == IntPtr.Zero)

throw new Exception ("Unable to get frame decompressor.");

IntPtr theFrame = AVIStreamGetFrame (frameAccessor, frame +

_firstFramePosition) ;

as well

}

if (theFrame == IntPtr.Zero)
{
AVIStreamGetFrameClose (frameAccessor) ;
throw new Exception ("Unable to get frame #" + frame);

}

// make a copy of this image

AtalalImage image = AtalaImage.FromDib (theFrame, true);

// closing the frame accessor drops the memory used by the frame

AVIStreamGetFrameClose (frameAccessor) ;

return image;

protected override ImageSourceNode LowLevelAcquireNextImage ()

{

}

if (currentFrame >= totalFrames)
return null;
AtalaImage image = GetAviFrame (currentFrame);
if (image != null)
{
ImageSourceNode node = new ImageSourceNode (image, null);
_currentFrame++;
return node;
}

return null;

protected override ImageSourceNode LowLevelAcquire (int index)

{

109

Atalasoft DotImage Developer's Guide

Atalasoft DotImage Developer's Guide

}

[DllImport ("avifil32.d11")]
private static extern int AVIFileRelease (IntPtr pfile);

[DllImport ("avifil32.d11")]
private static extern void AVIFileExit();

[DllTmport ("avifil32.d11", PreserveSig=true)]
private static extern int AVIStreamStart (IntPtr pAVIStream) ;

[Dl1lImport ("avifil32.d11l", PreserveSig=true)]
private static extern int AVIStreamlLength (IntPtr pAVIStream) ;

[DllImport ("avifil32.d11")]

private static extern int AVIStreamInfo (
IntPtr pAVIStream,
ref AVISTREAMINFO psi,
int 1Size);

[DllTmport ("avifil32.d11")]

private static extern IntPtr AVIStreamGetFrameOpen (
IntPtr pAVIStream,
ref BITMAPINFOHEADER bih) ;

[D1lImport ("avifil32.d11")]

private static extern IntPtr AVIStreamGetFrame (
IntPtr pGetFrameObj,
int 1lPos);

[DllImport ("avifil32.d11l")]

private static extern int AVIStreamGetFrameClose (IntPtr pGetFrameObj) ;

#endregion

In addition to this class, it is necessary to have a class that implements IImageReloader. For this, we
provide an AviReloader class which encapsulates enough information to reload a frame from a file.
In this case, it is the frame index and the AvilmageSource from which it came. AvilmageSource has
one internal method which extracts a frame and converts it to an AtalaImage. Rather than keep any

more information than is needed, we can just use this method. This assumes that the AVI file and

the associated stream will still be open when the image is reloaded, but since this is kept across the
life of the AvilmageSource object, this is a safe assumption to make.

C#

usingSystem;
usingAtalasoft.Imaging;

namespaceAviSource

{

public class AvilImageReloader : IImageReloader

{

private int frame;
private AviImageSource _source;
public AviImageReloader (AvilmageSource source, int frame)
{
_source = source;
_frame = frame;

}

#regionIImageReloader Members

111

Atalasoft DotImage Developer's Guide

public AtalaImage Reload()
{

return source.GetAviFrame (_ frame) ;

}
#endregion
#regionIDisposable Members

public void Dispose ()
{
}

#endregion

Access images

Read and write images to a database

Images can be stored in a database with Atalasoft Dotlmage by using a MemoryStream, or the
convenient ToByteArray() and FromByteArray() methods of the Atalalmage object.

When using a SQL database, the image should be stored in a binary Image field. In MS Access this
would be an OLE field. The following code samples show how to read and write images with either
SQL or Access databases using ADO.NET.

Example
Writing an Image Into a SQL Database

This example demonstrates writing an AtalaImage into a SQL database as a JPEG encoded image
where image is an Atalalmage object. Be sure to declare the System.Data.SqlClient namespace
directive.

C#

SglConnection myConnection = null;
try
{
//save image to byte array and allocate enough memory for the image
byte[] imagedata = image.ToByteArray(new Atalasoft.Imaging.Codec.JpegEncoder (75));

//create the SQL statement to add the image data

myConnection = new SglConnection (CONNECTION STRING) ;

SglCommand myCommand = new SglCommand ("INSERT INTO Atalasoft Image Database

(Caption, ImageData) VALUES ('" + txtCaption.Text + "', @Image)",

myConnection) ;

SglParameter myParameter = new SglParameter ("@Image", SglDbType.Image,
imagedata.Length) ;

myParameter.Value = imagedata;

myCommand.Parameters.Add (myParameter) ;

//open the connection and execture the statement

myConnection.Open () ;
myCommand.ExecuteNonQuery () ;

112

Atalasoft DotImage Developer's Guide

finally
{
myConnection.Close () ;

}

Example
Reading an Image From an Access/OLE Database

Similarly an image can be retrieved from an access database. Be sure to declare the
System.Data.OleDb namespace directive.

C#

OleDbConnection myConnection = null;
try
{
//establish connection and SELECT statement
myConnection = new OleDbConnection (CONNECTION STRING) ;
OleDbCommand myCommand = new OleDbCommand ("SELECT ImageData FROM
[Atalasoft Image Database]
WHERE Caption = '" + txtCaption.Text + "'", myConnection);
myConnection.Open () ;

//get the image from the database
byte[] imagedata = (byte[])myCommand.ExecuteScalar () ;

if (imagedata != null)

{
return AtalaImage.FromByteArray (imagedata) ;

}

elise

{
MessageBox.Show ("Image does not exist in database.");
return null;

}
}
finally
{
myConnection.Close () ;
}

Access multipage images

For more information on working with multipage documents, see the following:
» Save an image to a multipage TIFF file

» Remove pages from a multipage TIFF

» Work with multipage TIFFs

Add support for RAW images

As some RAW images are recognized as TIFF images by the TIFF Decoder, the RAW Decoder must be
inserted before the TIFF Decoder as shown in the example below.

1. Open the RegisteredDecoders collection.
2. Add the RawDecoder to the list.

113

Atalasoft DotImage Developer's Guide

© Because some RAW images are recognized as TIFF images by the TIFF Decoder, the RAW
Decoder must be inserted before the TIFF Decoder

Support for RAW images is now enabled.
as shown in the example below.

Example

This example code shows how to add support for RAW images in your application by inserting
the RAW Decoder as the first item in the Decoders collection.

C#

Atalasoft.Imaging.Codec.RegisteredDecoders.Decoders.Insert (0,
new Atalasoft.Imaging.Codec.RawDecoder()) ;

Get image information

At a minimum, all decoders can retrieve an image's width, height, bitdepth, and PixelFormat using
the GetImagelnfo() method of the RegisteredDecoders class without loading the image data into
memory. The information is returned as an Imagelnfo object.

In some cases, an image format has extended information, and returns this information in an
object derived from Imagelnfo.

1. To retrieve the extended information from a PNG image, get the image information.
2. Confirm that the image type is PNG.
3. Cast to the specialized Imagelnfo class.

Example
The following example demonstrates how to work with image format information.
C#
ImageInfo info = RegisteredDecoders.GetImageInfo ("c:\\test.png");
if (info.ImageType == ImageType.Png)
{
PngImageInfo pngInfo = (PngImageInfo)info;
Console.WritelLine ("Png Interlaced = " + pngInfo.PnglInterlaced);

View images
ASP.NET WebForm controls

Server-side image viewing with ASP.NET

DotImage Document Imaging can be used to display and edit images in ASP.NET WebForm
applications.

114

Atalasoft DotImage Developer's Guide

The primary control is the WebImageViewer which is the version of the WinForm's
WorkspaceViewer. It is an AJAX server-side image viewer with methods to open, save, and process
images.

The WebImageViewer control is a server control that can display any image supported by
DotImage. When an image is viewed, the control sections the original image into tiles and streams
each tile to the browser as needed based on the scroll position of the control. The control is efficient
at loading TIFF images as generally TIFF's are stored in strips or tiles. It only loads into memory the
strips or tiles it needs to create the tile at the requested size.

Improving server performance

The WebImageViewer loads any image that's listed in the RegisteredDecoders.Decoders collection
when invoking the Open() or OpenUrl() methods. However an image format that stores data in
strips or tiles is more efficient than one that stores an image as a single block of data. That is the
case with the TIFF format which we recommend for the best server performance.

Ideally the TIFF should be tiled as opposed to stripped with the tile size of the TIFF the same as the
control, which defaults to 512 x 512 pixels.

The PreCacheTiles property caches tiles of the entire image prior to loading into the control. This
causes a slight initial delay when loading the image and after making edits to the image, but overall
performance is improved when scrolling the image. When loading large JPEG images, PreCacheTiles
is considerably more efficient as at this point DotImage loads the entire JPEG image in server
memory for each tile unless this property is true. TIFF's are much more efficient as Dotlmage has
the ability to only load the surrounding image data required to save the tile.

Antialias display

The AntialiasDisplay property when set to the default of none uses Javascript resizing. For higher
quality scaling, set AntialiasDisplay to ReductionOnly. When set to a value other than None,
JavaScript initially resizes the tiles, but then requests a higher quality resized image from the server.
The server can efficiently generate a scaled high quality version of the tile which uses Scale to Gray
scaling when the source image is 1-bit.

Browser format

The friendly image format which is streamed to the browser can be set with the BrowserFormat
property of the WebImageViewer control. It can be set to JPEG, PNG, GIF, or Auto (default). JPEG
is best for photographic color and grayscale images. PNG or GIF are best for documents. Auto
automatically selects JPEG for 24-bit and higher images, and PNG for 1-bit and grayscale images.

Scrolling behavior

WeblImageViewer progressively loads tiles from the source image and streams them to the client as
a PNG, JPEG, or GIF. When using ImageDisplayOrder.OnDemand, only the tiles that are needed for
the current view of the image are loaded. Once the tiles are loaded, they remain in the control so
scrolling back to a tile previously loaded does not cause the tile to be reloaded. This behavior results
in a very efficient and presentable image viewer.

Previous versions of DotImage WebImageViewer had multiple ScrollBarStyles. The ScrollBarStyle
property no longer exists and the only scrolling method is the On-Demand tiled loading.
MouseTools

The WebImageViewer provides tools that interact with the image for Zooming In, Zooming Out,
Zoom to Area, Centering, Panning, and rubberband selections for the left and right mouse buttons.
See the MouseTool property in the WebImageViewer.

115

Atalasoft DotImage Developer's Guide

AutoZoom

The image zoom can be set to automatically zoom the image based on the image size, or to fit the
control to the image size. Set the AutoZoom property of the WebImageViewer to None, BestFit,
BestFitShrinkOnly, FitToWidth, FitToHeight, or FitToImage.

Rubberbanding in ASP.NET

To draw with the Rubberband using post back:
1. Set the AutoPostBack property of the WebImageViewer's Selection, to true.

2. Create a new event handler for the WebImageViewer's SelectionChanged event, similar to the
method shown in the example below.

The following example demonstrates how to draw a rectangle using the RubberBand Selection
MouseTool.

C#

Canvas myCanvas = new Canvas (this.WebImageViewerl.Image) ;
Rectangle mySelection = this.WebImageViewerl.Selection.Rectangle;

// Draws a black rectangle, with a semi-transparent orange fill
myCanvas.DrawRectangle (mySelection, new AtalaPen (Color.Black),
new SolidFill (Color.FromArgb (128, Color.DarkOrange)))

// Resets the Selection so it's no longer there
this.WebImageViewerl.Selection.Reset () ;

// Notifies the control that the Image was modified
this.WebImageViewerl.Update () ;

Image cache

The WebImageViewer creates temporary cache images in the folder specified in the web.Config
configuration setting, AtalasoftWebControls_Cache.

This folder must be set with Modify and Write permissions for the control to work properly.
How the cache works
The WebImageViewer saves the current Image to the cache if any of the following are true:
1. The image was created from a stream or assigned directly to the Image object.
2. The image was opened from a mapped path (ie, c:\myImage.jpg).
3. The image has been modified by using ApplyCommand.
4. The Update() method has been called.
When scrolling the image, the Image is streamed directly to the browser.

Due to the nature of session state and components, it is difficult to notify ASP.NET when the
browser closes, or when the session expires within a component.

To delete the old files, the control checks the cache for old files the first time it is loaded in a
new session. If the control is never run again, the files are never deleted. Additionally, they
are not deleted within a current SessionID. However if the browser is open for longer than the

116

Atalasoft DotImage Developer's Guide

CachelLifeTime, and another session is created while the browser is not active, the cached images
are deleted.

The control checks the .stamp (date time stamp) file's time created stamp, and if the present time is
past the the file's time stamp + CachelLifeTime, it deletes all files that begin with that new SessionID.
You may take advantage of this cache for custom purposes by prepending an image file with
SessionID and saving it to the cache.

Server performance

Often a deployment requires multiple servers for a high-traffic applications. In this case, dedicate
one server for the image cache. Configure each server with a virtual directory that points to this one
cache server.

Web.config parameters

Setting Description Note

AtalasoftWebControls_Cache Location of the cache relative to
the root of the application

AtalasoftWebControls_CacheFilesOnly| Only set to true if files should be | Setting this value to false

put in the cache. while using .NET can cause the
Set to false if it is OK to create | @Pplication to recompile while files
directories. are deleted from the cache. Use the

Default is true. default setting for .NET.

AtalasoftWebControls_CacheLifeTime | Number of minutes a file can live | Set value to the length of time that
in the cache without being used. |a session is allowed to stay alive
Default is 20. before it times out.

AtalasoftWebControls_DisableCache | Set to true to disable the image | Use this option only if you are
cache. The default is "false". never going to need to modify
images, load them from a direct
file path, or you are saving them
yourself. This turns off warnings
for the Cache, and may render the
control unusable. Use at your own

risk.
AtalasoftWebControls_ErrorLogging | Set to true to enable the error Log files will be placed in the Cache
log. alongside images and time stamps
The default is false. for the same session. These files

are automatically cleaned up
when the session is cleaned up.

AtalasoftWebControls_ResourcePath | Set the location of Javascript and | Before version 4.0, this was a
Image resources required by the | property of the control. You must
control. now set in the web.config.

If it is not set, resources are

requested from the control
assembly, which is slower.

117

Atalasoft DotImage Developer's Guide

Setting Description Note

AtalasoftWebControls_ShowClientErrorSet to true to show JavaScript
errors in the browser.

Otherwise, set to false.
The default is true.

Example

<appSettings>

<add key="AtalasoftWebControls Cache" value="ImageCache/" />

<add key="AtalasoftWebControls CacheLifeTime" value="60" />

<add key="AtalasoftWebControls ResourcePath" value="Resources/" />
</appSettings>

Annotations in ASP.NET

DotImage allows you to view and edit annotations on the web. The control, WebAnnotationViewer,
is the ASP.NET equivalent of the AnnotateViewer

Using the new WebAnnotationViewer and the classes in DotImage Annotations, you can:
* Read annotations in WANG or XMP format from a file and show them in a browser

+ Allow the user to edit those annotations

« Allow the user to add and delete annotations

+ Allow the user to edit text in a text annotation use a double-click

Add the control to a page

1. Open an ASP.NET page in Design view.
2. Drag a WebAnnotationViewer from the Toolbox to the page.

Set up annotation defaults

This procedure sets up the defaults that should be used when the built-in annotations are created
by the user.

1. Create a method called InitializeDefaultAnnotations().
2. Create AnnotationData objects that you want to use as defaults.

3. Set the name property on each default AnnotationData object, and give them each a unique
name such as RedEllipse or BlackRect.

4. Add each AnnotationData object created above to the DefaultAnnotations property.

5. Inthe Page's Onlinit event handler, and before the base.OnInit call, add a call to
InitializeDefaultAnnotations.

Load annotations from a file

Do one of the following:
1. On the server, call WebAnnotationViewer.LoadAnnotations(String).
or
2. On the client, call the name of the file containing the annotations.

118

Atalasoft DotImage Developer's Guide

Allow the user to put a new annotation on the viewer
1. From JavaScript call WebImageViewer.CreateAnnotation(String) with the name of the

2.
3.

AnnotationData class you want to allow the user to create, such as "TextData".
Use WebImageViewer.setInteractMode() to set the interaction mode to Author (3).
If you want a chance to alter the data before it is used, handle the

WebAnnotationViewer.AnnotationCreated event on the server. The event args passed in will

have a property called AnnotationData that can be altered.

The user can draw this annotation until the interaction mode is set to 0 (None) or 2 (Modify).

Example
JavaScript

// This client side code is used with C# examples
WebAnnotationViewerl.setInteractMode (atalaAnnotationInteractionMode.Author) ;
WebAnnotationViewerl.CreateAnnotation ('RubberStampData', 'myStampRed') ;

C#

protected Atalasoft.Imaging.WebControls.Annotations.WebAnnotationViewer
WebAnnotationViewerl;

override protected void OnInit (EventArgs e)
{
//
// CODEGEN: This call is required by the ASP.NET Web Form Designer.
//
InitializeComponent () ;
InitializeDefaultAnnotations();
base.OnInit (e) ;

}

private void InitializeDefaultAnnotations ()
{
RubberStampData myRubberStamp = new RubberStampData ("Red Stamp!");
myRubberStamp.Name = "myStampRed";
myRubberStamp.FontBrush.Color = Color.Red;
WebAnnotationViewerl.Annotations.DefaultAnnotations.Add (myRubberStamp) ;
}

Example 2
JavaScript

// This client side code is used with C# examples
WebAnnotationViewerl.setInteractMode (atalaAnnotationInteractionMode.Author) ;
WebAnnotationViewerl.CreateAnnotation('EllipseData') ;

C#

protected Atalasoft.Imaging.WebControls.Annotations.WebAnnotationViewer
WebAnnotationViewerl;

private void WebAnnotationViewerl AnnotationCreated(object sender,
AnnotationCreatedEventArgs e)
{
AnnotationData newData = e.AnnotationData;
EllipseData ellipse = newData as EllipseData;
if (ellipse != null)
{
ellipse.Outline = new AnnotationPen (Color.Black, 3);
ellipse.Fill = new AnnotationBrush (Color.Red) ;

119

Atalasoft DotImage Developer's Guide

}

For more information see Server-side image viewing with ASP.NET, Client-side scripting in
ASP.NET, and How to draw shapes.

Thumbnails in ASP.NET

For efficient viewing of thumbnail images, use DotImage on the server side, or the
WebThumbnailViewer control. The WebImageViewer control is not intended to be used for viewing
thumbnails.

Create DotImage Server-side thumbnails

1. Create an ASP.NET WebForm that creates the thumbnail from a full size image or a file cached
thumbnail. (You can use the Image Cache for this). Include an Image Control tag ()
in your WebForm page with a src attribute pointing to the thumbnail ASPX page specifying
arguments in the query string as needed.

i] Typically, these are file name, width, and height.

2. Create a hyperlink tag () around this Image Control tag, that points to the
page that has the WebImageViewer control on it, and passes the file path in the query string to
load the corresponding image that the thumbnail was created from.

The thumbnail can also be linked to the WebImageViewer control when clicked. Create an
ASP.NET WebForm that takes the given file path from the query string and loads it into the
WebImageViewer control in the Page_Load event.

Client-side thumbnails using WebThumbnailViewer and WebImageViewer

Introduced in DotImage 4.0, the WebThumbnailViewer control creates thumbnails on demand from
either a multipage image, or a directory file path. It uses a rich AJAX JavaScript user interface that
updates dynamically as the image or WebForm changes.

1. Drag and drop a WebThumbnailViewer control and a WebImageViewer control from the
toolbox onto your WebForm. (If you do not have this control in the toolbox, see Document
Imaging in ASP.NET).

2. Size the controls either by dragging the grips in DesignTime, or by setting the Width and
Height properties directly.

3. Decide which Property Grid Layout options you need for the WebThumbnailViewer. Your
choices are Horizontal or Vertical with Vertical being the default).

4. Open the CodeBehind and use either the Open() or OpenUrl() methods to open your content.

The following example creates thumbnails of all JPEG and TIFF files in the given directory, and
uses a WebImageViewer to display them.

Example
Create and display thumbnails
C#

protected Atalasoft.Imaging.WebControls.WebThumbnailViewer WebThumbnailViewerl;
protected Atalasoft.Imaging.WebControls.WebImageViewer WebImageViewerl;

120

Atalasoft DotImage Developer's Guide

private void Page Load(object sender, System.EventArgs e)
{
if (!Page.IsPostBack)

{

string[] seachPatterns = new string[]{"*.tif", "*.tiff", "*.jpg",
"k -jpeg"}

this.WebThumbnailViewerl.Layout = Layout.Vertical;
this.WebThumbnailViewerl.ViewerID = this.WebImageViewerl.ClientID;
this.WebThumbnailViewerl.OpenUrl ("/TestImages/", searchPatterns) ;

ASP.NET
Work with remote events

The WebImageViewer control provides the ability for an ASP.NET Page object to receive an event
when a client side script requests a remote invocation. When JavaScript performs a Remotelnvoke,
an http POST is performed to send parameters back to the server side. To get similar capabilities
without the complexity of events, see the section about remotely invoking Page() methods.

Remote invoke event arguments

A handler for a Remote Invoke Event receives an object of type RemotelnvokeEventArgs. This object
contains three properties: Page, Parameters, and ReturnValue.

Property Description

Page Object of type System.Web.UL.Page that contains the WebImageViewer that
received the event

Parameters Object of type System.Collection.Specialized.NameValueCollection which
contains all parameters provided by the POST.

ReturnValue ArrayList which is used by event handlers to pass information back. Typically
the return value is a one element array list containing a string that represents
the return value of the method which has been remotely invoked

Parameters

In addition to other keys provided to the WebImageViewer, there is a key with the name atala_rm.
This key is associated with the name of the method requested to be invoked. To retrieve the method
name from the Parameters property, do the following:

In addition to other keys provided to the WebImageViewer, there is a key with the name
atala rm. This key is associated with the name of the method requested to be invoked.
To retrieve the method name from the Parameters property, do the following:

For each parameter passed in there is a key with a name that follows this pattern:
For each parameter passed in there is a key with a name that follows this pattern:
<type> is s (string), b (bool), or n (number)

<parameter number> is an integer starting from 0 that corresponds to the position of the
parameter in the array passed into the JavaScript RemotelInvoke().

Parameters can be retrieved with code like this:
C#

int 1 = 0;

121

Atalasoft DotImage Developer's Guide

ArraylList params = new ArrayList();
Arraylist types = new ArrayList();
while (true)
{
string val;
val = eventArgs.Parameters.Get ("atala ras" + 1i);
if (val !'= null) {
types.Add (typeof (string)) ;
params.Add (val) ;
IR
continue;
}
val = eventArgs.Parameters.Get ("atala ran" + 1i);
if (val !'= null) {
types.Add (typeof (double)) ;
params.Add (Convert.ChangeType (val, typeof (double)));
it++;
continue;
}
val = eventArgs.Parameters.Get ("atala rab" + 1);
if (val !'= null) {
types.Add (typeof (bool)) ;
params.Add (Convert.ChangeType (val, typeof (bool))):;
TLAFE S
continue;

}

break;

}

source.FileFilter = new FileSystemImageSource.FileFilterDelegate (IsGrayscale) ;

}

Writing an event handler

To write a Remotelnvoke event handler, first create the method which will receive the event. This
method must take an object and a RemotelnvokeEventArgs and have no return type. Such an event
handler might look like the example shown below.

Example
Remotelnvoke event handler
C#

private void HandleRemoteInvoke (object sender, RemotelnvokeEventArgs args)
{

// your event handling code goes here

}

To install the event handler, tell the WebImageViewer to add your event handler into its chain as
shown in the example below.

C#

webImageViewerl.RemoteInvoke += new RemotelInvokeHandler (this.HandleRemoteInvoke) ;

Invoke ASP.NET page methods remotely
The WebImageViewer control provides the ability to call methods in the owning ASP.NET Page

object via client side JavaScript. In addition to being able to send typed information to the Page
object, the return value for the remote method is sent back to the calling JavaScript code.

122

Atalasoft DotImage Developer's Guide

Terminology

Term Definition

Server side Code or objects that are invoked on an ASP server

Client side Code or objects that are invoked in a user's browser

Parameter Value that is passed from one function or method to another

Signature Comhbigation of parameter types and the return type of a function or
metho

Preparing a server side method for remote invocation
To invoke a method remotely, it must meet the following criteria:
» The method must be a member of a Page object that contains a WebImageViewer
+ The method must be public
+ The method must be marked with the Remotelnvokable attribute
+ Parameters of the method must be one of the following types:
+ int
+ double
+ bool
+ string
» The method must return a type that can be converted to a string. Null or no return value are also
acceptable.
Example
C#

[Atalasoft.Imaging.WebControls.RemoteInvokable]

public bool WaterMark(int x, int y, string message) { ... }

Calling a method from JavaScript

To invoke a method within a server side Page object from JavaScript, the client side code must call

the Remotelnvoke() method of the JavaScript object atalaWebImageViewer. The first argument is a
string representing the name of the method to invoke. The second argument is an array of values

that is passed to the remote method.

Example
JavaScript

WebImageViewerl.RemoteInvoke ("WaterMark", new Array (100, 100, "Preview Only"));

Getting the return value from a Remotelnvoke

Remotelnvokable() methods can have a return value, as long as they return a type that can be
converted to a string. Because the return value is populated asynchronously, the JavaScript
WebImageViewer.Remotelnvoked event needs to be handled. An example is shown below.

JavaScript

WebImageViewerl.RemoteInvoked = OnRemotelInvoked;
function OnRemoteInvoked () {
var success = WebImageViewerl.getReturnValue () ;
if (success == true) {

123

Atalasoft DotImage Developer's Guide

alert ('WaterMark Succeeded.');
}

else {
alert ('WaterMark Failed.')

}
}

Parameter type conversion

JavaScript has a limited number of built-in data types that can be readily identified within a

client side script. These are number, bool, and string. The JavaScript method Remotelnvoke()
bundles up each parameter with information about its data type so that it can be correctly used

on the server side. Server side code makes further effort to automatically distinguish between

the JavaScript notion of a generic number and the .NET notion of an integer or a floating point
number. If a JavaScript number arrives on the server which contains a decimal or an exponent, it will
automatically be promoted to a floating-point number. Otherwise, the number is assumed to be an
integer.

No attempt is made to interpret the contents of a string.

Method identification

.NET languages can define functions or methods with the same name but different signatures.
These are called overloaded methods. Server side code attempts to find the version of a method
that best matches the parameters passed from JavaScript. The match happens in two stages. Server
side code first tries to find an exact match where each client-passed parameter type matches the
server side parameter type exactly. If there are no matches, server side code then tries to find a
method for which numeric parameters can be converted without loss of information.

Example

If the client side includes this remote invocation:

JavaScript

WebImageViewerl.RemoteInvoke ("Overload", new Array(l, 2));
The server side has the following methods defined:

C#

[Atalasoft.Imaging.WebControls.RemoteInvokable]
public string Overload(int a, int b) { ... }
[Atalasoft.Imaging.WebControls.RemoteInvokable]
public string Overload(double a, double b) { ... }

The RemovtIinvoke no longer takes two integers as parameters and matches the first method.
JavaScript
WebImageViewerl.RemoteInvoke ("Overload", new Array (1.0, 2));

In this example, the Remotelnvoke matches the second method, although it is not a perfect
match.

Open images from browser

This example code shows how to load a file from the browser, save it in the file cache, and load it
into the control.

Example
Load file, save to cache, and load into control

C#

124

Atalasoft DotImage Developer's Guide

using System

using System.
using System.
using System.
using System.
using System.
using System.
using System.
using System.
using System.

namespace Do

{

Collections;
ComponentModel;
Data;

Drawing;

Web;
Web.SessionState;
Web.UI;
Web.UI.WebControls;
Web.UI.HtmlControls;
tImageWebControlsDemo

/// <summary>

/// Summ

ary description for WebForml.

/// </summary>

public c
{

lass WebForml : System.Web.UI.Page

protected Atalasoft.Imaging.WebControls.WebImageViewer WebImageViewerl;
protected System.Web.UI.WebControls.Button Buttonl;

protected System.Web.UI.WebControls.Label Labell;

protected System.Web.UI.HtmlControls.HtmlInputFile Filel;

priv

{

}
#reg
over

{

ate void Page Load(object sender, System.EventArgs e)
// Put user code to initialize the page here

ion Web Form Designer generated code
ride protected void OnInit (EventArgs e)

//
// codeGEN: This call is required by the ASP.NET Web Form Designer.

//

InitializeComponent () ;

base.OnInit (e) ;

}

/17
/17
/17
/17
priv

{

}
#end
priv

{

<summary>
Required method for Designer support - do not modify

the contents of this method with the code editor.

</summary>

ate void InitializeComponent ()

this.Buttonl.Click += new System.EventHandler (this.Buttonl Click);
this.Load += new System.EventHandler (this.Page Load) ;

region
ate void Buttonl Click(object sender, System.EventArgs e)

string cachePath = System.Configuration.ConfigurationSettings.
AppSettings["AtalasoftWebControls Cache"];
string fullPath = Page.MapPath (cachePath) ;
string fileName;
if (Filel.PostedFile.FileName.Length != 0)
{
fileName = System.IO.Path.GetFileName (Filel.PostedFile.FileName) ;
try
{
// Save uploaded file to server
Filel.PostedFile.SaveAs (fullPath + fileName) ;
}

catch (Exception exc)

125

Atalasoft DotImage Developer's Guide

Labell.Text = "Error saving file " + cachePath + fileName +
"
" + exc.Message;

// Set main viewer to the users image
WebImageViewerl.OpenUrl (cachePath + fileName) ;
}
catch (Exception exc)
{
Labell.Text = "Error opening file " + cachePath + fileName +
"
" + exc.Message;

}
else
Labell.Text = "Error: You must specify a file name.";

{

HTML to run the above code
HTML

<form id="WebForml" method="post" runat="server" encType="multipart/form-data">

<table id=Tablel cellspacing=0 cellpadding=0 width=300 align=center border=0>
<tr>
<td>
<p align=center>
<ccl:WebImageViewer id=WebImageViewerl runat="server"></
ccl:WebImageViewer>

<input id=Filel type=file name=Filel runat="server">

<asp:Button id=Buttonl runat="server" Text="Submit"></asp:Button></p>
<p align=center> </p>
<p style="FONT-WEIGHT: bold; COLOR: red" align=center><asp:Label id=Labell
runat="server"></asp:Label></p>
</td>
</tr>
</table>
</form>

Importing namespaces

DotImage separates functionality into logical namespaces. To avoid typing the entire namespace
when referencing a DotImage class, you may use the following Imports (or using in C#) statements.

C#

using Atalasoft.Imaging;

using Atalasoft.Imaging.codec;

using Atalasoft.Imaging.ColorManagement;

using Atalasoft.Imaging.Drawing;

using Atalasoft.Imaging.ImageProcessing;

using Atalasoft.Imaging.ImageProcessing.Channels;
using Atalasoft.Imaging.ImageProcessing.Document;
using Atalasoft.Imaging.ImageProcessing.Effects;
using Atalasoft.Imaging.ImageProcessing.Fft;
using Atalasoft.Imaging.ImageProcessing.Filters;
using Atalasoft.Imaging.ImageProcessing.Transforms;
using Atalasoft.Imaging.Metadata;

126

Atalasoft DotImage Developer's Guide

using Atalasoft.Imaging.WebControls;

Display image in the current output stream

The following sections explain how to use DotImage to display an image in the current output
stream.

Use the class library

Example

C#

workspace.Open (Server.MapPath ("myimage.tiff"));
Response.ContentType = "image/jpeg";

workspace.Save (Response.OutputStream, new JpegEncoder (90)) ;

Use WebControls

When using DotImage to display images in an ASP.NET Web application, We recommend that you
use the WebImageViewer control. The namespace Atalasoft.Imaging.WebControls contains the user
interface classes and controls that can be used in a WebForm application.

Add the DotImage WebControls to the toolbox
1. In the Tools menu, select Customize Toolbox on the Visual Studio .NET.

2. Make sure the .NET Framework Components tab is selected, and find the
Atalasoft.DotImage.WebControls and Atalasoft.DotImage.WebControls.Annotations
namespaces.

3. Select the checkboxes that correspond to the WebImageViewer, WebThumbnailViewer, and
WebAnnotationViewer controls.

4. Click OK.

WeblImageViewer, WebThumbnailViewer, and WebAnnotationViewer are included in your toolbox
and you can drag and drop these controls onto your form.

File cache

The WebImageViewer, WebThumbnailViewer, and WebAnnotationViewer controls require a writable
folder for caching images and other data. This folder needs to be mappable from your application
directory.

1. Create a directory for the image cache within your wwwroot directory ex: "/ImageCache/".

O when using ASP.NET, you can only put the cache folder inside the application folder if
the AtalasoftWebControls_CacheFilesOnly web.config key is set to true. This is the default
behavior in DotImage 4.0 and up. If the AtalasoftWebControls_CacheFilesOnly Wweb.config
key is set to false, ASP.NET will recompile and end all sessions for the application every time
images are deleted from the cache.

2. Make sure this directory is writable by applications, you can do this using the IIS control panel.
You may also need to grant the MACHINE\ASPNET user account Modify permissions over this
folder in Windows Explorer.

127

Atalasoft DotImage Developer's Guide

O when using impersonation, you will need to make sure that every user account that is
being impersonated, has Modify permissions over this folder. Using the ASPNET user account
is not enough, and can cause intermittent problems.

3. Modify your Web.config file by adding these lines inside the <appSettings> tags:

<add key="AtalasoftWebControls Cache" value="/ImageCache/" />
<add key="AtalasoftWebControls CacheLifeTime" value="60" />

These two lines control where the cache files are saved, and how many minutes they stay in
there. The control will not work at all if it cannot write the images to this location.

Control the WebImageViewer behavior

After you drop the WebImageViewer control onto your form, you can modify the behavior of the
WebImageViewer by changing the properties in the development environment (IDE). Many of the
properties will look familiar to you because the WebImageViewer control inherits from Control. The
following properties are specific to the imaging aspects of this control and can be modified in the
IDE:

« Image

« AntialiasDisplay
+ Centered

« Zoom

* AutoZoom

Use JavaScript with DotImage WebControls

All DotImageWebControls offer a JavaScript API so that a rich client interface can be created in the
browser. Many of the properties and events available in code-behind are available in the JavaScript
API under the same name.

Use the WebAnnotationViewer

The WebAnnotationViewer control inherits from the WebImageViewer control, and can be used to
overlay interactive annotations over an image.

Images and resources
There are several files used in the control, that are stored within the compiled WebControls dll.

You can put these files can in a location accessible from your application to speed up the loading
of the control. By default, they are installed into the C: \Program Files (x86)\Atalasoft
\DotImage 11.5\bin\WebResources directory.

To link to these files, do the following:
1. Create a directory for the resources within your wwwroot directory ex: /files/.

2. Copy allfiles that areinthe C:\Program Files (x86)\Atalasoft\DotImage 11.5\bin
\WebResources directory to the new one you made.

3. Set the PathToResources web.config AtalasoftWebControls_ResourcePath appSetting to
the relative or virtual path to your /files/ directory. If you have set up the path correctly, the
JavaScript and images used load from the Resources directory instead of through the assembly
and startup is faster.

128

Atalasoft DotImage Developer's Guide

For example, you can modify your Web . config file by adding this lines inside the
<appSettings> tags:

<add key="AtalasoftWebControls_ResourcePath" value="/files/" />

© previous versions of DotImageWebImageViewer had images for drawing the scrollbar.
Scrollbars are now drawn by the browser and you cannot override the look and feel with images in
the resource directory.

Print images in ASP.NET

Because the WebImageViewer control is server side, the entire image must be streamed to the
client to print. There are two suggested methods to print an image from the server using DotImage.
A third method that could be used, which is not covered here, is to use a WinForms application
deployed on an ASP.NET WebForm in the browser.

JavaScript printing

The Print() method in the WebImageViewer control requires JavaScript and uses the browser's Print
functionality.

This method launches a new browser window including just the image to print, then calls client side
JavaScript code to invoke the self.Print() method. This causes the browser to open the print dialog.
When the print dialog closes, the newly created browser window attempts to close.

Security settings and pop-up blocking software may cause the browser to ask the user if they want
to allow the window to be created or closed.

PDF printing

A PDF image can be created with DotImage using the PdfEncoder and streamed to the browser to
print single or multiple images from within Adobe Acrobat. This will then download the entire image
to the client into the free Adobe Acrobat reader which then can control the printing process.

The following example demonstrates how to use the response stream on a postback to export the
image in PDF format.

Example
Use response stream to export PDF image
C#
Response.Clear () ;
Response.ContentType = "application/pdf";

// Create a new PdfImageCollection and add your images.
PdfImageCollection col = new PdfImageCollection();

// Add all pages from a multipage TIFF.
col.Add (new PdfImage (this.WebImageViewer.Image, PdfCompressionType.Auto)) ;

// Create the PDF.
PdfEncoder pdf = new PdfEncoder();

// Set any properties.
pdf.JdpegQuality = 85;

129

Atalasoft DotImage Developer's Guide

pdf.Metadata = new PdfMetadata ("Test PDF", "Atalasoft", "Testing PdfEncoder", "",

r
"DotImage", DateTime.Now, DateTime.Now) ;

// Make each image fit into an 8.5 x 11 inch page (612 x 792 @ 72 DPI).
pdf.SizeMode = PdfPageSizeMode.FitToPage;

pdf.PageSize = new Size (612, 792);

Stream pdfStream = new MemoryStream() ;

pdf.Save (pdfStream, col, null);

pdfStream.Seek (0, SeekOrigin.Begin); byte[] pdfBytes = new byte[pdfStream.Length];
pdfStream.Read (pdfBytes, 0 , (int) (pdfStream.Length));

Response.BinaryWrite (pdfBytes) ;

Response.Flush () ;

Response.End () ;

Stream directly to a browser

Most image processing Web applications are server side. That is the reading and manipulating of
images is done using the server processor and memory. To display an image, it is streamed to the
browser and is displayed in a standard HTML tag.

When you use DotIlmage server side, your Web application is platform and browser independent.
The client does not have to download any dependencies to use the application.

O1is possible to deploy a WinForm application in an ASP.NET Web page, but that is beyond the
scope of this section.

The primary object used in ASP.NET applications is the Workspace, as you can easily manipulate the
image and access extended functionality. To start using DotImage in an ASP.NET application, add a
reference to Atalasoft.DotImage

© You do not need to add Atalasoft.DotImage.Wincontrols because we are not using WinForms

Client-side scripting in ASP.NET

The Dotlmage WebImageViewer, WebThumbnailViewer, and WebAnnotationViewer ServerControls
support client side scripting for manipulation without post backs. You can access nearly all
properties and methods of the control via client side JavaScript.

Basic syntax

To make the transition from a server oriented control to a client oriented control easier, the client
side versions of the WebImageViewer, WebThumbnailViewer, and WebAnnotationViewer controls
use almost identical syntax to the server side code that you would need to accomplish similar tasks
on the server side.

Public functions

All public constructors and global variables that are included within WebImageViewer.js,
WebThumbnailViewer.js, WebAnnotationViewer.js, ClientTools.js, and Enums.js are prefixed with the
word atala. This makes it unlikely that any another components used on the same page will have a
similar function names.

130

Atalasoft DotImage Developer's Guide

Note: This is provided as general information, and does not mean that every function in the API
reference requires the atala prefix, the syntax provided in the API reference should be used exactly
as shown.

OnPagelLoad and using AtalalnitClientScript

The WebImageViewer, WebThumbnailViewer, and WebAnnotationViewer use the window.onload
event to initialize the client side components of the control. This is necessary because as the page
loads, elements can move depending on how long images or objects take to load, and whether or
not the size attributes of those objects are defined.

You can use atalalnitClientScript to run code in the OnLoad event. This function queues up each
string sent to it and tries to execute it as JavaScript code. This allows you to execute multiple
scripts OnLoad. This function is located in ClientTools.js, and is required by all of the DotImage
WebControls.

Example
Here is a general example that pops up an alert when the page is done loading.
<!-- You will need a reference to ClientTools.]js before this snippet.
—-— This reference is automatically added to the page inline with the WebControls,
-- so placing this snippet below one of these controls will be sufficient. -->
<script language="javascript" type="text/javascript">
atalaInitClientScript ("OnPageLoad()") ;

function OnPageLoad ()

{

alert ("Page is finished loading.");

}
</script>

Objects

Every WebImageViewer, WebThumbnailViewer, and WebAnnotationViewer control on the page is
accessed by the ClientID generated by ASP.NET. Therefore WebImageViewer1 on your WebForm can
be accessed in JavaScript using the same name.

i] Placing the WebImageViewer, WebThumbnailViewer, and WebAnnotationViewer controls
inside a container control such as a ContentPlaceHolder or a UserControl, changes the ClientID.
You may need to take this into account when accessing methods on the client side.

The example below shows how you can get the ClientID inline on an aspx page.

Example

<asp:content ID="Contentl" contentplaceholderid=" mainContent" runat="server">
<ccl:WebImageViewer ID="WebImageViewerl" runat="server" Width="500px"
Height="460px" />
<script type="text/javascript">
var myViewer;
atalaInitClientScript ("OnPageLoad()") ;
function OnPageLoad() {
myViewer = <%=WebImageViewerl.ClientID %>;
myViewer.RemoteInvoked = Invalidate;
}
// This function forces the WebImageViewer to update all visible tiles, as
// it may not know that the image has changed on the server side.

131

Atalasoft DotImage Developer's Guide

function Invalidate () {
myViewer.Update () ;
}
// This function calls a RemotelInvokable function on the server side, and
// passes in an integer indicating which page to open.
function GoToPage (n) {
var vals = new Array();
vals.push (n) ;
myViewer.RemoteInvoke ('GoToPage', vals);
}
</script>
</asp:content>

Properties

All properties for a given object are named the same as they are in the server code (unless
otherwise noted on the table below). They are prefixed with the words get and set, and require
parentheses to get the return values.

The following example sets mySize to an atalaSize object representing the size of
WebImageViewer1's selection and sets the width of WebImageViewer2.

Example

var mySize = WebImageViewerl.getSelection () .getSize();
WebImageViewer2.setWidth ('400px") ;

Events

All the event handlers for the WebControls can be used by creating your own function and setting
the event to that function, or by using atalaEventAdd. These examples pop up an alert box every
time the ScrollPosition is changed. All of the methods shown below are valid.

O the ZoomChanged event handler on the WebAnnotationViewer cannot be set to without
breaking the automatic annotation zooming. Method 3 is the only method that works in this
situation.

Method 1

// First Method
atalaInitClientScript ("OnPageLoad()") ;
function OnPageLoad ()
{
WebImageViewerl.ScrollPositionChanged = myPositionChanged;
}
function myPositionChanged ()
{
alert ("ScrollPosition Changed!");
}

Method 2

// Second Method
atalaInitClientScript ("OnPageLoad()") ;
function OnPageLoad ()
{
WebImageViewerl.ScrollPositionChanged = function () { alert("ScrollPosition
Changed!"™); 1};

132

Atalasoft DotImage Developer's Guide

}
Method 3
// Third Method

// This method allows you to add multiple handlers to the same event
atalaInitClientScript ("OnPageLoad()") ;

function OnPageLoad ()
{
atalaEventAdd (this,
atalaEventAdd (this,
}
function myPositionChanged ()

{

WebImageViewerl,
WebImageViewerl,

alert ("ScrollPosition Changed!");

}
function myUpdate ()

{
alert ("myUpdate!") ;
}

WebImageViewer
AtalaWebImageViewer

'ScrollPositionChanged', myPositionChanged) ;
'ScrollPositionChanged', myUpdate) ;

Although this function is public, it is not intended for users to create WebImageViewers on the
client side directly. The server side generated HTML is needed for this function to initialize.

Properties

Server Name

JavaScript Syntax : Return Value

Description

ClientID ID() : string Gets the server control identifier
generated by ASP.NET.
N/A Form() : object Gets the form object that the Web

server control is on.

AntialiasDisplay

getAntialiasDisplay() : int
setAntialiasDisplay(value : int)

Gets or sets the quality of the
scaled image.

Expected input:
AntialiasDisplayMode or int
from 0-3, 0:None 1:ScaleToGray
2:ReductionOnly 3:Full

AutoZoom

getAutoZoom() : int
setAutoZoom(value : int)

Gets or sets a value indicating how
the image should be zoomed as
the control is resized or the image
size changes. This will override
setZoom. For a one time zoom,
see setZoomMode.

Expected input: AutoZoomMode
or int from 0-5, 0:None 1:BestFit
2:BestFitShrinkOnly 3:FitToWidth
4:FitToHeight 5:FitToImage

133

Atalasoft DotImage Developer's Guide

Server Name

JavaScript Syntax : Return Value

Description

BackColor

getBackColor() : string
setBackColor(value : string)

Gets or sets the background color
of the Web server control.

Expected input: string representing
a hex value or exact color name:
'#ACFFOQ'

BorderColor

getBorderColor() : string
setBorderColor(value : string)

Gets or sets the border color of the
Web server control.

Expected input: string representing
a hex value or exact color name:
'#ACFFOOQ'

BorderStyle

getBorderStyle() : string
setBorderStyle(value : string)

Gets or sets the border style used
for this Web server control.

Expected input: string representing
Style: "1px solid #FF9900'

BorderWidth

getBorderWidth() : int
setBorderWidth(value : int)

Gets or sets the border width of
the Web server control in pixels.

BrowserFormat

CachePath

getBrowserFormat() : int

getCachePath() : string

Gets the format of the images
created for browser output.
Returns an int: 0:Jpeg 1:Png 2:Gif
3:Auto

Gets the file path used for the
file cache as specified in the
Web.config file.

Caption

getCaption() : string
setCaption(value : string)

Gets or sets a string used for
creating a caption under the Web
server control. HTML syntax is
allowed.

0 This property is tied to a
hidden input tag, so changing
this value to HTML in JavaScript
could cause problems if the
page needs to PostBack.

Centered

getCentered() : bool
setCentered(value : bool)

Gets or sets a value indicating if
the image is centered when the
image is smaller than the Web
server control.

N/A

getDisplayImageUrl() : string

Gets a url that will return the
current viewable portion of the
image. Often used for printing the
current area of the image.

134

Atalasoft DotImage Developer's Guide

Server Name

JavaScript Syntax : Return Value

Description

Font

getFont() : string
setFont(value : string)

Gets or sets the font name
associated with the Web server
control.

Expected input: string representing
font name: 'Verdana'

ForeColor

getForeColor() : string
setForeColor(value : string)

Gets or sets the foreground color
(typically the color of the text) of
the Web server control.

Expected input: string representing
a hex value or exact color name:
'#ACFFOOQ'

N/A

getFramelndex() : int

Gets the index value used to open
the current image.

0 If the image has been
modified with a server side
ApplyCommand, or has been
opened from a method other
than OpenUrl or a linked
WebThumbnailViewer, this will
always return 0.

Height

getHeight() : string
setHeight(value : string)

Gets or sets the CSS height style
property of the server control.

Expected input: string representing
style height: '320px'

ImageDisplayOrder

getImageDisplayOrder() : int

Gets the order that tiles are loaded.

Returns an int: 0:Sequential
1:VisibleFirst 2:0nDemand

Image.Size getImageSize() : atalaSize Gets the size, in pixels, of the
current image.

N/A getImageUrl() : string Gets the currently loaded image
url.

MouseTool getMouseToolLeft() : int Gets or sets the behavior of the

getMouseToolRight() : int
setMouseTool(left: int, right: int)

mouse when interacting with the
viewable area.

Expected input: MouseToolType or
int from 0-7, 0:None 1:Center
2:Selection 3:ZoomlIn 4:ZoomOut
5:ZoomArea 6:Pan 7:PassThrough

135

Atalasoft DotImage Developer's Guide

Server Name

JavaScript Syntax : Return Value

Description

MouseTool.Cursor

getMouseToolCursor() : int
setMouseToolCursor(value : int)

Gets or sets the cursor used with
the mouse tool.

Expected input: MouseToolCursor
or int from 0-8, 0:Auto 1:Arrow
2:Crosshair 3:Grab 4:Hand 5:Move
6:ZoomlIn 7:ZoomOut 8:Custom

0 Currently, Grab is a CSS
Extension supported by
Mozilla based browsers only.

MouseTool.CustomCursor

getMouseToolCustomCursor() :
string

setMouseToolCustomCursor(value :

string)

Gets or sets a value that represents
the custom CSS style used for the
MouseTool.

Expected input: string representing
Style: 'wait' or 'url(MyCursor.cur)'

0 Url based CSS cursor styles
may not work in all browsers.

PathToResources getPathToResources() : string Gets the virtual path to where the
image, script, and cursor files are
located.

N/A getReturnValue() : var Gets the return value populated by

the last successful Remotelnvoke.

ImagePosition

getScrollPosition() : atalaPoint
setScrollPosition(value : atalaPoint)

Gets or sets the upper left image
position in relation to the upper
left corner of the Web server
control. Negative values are
expected.

Expected input: atalaPoint

ScrollBarVisibility

getScrollBarVisibility() : int

Gets the visibility of the scrollbars.

Returns an int: 0:Dynamic 1:None
2:Always

Selection getSelection() : Selection Gets the Selection object of this
Web server control.
TileSize getTileSize() : atalaSize Gets the height and width of the

tiles in pixels.

136

Atalasoft DotImage Developer's Guide

Server Name

JavaScript Syntax : Return Value

Description

TitleBar

getTitleBar() : string
setTitleBar(value : string)

Gets or sets a string used for a
creating a title bar above the Web
server control. HTML syntax is
allowed.

0 This property is tied to a
hidden input tag, so changing
this value to HTML in JavaScript
could cause problems if the
page needs to PostBack.

ViewPortSize

getViewPortSize() : atalaSize

Gets the size of the viewable area,
excluding scroll bars.

Visibility getVisibility() : string Gets or sets a value that indicates
setVisibility(value : string) whether the Web server control is
hidden or visible on the page.
Expected input: string that is either
'hidden’, 'visible', or 'inherit'.
0 'inherit' will return
VisibilityStyle.Visible on the
server side.
Width getWidth() : string Gets or sets the CSS width style
setWidth(value : string) property of the server control.
Expected input: string representing
style width: '200px'
Zoom getZoom() : float Gets or sets the zoom level of the
setZoom(value : float) image in this Web server control.
ZoomInOutPercentage getZoomInOutPercentage() : int Gets or sets the percentage used
setZoomInOutPercentage(value : | to increase or decrease the zoom
int) level when the zoom MouseTools
are used.
Events
Server Name JavaScript Syntax Description
N/A AntialiasDisplayChanged = function() Fires when the AntialiasDisplay
property has changed.
N/A AutoZoomChanged = function() Fires when the AutoZoom property
has changed.
N/A BackColorChanged = function() Fires when the BackColor property
has changed.
N/A BorderColorChanged = function() Fires when the BorderColor
property has changed.

137

Atalasoft DotImage Developer's Guide

Server Name

JavaScript Syntax

Description

N/A

BorderStyleChanged = function()

Fires when the BorderStyle

property has changed.

N/A BorderWidthChanged = function() Fires when the BorderWidth
property has changed.

N/A CaptionChanged = function() Fires when the Caption property
has changed.

CenteredChanged CenteredChanged = function() Fires when the Centered property
has changed.

N/A FontChanged = function() Fires when the Font property has
changed.

N/A ForeColorChanged = function() Fires when the ForeColor property
has changed.

ImageChanged ImageChanged = function() Fires when the Image has changed.

N/A ImageSizeChanged = function() Fires when the Image changes size.

N/A MouseToolChanged = function() Fires when the MouseTool property
has changed.

Remotelnvoked Remotelnvoked = function() Fires when the Remotelnvoke

function is called.

ImagePositionChanged

SelectionChanged

ScrollPositionChanged = function()

SelectionChanged = function()

Fires when the ScrollPosition has
changed

Fires when the Selection has
changed.

N/A SizeChanged = function() Fires when the Size property has
changed.

N/A TitleBarChanged = function() Fires when the TitleBar property
has changed.

N/A VisibilityChanged = function() Fires when the Visibility property
has changed.

N/A ZoomChanged = function() Fires when the Zoom property has
changed.

N/A ZoomInOutPercentageChanged = Fires when the

function()

ZoomInOutPercentage property
has changed.

Mouse Events

0 All of these events pertain to the underlying image only, and attempt
to pass a ImageMouseEvent object to the function.

N/A

Clicked = function(e)

Fires when the image is clicked.
Passes an ImageMouseEvent
object.

138

Atalasoft DotImage Developer's Guide

Server Name

JavaScript Syntax

Description

N/A

DoubleClicked = function(e)

Fires when the image is
double clicked. Passes
an ImageMouseEvent object.

N/A

MouseDown = function(e)

Fires when a mouse button is
pressed down on the image.

Passes an ImageMouseEvent
object.

N/A

MouseDownLeft = function(e)

Fires when the when the left
mouse button is pressed down.
Passes an ImageMouseEvent
object.

N/A

MouseDownRight = function(e)

Fires when the when the right
mouse button is pressed down.
Passes an ImageMouseEvent
object.

N/A

MouseMove = function(e)

Fires when the mouse cursor
moves over the image. Passes
an ImageMouseEvent object.

N/A

MouseOut = function(e)

Fires when the mouse cursor
leaves the image area. Passes
an ImageMouseEvent object.

N/A

MouseOver = function(e)

Fires when the mouse cursor
enters the image area. Passes
an ImageMouseEvent object.

N/A

MouseUp = function(e)

Fires when a mouse button is
released on the image. Passes
an ImageMouseEvent object.

N/A

RightClicked = function(e)

Fires when the image is
right clicked. Passes
an ImageMouseEvent object.

Key Events

0 The control must have focus for these events to fire. You can
programmatically set focus to this control by calling Focus(). These events
also attempt to pass a ImageKeyEvent object to the function.

N/A

KeyDown = function(e)

Fires when a key is pressed
down, if the control has focus.

Passes an ImageKeyEvent object.

N/A

KeyUp = function(e)

Fires when a key is released, if
the control has focus. Passes an
ImageKeyEvent object.

N/A

KeyPress = function(e)

Fires when a key is pressed
down, and then released, if the
control has focus. Passes an
ImageKeyEvent object.

139

Atalasoft DotImage Developer's Guide

Methods

Server Name

JavaScript Syntax

Description

N/A

ClearImage()

Clears the image from client side
only, used to return to a blank
state.

N/A

Focus()

Puts focus on the
WebImageViewer, used to enable
key events.

N/A

Invalidate()

Forces the WebImageViewer to re-
position child objects.

OpenUrl

OpenUrl(url: string)
OpenUrl(url: string, index: int)

Opens an image into the
WebImageViewer control from
a URL or virtual path, and frame
index.

0 This function is
asynchronous. If any code
needs to be executed after this
call, it should be placed in the
ImageChanged event handler.

N/A

PauseRefresh()

Pauses UI updates for this

control until ResumeRefresh is
called. Pauses and Refreshes are
nestable. The update happens
when an equal number of
ResumeRefresh and PauseRefresh
calls are made.

Print

Print()

Prints the current image using
javascript client code.

Redo

Redo()

Re-does an undo.

Invoke

Remotelnvoke(mthd : string)

Remotelnvoke(mthd : string, args :

Array)

Remotely invokes a server
side method with the array of
arguments.

0 This function is
asynchronous. If any code
needs to be executed after this
call, it should be placed in the
Remotelnvoked event handler.

N/A

ResumeRefresh()

Resumes paused UI updates for
this control. Pauses and Refreshes
are nestable. The update happens
when an equal number of
ResumeRefresh and PauseRefresh
calls are made.

140

Atalasoft DotImage Developer's Guide

Server Name

JavaScript Syntax

Description

N/A

ScrollBy(dx : int, dy : int)

Scrolls the viewer by the given
values.

N/A

ScrollTo(x: int, y: int)

Scrolls the viewer to the given
coordinates.

N/A

setZoomMode(value : int)

Zoom the image once, according to
the given AutoZoomMode.

Expected input: AutoZoomMode
or int from 0-5, 0:None 1:BestFit
2:BestFitShrinkOnly 3:FitToWidth
4:FitToHeight 5:FitToImage

Undo

Undo()

Reverts the image back to the
previously cached image.

0 This function is limited

to Image changes only.

The number of available
undos relies on the server side
Cachelevels property of the
control.

Update

Update()

Forces the current image to be
cached and updates the viewable
area.

ImageMouseEvent

This object is based on the browser's mouse event object. The following properties are in addition

to the properties that are specified by each individual browser.

Usage
JavaScript

/* You will need a WebImageViewer and a reference to ClientTools.js before this

snippet.

* This reference is automatically added to the page inline with the WebControls,
* so placing this snippet below the WebImageViewer control will be sufficient.

*/

Atalasoft.Utils.InitClientScript (BindImageMouseEvents) ;

function BindImageMouseEvents () {
WebImageViewerl.DoubleClicked = ImageMouseEventExample;
WebImageViewerl.RightClicked = ImageMouseEventExample;

}

// This simple example alerts the user when the image is double or right clicked.
function ImageMouseEventExample (e) {

var mousePos
alert (e.name +

Atalasoft.Utils.getMousePosition (e) ;
event fired on the image at

+ mousePos.X + 'x' 4+ mousePos.Y);

141

Atalasoft DotImage Developer's Guide

Properties

Server Name JavaScript Syntax : Return value | Description

N/A name : string The name of the event that is
being fired.

N/A type : string The browser's mouse event type
that this event is based on. Ex:
'mouseover’.

ImageKeyEvent

This object is based on the browser's key event object. The following properties are in addition to
the properties that are specified by each individual browser (unless otherwise specified).

Usage
JavaScript

/* You will need a WebImageViewer and a reference to ClientTools.js before this
snippet.
* This reference is automatically added to the page inline with the WebControls,
* so placing this snippet below the WebImageViewer control will be sufficient.
*
/
Atalasoft.Utils.InitClientScript (BindImageKeyEvents) ;
function BindImageKeyEvents () {
WebImageViewerl.KeyDown = ImageKeyEventExample;
WebImageViewerl.Focus () ;

}

// This simple example alerts the user when a key is pressed down while thw
WebImageViewer has focus.
function ImageKeyEventExample (e) {

alert ('KeyCode: ' + e.keyCode + ' pressed down.');

}
Properties

Server Name

JavaScript Syntax : Return value

Description

N/A

altKey : bool

Returns true if the alt key is
pressed in combination with this
key event, false otherwise.

N/A

ctrlKey : bool

Returns true if the ctrl key is
pressed in combination with this
key event, false otherwise.

N/A

keyCode : int

The browser's specific key

code for keyup or keydown
typed events, returns ASCII code
on keypress typed events.

0 This property is

populated by the browser,
and may not be the same
value across all browsers.

142

Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax : Return value | Description

N/A shiftkey : bool Returns true if the shift key is
pressed in combination with this
key event, false otherwise.

N/A name : string The name of the event that is
being fired.
N/A type : string The browser's key event type
that this event is based on. Ex:
'keyup'.
Selection

The Selection object is internal to the atalaWebImageViewer object.

Server Name JavaScript Syntax : Return value | Description
Animated getAnimated() : bool Gets or sets a value that indicates
setAnimated(value : bool) whether the selection will animate
or not.
AutoPostBack getAutoPostBack() : bool Gets or sets a value that indicates
setAutoPostBack(value : bool) whether the selection will

automatically post back when it
has changed on the client side.

BackColor getBackColor() : string Gets or sets a string that
setBackColor(value : string) represents the color behind the
dashed line.
ForeColor getForeColor() : string Gets or sets a string that
setForeColor(value : string) represents the color of the dashed
line.
Height getHeight() : int Gets or sets the height of the
setHeight(value : int) selection.
Movable getMovable() : bool Gets or sets a value that indicates
setMovable(value : bool) whether the selection can be
moved after it is drawn.
MultiColor getMultiColor() : bool Gets or sets a value indicating if
setMultiColor(value : bool) the selection is a solid or dashed
line.
Position getPosition() : atalaPoint Gets or sets the position of the
setPosition(value : atalaPoint) selection.
Resizable getResizable() : bool Gets or sets a value that indicating
setResizable(value : bool) whether the selection can resize
after it is drawn.
ShowGrips getShowGrips() : bool Gets or sets a value that indicating
setShowGrips(value : bool) whether the grips of the selection
are visible.
ShowTooltip getShowTooltip() : bool Gets or sets a value that indicating
setShowTooltip(value : bool) whether the tooltip is drawn while

the selection is drawn.

143

Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax : Return value | Description

Size getSize() : atalaSize Gets or sets the size of the
setSize(value : atalaSize) selection.

Visibility getVisibility() : bool Gets or sets a value indicating if
setVisibility(value : string) the selection is hidden or visible.

Width getWidth() : int Gets or sets the width of the
setWidth(value : int) selection.

Events

Server Name

JavaScript Syntax

Description

N/A Changing = function Fires while the selection is
being modified through mouse
movement.

RubberBandChanged Changed = function Fires when the selection has

finished being modified.

Web ThumbnailViewer

atalaWeb ThumbnailViewer

Although this function is public, it is not intended for users to create WebThumbnailViewers on the
client side directly. The server side generated HTML is needed for this function to initialize.

Properties

Server Name

JavaScript Syntax : Return value

Description

ClientID ID() : string Gets the server control identifier
generated by ASP.NET.
N/A Form() : object Gets the form object that the Web

server control is on.

AllowMultiSelect

getAllowMultiSelect() : bool

Gets a value that allows multiple
thumbs to be selected using the
shift or ctrl keys.

AllowDragDrop

getAllowDragDrop() : bool

Gets a value that allows thumbnails
to be dragged and dropped inside
the bounds of the control.

AutoDragDrop getAutoDragDrop() : bool Gets a value that determines
whether thumbnail reordering will
be automatically handled on the
client-side.

BackColor getBackColor() : string Gets or sets the background color

setBackColor(value: string)

of the Web server control.

Expected input: string representing
a hex value or exact color name:
'#ACFFOOQ'

144

Atalasoft DotImage Developer's Guide

Server Name

JavaScript Syntax : Return value

Description

BorderColor

getBorderColor() : string
setBorderColor(value: string)

Gets or sets the inner border color
of the Web server control.

Expected input: string representing
a hex value or exact color name:
'#ACFFOQ'

BorderStyle

getBorderStyle() : string
setBorderStyle(value: string)

Gets or sets the outer border style
used for this Web server control.

Expected input: string representing
CSS Style: "1px solid #FF9900'

BorderWidth

getBorderWidth() : int
setBorderWidth(value: int)

Gets or sets the inner border width
of the Web server control.

Expected input: int representing
the number of pixels wide.

BrowserFormat

getBrowserFormat : int

Gets the format of the images
created for browser output.
Returns an int: 0:Jpeg 1:Png 2:Gif
3:Auto

CachePath

getCachePath() : string

Gets the file path used for the
file cache as specified in the
Web.config file.

Caption

getCaption() : string
setCaption(value: string)

Gets or sets a string used for
creating a caption under the Web
server control. HTML syntax is
allowed.

0 This property is tied to a
hidden input tag, so changing
this value to HTML in JavaScript
could cause problems if the
page needs to PostBack.

Centered

getCentered() : bool
setCentered(value: bool)

Gets or sets a value indicating if
the image is centered when the
image is smaller than the Web
server control.

Columns

getColumns() : int
setColumns(value: int)

Gets or sets the number of
columns (0 means auto)

Count

getCount() : int

Gets the number of thumbnails.

FlowDirection

getFlowDirection() : int

Gets the FlowDirection
enumeration for how the
thumbnails are laid out.

Font

getFont() : string
setFont(value: string)

Gets or sets the font name
associated with the Web server
control.

Expected input: string representing
font name: 'verdana'

145

Atalasoft DotImage Developer's Guide

Server Name

JavaScript Syntax : Return value

Description

ForeColor

getForeColor() : string
setForeColor(value: string)

Gets or sets the foreground color
(typically the color of the text) of
the Web server control.

Expected input: string representing
a hex value or exact color name:
'#ACFFOQ'

Height

getHeight() : int
setHeight(value: int)

Gets or sets the height of the Web
server control in pixels.

ImageDisplayOrder

getImageDisplayOrder() : int

Gets the order that thumbs are
loaded.

Layout

getLayout() : int

Gets the Layout set on the server.

MouseTool

getMouseToolLeft() : int
getMouseToolRight() : int
setMouseTool(left: int, right: int)

Gets or sets the behavior of the
mouse when interacting with the
viewable area.

Expected input: MouseToolType or
int from 0-7, 0:None 1:Center
2:Selection 3:ZoomlIn 4:ZoomOut
5:ZoomArea 6:Pan 7:PassThrough

MouseTool.Cursor

getMouseToolCursor() : int
setMouseToolCursor(value : int)

Gets or sets the cursor used with
the mouse tool.

Expected input: MouseToolCursor
or int from 0-8, 0:Auto 1:Arrow
2:Crosshair 3:Grab 4:Hand 5:Move
6:ZoomIn 7:ZoomOut 8:Custom

0 Currently, Grab is a CSS
Extension supported by
Mozilla based browsers only.

MouseTool.CustomCursor

getMouseToolCustomCursor() :
string

setMouseToolCustomCursor(value :

string)

Gets or sets a value that represents
the custom CSS style used for the
MouseTool.

Expected input: string representing
Style: 'wait' or 'url(MyCursor.cur)'

0 Url based CSS cursor styles
may not work in all browsers.

PathToResources getPathToResources() : string Gets the virtual path to where the
image, script, and cursor files are
located.

Rows getRows() : int Gets or sets the number of rows (0

setRows(value: int)

means auto)

146

Atalasoft DotImage Developer's Guide

Server Name

JavaScript Syntax : Return value

Description

ScrollBarVisibility

getScrollBarVisibility() : int
setScrollBarVisibility(value : int)

Gets or sets the visibility of the
scrollbars.

Expected input:
ScrollBarVisibility or int: 0:Dynamic
1:None 2:Always

ScrollPosition

getScrollPosition() : atalaPoint
setScrollPosition(value : atalaPoint)

Gets or sets the upper left image
position in relation to the upper
left corner of the Web server
control.

Expected input: atalaPoint

SearchPattern

getSearchPattern() : string
setSearchPattern(value: string)

Gets or sets a semi-colon
separated list of file search
patterns for loading images from
a directory.

SelectedIndex

getSelectedIndex() : int

Gets the index of the selected
thumbnail. If AllowMultiSelect is
true, it has the index of the most
recently selected thumb.

SelectedIndexes

getSelectedIndexes(): Array

Gets an array of integers

which are the indexes selected

in the thumbnail control. If
AllowMultiSelect is false, this

array will have an length of 1,

and contain the same index as
SeletedIndex. If AllowMultiSelect
is true, it will have a list of all of the
selected thumbs in the order they
were selected.

N/A getThumbCaption(value: int) : Gets the caption for the thumbnail
string at the specified index.
ThumbCaptionFormat getThumbCaptionFormat() : string | Gets the caption format specified
on the server side.
N/A getThumbOrder() : Array Gets an array of integers which

correspond to the thumbnails

in the thumbnail control. As
DragDrop events occur, this array
will reorder itself to correspond to
the positions of the thumbnails in
the control.

0 This function is only
meant to be called when
AutoDragDrop is enabled.
If the value is set to false,
this function will throw an
exception.

147

Atalasoft DotImage Developer's Guide

Server Name

JavaScript Syntax : Return value

Description

ThumbPadding

getThumbPadding() : int

Gets the number of pixels around
each thumbnail.

ThumbSize

getThumbsSize() : atalaSize

Gets the size of each thumbnail.

ThumbSpacing

getThumbSpacing() : int

Gets the number of pixels between
thumbs.

TitleBar

getTitleBar() : string
setTitleBar(value: string)

Gets or sets a string used for a
creating a title bar above the Web
server control. HTML syntax is
allowed.

6 This property is tied to a
hidden input tag, so changing
this value to HTML in JavaScript
could cause problems if the
page needs to PostBack.

Url

getUrl() : string

Gets the URL representing the
current image.

ViewerID

getViewerID() : string

Gets the ID of the
WebImageViewer associated with
this control.

ViewPortSize

getViewPortSize() : atalaSize

Gets the size of the viewable area,
excluding scroll bars.

Visibility

getVisibility() : string
setVisibility(value: string)

Gets or sets a value that indicates
whether the Web server control is
hidden or visible on the page.

Expected input: string that is either
'hidden’, 'visible', or 'inherit'.

0 'inherit' will return
VisibilityStyle.Visible on the
server side.

Width

getWidth() : int
setWidth(value: int)

Gets or sets the CSS width style
property of the server control.

Expected input: string representing
style width: '200px'

Zoom

getZoom() : float
setZoom(value : float)

Gets or sets the zoom level of the
thumbnails in relation to their
original size, for this Web server
control.

148

Atalasoft DotImage Developer's Guide

Events
Server Name JavaScript Syntax Description
N/A BackColorChanged = function() Fired when the BackColor property
changes.
N/A BorderColorChanged = function() Fired when the BorderColor
property changes.
N/A BorderStyleChanged = function() Fired when the BorderStyle
property changes.
N/A BorderWidthChanged = function() | Fired when the BorderWidth
property changes.
N/A CaptionChanged = function() Fired when the Centered property
changes.
CenteredChanged CenteredChanged = function() Fired when the Caption property
changes.
N/A CountChanged = function() Fired when the number
of thumbnails changes.
N/A FontChanged = function() Fired when the Font property
changes.
N/A ForeColorChanged = function() Fired when the ForeColor property
changes.
N/A MouseToolChanged = function() Fired when the MouseTool
property has changed.
N/A ScrollPositionChanged = function() |Fired when the scroll position
changes.
N/A SelectedIndexChanged = function() | Fired when the selected thumbnail
changes.
N/A SizeChanged = function() Fired when the size changes.
N/A TitleBarChanged = function() Fired when the title bar changes.
N/A UrlChanged = function() Fired when the URL changes.
N/A VisibilityChanged = function() Fired when the Visibility property
changes.
N/A ZoomChanged = function() Fired when the Zoom property has
changed.
Thumbnail Events
0 These events pertain to all thumbnails, and attempt to pass
a ThumbnailEvent or ThumbnailDropEvent object to the function.
N/A ThumbnailClicked = function(e) Fires when the thumb is clicked.
Passes a ThumbnailEvent object.
N/A ThumbnailDoubleClicked = Fires when the thumb is double
function(e) clicked. Passes a ThumbnailEvent
object.

149

Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax Description
N/A ThumbnailMouseDown = Fires when a mouse button is
function(e) pressed down on the thumb.
Passes a ThumbnailEvent object.
N/A ThumbnailMouseDownLeft = Fires when the when the left
function(e) mouse button is pressed
down on the thumb. Passes a
ThumbnailEvent object.
N/A ThumbnailMouseDownRight = Fires when the when the right
function(e) mouse button is pressed
down on the thumb. Passes a
ThumbnailEvent object.
N/A ThumbnailMouseMove = Fires when the mouse cursor
function(e) moves over the thumb. Passes a
ThumbnailEvent object.
N/A ThumbnailMouseOut = function(e) | Fires when the mouse cursor
leaves the thumb bounding box.
Passes a ThumbnailEvent object.
N/A ThumbnailMouseOver = function(e) | Fires when the mouse cursor
enters the thumb bounding box.
Passes a ThumbnailEvent object.
N/A ThumbnailMouseUp = function(e) | Fires when a mouse button is
released on the thumb. Passes a
ThumbnailEvent object.
N/A ThumbnailRightClicked = Fires when the thumb is right
function(e) clicked. Passes a ThumbnailEvent
object.
N/A ThumbnailLoaded = function(e) Fires when the image part of the
thumbnail has finished loading.
Passes a ThumbnailEvent object.
N/A ThumbnailDrop = function(e) Fires when a thumbnail has
been dragged and dropped
to a new location. Passes a
ThumbnailDropEvent object.
N/A ThumbnailDropServer = function(e) | Fires after the server has has been
notified of a drag-drop operation.
Passes a ThumbnailDropEvent
object.
Key Events
0 The control must have focus for these events to fire. You can
programmatically set focus to this control by calling Focus(). These
events also attempt to pass a ThumbnailKeyEvent object to the
function.

150

Atalasoft DotImage Developer's Guide

Server Name

JavaScript Syntax

Description

N/A

KeyDown = function(e)

Fires when a key is pressed
down, if the control has focus.
Passes a ThumbnailKeyEvent
object.

N/A

KeyUp = function(e)

Fires when a key is released, if
the control has focus. Passes a
ThumbnailKeyEvent object.

N/A

KeyPress = function(e)

Fires when a key is pressed
down, and then released, if
the control has focus. Passes a
ThumbnailKeyEvent object.

Methods

Server Name

JavaScript Syntax

Description

N/A

Focus()

Puts focus on the
WebThumbnailViewer, used to
enable key events.

N/A

Invalidate()

Forces the WebThumbnailViewer to
re-position child objects.

OpenUrl

OpenUrl(url: string)

OpenUrl(dir: string, searchPattern:

string)

Opens a URL. Ifthe URLis an
image, searchPattern should not
be passed. If the URL is a directory,
pass a searchPattern to use to
match files (Use "*.*" to match all
files).

searchPattern expected input:
string with semi-colon delimited
search patterns (ex: "*.*",

"* tif;*.jpg". "*.gif")

N/A

PauseRefresh()

Pauses UI updates for this

control until ResumeRefresh is
called. Pauses and Refreshes are
nestable. The update happens
when an equal number of
ResumeRefresh and PauseRefresh
calls are made.

N/A

ResumeRefresh()

Resumes paused UI updates for
this control. Pauses and Refreshes
are nestable. The update happens
when an equal number of
ResumeRefresh and PauseRefresh
calls are made.

SelectedIndex

SelectThumb(index: int)

Selects the thumbnail at the
corresponding index (starting at 0)

N/A

Update()

Forces the control to update
thumbnails.

151

Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax Description

N/A UpdateThumb(index: int) Forces the control to update the
thumbnail at the corresponding
index (starting at 0)

ThumbnailEvent

This object is based on the browser's mouse event object, where applicable. The following
properties are in addition to the properties that are specified by each individual browser.

Usage
JavaScript

/* You will need a WebThumbnailViewer and a reference to ClientTools.js before this
snippet.
* This reference is automatically added to the page inline with the WebControls,
* so placing this snippet below the WebThumbnailViewer control will be sufficient.
*
/
Atalasoft.Utils.InitClientScript (BindThumbnailMouseEvents) ;
function BindThumbnailMouseEvents () {
WebThumbnailViewerl.ThumbnailDoubleClicked = ThumbnailMouseEventExample;
WebThumbnailViewerl.ThumbnailRightClicked = ThumbnailMouseEventExample;
}

// This simple example alerts the user when a thumbnail is double or right clicked.
function ThumbnailMouseEventExample (e) {
alert (e.name + ' event fired on thumbnail at index ' + e.index);

}

Properties

Server Name JavaScript Syntax : Return value | Description

N/A index : int The zero based index of the
thumbnail that this event is firing
on.

N/A name : string The name of the event that is being
fired.

N/A type : string The browser's event type that
this event is based on, if any. Ex:
'mouseover’.

ThumbnailDropEvent

This object is based on the browser's mouse event object. The following properties are in addition
to the properties that are specified by each individual browser.

Usage
JavaScript

/* You will need a WebThumbnailViewer and a reference to ClientTools.js before this
snippet.

* This reference is automatically added to the page inline with the WebControls,

* so placing this snippet below the WebThumbnailViewer control will be sufficient.
=/

152

Atalasoft DotImage Developer's Guide

Atalasoft.Utils.InitClientScript (BindDropEvent) ;
function BindDropEvent () {

WebThumbnailViewerl.ThumbnailDrop = ThumbnailDropped;
}

// This simple example alerts the user when a thumbnail is dragged and dropped.
function ThumbnailDropped (e) {

alert ('Thumbnail dragged from index: ' + e.dragIndex + ' was dropped to index: ' +
e.dropIndex) ;

}

Server Name JavaScript Syntax : Return value | Description

N/A dragIndex : int The zero based index of the
thumbnail, in relation to where it
was dragged from.

N/A dropIndex : int The zero based index of the
thumbnail, in relation to where it
was dropped.

N/A name : string The name of the event that is being
fired.

ThumbnailKeyEvent

This object is based on the browser's key event object. The following properties are in addition to
the properties that are specified by each individual browser (unless otherwise specified).

Usage
JavaScript

/* You will need a WebThumbnailViewer and a reference to ClientTools.js before this
snippet.
* This reference is automatically added to the page inline with the WebControls,
* so placing this snippet below the WebThumbnailViewer control will be sufficient.
*
/
Atalasoft.Utils.InitClientScript (BindThumbnailKeyEvents) ;
function BindThumbnailKeyEvents () {
WebThumbnailViewerl.KeyDown = ThumbnailKeyEventExample;
WebThumbnailViewerl.Focus () ;

}

// Binds the up and down arrow keys to select previous and next thumbnails
// NOTE: the keyCodes used in this example were tested in Internet Explorer, FireFox,
// Safari, and Chrome. The keyCodes for other browsers may be different.
function ThumbnailKeyEventExample (e) {

// Get the keyCode for the key that was pressed
var myKeyCode = e.keyCode;

var n = WebThumbnailViewerl.getSelectedIndex() ;

var ¢ = WebThumbnailViewerl.getCount () ;

if (myKeyCode == 38) {
// up arrow was pressed, subtract one from SelectedIndex, and check lower bounds
n=(n-1>20) 2 n-1: 0;

// select the previous thumbnail
WebThumbnailViewerl.SelectThumb (n) ;

// stop the default KeyUp action of scrolling, by returning false

153

Atalasoft DotImage Developer's Guide

return false;
}
else if (myKeyCode == 40) {
// down arrow was pressed, add one to SelectedIndex, and check upper bounds
n=(n+1<¢) ?2n+1:c-1;

// select the next thumbnail
WebThumbnailViewerl.SelectThumb (n) ;

// stop the default KeyUp action of scrolling, by returning false
return false;
}
}

Properties

Server Name JavaScript Syntax : Return value | Description

N/A altKey : bool Returns true if the alt key is
pressed in combination with this
key event, false otherwise.

N/A ctrlKey : bool Returns true if the ctrl key is
pressed in combination with this
key event, false otherwise.

N/A keyCode : int The browser's specific key

code for keyup or keydown
typed events, returns ASCII code
on keypress typed events.

0 This property is populated
by the browser, and may not
be the same value across all
browsers.

N/A shiftkey : bool Returns true if the shift key is
pressed in combination with this
key event, false otherwise.

N/A name : string The name of the event that is being
fired.

N/A type : string The browser's key event type that
this event is based on. Ex: 'keyup'.

WebAnnotationViewer
atalaWebAnnotationViewer

Although this function is public, it is not intended for users to create WebAnnotationViewers on the
client side directly. The server side generated HTML is needed for this function to initialize.

154

Atalasoft DotImage Developer's Guide

Properties

Server Name

JavaScript Syntax : Return value

Description

Annotations[index]

getAnnotation(index : int):
atalaAnnotation
getAnnotation(layerindex : int,
index : int) : atalaAnnotation

Gets the atalaAnnotation object at
the given layer and item indexes,
respectively.

Annotations

getAnnotations() : Array

Returns an array of
atalaAnnotation objects that are on
every layer in this control.

N/A getAnnotationDataUrl() : string Returns the url used to store the
cached data file.
AuthorMode getAuthorMode() : int Gets a value that indicates how

many annotations can be created
with the mouse.

Returns an int: 0:Unlimited 1:Single

AutoLinkThumbnailViewer

getAutoLinkThumbnailViewer() :
bool

Gets a value that indicates
whether this control should
automatically link events with
the WebThumbnailViewer that is
associated with this control

CurrentLayer

getCurrentLayer() : atalaLayer

Gets or sets the current active layer
in the control. This is primarily
used to indicate which layer mouse
events are handled on.

CurrentUserName

setCurrentLayer(value: atalaLayer)
setCurrentLayer(value: int)
getCurrentUserName() : string

Returns a string that represents
the current user name associated
with this session.

0 This is not automatically
populated, and as such, the
CurrentUserName property
must be set on the server side.

InteractMode

getInteractMode(): int
setInteractMode(value : int)

Expected input: int from 0-2,
0:None 1:View 2:Edit

Annotations.Layers

getLayers() : Array

Returns an array of atalaLayer
objects contained in this control.

N/A

getSelectedAnnotations() : Array

Returns an array of
atalaAnnotation objects that have
the Selected property set to true.

Properties inherited from atalaWebImageViewer

Server Name

JavaScript Syntax : Return value

Description

ClientID

ID() : string

Gets the server control identifier
generated by ASP.NET.

155

Atalasoft DotImage Developer's Guide

Server Name

JavaScript Syntax : Return value

Description

N/A

Form() : object

Gets the form object that the Web
server control is on.

AntialiasDisplay

getAntialiasDisplay() : int
setAntialiasDisplay(value : int)

Gets or sets the quality of the
scaled image.

Expected input:
AntialiasDisplayMode or int
from 0-3, 0:None 1:ScaleToGray
2:ReductionOnly 3:Full

AutoZoom

getAutoZoom() : int
setAutoZoom(value : int)

Gets or sets a value indicating how
the image should be zoomed as
the control is resized or the image
size changes. This will override
setZoom. For a one time zoom,
see setZoomMode.

Expected input: AutoZoomMode
or int from 0-5, 0:None 1:BestFit
2:BestFitShrinkOnly 3:FitToWidth
4:FitToHeight 5:FitToImage

BackColor

getBackColor() : string
setBackColor(value : string)

Gets or sets the background color
of the Web server control.

Expected input: string representing
a hex value or exact color name:
'#ACFFOOQ'

BorderColor

getBorderColor() : string
setBorderColor(value : string)

Gets or sets the border color of the
Web server control.

Expected input: string representing
a hex value or exact color name:
'"#ACFFOQ'

BorderStyle getBorderStyle() : string Gets or sets the border style used
setBorderStyle(value : string) for this Web server control.
Expected input: string representing
Style: "1px solid #FF9900"
BorderWidth getBorderWidth() : int Gets or sets the border width of
setBorderWidth(value : int) the Web server control in pixels.
BrowserFormat getBrowserFormat() : int Gets the format of the images
created for browser output.
Returns an int: 0:Jpeg 1:Png 2:Gif
3:Auto
CachePath getCachePath() : string Gets the file path used for the

file cache as specified in the
Web.config file.

156

Atalasoft DotImage Developer's Guide

Server Name

JavaScript Syntax : Return value

Description

Caption

getCaption() : string
setCaption(value : string)

Gets or sets a string used for
creating a caption under the Web
server control. HTML syntax is
allowed.

0 This property is tied to a
hidden input tag, so changing
this value to HTML in JavaScript
could cause problems if the
page needs to PostBack.

Centered

getCentered() : bool
setCentered(value : bool)

Gets or sets a value indicating if
the image is centered when the
image is smaller than the Web
server control.

N/A

getDisplayImageUrl() : string

Gets a url that will return the
current viewable portion of the
image. Often used for printing the
current area of the image.

Font

getFont() : string
setFont(value : string)

Gets or sets the font name
associated with the Web server
control.

Expected input: string representing
font name: 'Verdana'

ForeColor

getForeColor() : string
setForeColor(value : string)

Gets or sets the foreground color
(typically the color of the text) of
the Web server control.

Expected input: string representing

a hex value or exact color name:
'#ACFFOO'

N/A

getFramelndex() : int

Gets the index value used to open
the current image.

0 If the image has been
modified with a server side
ApplyCommand, or has been
opened from a method other
than OpenUrl or a linked
WebThumbnailViewer, this will
always return 0.

Height

getHeight() : string
setHeight(value : string)

Gets or sets the CSS height style
property of the server control.

Expected input: string representing
style height: '320px'

ImageDisplayOrder

getImageDisplayOrder() : int

Gets the order that tiles are loaded.

Returns an int: 0:Sequential
1:VisibleFirst 2:0nDemand

157

Atalasoft DotImage Developer's Guide

Server Name

JavaScript Syntax : Return value

Description

Image.Size getImageSize() : atalaSize Gets the size, in pixels, of the
current image.

N/A getImageUrl() : string Gets the currently loaded image
url.

MouseTool getMouseToolLeft() : int Gets or sets the behavior of the

getMouseToolRight() : int
setMouseTool(left: int, right: int)

mouse when interacting with the
viewable area.

Expected input: MouseToolType or
int from 0-7, 0:None 1:Center
2:Selection 3:ZoomlIn 4:ZoomOut
5:ZoomArea 6:Pan 7:PassThrough

MouseTool.Cursor

getMouseToolCursor() : int
setMouseToolCursor(value : int)

Gets or sets the cursor used with
the mouse tool.

Expected input: MouseToolCursor
or int from 0-8, 0:Auto 1:Arrow
2:Crosshair 3:Grab 4:Hand 5:Move
6:ZoomlIn 7:ZoomOut 8:Custom

ﬂ Currently, Grab is a CSS
Extension supported by
Mozilla based browsers only.

MouseTool.CustomCursor

getMouseToolCustomCursor() :
string

setMouseToolCustomCursor(value :

string)

Gets or sets a value that represents
the custom CSS style used for the
MouseTool.

Expected input: string representing
Style: 'wait' or 'url(MyCursor.cur)'

0 Url based CSS cursor styles
may not work in all browsers.

PathToResources getPathToResources() : string Gets the virtual path to where the
image, script, and cursor files are
located.

N/A getReturnValue() : var Gets the return value populated by

the last successful Remotelnvoke.

ImagePosition

getScrollPosition() : atalaPoint
setScrollPosition(value : atalaPoint)

Gets or sets the upper left image
position in relation to the upper
left corner of the Web server
control. Negative values are
expected.

Expected input: atalaPoint

ScrollBarVisibility

getScrollBarVisibility() : int

Gets the visibility of the scrollbars.

Returns an int: 0:Dynamic 1:None
2:Always

158

Atalasoft DotImage Developer's Guide

Server Name

JavaScript Syntax : Return value

Description

Selection getSelection() : Selection Gets the Selection object of this
Web server control.

TileSize getTileSize() : atalaSize Gets the height and width of the
tiles in pixels.

TitleBar getTitleBar() : string Gets or sets a string used for a

setTitleBar(value : string)

creating a title bar above the Web
server control. HTML syntax is
allowed.

0 This property is tied to a
hidden input tag, so changing
this value to HTML in JavaScript
could cause problems if the
page needs to PostBack.

ViewPortSize

getViewPortSize() : atalaSize

Gets the size of the viewable area,
excluding scroll bars.

Visibility getVisibility() : string Gets or sets a value that indicates
setVisibility(value : string) whether the Web server control is
hidden or visible on the page.
Expected input: string that is either
'hidden’, 'visible', or 'inherit'.
0 'inherit' will return
VisibilityStyle.Visible on the
server side.
Width getWidth() : string Gets or sets the CSS width style
setWidth(value : string) property of the server control.
Expected input: string representing
style width: '200px'
Zoom getZoom() : float Gets or sets the zoom level of the
setZoom(value : float) image in this Web server control.
ZoomInOutPercentage getViewPortSize() : atalaSize Gets or sets the percentage used
getZoomInOutPercentage() : int to increase or decrease the zoom
level when the zoom MouseTools
setZoomInOutPercentage(value :
; are used.
int)
Events

Server Name

JavaScript

Syntax Description

Annotation Events

0 These events only pertain to the underlying atalaAnnotation

object.

159

Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax Description
N/A AnnotationChanged = function(e) Fires when an atalaAnnotation
has changed. Passes
an AnnotationEvent object.
N/A AnnotationChanging = function(e) | Fires while an atalaAnnotation
is changing. Passes
an AnnotationEvent object.
N/A AnnotationClicked = function(e) Fires when an atalaAnnotation is
clicked with the left mouse button.
Passes an AnnotationEvent object.
N/A AnnotationCreated = function(e) Fires when an atalaAnnotation is
created with the mouse. Passes
an AnnotationEvent object.
N/A AnnotationDoubleClicked = Fires when an atalaAnnotation is
function(e) double-clicked with the left mouse
button. Passes an AnnotationEvent
object.
N/A AnnotationMouseDown = Fires when a mouse button
function(e) is pressed down on an
atalaAnnotation. Passes
an AnnotationEvent object.
N/A AnnotationMouseDownLeft = Fires when the left mouse
function(e) button is pressed down on
an atalaAnnotation. Passes
an AnnotationEvent object.
N/A AnnotationMouseDownRight = Fires when the right mouse
function(e) button is pressed down on
an atalaAnnotation. Passes
an AnnotationEvent object.
N/A AnnotationMouseMove = Fires when the mouse cursor
function(e) moves over an atalaAnnotation.
Passes an AnnotationEvent object.
N/A AnnotationMouseOut = function(e) | Fires when the mouse cursor
leaves an atalaAnnotation's area.
Passes an AnnotationEvent object.
N/A AnnotationMouseOver = Fires when the mouse cursor
function(e) enters an atalaAnnotation's area.
Passes an AnnotationEvent object.
N/A AnnotationMouseUp = function(e) | Fires when a mouse button is
released on an atalaAnnotation.
Passes an AnnotationEvent object.
N/A AnnotationRightClicked = Fires when an atalaAnnotation
function(e) is right clicked. Passes
an AnnotationEvent object.
N/A AnnotationsChanged = function(e) | Fires when the z-order of
atalaAnnotations has changed.
Passes an AnnotationEvent object.

160

Atalasoft DotImage Developer's Guide

Server Name

JavaScript

Syntax Description

Layer Events

0 These events only pertain to the underlying atalaLayer objects.

N/A

CurrentLayerChanged = function(e)

Fires when the current atalaLayer
object has been changed to

a different atalaLayer. Passes

an AnnotationEvent object.

N/A

LayerChanged = function(e)

Fires when an atalaLayer
has changed. Passes
an AnnotationEvent object.

N/A

LayersChanged = function (e)

Fires when the z-order of
atalaLayers has changed. Passes
an AnnotationEvent object.

Events inherited from atalaWebImageViewer

Server Name

JavaScript Syntax

Description

N/A AntialiasDisplayChanged = Fires when the AntialiasDisplay
function() property has changed.

N/A AutoZoomChanged = function() Fires when the AutoZoom property
has changed.

N/A BackColorChanged = function() Fires when the BackColor property
has changed.

N/A BorderColorChanged = function() Fires when the BorderColor
property has changed.

N/A BorderStyleChanged = function() |Fires when the BorderStyle
property has changed.

N/A BorderWidthChanged = function() | Fires when the BorderWidth
property has changed.

N/A CaptionChanged = function() Fires when the Caption property
has changed.

CenteredChanged CenteredChanged = function() Fires when the Centered property
has changed.

N/A FontChanged = function() Fires when the Font property has
changed.

N/A ForeColorChanged = function() Fires when the ForeColor property
has changed.

ImageChanged ImageChanged = function() Fires when the Image has changed.

N/A ImageSizeChanged = function() Fires when the Image changes size.

N/A MouseToolChanged = function() Fires when the MouseTool property
has changed.

Remotelnvoked Remotelnvoked = function() Fires when the Remotelnvoke

function is called.

161

Atalasoft DotImage Developer's Guide

Server Name

JavaScript Syntax

Description

ImagePositionChanged

ScrollPositionChanged = function()

Fires when the ScrollPosition has
changed

SelectionChanged

SelectionChanged = function()

Fires when the Selection has
changed.

function()

N/A SizeChanged = function() Fires when the Size property has
changed.

N/A TitleBarChanged = function() Fires when the TitleBar property
has changed.

N/A VisibilityChanged = function() Fires when the Visibility property
has changed.

N/A ZoomChanged = function() Fires when the Zoom property has
changed.

N/A ZoomInOutPercentageChanged = | Fires when the

ZoomInOutPercentage property
has changed.

Mouse Events

0 All of these events pertain to the underlying image only, and
attempt to pass an ImageMouseEvent object to the function.

N/A

Clicked = function(e)

Fires when the image is clicked.
Passes an ImageMouseEvent
object.

N/A

DoubleClicked = function(e)

Fires when the image is
double clicked. Passes
an ImageMouseEvent object.

N/A

MouseDown = function(e)

Fires when a mouse button is
pressed down on the image.
Passes an ImageMouseEvent
object.

N/A

MouseDownLeft = function(e)

Fires when the when the left
mouse button is pressed down.
Passes an ImageMouseEvent
object.

N/A

MouseDownRight = function(e)

Fires when the when the right
mouse button is pressed down.
Passes an ImageMouseEvent
object.

N/A

MouseMove = function(e)

Fires when the mouse cursor
moves over the image. Passes
an ImageMouseEvent object.

N/A

MouseOut = function(e)

Fires when the mouse cursor
leaves the image area. Passes
an ImageMouseEvent object.

162

Atalasoft DotImage Developer's Guide

Server Name

JavaScript Syntax

Description

N/A

MouseOver = function(e)

Fires when the mouse cursor
enters the image area. Passes
an ImageMouseEvent object.

N/A

MouseUp = function(e)

Fires when a mouse button is
released on the image. Passes
an ImageMouseEvent object.

N/A

RightClicked = function(e)

Fires when the image is
right clicked. Passes
an ImageMouseEvent object.

Key Events

0 The control must have focus for these events to fire. You can
programmatically set focus to this control by calling Focus(). These
events also attempt to pass a ImageKeyEvent object to the function.

N/A

KeyDown = function(e)

Fires when a key is pressed
down, if the control has focus.
Passes an ImageKeyEvent object.

N/A

KeyUp = function(e)

Fires when a key is released, if
the control has focus. Passes an
ImageKeyEvent object.

N/A

KeyPress = function(e)

Fires when a key is pressed
down, and then released, if the
control has focus. Passes an
ImageKeyEvent object.

Methods

Server Name

JavaScript Syntax : Return value

Description

Annotations.Layers.Add

AddLayer(layer: atalaLayer) : bool

Adds the given atalalayer to this
control. Returns true on success,
false otherwise.

N/A

Clear()

Clears all annotations, all layers,
and the image contained in this
control.

Annotations.Layers.Clear

ClearAnnotations()

Clears all annotations and all layers
contained in this control.

N/A

CountAnnotations() : int

Returns an int of the total count of
all annotations on all layers in this
control.

Annotations.Layers.Count

CountlLayers() : int

Returns an int of the count of all
layers in this control.

163

Atalasoft DotImage Developer's Guide

Server Name

JavaScript Syntax : Return value

Description

N/A

CreateAnnotation(type: string) :
atalaAnnotation

CreateAnnotation(type: string,
name: string) : atalaAnnotation

Creates and returns an
atalaAnnotation from the

object type string specified.

The string must represent an
object type that inherits from
Atalasoft.Annotate.AnnotationData
on the server side.

Expected input: string representing
AnnotationData: 'EllipseData’

or 'RectangleData’, string
representing the name of a
DefaultAnnotation created on the
server side.

0 The atalaAnnotation
returned must be added

to an atalaLayer by using
InsertAnnotation or it will

be created by drawing

it with the mouse (if the

current AnnotationInteractMode
allows)

N/A

CancelCreateAnnotation()

Aborts the creation of an
annotation without leaving a
partial annotation on the existing

page.

N/A

CreateLayer() : atalaLayer

Creates and returns an atalalLayer
object.

0 The atalaLayer returned
must be added using
AddLayer or it (including child
annotations) will not be visible.

N/A

DeleteAnnotation(zindex: int) : bool

Deletes the atalaAnnotation
at the given z-index from the
CurrentLayer. Returns true on
success, false otherwise.

N/A

DeleteAnnotations(anns: Array) :
bool

Deletes an Array of
atalaAnnotations from their parent
atalaLayers. Returns true on
success, false otherwise.

N/A

DeselectAll()

Sets the Selected property of all
atalaAnnotations on all atalaLayers
to false, and hides their grips.

164

Atalasoft DotImage Developer's Guide

Server Name

JavaScript Syntax : Return value

Description

Annotations.CurrentLayer.Insert

InsertAnnotation(ann:
atalaAnnotation, zindex: int) : bool

Inserts the given atalaAnnotation
into the CurrentLayer, at the given
z-index, and automatically removes
it from it's previous parent object
(if any). Returns true on success,
false otherwise.

LoadAnnotationDataUrl

LoadAnnotations(url: string)

Loads annotation data from a URL
or virtual path.

N/A

SelectAll()

Sets the Selected property of all
atalaAnnotations on all atalaLayers
to true, and shows their grips.

Methods inherited from atalaWebImageViewer

Server Name

JavaScript Syntax

Description

N/A

ClearImage()

Clears the image from client side
only, used to return to a blank
state.

N/A

Focus()

Puts focus on the
WebImageViewer, used to enable
key events.

N/A

Invalidate()

Forces the WebImageViewer to re-
position child objects.

OpenUrl

OpenUrl(url: string)
OpenUrl(url: string, index: int)

Opens an image into the
WebImageViewer control from
a URL or virtual path, and frame
index.

0 This function is
asynchronous. If any code
needs to be executed after this
call, it should be placed in the
ImageChanged event handler.

N/A

PauseRefresh()

Pauses UI updates for this

control until ResumeRefresh is
called. Pauses and Refreshes are
nestable. The update happens
when an equal number of
ResumeRefresh and PauseRefresh
calls are made.

Print

Print()

Prints the current image using
javascript client code.

Redo

Redo()

Re-does an undo.

165

Atalasoft DotImage Developer's Guide

Server Name

JavaScript Syntax

Description

Invoke

Remotelnvoke(mthd : string)

Remotelnvoke(mthd : string, args :
Array)

Remotely invokes a server
side method with the array of
arguments.

0 This function is
asynchronous. If any code
needs to be executed after this
call, it should be placed in the
Remotelnvoked event handler.

N/A

ResumeRefresh()

Resumes paused UI updates for
this control. Pauses and Refreshes
are nestable. The update happens
when an equal number of
ResumeRefresh and PauseRefresh
calls are made.

N/A

ScrollBy(dx : int, dy : int)

Scrolls the viewer by the given
values.

N/A

ScrollTo(x: int, y: int)

Scrolls the viewer to the given
coordinates.

N/A

setZoomMode(value : int)

Zoom the image once, according to
the given AutoZoomMode.

Expected input: AutoZoomMode
or int from 0-5, 0:None 1:BestFit
2:BestFitShrinkOnly 3:FitToWidth
4:FitToHeight 5:FitToImage

Undo

Undo()

Reverts the image back to the
previously cached image.

0 This function is limited

to Image changes only.

The number of available
undos relies on the server side
Cachelevels property of the
control.

Update

Update()

Forces the current image to be
cached and updates the viewable
area.

AnnotationEvent

This object is based on the browser's mouse event object, if it pertains to a mouse event. The
following properties are in addition to the properties that are specified by each individual browser.

JavaScript

/* You will need a WebAnnotationViewer and a reference to ClientTools.js before this

snippet.

166

Atalasoft DotImage Developer's Guide

* This reference is automatically added to the page inline with the WebControls,
* so placing this snippet below the WebAnnotationViewer control will be sufficient.

*/

Atalasoft.Utils.InitClientScript (BindAnnotationEvents) ;
function BindAnnotationEvents () {

WebAnnotationViewerl.AnnotationDoubleClicked =
WebAnnotationViewerl.AnnotationRightClicked =

}

AnnotationEventExample;
AnnotationEventExample;

// This simple example alerts the user when an annotation is double or right clicked.
function AnnotationEventExample (e) {

var pos = Atalasoft.Utils.getMousePosition (e);
alert ('Event fired on annotation at position: ' + pos.X + 'x' + pos.Y);
}
Properties
Server Name JavaScript Syntax : Return value | Description
N/A annotation : atalaAnnotation The atalaAnnotation object that
this event was fired from, if any.
N/A layer : atalaLayer Returns null if this event was fired
from a layer.
AtalaLayer
This object represents the client side JavaScript version of an Atalasoft.Annotations.LayerAnnotation
object.
Properties

Server Name

JavaScript Syntax : Return value

Description

LayerAnnotation.Items

getAnnotations() : Array

Returns an array of annotations
that are contained in this layer.

N/A

getLayerIndex() : int

Returns an integer that
corresponds with the array index
of this layer.

LayerAnnotation.Visible

getVisibility() : string
setVisibility(value : string)

Gets or sets a value that indicates
whether the layer and child
elements are hidden or visible in
the control.

Expected input: string that is either
"hidden" or "visible"

Methods

Server Name

JavaScript Syntax : Return value

Description

LayerAnnotation.Items.Add

Add() : bool

Adds the given atalaAnnotation
to the annotation array at the top
most z-order. Returns true if the
add succeeded, false otherwise.

167

Atalasoft DotImage Developer's Guide

Server Name

JavaScript Syntax : Return value

Description

N/A

Delete() : bool

Deletes the atalaAnnotation at the
given index, and disposes of DOM
objects. Returns true on success,
false on failure.

LayerAnnotation.Iltems.Insert

Insert() : bool

Inserts the given atalaAnnotation
into the annotation array at the
given index. Returns true if the
insert succeeded, false otherwise.

Events

Server Name

JavaScript Syntax

Description

N/A Changed = function(e) Fires when the layer has changed.
N/A ItemsChanged = function(e) Fires when child annotations have
changed z-order.
AtalaAnnotation
This object represents the client side JavaScript version of an Atalasoft.Annotations.AnnotationUI
object.
Properties

Server Name

AnnotationUI. AspectRatio

JavaScript Syntax : Return value

getAspectRatio() : float
setAspectRatio(value : float)

Description

Gets or sets a value that indicates
the aspect ratio of this annotation.
A value of zero will not maintain

any aspect ratio.

N/A setEditorHtml(value : string) Sets the innerHTML of the DOM
object that is used to edit the
annotation.

N/A getEditorObject() : object Gets the DOM object that is used to

edit the annotation.

AnnotationUIL.Height

getHeight() : int
setHeight(value : int)

Gets or sets the height of the
annotation.

AnnotationUI.Movable

getMovable() : bool
setMovable(value : bool)

Gets or sets a value that indicates
whether the annotation can be
moved with the mouse.

AnnotationUI.Position

getParent() : atalaLayer

getPosition() : atalaPoint
setPosition(value : atalaPoint)

Gets the parent object of this
annotation.

Gets or sets the position of the
annotation.

getRectangle() : atalaRectangle

setRectangle(value :
atalaRectangle)

Gets or sets the size and position
of this annotation.

168

Atalasoft DotImage Developer's Guide

Server Name

JavaScript Syntax : Return value

Description

AnnotationUI.Resizable

getResizable() : bool
setResizable(value : bool)

Gets or sets a value that indicates
whether the annotation can be
resized with the mouse.

getSize() : atalaSize
setSize(value : atalaSize)

Gets or sets the size of this
annotation.

AnnotationUI.Selected

getSelected() : bool
setSelected(value : bool)

Gets or sets a value that indicates
whether the annotation is selected.

AnnotationULTooltip

getToolTip() : string
setToolTip(value : string)

Gets or sets the tooltip that is
displayed when the mouse is
moved over this annotation.

getType() : string

Gets the AnnotationData type for
this annotation.

AnnotationUI.Visible

getVisibility() : string
setVisibility(value : string)

Gets or sets a value that indicates
whether the annotation is hidden
or visible.

Expected input: string that is either
"hidden" or "visible"

AnnotationUIL.Width getWidth() : int Gets or sets the width of the

setWidth(value : int) annotation.

N/A getZIndex() : int Gets the z-index of this annotation.

Methods

Server Name JavaScript Syntax Description

N/A HideEditor() Hides the editor for this
annotation, if there is one.

N/A ShowEditor() Shows the editor for this
annotation, if there is one.

N/A Synchronize() Synchronizes the annotation
bounds with underlying data. This
should only be used if the data
object is being changed directly.

N/A Update() Synchronizes the client-side
annotation data with the server-
side annotation data, and requests
a new image from the server.

N/A Repaint() Sends a request to the server for a
new annotation image.

Events

Server Name JavaScript Syntax Description

N/A Changed = function(e) Fires when the annotation has
finished being modified.

169

Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax Description

N/A Changing = function(e) Fires while the annotation is
being modified through mouse
movement.

N/A Clicked = function(e) Fires when the annotation is
clicked.

N/A DoubleClicked = function(e) Fires when the annotation is
double clicked.

N/A MouseDown = function(e) Fires when a mouse button is
pressed down on the annotation.

N/A MouseDownLeft = function(e) Fires when the left mouse button is
pressed down on the annotation.

N/A MouseDownRight = function(e) Fires when the right mouse button
is pressed down on the annotation.

N/A MouseMove = function(e) Fires when the mouse cursor
moves over the annotation.

N/A MouseOut = function(e) Fires when the mouse cursor
leaves the annotation area.

N/A MouseOver = function(e) Fires when the mouse cursor
enters the annotation area.

N/A MouseUp = function(e) Fires when a mouse button is
released on the annotation.

N/A RightClicked = function(e) Fires when the annotation is right
clicked.

N/A Selected = function(e) Fires when the annotation is
selected.

ClientTools

ClientTools objects

The objects shown below are used to represent the System.Drawing structs that are used within the
server side portion of the DotlImage WebControls.

Usage
JavaScript

/* You will need a reference to ClientTools.js before this snippet.

* This reference is automatically added to the page,
WebControls,

inline with the DotImage

* so placing this snippet below one of these controls will be sufficient.

/

function ClientToolsObjectsExample () {

// Create a new atalaPoint
= new atalaPoint (20,

var myPoint
the point's values

// Change

myPoint.X =

myPoint.Y
// Create

a

40;
80;
new atalaSize

100) ;

170

Atalasoft DotImage Developer's Guide

var mySize = new atalaSize (320, 200);
// Change the size's values
mySize.Width = 40;

mySize.Height = 80;

// Create a new atalaRectangle

var myRect = new atalaRectangle (50, 50, 320, 200);
// Change the rectangle's values
myRect.X = 100;

myRect.Y = 100;

myRect.Width = 800;

myRect.Height = 600;

atalaPoint
This object mimics the System.Drawing.Point in syntax, for use on the client side.

Constructor

Server Name JavaScript Syntax Description

N/A atalaPoint(x : int, y : int) Creates a new atalaPoint
given the coordinates.

Properties

Server Name JavaScript Syntax Description

N/A X=int Gets or sets the X coordinate
for this atalaPoint.

N/A Y =int Gets or sets the Y coordinate
for this atalaPoint.

atalaSize

This object mimics the System.Drawing.Point in syntax, for use on the client side.

Constructor

Server Name JavaScript Syntax Description

N/A atalaSize(width: int, height : int) Creates a new atalaSize given

the height and width.

Properties

Server Name JavaScript Syntax Description

N/A Height = int Gets or sets the height of this atalaSize.
N/A Width = int Gets or sets the width of this atalaSize.

atalaRectangle
This object mimics the System.Drawing.Point in syntax, for use on the client side.

171

Atalasoft DotImage Developer's Guide

Constructor

Server Name JavaScript Syntax Description

N/A atalaRectangle(x : int, y : int, width : | Creates a new atalaRectangle given the

int, height : int) height, width, and coordinates.

Properties

Server Name JavaScript Syntax Description

N/A X=int Gets or sets the X coordinate for this
atalaRectangle.

N/A Y =int Gets or sets the Y coordinate for this
atalaRectangle.

N/A Height = int Gets or sets the height of this
atalaRectangle.

N/A Width = int Gets or sets the width of this
atalaRectangle.

ClientTools methods

Usage
JavaScript

/* You will need a reference to ClientTools.js before this snippet.
* This reference is automatically added to the page inline with the WebControls,
* so placing this snippet below one of these controls will be sufficient.
* This example also requires a WebImageViewer to demonstrate the usage of
atalaEventAdd.
x/ // execute this function on page load
atalaInitClientScript (ClientToolsMethodsExample) ;

function ClientToolsMethodsExample () {
// Add some event handlers to ZoomChanged, although it's possible to call
myOtherZoomEvent

// from myZoomEvent to achieve the same outcome, this demonstrates how multiple

functions

// can be added to any event on WebControls.

// Current context is usually the keyword 'this'
Atalasoft.Event.Attach(this, WebImageViewerl, 'ZoomChanged',6 myZoomEvent) ;
Atalasoft.Event.Attach(this, WebImageViewerl, 'ZoomChanged', myOtherZoomEvent) ;
// Run offsets example
ClientToolsOffsetExample () ;

// Bind document's mouse click event to get mouse position on click
document.onclick = myClickEvent;
}
function myZoomEvent () {
// do something zoom related
alert ('myZoomEvent: Zoom changed to ' + WebImageViewerl.getZoom()) ;
}
function myOtherZoomEvent () {
// do another thing zoom related
alert ('myOtherZoomEvent: Zoom changed to ' + WebImageViewerl.getZoom()) ;
}
function myClickEvent (e) {
// Most browsers pass in an event object (in this case 'e')
// If the given object is null, then it's probably using 'event'

172

Atalasoft DotImage Developer's Guide

if (le){
e event;

}

// Gets the page ba
var mp Atalasoft.
alert ('Mouse click

}

function ClientToolsOf

// Even though an object of the name WebImageViewerl already exists,
it is an object of type atalaWebImageViewer.

// element,
// DOM object, we u
var viewerDomObject
// Get the offset f
var x
// Get the offset f
var y

sed mouse position, taking
Utils.getMousePosition (e) ;
detected at x:' + mp.X + ' y:

fsetExample () {

se getElementById.

rom the left side of the page.

Atalasoft.DOM.getOffsetLeft (viewerDomObject) ;

rom the top of the page.

Atalasoft.DOM.getOffsetTop (viewerDomObject) ;

scroll position into account

'+ mp.Y);

it is not a DOM
To get the actual container

document.getElementById ('WebImageViewerl') ;

// Alert the current position of the WebImageViewerl DOM element

alert ('The WebImage

Viewerl DOM element is ' + x + '

pixels from the left,

and ' + vy

+ ' pixels from the top.');

}

Server Name JavaScript Syntax : Return value Description

N/A Atalasoft.Event.Attach(context : object, Appends a given function to be
target : object, name : string, event : executed on the target object when
function) the event name fires within the
atalaEventAdd(context : object, target : current context.
object, name : string, event : function) Please see above example for

syntax.

N/A Atalasoft.Utils.getMousePosition(event : Attempts to get the mouse position
object) : atalaPoint from the event object passed
atalaGetMousePosition(event : object) : in. Actual mouse position is added
atalaPoint to the current scroll position

(if any), to get true page based
position. CSS1 comparability mode
is also supported.
Expected input: browser created
mouse event object.

0 This method does not

sanity check the input object

for performance reasons.

N/A Atalasoft. DOM.getOffsetLeft(domElement : | Gets the number of pixels on the
object) : int X-axis from the given object to the
atalaGetOffsetLeft(domElement : object) : int | top of the DOM tree recursively.

N/A Atalasoft. DOM.getOffsetTop(domElement : | Gets the number of pixels on the
object) : int Y-axis from the given object to the
atalaGetOffsetTop(domElement : object) : int | top of the DOM tree recursively.

N/A Atalasoft.Utils.InitClientScript(function : Adds a function or script to be
string) executed when the page has
atalalnitClientScript(function : string) finished loading.

Expected input: function or string
of JavaScript.

173

Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax : Return value Description
N/A Atalasoft.Utils.UrIDecode(value : string) : Returns a decoded string that was
string url encoded with atalaUrlEncode.

atalaUrIDecode(value : string) : string

N/A Atalasoft.Utils.Url[Encode(value : string) : Returns an encoded string, so that
string it can be used in a url.

atalaUrlEncode(value : string) : string

Enums
Enumeration objects

The objects shown below are used to represent the enumerations that are used within the server
side portion of the DotlImage WebControls. These objects do not need to be instantiated.

Usage
Javascript

/* You will need a reference to Enums.js before this snippet.
* This reference is automatically added to the page, inline with the WebControls,
* so placing this snippet below one of these controls will be sufficient.
*/ function EnumsExample () {
// Best fit the image to the size of the WebImageViewer
WebImageViewerl.setAutoZoom (AutoZoomMode.BestFit) ;

// Scale 1-bit images to 8-bit grayscale for zoom levels less than 1
WebImageViewerl.setAntialiasDisplay (AntialiasDisplayMode.ScaleToGray) ;

// Sets the mouse tool to zoom in on a left click, and zoom out on a right click
WebImageViewerl.setMouseTool (MouseToolType.ZoomIn, MouseToolType.ZoomOut) ;

// Sets the interact mode to modify for annotation editing
WebAnnotationViewerl.setInteractMode (AnnotationInteractMode.Modify) ;

// Sets the mouse cursor to a cross hair
WebImageViewerl.setMouseToolCursor (MouseToolCursor.Crosshair) ;

}
AutoZoomMode

This object mimics the Atalasoft.Imaging.WebControls.AutoZoomMode enumeration, for use on the
client side. Specifies the automatic zoom setting of the image displayed in the control.

Properties

Server Name JavaScript Syntax Value Description

None None 0 Does not change the zoom of the
image based on image size.

BestFit BestFit 1 Fits the image by sizing the width or
height to best fit the control.

BestFitShrinkOnly BestFitShrinkOnly 2 Fits the image by sizing the width or
height to best fit the control.

FitTowidth FitTowWidth 3 Fits the image by sizing the width to
fit the control.

174

Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax Value Description

FitToHeight FitToHeight 4 Fits the image by sizing the height to
fit the control.

FitToImage FitToImage 5 Fits the image by sizing the control to

the size of the image.

AntialiasDisplayMode

This object mimics the Atalasoft.Imaging.WebControls.AntialiasDisplayMode enumeration, for use
on the client side. Specifies the antialias display mode that can be set to the control.

Properties

Server Name JavaScript Syntax Value Description

None None 0 Do not antialias (fastest performance)

ScaleToGray ScaleToGray 1 Only antialias 1-bit document images
for zoom levels less then 1.

ReductionOnly ReductionOnly 2 Antialias all pixel formats when zoom
level is less then 1.

Full Full 3 Antialias all images for all zoom levels.

MouseToolType

This object mimics the Atalasoft.Imaging.WebControls.MouseToolType enumeration, for use on the

client side. Specifies the behavior of the mouse.

Properties

Server Name JavaScript Syntax Value Description

None None 0 Specify no special mouse behavior.

Center Center 1 Clicking the mouse will center the
area clicked.

Selection Selection 2 Mouse will be set to crosshairs and
can be used to drag and modify a
selection rectangle on the image.

ZoomIn ZoomIn Clicking will zoom in.

ZoomOut ZoomOut 4 Clicking will zoom out.

ZoomArea ZoomArea 5 Zoom in on a specified area defined
by dragging a rectangle onto the
image.

Pan Pan 6 Clicking and dragging the mouse will
scroll the image.

PassThrough PassThrough 7 Clicking on the image will postback
the page, used for custom
MouseTools.

175

Atalasoft DotImage Developer's Guide

ScrollBarVisibility

This object mimics the Atalasoft.Imaging.WebControls.ScrollBarVisibility enumeration, for use on
the client side. Specifies the scroll bar visibility.

Properties

Server Name JavaScript Syntax Value Description

Dynamic Dynamic 0 Automatically show or hide the
horizontal and vertical scrollbars as
the control or image resizes.

None None 1 Never show scroll bars.

Always Always 2 Always show scroll bars.

AnnotationInteractMode

This object mimics the Atalasoft.Imaging.WebControls.AnnotationInteractMode enumeration, for
use on the client side. Specifies the annotation viewer interaction mode (with the mouse)

Properties

Server Name JavaScript Syntax Value Description

None None 0 Do not allow interaction with an
annotation -- pass through to viewer

Modify Modify 1 Annotations can be selected, moved
and resized using the mouse.

Author Author 2 Annotations can be created, selected,
moved and resized using the mouse.

Annotation tool

This object mimics the Atalasoft.Imaging.WebControls.AnnotationInteractMode enumeration, for
use on the client side. Specifies the annotation viewer interaction mode (with the mouse)

Properties

Server Name JavaScript Syntax Value Description

N/A None 0 No annotations are created

N/A Line 1 Line annotations are created by
pressing the left mouse button down,
dragging, and releasing the button

N/A Lines 2 Multi-line annotations are created by
left-clicking the mouse for each point,
right clicking stops editing

N/A Freehand 3 Freehand annotations are created by
pressing the left mouse button down,
dragging, and releasing the button

N/A Polygon 4 Multi-side polygon annotations are
created by left-clicking the mouse for
each point, right clicking stops editing

176

Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax Value Description

N/A Ellipse 5 Ellipse annotations are created by
pressing the left mouse button down,
dragging, and releasing the button

N/A Rectangle 6 Rectangle annotations are created by
pressing the left mouse button down,
dragging, and releasing the button

MouseToolCursor

Properties

Server Name JavaScript Syntax Value Description

Auto Auto 0 Mouse cursor is automatically
set based on the MouseTool and
AnnotationTool

Arrow Arrow 1 Mouse cursor is an arrow

Crosshair Crosshair 2 Mouse cursor is a crosshair

Grab Grab 3 Mouse cursor is a grabbing hand

Hand Hand 4 Mouse cursor is a hand with the index
finger pointing up

Move Move 5 Mouse cursor is a cross with arrows in
all four directions

ZoomlIn ZoomlIn 6 Mouse cursor is a magnifying glass
with a plus

ZoomOut ZoomOut 7 Mouse cursor is a magnifying glass
with a minus

Custom Custom 8 Mouse cursor is defined by the
MouseToolCustomCursor value

Windows form control

Rubberbands and Selection

The Rubberband component in the Atalasoft.Imaging.WinControls namespace can be used to
select a region of an image. The Rubberband class is an abstract class (Must Inherit in Visual Basic).
DotImage contains several default implementations of this class.

These Rubberband components are available in the toolbox when you add a reference to the
DotImage WinControls to your project.

Component
LineRubberband

Description

Draw lines on an image

RectangleRubberband Draw rectangles and rounded rectangles

177

Atalasoft DotImage Developer's Guide

Component Description

EllipseRubberband Draw and select ellipses

RectangleSelection Select a rectangular area or resize an existing
selection (animated by default)

Use a Rubberband

Any object that is derived from Rubberband requires that you specify a Viewport as the Parent.
Because the Rubberband is a component located in the toolbox, you can do this interactively on
your WinForm by dropping a Rubberband onto a form that contains a Viewport (WorkspaceViewer,
ImageViewer, or BitmapViewer). Then, choose the the appropriate Viewport as the Parent in the
property browser.

By default, the Rubberband will not be active. An active Rubberband responds to mouse events
and can be actively created and resized. An inactive Rubberband will remain displayed if visible,
but cannot be removed, moved or created interactively. Only one Rubberband per Viewport can
be active at one time. If two Rubberbands are set in a Viewport, activating one automatically
deactivates the other.

Viewport Selection

You can set the Selection property of the Viewport control to any Rubberband. In the Form designer,
you can set this property to any Rubberband that is on the form. When the MouseTool property

is set to Selection, the selection Rubberband is used. If Selection is set to null (Nothing in Visual
Basic), a default RectangleSelection is used. The RectangleSelection extends the Rubberband and
includes cosmetic features such as animation, animation speed, and the ability to resize an existing
selection.

Obtain a region

While the Rubberband has a Rectangle property that returns the rectangular coordinates of the
selection, there is also a GetRegion() method that returns the region occupied by the Rubberband.
This region may not always be rectangular. For example, the EllipseSelection always returns a
region in the shape of an ellipse. You can then apply this region to any ImageRegionCommand.
Rubberband pen

Set the Pen property of the Rubberband to change color, width, or style.

Set the Inverted property to true to draw an XOR style Rubberband. An XOR Rubberband inverts the
colors when it draws, creating an always-visible, and very efficient Rubberband.

A solid color Rubberband must invalidate the rectangular region while it is being drawn, which is
not as efficient as XOR.

Aspect ratio

If the entity you are drawing or selecting needs to maintain a particular aspect ratio (the width /
height of the image, for example), you can set the AspectRatio property to a value greater than 0.
This forces the entity to be drawn at the desired aspect ratio closest to the actual mouse position.
Other uses of the Rubberband

You can use the Rubberband for more than just a selection. such as drawing primitives onto an
image.

You can use the Rubberband to define the size and position of the primitive, and then draw the
primitive onto the image.

178

Atalasoft DotImage Developer's Guide

O 1nsome cases, the DotImage Annotations SDK might be more appropriate for this task.

Print images

Atalasoft DotImage offers two printing components for advanced image printing.
+ ImagePrintDocument

prints a single or a collection of AtalaImage objects. It provides options to center the image or
resize the image to fit the page, and handles all of the calculations for differences between the
image and printer resolutions.

+ ImageCompositePrintDocument

is designed to print a photo composite of multiple images. It supports common photo layouts
such as full page prints, 8 x 10 prints, 4 x 6 prints (3 per page), wallets, and contact sheets. Metric
sizes are also available.

Use ImagePrintDocument

ImagePrintDocument is a component that can be added to the Visual Studio toolbox and dropped
onto a form. There are two ways to interact with the ImagePrintDocument.

1.

2.

Set the Image, or Images property, and those image/images will be printed when calling the
Print() method.

Handle the Getlmage event (or override the OnGetImage() method) and set the image in the
PrintimageEventArgs. This eliminates the requirement for all images to be in memory before
printing.

The following example demonstrates how to print a single image using the
ImagePrintDocument by setting the Image Property.

Example
C#

ImagePrintDocument myPrintDocument = new ImagePrintDocument () ;
myPrintDocument.Image = mylmage;

myPrintDocument.Center = true;

myPrintDocument.Print () ;

Use the PrintDialog component to display a dialog allowing printer properties to be adjusted
prior to printing. To do so, set the ImagePrintDocument object to the PrintDialog.Document
property. Show the dialog prior to calling the PrintimageDocument.Print() method. This stores
any print options set by the user into the ImagePrintDocument object. An example is shown
below.

Example
C#

PrintDialog myPrintDialog = new PrintDialog() ;
myPrintDialog.Document = imagePrintDocumentl;
if (myPrintDialog.ShowDialog(this) == DialogResult.OK)
{

imagePrintDocumentl.Print () ;

}

179

Atalasoft DotImage Developer's Guide

Print multiple images

To print several images at one time, any of the following options can be chosen:
» Set the Images property to an array of Atalalmage objects.

+ Pass an ImageCollection containing the images to the constructor.

+ Pass any number of Atatalmage objects to the constructor.

+ Do not set the Image or Images property. Onstead, handle the Getimage event, setting the
HasMorePages property of the PrintimageEventArgs to true until all images are printed.

Calling the Print() method invokes the printing process. See the ImagePrintDocument object
reference for more information and examples.

Use ImageCompositePrintDocument

ImageCompositePrintDocument differs from the ImagePrintDocument in that it is used to print
image composites, or multiple images that laid out on a single or multiple pages. The Layout
property controls the type of composite to print. The available sizes are listed in the table that
follows.

English Sizes Metric Sizes Images Per Page
FullPage FullPage 1

8"x 10" 20cm x 35cm 1

5"x 7" 13cm x 18cm 2

4" x 6" 10cm x 15cm 2

4" x 6" Best Fit 10cm x 15cm Best Fit 3

3.5"x 5" 9cm x 13cm 4

Wallet Wallet 9

Contact Sheet Contact Sheet 35

To use this component, the Printimage event must be handled, and the Image property of the

PrintCompositeEventArgs must be set to the Atalalmage to print. To indicate that there are more
images, set the HasMorePages property to true. To give each image a caption, set the Caption
property in the Printimage event.

See the ImageCompositePrintDocument object reference for more information and examples.

Customize printing

The ImagePrintDocument can be extended in order to customize a print job. For example, to add
a text watermark to every page, handle the AfterPrintPage event, then draw the appropriate text
string onto the Graphics object. To control the properties of each page on a "page by page" basis,
handle the PrintPage event and change the properties appropriately (for example, portrait to
landscape).

180

Atalasoft DotImage Developer's Guide

Use Dotlmage in Winform applications

This section provide examples of how to use Dotlmage in WinForms applications developed with
Microsoft .NET.

Although sample code is provided only for C#, DotImage works with any CLS compliant language.

When using DotIlmage to display images in a Windows Forms .NET application, %company%
recommends using the WorkspaceViewer control. The namespace Atalasoft.Imaging.WinControls
contains the user interface classes and controls that can be used in a WinForm application. For
displaying a list of thumbnails, see the ThumbnailView or the FolderThumbnailView.

Add WorkspaceViewer control to the toolbox

1. On the Visual Studio .NET menu, select Tools > Customize Toolbox.

2. Make sure the .NET Framework Components tab is selected, and find the
Atalasoft.Imaging.WinControls namespace.

3. Select the WorkspaceViewer control check box.
4. Click OK.

Control the WorkspaceViewer behavior

After dropping the WorkspaceViewer control onto a form, the behavior of the WorkspaceViewer is
modified by changing the properties in the development environment (IDE). Many of the properties
will look familiar as the WorkspaceViewer control inherits from System.Windows.Forms.Control. One
especially useful property that is inherited from Control is Anchor. The top, right, bottom, and left
sides of the control can be anchored to the form so that the WorkspaceViewer is resized with the
form.

The following properties are specific to the imaging aspects of this control and can be modified in
the IDE:

* Image

+ Selection

« AntialiasDisplay

+ Centered:Atalasoft.DotImage.WinControls
* Zoom

» AutoUpdate

* AutoZoom

+ Asynchronous

+ UndoLevels

These properties are documented in the object reference.

Open and save images

The following sample code opens an image and saves it as a JPEG with a quality of 90.

181

Atalasoft DotImage Developer's Guide

C#

using Atalasoft.Imaging.codec;

workspaceViewerl.Open ("c:\\myimage.tiff") ;
workspaceViewerl.Save ("c:\\myimage.jpg", new JpegEncoder (90)) ;

Add image processing

To extend upon the previous example, this sample code blurs the image by passing a
BlurGuassianCommand into the Workspace.ApplyCommand method.

C#

using Atalasoft.Imaging.codec;

workspaceViewerl.Open ("c:\\myimage.tiff");
workspaceViewerl.ApplyCommand (new BlurGaussianCommand (20)) ;
workspaceViewerl.Save ("c:\\myimage. jpg", newdpegEncoder (90)) ;

Import namespaces

DotImage separates functionality into logical namespaces. To avoid typing the entire namespace
when referencing a DotImage class, you may use the following Imports (or using in C#) statements.

C#

[C#]

using Atalasoft.Imaging;

using Atalasoft.Imaging.Codec;

using Atalasoft.Imaging.ColorManagement;

using Atalasoft.Imaging.Drawing;

using Atalasoft.Imaging.ImageProcessing;

using Atalasoft.Imaging.ImageProcessing.Channels;
using Atalasoft.Imaging.ImageProcessing.Document;
using Atalasoft.Imaging.ImageProcessing.Effects;
using Atalasoft.Imaging.ImageProcessing.Fft;
using Atalasoft.Imaging.ImageProcessing.Filters;
using Atalasoft.Imaging.ImageProcessing.Transforms;
using Atalasoft.Imaging.Metadata;

using Atalasoft.Imaging.WinControls;

Display thumbnails

DotImage can be used to view thumbnail images using the ThumbnailView or FolderThumbnailView
controls. These controls are available in DotImage Photo Pro and DotImage Document Imaging.

The ThumbnailView control displays a list of thumbnail images from a set of files, or in-memory
AtalaImage objects. The FolderThumbnailView displays thumbnail images of images in a particular
folder path.

The following ThumbnailView features are supported:

* Load an image from a file or AtalaImage with the Add() method.

+ Bind the items in the ThumbnailView to a data source.

+ Load thumbnails in a background thread pool by setting the Asynchronous property to true.

182

Atalasoft DotImage Developer's Guide

+ Sort thumbnails on one of the ThumbViewAttribute's such as FileName, DateModified, Size, Type,
and DisplayName controlled by the SortBy property.

« Control the caption displayed for each thumbnail with the DisplayText property.
+ Include a background image for each thumbnail by setting the ThumbnailBackground property.

« Control the layout to display the thumbnails in a vertical or horizontal manner with the
ThumbnailLayout property.

+ Set the spacing between the thumbnails with the Spacing property.

+ Control the margin area to provide space around all of the thumbnails by setting the Margins
property.

» Enumerate through each Thumbnail in the ThumbnailView control with the Items property.

+ Control the size of the thumbnails with the ThumbnailSize property.

+ Set the number of lines allocated for the caption with the CaptionLines property.

Possible uses for the ThumbnailView include:
+ Showing each page of a multipage TIFF, or
+ Displaying thumbnails from a non-file database

The FolderThumbnailView extends the ThumbnailView and is intended for showing thumbnails of
each image in a directory. It includes all features of the ThumbnailView plus those listed here:

+ The ability to view thumbnails from any folder by setting the ImageFolder property.

+ The ability to specify an extension filter determine which file extensions to attempt to load as a
thumbnail with the ExtensionFilter property.

* The FolderThumbnailView watches for changes in the file system and automatically add
or update thumbnails if files are added, removed, renamed, or modified from the current
ImageFolder.

» Count the number of valid images in a specified folder with the GetFolderImageCount() method.

« Show progress information as each thumbnail is loaded with the FolderLoadProgress event which
is fired for each thumbnail that is loaded from a folder.

Work with WPF images

The following instructions show how to use DotImage AtalalmageViewer in a Windows Presentation
Foundation (WPF) application.

The example code that follows is written in C#; however any CLS compliant language can be used.

Add the AtalalmageViewer control to a WPF windows application

There are several possible ways to creating a WPF application. The following example uses Visual
Studio and its XAML source editor to create the project.

1. Open Visual Studio and start a new WPF Windows Application project.
2. Add the following references:

+ Atalasoft.dotimage

+ Atalasoft.dotiImage.Lib

+ Atalasoft.dotImage.Wpf

+ Atalasoft.Shared

183

Atalasoft DotImage Developer's Guide

To launch the editor, click Window1.xaml.

Use the form designer to set the window size, title and other common options
Switch to XAML source view.

Add the following XML namespace to the Window tag:

U

xmlns:atala="clr-namespace:Atalasoft.Imaging.Wpf;assembly=Atalasoft.dotImage.Wpf"

7. Inside the Grid tag, add the following code:

<Grid.ColumnDefinitions> <ColumnDefinition/> </Grid.ColumnDefinitions>
<Grid.RowDefinitions> <RowDefinitionHeight="22"/> <RowDefinition/

> </Grid.RowDefinitions> <MenuGrid.Column="0"Grid.Row="0">
<MenultemHeader=" File"> <MenultemHeader=" Open"Click="OnOpenFile"/

> <MenultemHeader="_Save"Click="OnSaveFile"/> <Separator/>
<MenultemHeader="E xit"Click="OnExit"/> </Menultem> </Menu>
<atala:AtalaImageViewer Name="Viewer"Grid.Column="0"Grid.Row="1"/>

8. Open the Window1.xaml.cs file and add the following file menu event handlers:
9. Build and run the application.

Use MouseTools

AtalalmageViewer has a MouseTool property which takes any class deriving from the MouseTool
class. This allows you to create custom mouse tools for the viewer. The Dotimage WPF component
provides several commonly used tools including selection, panning, magnifier and zoom.

The following code tells the viewer to use the panning tool:

this.Viewer.MouseTool = new PanningMouseTool () ;

All The viewer mouse tools have common default values making it easy to switch between the tools.
You may want to modify the look or behavior of a tool to better fit your application or preference.

For instance, the PanningMouseTool can have two cursors; one for the normal cursor and another
for a mouse down (grab) cursor.

Use ASP.NET WebForm controls

Work with remote events

The WebImageViewer control provides the ability for an ASP.NET Page object to receive an event
when a client side script requests a remote invocation. When JavaScript performs a Remotelnvoke,
an http POST is performed to send parameters back to the server side. To get similar capabilities
without the complexity of events, see the section about remotely invoking Page() methods.

Remote Invoke Event Arguments

A handler for a Remote Invoke Event receives an object of type RemotelnvokeEventArgs. This object
contains three properties: Page, Parameters, and ReturnValue.

Property Description

Page Object of type System.Web.UI.Page that contains the WebImageViewer that
received the event.

184

Atalasoft DotImage Developer's Guide

Parameters Object of type System.Collection.Specialized.NameValueCollection which
contains all parameters provided by the POST.

ReturnValue ArrayList which is used by event handlers to pass information back. Typically the
return value is a one element array list containing a string that represents the
return value of the method which has been remotely invoked.

Parameters

In addition to other keys provided to the WebImageViewer, there is a key with the name atala_rm.
This key is associated with the name of the method requested to be invoked. To retrieve the method
name from the Parameters property, do the following.

string methodName = eventArgs.Parameters.Get ("atala rm");

For each parameter passed in has a key with a name that follows this pattern:

atala ra<type><parameter number>

<type>is s, b, or n, depending on whether this parameter is a string, a bool, or a number,
respectively. The table that follows summarizes this relationship.

S string
b bool
n number

<parameter number> is an integer starting from 0 that corresponds to the position of the
parameter in the array passed into the JavaScript Remotelnvoke().

Parameters can be retrieved with code:

int 1 = 0;
ArrayList params = new ArrayList();
ArraylList types = new ArrayList();
while (true)
{
string val;
val = eventArgs.Parameters.Get ("atala ras" + 1);
if (val !'= null) {
types.Add (typeof (string)) ;
params.Add (val) ;
SIS
continue;
}
val = eventArgs.Parameters.Get ("atala ran" + 1);
if (val !'= null) {
types.Add (typeof (double)) ;
params.Add (Convert.ChangeType (val, typeof (double))) ;
e g
continue;
}
val = eventArgs.Parameters.Get ("atala rab" + 1i);
if (val != null) {
types.Add (typeof (bool)) ;
params.Add (Convert.ChangeType (val, typeof (bool)));
i++;
continue;
}

break;

185

Atalasoft DotImage Developer's Guide

Write an event handler

To write a Remotelnvoke event handler, first create the method which will receive the event. This
method must take an object and a RemotelnvokeEventArgs and have no return type. Such an event
handler might look like the example shown below.

Remotelnvoke Event Handler

private void HandleRemoteInvoke (object sender, RemotelInvokeEventArgs args)

{

// your event handling code goes here

}

To install the event handler, tell the WebImageViewer to add your event handler into its chain as
shown in the following example.

webImageViewerl.RemoteInvoke += new RemoteInvokeHandler (this.HandleRemoteInvoke) ;

Remotely invoke ASP.NET page methods

The WebImageViewer control provides the ability to call methods in the owning ASP.NET Page
object via client side JavaScript. In addition to being able to send typed information to the Page
object, the return value for the remote method is sent back to the calling JavaScript code.

Terminology

The terms listed here are used in the documentation.

Term Definition

Server side Code or objects that are invoked on an ASP server

Client side Code or objects that are invoked in a user's browser

Parameter Value that is passed from one function or method to another

Signature Combination of parameter types and the return type of a function or method

Prepare a server side method for remote invocation
To invoke a method remotely, it must meet the following criteria:

» The method must be a member of a Page object that contains a WebImageViewer
+ The method must be public
» The method must be marked with the Remotelnvokable attribute
« Parameters of the method must be one of the following types:
+ int
+ double
+ bool
+ string
+ The method must return a type that can be converted to a string. Null or no return value are also
acceptable.

186

Atalasoft DotImage Developer's Guide

An example of a possible method is shown below.
[Atalasoft.Imaging.WebControls.RemoteInvokable]

public bool WaterMark (int x, int y, string message) { ... }

Call a method from JavaScript

To invoke a method within a server side Page object from JavaScript, the client side code must call

the Remotelnvoke() method of the JavaScript object atalaWebImageViewer. The first argument is a
string representing the name of the method to invoke. The second argument is an array of values

that is passed to the remote method.

An example of a client side remote invocation is provided below.

WebImageViewerl.RemoteInvoke ("WaterMark", new Array (100, 100, "Preview Only"));

Get the return value from a Remotelnvoke

Remotelnvokable() methods can have a return value, as long as they return a type that can be
converted to a string. Because the return value is populated asynchronously, the JavaScript
WebImageViewer.Remotelnvoked event needs to be handled. An example is shown below.

Parameter type conversion

JavaScript has a limited number of built-in data types that can be readily identified within a

client side script. These are number, bool, and string. The JavaScript method Remotelnvoke()
bundles up each parameter with information about its data type so that it can be correctly used

on the server side. Server side code makes further effort to automatically distinguish between

the JavaScript notion of a generic number and the .NET notion of an integer or a floating point
number. If a JavaScript number arrives on the server which contains a decimal or an exponent, it will
automatically be promoted to a floating-point number. Otherwise, the number is assumed to be an
integer.

No attempt is made to interpret the contents of a string.
Method identification

.NET languages can define functions or methods with the same name but different signatures.
These are called overloaded methods. Server side code attempts to find the version of a method
that best matches the parameters passed from JavaScript. The match happens in two stages. Server
side code first tries to find an exact match where each client-passed parameter type matches the
server side parameter type exactly. If there are no matches, server side code then tries to find a
method for which numeric parameters can be converted without loss of information.

Example

If the client side includes this remote invocation:

WebImageViewerl.RemoteInvoke ("Overload", new Array(l, 2));

and the server side has the following methods defined:
[Atalasoft.Imaging.WebControls.RemoteInvokable]

public string Overload(int a, int b) { ... }
[Atalasoft.Imaging.WebControls.RemoteInvokable]
public string Overload(double a, double b) { ... }

187

Atalasoft DotImage Developer's Guide

then the Remotelnvoke matches the first method, since it takes two integers as parameters.

If, instead, the client side had the following remote invocation:

WebImageViewerl.RemoteInvoke ("Overload", new Array (1.0, 2));

Then the Remotelnvoke matches the second method although it is not a perfect match.

Open images from a browser

This example code shows how to load a file from the browser, save it in the file cache, and load it
into the control.

Load File. Save to Cache, and Load into Control
C#

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;
namespace DotImageWebControlsDemo
{
/// <summary>
/// Summary description for WebForml.
/// </summary>
public class WebForml : System.Web.UI.Page
{
protected Atalasoft.Imaging.WebControls.WebImageViewer WebImageViewerl;
protected System.Web.UI.WebControls.Button Buttonl;
protected System.Web.UI.WebControls.Label Labell;
protected System.Web.UI.HtmlControls.HtmlInputFile Filel;

private void Page Load(object sender, System.EventArgs e)
{
// Put user code to initialize the page here
}
#region Web Form Designer generated code
override protected void OnInit (EventArgs e)
{
//
// codeGEN: This call is required by the ASP.NET Web Form Designer.
//
InitializeComponent () ;
base.OnInit (e);

}

/// <summary>

/// Required method for Designer support - do not modify

/// the contents of this method with the code editor.

/// </summary>

private void InitializeComponent ()

{
this.Buttonl.Click += new System.EventHandler (this.Buttonl Click);
this.Load += new System.EventHandler (this.Page Load);

188

Atalasoft DotImage Developer's Guide

#endregion
private void Buttonl Click (object sender, System.EventArgs e)
{
string cachePath = System.Configuration.ConfigurationSettings.
AppSettings["AtalasoftWebControls Cache"];
string fullPath = Page.MapPath (cachePath) ;
string fileName;
if (Filel.PostedFile.FileName.Length != 0)
{
fileName = System.IO.Path.GetFileName (Filel.PostedFile.FileName) ;
try
{
// Save uploaded file to server
Filel.PostedFile.SaveAs (fullPath + fileName) ;
}
catch (Exception exc)
{
Labell.Text = "Error saving file " + cachePath + fileName +
"
" + exc.Message;

try
{
// Set main viewer to the users image
WebImageViewerl.OpenUrl (cachePath + fileName) ;
}

catch (Exception exc)

{
Labell.Text = "Error opening file " + cachePath + fileName +
"
" + exc.Message;

}

else
Labell.Text = "Error: You must specify a file name.";

{
HTML to run the preceding code

<form id="WebForml" method="post" runat="server" encType="multipart/form-data">

<table id=Tablel cellspacing=0 cellpadding=0 width=300 align=center border=0>

<tr>
<td>
<p align=center>
<ccl:WebImageViewer id=WebImageViewerl runat="server"></ccl:WebImageViewer>

<input id=Filel type=file name=Filel runat="server">

<asp:Button id=Buttonl runat="server" Text="Submit"></asp:Button></p>
<p align=center> </p>
<p style="FONT-WEIGHT: bold; COLOR: red" align=center><asp:Label id=Labell
runat="server"></asp:Label></p>
</td>
</tr>
</table>
</form>

189

Atalasoft DotImage Developer's Guide

Import namespaces

Atalasoft DotImage separates functionality into logical namespaces. To avoid typing the entire
namespace when referencing a Atalasoft DotImage class, you may use the following Imports (or
using in C#) statements.

C#

using Atalasoft.Imaging;

using Atalasoft.Imaging.codec;

using Atalasoft.Imaging.ColorManagement;

using Atalasoft.Imaging.Drawing;

using Atalasoft.Imaging.ImageProcessing;

using Atalasoft.Imaging.ImageProcessing.Channels;
using Atalasoft.Imaging.ImageProcessing.Document;
using Atalasoft.Imaging.ImageProcessing.Effects;
using Atalasoft.Imaging.ImageProcessing.Fft;
using Atalasoft.Imaging.ImageProcessing.Filters;
using Atalasoft.Imaging.ImageProcessing.Transforms;
using Atalasoft.Imaging.Metadata;

using Atalasoft.Imaging.WebControls;

Display image in the current output stream

You can use Atalasoft DotImage to display an image in the current output stream.

Use the class library
C#

workspace.Open (Server.MapPath ("myimage.tiff"));
Response.ContentType = "image/jpeg";
workspace.Save (Response.OutputStream, new JpegEncoder (90)) ;

WebControls

When using Atalasoft DotImage to display images in an ASP.NET Web application, we recommend
that you use the WebImageViewer control. The namespace Atalasoft.Imaging.WebControls contains
the user interface classes and controls that can be used in a WebForm application.

To add the Atalasoft DotImage WebControls to the toolbox:

1. Click Tools | Customize Toolbox on the Visual Studio .NET menu.

2. Make sure the .NET Framework Components tab is selected, and find the
Atalasoft.DotImage.WebControls and Atalasoft.DotImage.WebControls.Annotations
namespaces.

3. Select the checkboxes that correspond to the WebImageViewer, WebThumbnailViewer, and
WebAnnotationViewer controls.

4. Click OK.

WeblImageViewer, WebThumbnailViewer, and WebAnnotationViewer are included in your toolbox
and you can drag and drop these controls onto your form.

190

Atalasoft DotImage Developer's Guide

File Cache

The WebImageViewer, WebThumbnailViewer, and WebAnnotationViewer controls require a writable
folder for caching images and other data. This folder needs to be mappable from your application
directory.

1. Create a directory for the image cache within your wwwroot directory ex: /ImageCache/.

O when using ASP.NET, you can only put the cache folder inside the application folder if
the AtalasoftWebControls CacheFilesOnly Web.config key is set to true. This is the
default behavior in Atalasoft Dotlmage 4.0 and up. If the

AtalasoftWebControls CacheFilesOnly Web.config

key is set to false, ASP.NET will recompile and end all sessions for the application every time
images are deleted from the cache.

2. Make sure this directory is writable by applications, you can do this using the IIS control panel.
You may also need to grant the MACHINE\ASPNET user account Modify permissions over this
folder in Windows Explorer.

When using impersonation, you will need to make sure that every user account that is being
impersonated, has Modify permissions over this folder. Using the ASPNET user account is not
enough, and can cause intermittent problems.

3. Modify your Web.config file by adding these lines inside the <appSettings> tags:

<add key="AtalasoftWebControls Cache" value="/ImageCache/" />
<add key="AtalasoftWebControls CacheLifeTime" value="60" />

These two lines control where the cache files are saved, and how many minutes they stay in
there. The control will not work at all if it cannot write the images to this location.

Control the WebImageViewer behavior

After you drop the WebImageViewer control onto your form, change the development environment
(IDE) properties to modify WebImageViewer behavior. Many of the properties will look familiar to
you because the WebImageViewer control inherits from Control.

The following properties are specific to the imaging aspects of this control and can be modified in
the IDE:

+ Image

+ AntialiasDisplay
» Centered

e Zoom

* AutoZoom

JavaScript with Atalasoft DotImage WebControls

All Atalasoft DotImageWebControls offer a JavaScript API so that a rich client interface can be
created in the browser. Many of the properties and events available in code-behind are available in
the JavaScript API under the same name.

191

Atalasoft DotImage Developer's Guide

WebAnnotationViewer
There are several files used in the control, that are stored within the compiled WwebControls dl11l.

You can put these files can in a location accessible from your application to speed up the loading
of the control. By default, they are installed into the C: \Program Files (x86)\Atalasoft
\DotImage 11.5\bin\WebResources directory.

To link to these files, do the following:
1. Create a directory for the resources within your wwwroot directory ex: /files/.

2. Copyallfilesthatareinthe C:\Program Files (x86)\Atalasoft\DotImage 11.5\bin
\WebResources directory to the new one you made.

3. Set the PathToResources web.config AtalasoftWebControls_ResourcePath appSetting to the
relative or virtual path to your /files/ directory. If you have set up the path correctly, the
JavaScript and images used load from the Resources directory instead of through the assembly
and startup is faster.

e.g. Modify your Web . config file by adding this lines inside the <appSettings> tags:
<add key="AtalasoftWebControls ResourcePath" value="/files/" />

© previous versions of DotImageWebImageViewer had images for drawing the scrollbar.
Scrollbars are now drawn by the browser and you cannot override the look and feel with
images in the resource directory.

Image Capture

Web scanning

Web Capture Service includes a set of integrated components that can be used to easily capture-
enable a website. It uses Javascript, supported by a local scanning service on the client which could
be deployed either as a Windows service or a reqular Windows application.

Also, Web Capture Service supports scanning in multiuser environments: MS Terminal Server and
Citrix. In these environments, multiple users can work with Web Capture Service at the same time,
from different Windows logon sessions with the same user experience as on a single-user machine.

The Web Capture Service SDK includes a demo Web application that can scan, upload and import
documents into Kofax Capture.

See our Web Capture Service Guide for a step-by step tutorial of setting up a scanning a new
scanning application and deploying it to an IIS server.

The Web Capture Service online documentation is available at https://atalasoft.github.io/web-
capture-service. The offline verison can be downloaded from the public GitHub repository at https://
github.com/Atalasoft/web-capture-service/tree/master/docs.

192

https://atalasoft.github.io/web-capture-service
https://atalasoft.github.io/web-capture-service
https://github.com/Atalasoft/web-capture-service/tree/master/docs
https://github.com/Atalasoft/web-capture-service/tree/master/docs

Atalasoft DotImage Developer's Guide

TWAIN scanning

Acquire Images
Acquisition
The Acquisition object is the primary class in DotTwain. You can drop this component onto a
form after adding it to the toolbox, or you can instantiate it directly. This is the only class you
need to add standard image acquisition capabilities to an application.

For greater control over the acquire process, this class contains a collection of Device objects
that controls numerous properties used for the image acquisition.

TwainController

The TwainController object is a low-level TWAIN class used by the Device and Acquisition
objects. By using this class you gain more direct access to TWAIN and you can use custom driver
capabilities.

This class can be created as a standalone object or can be accessed through the
Device.Controller property.

(! Only advanced users with knowledge of the TWAIN specification should use this class.

Device

The Device object provides full access to a TWAIN compatible source on the system. Use it to
open a connection to the device, to get and set properties, and then to acquire one or more
images. Because this class represents a system device resource, you cannot create an instance
of it. You can obtain an instance to a Device object by calling ShowSelectSource, or from the
Devices collection in the Acquisition object.

DeviceCollection

The DeviceCollection holds a read-only collection of Device objects which represent all of

the TWAIN compatible system resources. You can obtain the system default device from this

collection. A suitable device also can be found by enumerating through the collection. Should
system conditions change, such as a device being unplugged, the ScanForChanges() method
can be used to recreate this collection.

Document feeder control
DocumentFeeder

Many scanners have an automatic document feeder (ADF) allowing multiple images to be
scanned in a single process. The DocumentFeeder class gives full control over the feeder, and
can enable or disable its use.

Navigate files in a camera
FileSystem

The FileSystem object can be used to walk through the file system structure in a TWAIN
compatible camera's internal storage. It also can be used to create, delete, copy and rename
files and directories directly in the camera. Images are acquired from the camera by using the
SetImageDataset() method in the Device object, then calling the Acquire() method of the same
Device object.

193

Atalasoft DotImage Developer's Guide

Getting started with DotTwain

This section explains how to get started using DotTwain in your applications.

Add DotTwain to the toolbox

1. ON the Visual Studio .NET menu, select Tools > Customize Toolbox

2. Make sure the .NET Framework Components tab is selected, and find the Atalasoft.Twain
namespace.

3. Select the checkbox that corresponds to the Acquisition component.
4. Click OK.

Acquisition is now included in your toolbox. You can double-click the control to add it to your
form.

Set application information

After you add the Acquisition control to your form, you should set the Applicationldentity properties
which will be used by the TWAIN driver.

O you do not set the ApplicationIdentity properties, default values are used.

Setting the following properties is optional but recommended:
+ Country

+ Info

* Language

» Manufacturer

» ProductFamily

* ProductName

+ VersionMajor

+ VersionMinor

There is also a Parent property which is used by TWAIN when displaying dialogs and acquiring
images. You must set the Parent property to the parent form or control in order to acquire images.

Modal acquisition

By default, the Acquire() method is asynchronous and returns before scanning is complete. This
method can be made to work in a synchronous manner by using the Device object and setting its
ModalAcquire property to true. The example below illustrates this technique.

C#

this.device = this.acquisition.Devices.Default;
this.device.ModalAcquire = true;
this.device.Acquire () ;

194

Atalasoft DotImage Developer's Guide

Set up events

You need to use events when acquiring images. When an image is acquired, the ImageAcquired
event fires, providing an AcquireEventArgs object containing the image. At least, the ImageAcquired
event must be handled, but it is recommended that the AcquireCanceled and AcquireFinished
events also be handled.

Show the Select Source dialog

Your application should allow users to select which TWAIN device they want to use. This is
accomplished by displaying the "Select Source" dialog using the ShowSelectSource() method. The
code below assumes the Acquisition component is named acquisition.

C#

Device device = this.acquisition.ShowSelectSource() ;

Get and set properties

To get or set a device property, you must open a connection to the device using the Open()
method. Whenever the Open() method is invoked, the Close() method must be invoked to close
the connection. Closing a connection resets all of the device properties to their default values and
therefore a device should be closed after the image or all desired properties have been acquired.

i J Open() and Close() only need to be used when getting or setting properties on the device.

The code below opens a connection to the device in order to retrieve the default Resolution and
BitDepth values of the device, then closes the connection. This technique can be useful if you are
looking for a device in the DeviceCollection with specific default properties or capabilities. See
QueryCapability for more information.

Acquire an image

You can acquire an image through the Acquisition object or from a Device object. If you do not need
to get or set any properties, the easiest to use the Acquire() method from the Acquisition object.
This method uses the system default device. It is shown below.

C#

this.acquisition.Acquire () ;

You can choose to hide the device interface and/or ask that the device save the acquired image
directly to file.

Once the image has been acquired, the ImageAcquired event fires and provides an
AcquireEventArgs object containing the image. If you invoked the Open() method in order to set
properties before the acquire, invoke the Close() method in the AcquireFinished event to close the
device.

195

Atalasoft DotImage Developer's Guide

Acquire images with TWAIN

Unless your documents are already stored digitally, the first step in any document imaging
application is to acquire the images via a scanner. The DotTwain Add-On to DotImage, included in
some editions of DotImage or available separately, offers advanced TWAIN acquisition features.
Once the document is in digital form, the image can be cleaned-up, displayed, compressed,
archived, and recognized using other third party systems.

DotTwain returns System.Drawing.Bitmap images that can easily be converted to DotImage
Atalalmage objects.

Acquire a selection region of the device

Some scanners allow you to select a rectangular region of the scanning bed to be acquired. If you
know that you only need a specific area or page size, this can greatly increase your scanning speed.

This region is represented by the Frame property of the Device object. Alternatively you can use the
Imagelayout property for the same purpose. In some cases a driver only supports one of these two
approaches.

As Frame values are in Units, you need to know the value of the Units property before setting the
Frame size.

The code example below assumes you have already opened a connection to the device by calling
the Open() method. This example shows how to acquire a specific size while the second shows how
to acquire any size and position.

Acquire a specific size
If you only need to specify a standard region size, you can use the FrameSize property as shown in
the example below:

C#

// Make sure the FrameSize property is supported by the device.

if (this.device.QueryCapability (DeviceCapability.FrameSize, true)

{
// Get a list of supported frames and choose the one that fits your needs.
StaticFrameType[] frames = this.device.GetSupportedFrameSizes () ;
foreach (StaticFrameType frame in frames) {

if (frame == StaticFrameType.LetterUS)
{
this.device.FrameSize = frame;
break;

}

Acquire any size and position

If you need a more control over the size and position, or if the device does not support the
FrameSize property, you can attempt to set the acquisition area using the Frame property.

C#
C#

196

Atalasoft DotImage Developer's Guide

// Try to use Inches.
this.device.Units = UnitType.Inches;

if (this.device.Units != UnitType.Inches) return;
this.device.Frame = new System.Drawing.RectangleF (0, 0, 8.5, 11);

Acquire directly to a file

Some devices allow to you acquire an image and save it directly to a file, instead of returning the
image data. While the overall process is simple, there are some steps you must take:

1. Check for device capabilities
2. Set filenames

3. Close the connection

Checking for device capabilities

Begin by testing the device to make sure it can save a file. If so, you then need to negotiate the type
of file to save.

C#

// Open a connection to the device.
this.device.Open () ;
this.device.TransferMethod = TwainTransferMethod.TWSX NATIVE;

// See if the device supports file transfer.

TwainTransferMethod|[] methods = this.device.GetSupportedTransferMethods () ;
foreach (TwainTransferMethod method in methods)

{

if (method == TwainTransferMethod.TWSX FILE2)

{

// Use TWSX FILE2 when possible.

this.device.TransferMethod = method;

break;

}

if (method == TwainTransferMethod.TWSX FILE)
this.device.TransferMethod = method;

}

// If it's not supported tell stop.

if (this.device.TransferMethod == TwainTransferMethod.TWSX NATIVE)

{

// Close the connection.

this.device.Close() ;

MessageBox.Show ("The current device does not support saving directly to a file.");
return;

}

// Find out which file types the device can save to.
SourceImageFormat[] formats = this.device.GetSupportedImageFormats () ;

// We want to save the image as a TIFF.
foreach (SourceImageFormat format in formats)

{
if (format == SourceImageFormat.Tiff)

{

197

Atalasoft DotImage Developer's Guide

// TIFF is supported, so set the FileFormat.
this.device.FileFormat = format;

// Now lets try to use Group4 or Group3 compression.

// We could use GetSupportedCompressionModes, but we

// will simply try setting the Compression property instead.
this.device.Compression = CompressionMode.Group4;

if (this.device.Compression != CompressionMode.Group4)
this.device.Compression = CompressionMode.Group3;

break;
}
}

// Start the acquire process, using the device's interface.
this.device.Acquire () ;

Set filenames

During the acquire process, the FileTransfer event is raised just before each file is acquired. You
need to set the FileName property of the FileTransferEventArgs object passed into the event. This
tells the device where the file should be saved.

C#

private void OnFileTransfer (object sender, FileTransferEventArgs e)

{

e.FileName = @"C:\TwainImages\whatever.tif";

}

Close the connection

When all of the images have been acquired, the AcquireFinished event is raised. Close the
connection here.

private void OnAcquireFinished (object sender, System.EventArgs e)
{

this.device.Close() ;

}

Detect a camera device

There are times when you only want to use a camera device. Unfortunately, TWAIN does not provide
a direct way of knowing what type of device is being used. You can, however, do a little investigating
to pick out a camera from a scanner.

Using the QueryCapability() method, you can find out if a device supports certain features that are
normally only supported by camera devices. A list of capabilities you can check is provided here:

+ Flash

» Flash2

+ ExposureTime

+ BatteryMinutes

» BatteryPercentage

+ CameraPreviewInterface
+ PowerSupply

198

Atalasoft DotImage Developer's Guide

e« ZoomkFactor

Upload an image to a server

There may be times when you want to send an image to a server. The HttpPost class was written for
this specific purpose.

Upload the image

The following example sends a single image, along with a user name and password to identify the
sender, to a server.

Example

C#

private void UploadImage (Atalasoft.Imaging.Atalalmage image)
{

// Create an instance of HttpPost and use the default image encoder.
Atalasoft.Imaging.HttpPost post = new Atalasoft.Imaging.HttpPost();

// Add the image to the form data collection.
post.FormData.Add ("imagel", image, "filename.png"):;

// Add data to identify the user posting the image.
post.FormData.Add ("username", user);
post.FormData.Add ("password", password) ;

// Post the form data to the server and retrieve a return value.
string ret = post.PostData ("http://www.website.com/postImage.aspx") :;
}

The first part of the code creates an instance of HttpPost and uses the default image format, which
is PNG. The image format determines the file type of the image when saved on the server.

Then the image is added to FormDataCollection, which includes the field name, image and filename
for the image. It is best to think of HttpPost as an HTML FORM object. The FormData represents the
FORM elements; in this case a FILE input box. You can update multiple images by adding them to
the collection; just be sure each has a unique field name.

Next, add the username and password of the person sending this image. In many cases, additional
information needs to be sent with the image in order to perform a specific action on the server. In
terms of an HTML FORM, this would be a TEXTBOX field.

Finally, the FormData is sent to the server using the PostData() method. The return value of
PostData is a string that is sent back from the server. Normally this is used to confirm the success of
the call.

Saving the image

Once the image has been sent, save it to the server using ASP.NET. If necessary, you can modify this
code to store the image in a database instead.

199

Atalasoft DotImage Developer's Guide

Example

C#

private void Page Load(object sender, System.EventArgs e)

{

if (Request.Files.Count == 0) return;

// Save the file to the server.
string fileName = System.IO.Path.GetFileName (Request.Files[0].FileName) ;
Request.Files[0].SaveAs (GetNewFileName (fileName)) ;

// Return the path to this file.
Response.Clear () ;

Response.Write ("success") ;
Response.End () ;

}

private string GetNewFileName (string fileName)

{

// Create a unique filename.

string path = Server.MapPath("./images") + "\\" + Session.SessionID + fileName;
return path;

}

In the code above, the SaveAs() method saves the image to the server. Notice that the FileName
property gets the name of the posted file. This is the same value that was passed to the
FormData.Add() method when you added the image.

The data written to the Response object is returned by the PostData() method. It is a good idea to
use the Response.Clear() method before adding your return value. This example simply returns
success

Deploy DotTwain

To distribute DotTwain along with your .NET application, you need to include
Atalasoft.DotTwain.dll and Atalasoft.Shared.dll in the same folder as the assembly that
references it.

Be sure that the .d11 versions you provide match that used to compile the assembly.

Web-based deployment is not available.

ISIS scanning

DotImage ISIS is a .NET component for capturing images from scanners that use an ISIS
driver. It takes advantage of the speed and stability of ISIS drivers available from most scanner
manufacturers.

Supported Features

+ Direct in-memory scanning

» Scanning directly to a variety of file formats (provided through ISIS drivers)
+ Access to dozens of scanner property values

200

Atalasoft DotImage Developer's Guide

+ Automatic Document Feeder support

» Supports custom interface creation or, use the default driver interface
» Support for saving and restoring scanner settings to a file or stream

+ Barcode detection (when supported by the scanner)

+ In-memory images can be returned as a .NET Bitmap or an Atalalmage
+ Use the IsisController for more direct lower-level scanner control

DotImage ISIS classes

This introduces the basic classes you need to know about to gain a general understanding of
DotImage ISIS.

Acquiring images
IsisAcquisition
The IsisAcquisition object is the primary class in DotImage ISIS. This component can be dropped
onto a form after adding it to the toolbox, or it can be instantiated directly. To add standard
image acquisition capabilities to an application, this is the only class you need. For additional
control over the acquire process, this class contains a collection of IsisDevice objects that
controls numerous properties that allow you to fine tune for image acquisition.

IsisController

The IsisController object is a low-level ISIS class used by the IsisDevice and IsisAcquisition
objects. Using this class provides more direct access to the ISIS driver. This class can be created
as a standalone object or can be accessed through the IsisDevice.Controller property.

IsisDevice

The IsisDevice object provides full access to the system's ISIS driver. Use it to connect to the
device, get and set properties and acquire one or more images. You cannot create an instance
of this class as it represents a system device resource. An instance to an IsisDevice object can be
obtained from the IsisDeviceCollection in the IsisAcquisition object.

IsisDeviceCollection

The IsisDeviceCollection holds a read-only collection of IsisDevice objects representing all of
the ISIS scanner drivers found on the system. You can obtain the system default device from
this collection, or locate a suitable device by enumerating through the collection. If system
conditions change, such as a device being added, use the RefreshList()method to recreate this
collection.

IsisCodecManager

The IsisCodecManager class searches through ISIS file and compression drivers on the system
accumulating a collection of IsisCodec objects. This is useful as many scanners will report that
they do not support any file formats. DotImage ISIS can dynamically load ISIS plug-in drivers for
use with the AcquireToFile() method.

Add ISIS to the toolbox

1. On the Visual Studio .NET menu, select Tools > Customize Toolbox.

201

Atalasoft DotImage Developer's Guide

2. Make sure the .NET Framework Components tab is selected, and find the
Atalasoft.dotImage.Isis namespace.

3. Check the IsisAcquisition component checkbox.
4. Click OK.

IsisAcquisition is now included in your toolbox.
5. Double-click the control to add it to your form.

Set up events

You use events to acquire images. When an image is acquired, the ImageAcquired event is raised,
providing an IsisimageAcquiredEventArgs object containing the image.

You must handle the ImageAcquired event, but it is recommended that the AcquireCanceled and
AcquireFinsihed events also be handled.

The following code demonstrates how the ImageAcquired event is handled:

Handling the image acquired event
C#

private void acquisition ImageAcquired(object sender, IsisImageAcquiredEventArgs e
{

// This event is raised for each page during an acquisition.

if (this.picImage.Image != null) this.picImage.Image.Dispose();

// Set the AcquiredImageType property on the IsisAcquisition or IsisController
// to specify whether you receive an Atalalmage or a .NET Bitmap.
if (e.Image != null)
{
this.picImage.Image = e.Image.ToBitmap () ;
e.Image.Dispose () ;

}
else if (e.Bitmap != null)
{
this.picImage.Image = e.Bitmap;

}

if (e.JobSeparator) System.Diagnostics.Debug.WriteLine ("Job Separator");

}

Show the Select Source

Your application should allow users to select which ISIS device they want to use. Accomplish this by
displaying the Select Source dialog using the ShowSelectSource() method. The sample code below
assumes the IsisAcquisition component is named acquisition.

Allow users to select an ISIS device
C#

IsisDevice dev = null;
if (this.acquisition.ShowSelectSource (this)) dev =
this.acquisition.Devices.Default;

202

Atalasoft DotImage Developer's Guide

Get and set properties

To get or set a device property, use the Open() method to open a connection to the device.
Whenever the Open() method is invoked, the Close() method also must be invoked to close the
connection. Open() and Close() only need to be used when getting or setting device properties.

Open a device connection to set properties
C#

if (device.Open())

{
device.Settings.Resolution = new Rational (200, 200);
device.PixelFormat = IsisPixelFormat.Binary;
device.Acquire () ;
device.Close () ;

Acquire an image

Acquire an image through the IsisAcquisition object or from an IsisDevice object. If you do not need
to get or set any properties, use the Acquire() method from the IsisAcquisition object. The images
acquired are provided in the ImageAcquired event, which is raised once for each page scanned.

Acquire directly to file

If the ISIS drivers are available on the system, you can have the driver acquire directly to

file instead of in memory. Do this with the IsisAcquisition or IsisDevice objects using the
AcquireToFile() method. The FileAcquisition event must be handled to provide the filename for
each page.

C#

If (device.Open())
{

device.PixelFormat = IsisPixelFormat.Binary;
device.AcquireToFile (IsisFileType.Tiff, IsisCompression.Group4) ;
device.Close () ;

}

private void acquisition FileAcquisition (object sender,
IsisFileAcquisitionEventArgs e)

{

// This event is raised for each page during a file acquisition.
if (this.chkSaveMultipage.Checked && (e.FileType == IsisFileType.Tiff ||
e.FileType == IsisFileType.Pdf || e.FileType == IsisFileType.Dcx))

e.Append = true; // This can be true for the first page as well.

e.FileName = myFileName;

Use the IsisDevice.Settings.GetSupportedFileTypes to determine which file types are supported
by the scanner. If this method does not return the file type you want, take a look at the
IsisCodecManager object, which can be retrieved from the IsisAcqusition and IsisController classes.

You also can perform an in-memory acquire and use the DotImage codecs for saving the image.

203

Atalasoft DotImage Developer's Guide

Image processing and cleanup

Atalasoft DotImage Advanced Document Cleanup (ADC) is an add-on module to Atalasoft DotImage
Document Imaging providing document cleanup algorithms that can be applied to scanned
documents to clean them up for better compression and archival, increased readability, and for
improved OCR accuracy.

Atalasoft DotImage ADC uses proprietary algorithms developed by the Atalasoft research and
development team. These are designed to automatically select the best parameters for fast and
accurate processing.

The commands included in ADC extend the command interfaces already in Atalasoft DotImage.They
can easily be applied to an existing Atalasoft Dotlmage application. See the online Advanced
Document Cleanup Demo that demonstrates ADC with our AJAX-enabled Web Image Viewer.

For more information, see Advanced Document Cleanup and ADC features.

Manipulate colors with Lookup Tables

Using Lookup Tables (LUTs) is a convenient way to replace a specific color value in each pixel of an
image with a different color value. A LUT consists of a 256 element array that defines a new value
for each possible value of an 8-bit quantity.

A color image contains pixels consisting of three 8-bit samples (or channels), so three LUTs are
needed, one for each color channel. A grayscale image requires one LUT.

You can apply a LUT to any continuous image with the ApplyLutCommand

Invert the Alpha in an RGBA Image

Suppose you have an image with some solid text on a transparent background, and you want to
make the text transparent and the background solid. You can achieve this goal by inverting the
alpha channel of the image.

You could split the image channels, apply the InverseCommand to the alpha channel, and then
combine the channels again. However, this approach is slow. A LUT provides a simple and efficient
method for invert the alpha in an RGBA image.

As was stated above, an Atalasoft DotImage LUT consists of a 256 element byte array. A LUT that
does nothing to an image contains values from 0 to 255: LUT[0]=0, LUT[1]=1, and so on. A LUT that
inverts values is just reversed: LUT[0]=255, LUT[1]=254, ... LUT[254]=1, LUT[255]=0. The following
code shows how to reverse a channel. It assumes that you begin with an RGBA image.

Example
This example shows how to reverse an image using a look up table.

C#

byte[] lut
for (int 1

new Byte[256];
0; 1 < 256; i++)

204

Atalasoft DotImage Developer's Guide

lut[i] = (byte) (255 - 1i);
myWorkspace.ApplyCommand (new ApplyLutCommand (null, null, null, lut));

O vou can apply this same method to all channels to invert (negate) the colors of the entire
image.

Creating a psychedelic effect

The example in the previous section only changed one channel in the image. With the
ApplyLutCommand, you can manipulate each channel in an image to create some interesting
effects.

The following example creates a strange effect by twisting the colors around. It inverts the dark half
of the color range, but leaves the bright colors alone.

Example
The following code uses a LUT to manipulate an image's colors.
Twisting colors

C#

byte[] lut = new Byte[256];
for (int 1 = 0; 1 < 127; 1i++)

lut[i] = (byte) (255 - 1);
for (int i = 127; i < 256; i++)
lut[i] = (byte)i;

myWorkspace.ApplyCommand (new ApplyLutCommand (lut, lut, lut));

Resize images

Atalasoft DotImage has the ability to resize (or resample) an image using a number of different
algorithms. These resampling algorithms can result in a high quality resized image at the cost of
speed, or a high performance algorithm at the expense of quality. Some algorithms do a good job
at both speed and quality depending on the image type.

Atalasoft DotImage includes a Thumbnail class which can be used to generate fast high quality
thumbnail images from files. The sections below provide more flexibility than the simple Thumbnail
class.

Simple Resizing and Thumbnails

Most imaging applications resize an image in some way. For display purposes, Atalasoft DotImage
takes care of this with the WinForm and WebForm controls where the AutoZoom property is set

to BestFit, and the image is quickly resized to fit the control. What if you wanted to work with this
resized image? Using the ResampleCommand , an image can be resampled to any resulting size.
The following code snippet shows how to create a thumbnail in the Workspace with a maximum
width or height of 100 pixels while maintaining the aspect ratio.

205

Atalasoft DotImage Developer's Guide

Example
This example shows how to create a thumbnail with maximum height while maintaining aspect
ratio.

C#

myWorkspace.ApplyCommand (new ResampleCommand (100) ;

The default resampling method for reductions is AreaAverage and for enlargements is Bi-Linear.
This results in fast, high quality resampling. For very high quality thumbnails, we recommend the
LanczosFilter() method, however this algorithm is quite a bit slower.

Resizing Continuous Tone Images

For resizing continuous tone images the ResampleCommand provides 18 different resampling
algorithms, details of which can be found in the enumeration reference for ResampleMethod. As
shown above, specifying one Integer in the constructor will resize the image to that maximum
width or height while keeping the aspect ratio. A Size structure can also be passed which allows the
width or height be explicitly defined. The following example demonstrates doubling the image size
using the LanczosFilter ResampleMethod.

Example
This example shows how to double image size.
C#

myWorkspace.ApplyCommand (new ResampleCommand (new Size (myWorkspace.Image.Width * 2,
myWorkspace.Image.Height * 2), ResampleMethod.LanczosFilter);

The default resampling method for reductions is AreaAverage and for enlargements is Bi-Linear.
This results in fast, high quality resampling. For very high quality thumbnails, we recommend the
LanczosFilter() method, however this algorithm is quite a bit slower. The resample algorithms
available include those listed in the table below.

NearestNeighbor TriangleFilter Cubic1Filter HermiteFilter
BiLinear HammingFilter Cubic2Filter HanningFilter
BiCubic GaussianFilter LanczosFilter CatromFilter
AreaAverage BellFilter MitchellFilter

BoxFilter BsplineFilter SincFilter

Resizing Palette Images

The ResampleCommand can also be used to resample colormapped images. If the image pixel
format is Pixel8bppIndexed then the Default and Simple ResampleMethod() resizes the image
while maintaining the integrity of the palette and colormapped status. Choosing any of the other
resampling methods will raise the ChangePixelFormat static event in the Atalalmage object and

cause the image to be resized to a continuous format before resampling.

206

Atalasoft DotImage Developer's Guide

For the most efficient resampling of colormapped images to continuous tone images, use the
ResampleColormappedToRgbCommand. This is what is used when the WorkspaceViewer control
contains a colormapped images and is scaled with Antialiasing on. It performs faster than first
converting the image to continuous tone, then resampling with ResampleCommand.

Resizing Binary Images

Atalasoft DotImage Document Imaging contains the ResampleDocumentCommand that is designed
for document imaging. This command has three methods: Nearest Neighbor, Scale to Gray, and
Area Average. This can be used for simple and fast 1-bit resizing, an efficient Scale to Gray resizing,
or Favor Black / Favor White resizing. When Antialiasing is turned on in the WorkspaceViewer, this
command is used for scaling binary images to gray and yields high quality, fast viewing of scaled
down binary images.

The three basic document resampling methods are listed in the table below.

Resampling Method Description
NearestNeighbor Simple and fast 1-bit resizing.
ScaleToGray High quality scaling of 1-bit images that automatically

converts the images to grayscale.

AreaAverage Fast 1-bit reductions that output black or white pixels
depending on the source image data and weight
factor. Used for Favor Black / Favor White.

O The ScaleToGray method can be applied to all ResampleMethods specified with the
ScaleToGrayMethod property with the exception of NearestNeighbor and Bi-Cubic.
Process an image using a Workspace object
To process an image when using the Workspace object:
1. Create a new instance of a command.
2. Pass the command into the ApplyCommand() method of the Workspace object.
Example

This example demonstrates how to apply a Gaussian blur filter to an image with a sigma value of
2.0.

C#

myWorkspace.ApplyCommand (new BlurGaussianCommand (2.0)) ;

Example

This example demonstrates how to apply a Gaussian blur to multiple images. The same command
can be applied to multiple images as shown below.

207

Atalasoft DotImage Developer's Guide

C#

BlurGaussianCommand blur = new BlurGaussianCommand (2.0) ;
foreach (Atalalmage image in myWorkspace.Images)
{
myWorkspace.Image = image;
myWorkspace.ApplyCommand (blur) ;
}

Process an image using the Apply method

If it is not desirable to use the Workspace, the Apply() method of the ImageCommand offers an
alternative method for processing an Atalalmage object.

Example
The following example demonstrates how to apply a sharpen filter directly to an Atalalmage object.

C#

SharpenCommand sharpen = new SharpenCommand (0.5, 3);
AtalaImage newlImage = sharpen.Apply(newImage) .Image;

The Apply() method returns an object of type ImageResults . Unlike the ApplyTolmage()
method, Apply() never returns null. ThelmageResultsobjects contains a property
calledImagewhich always is set to a non-null value. In some cases, thelmageproperty returned
in the results is the same as that in the original image. You can verify this by looking at
theImageResultspropertylsImageSourceImage.

O For backward compatibility, ImageCommand still provides the older ApplyToImage() method,
but it is now deprecated.

Process a Bitmap image

To process a Bitmap image directly, convert the Bitmap to a temporary Atalalmage object and then
process the effect. For more information, see Working with GDI+ Images.

Extend ImageCommands

The ImageCommand is an abstract base class that must be inherited by all image processing
functions that modify the current image. The child class must override the several methods,
allowing the Workspace object to manipulate the current image. By inheriting the ImageCommand
base class, it is easy to create new effects and image processing functions.

If you plan to create your own custom commands, we recommend that you use C# rather than
Visual Basic to code your application. C# is the recommended language because of its support for
unsafe programming. Unsafe programming allows you manipulate an image directly. This is much
faster than the GetPixel() and SetPixel() methods when changing image data.

208

Atalasoft DotImage Developer's Guide

You can access image data with the PixelMemory property in the Atalalmage object. For more
information about accessing pixel data directly, see Access pixel data.

The naming convention in Atalasoft DotImage is such that all objects of type ImageCommand end
with Command. The exception to this convention is a special type of ImageCommand object called a
Transform that ends with Transform.

Atalasoft DotImage has a formal process for creating ImageCommands which reduces the amount
of work needed by the command writer. The process has the following steps:

1. Allocate an object for holding image results.

Verify the integrity of the source image.

Verify command properties (if possible).

Change the pixel format of the source image, if necessary.

If the command supports region processing, crop the image to the region of interest.
If the command needs a destination image, construct it.

Perform the command.

Perform any recomposition of the processed image, if necessary.

W ¥ N U R WN

Dispose any intermediate images.

-
e

Copy over the final image results.

In most cases, it is not necessary to worry about this process. The overall design handles nearly all
the special cases that arise in processing images.

In the nearly all cases, you will only need to implement three abstract members. Each will be
discussed in detail:

Member Description

SupportedPixelFormats Returns an array of all pixel formats that are natively
supported by your command

VerifyProperties Checks that all input properties are correct for this
command. If not, this method should throw an
exception

PerformActualCommand Does the actual work needed to implement your new
command

As much as possible, the underlying implementation of Apply adheres strongly to the contract that
it should never pass protected members invalid arguments. In other words, all parameters passed
into one of your methods will be valid for the context of the command.

SupportedPixelFormats

This property returns an array of pixel formats that your command operates on in an optimal
fashion. Avoid returning all pixel formats and doing conversion within your command. This is
managed for you by the CanApplyToAnyPixelFormat and ApplyToAnyPixelFormat properties.

A typical implementation of this property might look like the example shown below.

209

Atalasoft DotImage Developer's Guide

Example
The following example demonstrates how to apply a sharpen filter directly to an AtalaImage object.

C#

static PixelFormat[] supportedPixelFormats = newPixelFormat[] ({
PixelFormat.PixellbppIndexed

}i

public override PixelFormat[] SupportedPixelFormats { get

{ return supportedPixelFormats; } }

VerifyProperties

VerifyProperties(AtalaImage sourceImage) is used to ensure that everything is suitable in the
command to apply to the given image. If something is incorrect (properties or parameters that
clash), this method will throw a suitable exception. The supplied sourcelmage will always be a valid
image and will always be the image provided to Apply. There is no need to check the PixelFormat of
sourcelmage as it will be verified later for you.

PerformActualCommand

PerformActualCommand(Atalalmage source, Atalalmage dest, Rectangle imageArea, ref
ImageResults results) is the method that implements the actual command.

Source is the source image. It may not be the same image as supplied by the command,
but it will always be non-null and will always be in a pixel format in the array returned by
SupportedPixelFormats.

Dest is an Atalalmage that represents the destination image for this command. If the command
returns true in the property InPlaceProcessing, then dest will always be null. If the command
indicates that it allocates the destination image itself, dest is always null (see below).

If the image command is a subclass of ImageRegionCommand, imageArea will be set to the
rectangular bounds of the region of interest. If there is no region of interest or the command is not
an ImageRegionCommand, imageArea will be set to {0, 0, source.Width, source.Height}.

Results is a reference to the ImageResults object allocated for this command. You can set properties
of the results or replace it with a completely new object if you choose. Most commands ignore the
results.

PerformActualCommand will return null in most cases. If, for some reason, the command needs to
allocate a destination image itself at the very last moment, it should return this image.

Atalasoft DotImage has the ability to manipulate image data without using unsafe code. Using
an image's ImageData pointer directly is supported, but is considered obsolete. Instead, use the
PixelMemory and PixelAccessor classes.

SimpleInversionCommand

The following is a complete example of a new ImageCommands that inverts 1 bit per pixel images.

210

Atalasoft DotImage Developer's Guide

C#

public class SimpleInversionCommand : ImageCommand
{

public SimpleInversionCommand () { }

// operate on the source image

public override bool InPlaceProcessing { get { return true; } }
// only natively support 1 bit images
private static PixelFormat[] supportedFormats = newPixelFormat[1]

{ PixelFormat.PixellbppIndexed };
public override PixelFormat[] SupportedPixelFormats { get
{ return supportedFormats; } }
protected override void VerifyProperties (AtalaImage image)
{
// nothing needed
}

protected override Atalalmage PerformActualCommand (Atalalmage source,
AtalaImage dest, System.Drawing.Rectangle imageArea, reflmageResults results)
{
// get the PixelMemory object
int height = source.Height;
PixelMemory pm = source.PixelMemory;
using (PixelAccessor pa = pm.AcquirePixelAccessor ())
{
byte[] row;
while ((row = pa.AcquireNextScanline()) != null)
{
for (int i=0; i < row.Length; i++)
{
row[i] = (byte)~row[i];
}
}
pa.Release () ;
}

return null;

Writing complex commands

To prepare yourself for writing a new ImageCommand, ask the following questions:

1. Will the command only operate on the source image or does it need a destination image as
well?

Will the command operate on a region of the image or operate only on the entire image?

If the command requires a destination image, will it be the same PixelFormat and size as the
source image?

4. Do need to return more information about what happened in the command?

5. If my command supports multiple pixel formats and ApplyToAnyPixelFormat is set to true,
which PixelFormat is the best to use?

If your command will only operate on the source image, you must override the property
InPlaceProcessing (see above example) so that it returns true. In this case, your implementation of
PerformActualCommand will only be passed a valid source image and should return null.

21

Atalasoft DotImage Developer's Guide

If your command will operate on a region of the image, your class should descend from
ImageRegionCommand. When PerformActualCommand is called, imageArea will be set to the
smallest rectangle that contains the region of interest. In addition, the dest image, if you have not
indicated that you will allocate it yourself, will be set to a size that matches that rectangle.

If your command needs the destination image in a different pixel format or size than the source
image, you should override the protected method ConstructFinallmage(AtalaImage image). In

this method you should allocate a new image that matches the size of the provided image in a
PixelFormat that you would prefer. This image is passed back to you in PerformActualCommand. If
you have no way of knowing how big or what pixel format the final image should be, this method
should return null.

This is the only circumstance in which this method returns null. If you attempt to construct an
Atalalmage and fail, throw an appropriate exception.

If you need or want to provide more information about a command than the standard
ImageResults object provides, you should create a subclass of ImageResults to implement

the functionality that you need. You can either then override the protected factory method
ConstructImageResults() or you can set the reference parameter results in your implementation of
PerformActualCommand() to your custom type.

Atalasoft DotImage takes several steps in choosing the pixel format that your command will use.

By default, if your command supports the source image's PixelFormat, then your command will be
handed the source image, unchanged. If your command is set to operate on any pixel format (via
the ApplyToAnyPixelFormat property) and the source image's pixel format is not natively supported,
then Atalasoft DotImage will construct a new image using the pixel format of the ot entry in the
array returned by SupportedPixelFormats.

If neither of these approaches are sufficient, you can override this behavior.

The protected method SelectPreferredPixelFormat(Atalalmage image, PixelFormat sourceFormat,
PixelFormat[] supportedFormats) is called to choose a pixel format for the source image passed to
PerformActualCommand. By default, this method returns sourceFormat. You can make this method
return any PixelFormat at all. For example, some commands can operate on many pixel formats,
but certain ones may perform optimally. You could conditionally return the optimal PixelFormat

- or maybe the optimal format is different based on your command's properties. If you return a
PixelFormat that is not in your array of supported PixelFormats, Atalasoft Dotlmage throws an
IncompatiblePixelException if ApplyToAnyPixelFormat is false.

If you wish to change the way that the best PixelFormat is selected by Atalasoft Dotlmage

when it is necessary to change the image's PixelFormat, override the protected method
SelectBestAlternatePixelFormat(Atalalmage image, PixelFormat sourceFormat, PixelFormat(]
supportedFormats). For example, you might want to return 8-bit gray if the source image is 1 bit,
but 24 bit color when the source image is 4 or 8 bit.

If these rules do not work in your command, you can override the protected method
ConstructChangedSourceImage(AtalaImage image). In this method, if you do not need to change
the source image's PixelFormat, you should return null. Otherwise you should construct a new
Atalalmage the same size as the supplied image and return it. Like ConstructFinalImage, this
method should never return null as an error. It should instead throw an exception.

212

Atalasoft DotImage Developer's Guide

Finally, you can override the public method Apply() to implement your command, but you will lose
all current and future benefits of the Atalasoft DotImage implementation. Therefore, it is only
recommended that you override this method when there is no other way to do this.

ColorizeBlackCommand

This example takes a 1 bit per pixel image and turns every black pixel into a specified color. It
overrides ConstructFinallmage to perform the work.

C#

public class ColorizeBlackCommand : ImageCommand
{
private Color _blackColor = Color.Black;
public ColorizeBlackCommand ()
{
}
public ColorizeBlackCommand (Color replacementColor)
{
_blackColor = replacementColor;
}
// only natively support 1 bit images
private static PixelFormat[] supportedFormats = new PixelFormat([1]
{ PixelFormat.PixellbppIndexed };
public override PixelFormat[] SupportedPixelFormats { get
{ return supportedFormats; } }
// return a final image in 24 bit color
protected override Atalalmage ConstructFinallImage (Atalalmage image)

{

AtalaImage finalImage = new Atalalmage (image.Width, image.Height,
PixelFormat.Pixel24bppBgr) ;
if (finalImage == null) // always throw on a null image
throw new OutOfMemoryException ("Out of memory in ColorizeBlackCommand") ;
return finalImage;
}

protected override void VerifyProperties (AtalalImage image)
{
// nothing needed
}
protected override Atalalmage PerformActualCommand (Atalalmage source,
AtalaImage dest, Rectangle imageArea, ref ImageResults results)
{
// get the source width and height
int height = source.Height;
int width = source.Width;
// find out if a 1 bit is black or white
bool oneIsBlack = IsColorBlack (source.Palette.GetEntry(l));
// get the color that should be used to change to black
byte red = (byte) blackColor.R;
byte green = (byte) blackColor.G;
byte blue = (byte) blackColor.B;
PixelMemory sourcePM = source.PixelMemory;
PixelMemory destPM = dest.PixelMemory;
using (PixelAccessor sourcePA = sourcePM.AcquirePixelAccessor (),
destPA = destPM.AcquirePixelAccessor())
{
for (int y=0; y < height; y++)
{
byte[] sourceRow = sourcePA.AcquireScanline (y);
byte[] destRow = destPA.AcquireScanline (y);
for (int x=0; x < width; x++)

213

Atalasoft DotImage Developer's Guide

if (IsBitSet (sourceRow, x, onelIsBlack))

{

destRow[x * 3] = blue;
destRow[x * 3 + 1] = green;
destRow[x * 3 + 2] = red;

}

else

{
destRow[x * 3] = 255;
destRow[x * 3 + 1] = 255;
destRow[x * 3 + 2] = 255;

}
}
sourcePA.ReleaseScanline () ;
destPA.ReleaseScanline () ;
}

return null;
}
// is the supplied color black
private bool IsColorBlack(Color c)

{
return c.R == 255 && c.G == 255 && c.B == 255;

}
// is a bit set at the give x coordinate in the row
private unsafe bool IsBitSet (byte[] row, int x, bool onelIsBlack)
{
byte theByte = row[x >> 3];
int theBitIndex = 7 - (x & 0x7);
bool bitSet = (theByte & (1 << theBitIndex)) != 0;
return onelIsBlack ? !bitSet : bitSet;
}
public Color ReplacementColor { get { return blackColor; } set

{ DblackColor = value; } }
}

Upload an image to a server

There may be times when you want to send an image to a server. The HttpPost class was written for
this specific purpose.

Upload the image

The following example sends a single image, along with a user name and password to identify the
sender, to a server.

Example

C#

private void UploadImage (Atalasoft.Imaging.Atalalmage image)

{

// Create an instance of HttpPost and use the default image encoder.
Atalasoft.Imaging.HttpPost post = new Atalasoft.Imaging.HttpPost ()

// Add the image to the form data collection.
post.FormData.Add ("imagel", image, "filename.png"):;

214

Atalasoft DotImage Developer's Guide

// Add data to identify the user posting the image.
post.FormData.Add ("username", user);
post.FormData.Add ("password", password) ;

// Post the form data to the server and retrieve a return value.
string ret = post.PostData ("http://www.website.com/postImage.aspx") ;
}

The first part of the code creates an instance of HttpPost and uses the default image format, which
is PNG. The image format determines the file type of the image when saved on the server.

Then the image is added to FormDataCollection, which includes the field name, image and filename
for the image. It is best to think of HttpPost as an HTML FORM object. The FormData represents the
FORM elements; in this case a FILE input box. You can update multiple images by adding them to
the collection; just be sure each has a unique field name.

Next, add the username and password of the person sending this image. In many cases, additional
information needs to be sent with the image in order to perform a specific action on the server. In
terms of an HTML FORM, this would be a TEXTBOX field.

Finally, the FormData is sent to the server using the PostData() method. The return value of
PostData is a string that is sent back from the server. Normally this is used to confirm the success of
the call.

Saving the image

Once the image has been sent, save it to the server using ASP.NET. If necessary, you can modify this
code to store the image in a database instead.

Example

C#

private void Page Load(object sender, System.EventArgs e)

{

if (Request.Files.Count == 0) return;

// Save the file to the server.
string fileName = System.IO.Path.GetFileName (Request.Files[0].FileName) ;
Request.Files[0].SaveAs (GetNewFileName (fileName)) ;

// Return the path to this file.
Response.Clear () ;

Response.Write ("success") ;
Response.End () ;

}

private string GetNewFileName (string fileName)

{

// Create a unique filename.

string path = Server.MapPath ("./images") + "\\" + Session.SessionID + fileName;
return path;

}

215

Atalasoft DotImage Developer's Guide

In the code above, the SaveAs() method saves the image to the server. Notice that the FileName
property gets the name of the posted file. This is the same value that was passed to the
FormData.Add() method when you added the image.

The data written to the Response object is returned by the PostData() method. It is a good idea to
use the Response.Clear() method before adding your return value. This example simply returns
success

Annotations

The following sections cover various aspects of annotations.

Annotations

Atalasoft DotImage contains powerful annotation capabilities that can be used to markup, draw,
and visualize objects on an image or document. These objects include primitive shapes, text,
freehand, sticky notes, images and hot spots. Atalasoft Dotlmage includes an extensible interface
that allows you to add your own custom annotation objects.

Annotations can be independently resized, moved, rotated, placed on different layers or groups, or
saved to a separate file. The annotations can be embedded within an image* using the standard
WANG format or our published format based on Adobe's XMP standard.

Features

Atalasoft DotImage annotations have the following features:

+ Add an arbitrary number of annotation objects to an image.

+ Annotation objects can be moved, resized, and rotated independently of the image.

« Annotations can be placed on layers.

+ Annotations can be grouped. Once grouped they are resized and moved as one object.
» Annotations or layers can be locked/unlocked or visible/invisible.

+ Afast and smooth display. Objects can be repainted while being resized.

» Uses GDI+ graphics allowing any object to be rendered at variable transparency.

» Extensible object model allows you easily to create your own custom drawn annotation objects
with very little code.

+ Save or load annotations as a separate XML file using Adobe's standard XMP format.

» Save or load WANG compatible annotations to or from a separate file.

+ A custom cursor can be display the cursor hovers over an annotation.

» Annotations can be rotated along with the image in 90 degree increments.

» Respond to varied mouse clicks and events with flexible hyperlinking or other custom actions.
» Annotations can be defined in any unit system, including your own unit system.

« Annotations can be placed on any control using the IAnnotate interface.

+ Individual points from annotations supporting multiple points (Freehand, Polygon, etc.) can be
repositioned to change the shape of the object.

216

Atalasoft DotImage Developer's Guide

+ Grips can be customized to display different shapes, custom mouse-over effects and more.

 Built-in AnnotateViewer (Atalasoft.dotImage.WinControls.dll) supports the IAnnotate interface
and all viewing features of Atalasoft DotImage WinForms including scale to gray display, mouse
tools, magnifier, etc.

+ Save or load WANG compatible annotations to/from a TIFF image*.

+ Save or load annotations embedded in a TIFF, JPEG, or PDF image in XML using Adobe's standard
XMP format.

+ Annotations can be burned onto the image with a single method.
+ Annotations can be printed with the base image using the AnnotatePrintDocument class.
» Supports proper viewing of FAX images with differing X and Y resolutions.

Supported Annotations

The following is a list of supported Atalasoft DotImage annotation types.

© some of the annotations below use the same annotation object with different property
settings. See the object reference for detailed information and examples.

» Rectangle

» Highlighter

+ Ellipse

* Line

» Freehand

» Text

* Note

+ Rectangular HotSpot
» Freehand HotSpot

+ Freehand Highlighter
+ Embedded Image / Stamps
* Referenced Image

+ Polygon

* Lines

* RubberStamp

+ CalloutAnnotation

Import and export annotations

Starting with Atalasoft DotImage 7.0, Atalasoft DotImage Annotations contain a more formalized
way for importing and exporting annotations. Both importing and exporting are represented by
abstract objects that contain partial implementations that do most of the work for you.

Importing means to read the contents of a stream that contains an external representation of
annotations and translates them into equivalent Atalasoft DotiImage Annotation objects.

217

Atalasoft DotImage Developer's Guide

Exporting means to translate Atalasoft DotImage Annotation objects into some other equivalent
data format and write to another location. In addition, exporting includes the notion of exporting
annotations over an existing set within a file without disturbing the rest of the file. In most

cases, this means simply writing annotations to a stream. In other cases it means being able to
understand the format of an existing file to adjust it to compensate for new annotation data.

Both AnnotationDatalmporter and AnnotationDataExporter may need to understand different
annotation coordinate systems and scaling.

Unlike ImageDecoder and ImageEncoder objects which are stateless and can be used for many
different streams, a unique AnnotationDatalmporter or AnnotationDataExporter object is used per
stream. This is done to allow caching and other performance optimizations.

Dual use objects

AnnotationDatalmporter and AnnotationDataExporter objects are considered dual-use objects.
They can serve as either a factory or as an importer/exporter of annotations.

As a factory, an AnnotationDatalmporter can identify if a stream contains correct data,

and can construct a new AnnotationDatalmporter for a given stream. As an importer, an
AnnotationDatalmporter can provide information about the number of pages of annotations in a
stream, the number of annotations per page, and it can translate the data into Atalasoft DotImage
Annotation objects.

As a factory, an AnnotationDataExporter can identify if a stream contains correct data, and can
construct new AnnotationDataExporter objects. As an exporter, an AnnotationDataExporter can
indicate whether or not it can export annotations directly, whether or not it can export annotations
over an existing document, and it can translate Atalasoft DotImage Annotation objects into its own
format.

Import annotations

To import annotations, client code needs to be able to identify the correct AnnotationDatalmporter
to use for a given stream and then to construct a new AnnotationDatalmporter object to use for the
actual importing.

Example
C#

List<AnnotationDataImporter> myImporters;

protected virtual AnnotationDataImporter GetImporter (Stream stream)

{

foreach (AnnotationDatalImporter importer in myImporters)
{
if (importer.IsValidFormat (stream))
return importer.FromStream(stream) ;

}

return null;

}

public AnnotationDataCollection ImportAllAnnotations (Stream stream)

{

AnnotationDataImporter importer = GetImporter (stream) ;
try

218

Atalasoft DotImage Developer's Guide

if (importer != null)
{
return importer.Import() ;
}
}

catch (Exception err)

{

MessageBox.Show ("Unable to load annotations: " + err.Message) ;
}

return new AnnotationDataCollection () ;

}

In addition, it is possible to suppress errors encountered during importing by setting the
ThrowOnError property of the AnnotationDatalmporter to false. After calling import, all
the Message properties from every exception thrown will be appended to the LastErrors
property of the AnnotationDatalmporter. LastErrors is automatically cleared by the
AnnotationDatalmporter before importing or loading annotations.

Even if ThrowOnError is set to false, there is no guarantee that any particular
AnnotationDatalmporter will recover from an error. Most AnnotationDatalmporters will halt at
the first error on a page. For importing multiple pages, this means that one or more pages may
have incomplete annotations.

Write a custom AnnotationDatalmporter

In order to create a custom AnnotationDatalmporter, a client object must inherit from
AnnotationDatalmporter and at a minimum, implement the following abstract methods:

public abstract bool IsValidFormat (Stream stm);

IsValidFormat returns true if the stream is in the correct format for this AnnotationDatalmporter.
It is vital that the stream is left in the same state as when IsvalidFormat was entered.

public abstract AnnotationDatalmporter FromStream(Stream stm);
FromStream constructs a new AnnotationDatalmporter attached to the given stream object.
protected abstract void LLLoad();

LLLoad is the low-level implementation of Load. LLLoad should do any pre-flight or caching
of annotation data. For example, some AnnotationDatalmporters do all their work in LL.Load
and simply access constructed data in other methods. LLLoad will only be called once per
AnnotationDatalmporter object.

protected abstract int LLGetPageCount () ;

Returns the total number of pages in the given stream. LLGetPageCount is only called after a call
to Load().

protected abstract int LLGetAnnotationCount (int page);

Returns the total number of annotations on a given page. LLGetAnnotationCount is only called
after a call to Load () . Page is always greater than or equal to zero and less than LLGetPageCount.

219

Atalasoft DotImage Developer's Guide

protected abstract AnnotationData LLImport (int page, int annotIndex);

Returns an imported annotation by index from a given page. Page is always greater than or equal
to zero and less than LLGetPageCount () . annotIndex is always greater than or equal to zero
and less than to LLGetAnnotationCount (page).

In addition, there is an implementation of LLImport which is not abstract:
protectedvirtual LayerData LLImport (int page) { /* ... */ }

Some client code will be much more efficient if they can import all the annotations on a given page
rather than doing it piecemeal. The default implementation gets the number of annotations on
the given page, makes a new LayerData, fires the OnAnnotationPagelmporting event, then called
LLImport (page, index) for every annotation on the page, firing the OnAnnotationImported
event, then adding the item to the layer.

i) LLImport (page) does NOT fire the OnAnnotationPageImported event. That event is fired by
the high level Import () method.

Handle unknown annotation types

Some data formats for annotations are living standards that are expected to grow in the future.

As such, there needs to be the ability to handle unknown annotation types during importation. In
the AnnotationDatalmporter, there is a property called FailsafeAnnotationFactory. This property, if
non-null, is a delegate to a method that can be used to construct an Atalasoft DotImage Annotation
if the AnnotationDatalmporter can't. This delegate gets passed the AnnotationDatalmporter that
attempted to import the annotation, a RectangleF representing the bounds of the annotation in the
coordinate system of the destination, and an object representing the data for the annotation. This
object is constructed by the specific AnnotationDatalmporter and its class and contents are up to
the author of the AnnotationDatalmporter.

Coordinate systems

Annotation data formats may or may not have their own coordinate system. In general, an
AnnotationDatalmporter is expected to understand the coordinate system of the source
annotations and be able to convert it to Atalasoft Dotlmage coordinates. In Atalasoft Dotlmage,

the coordinate system is similar to most imaging. It starts with (0, 0) in the upper left corner with X
increasing to the right and Y increasing downward. The units of the coordinate system may depend
image on top of which the Atalasoft DotImage annotation will be displayed. For example, the
XmpAnnotationDatalmporter requires an AnnotationController in order to determine units and size.
The PdfAnnotationDatalmporter uses PDF coordinates for everything.

If client code implements this delegate, it is expected to return either a new object of type
AnnotationData or null. Returning null means that the annotation will be ignored.

The PdfAnnotationDatalmporter

New to Atalasoft DotImage 7.0 was a special AnnotationDatalmporter for PDF documents. At
present, it reads all flavors of PDF except for encrypted PDF and PDF with binary cross-reference
tables (an option in PDF 1.5 and above). It will import the following PDF annotation types: Caret,
Circle, Highlight, Line, Polygon, Polyline, Square, Squiggly line, Strikeout, and Underline. Other

220

Atalasoft DotImage Developer's Guide

standard PDF Annotation types will be represented by a TextAnnotation object with text that starts
"Unknown annotation of type ..."

When the PdfAnnotationDatalmporter encounters a PDF Annotation that is outside of the PDF spec,
it will call the FailsafeAnnotationFactory. The object passed in to the factory will be a .NET Hashtable
object. It will contain a set of key/value pairs that represent data inside the PDF annotation. The
keys are all strings and correspond to the names of dictionary entries within the annotation
according to the Adobe PDF Specification. We do not yet specify what the values will be under all
circumstances and their data type and contents are subject to change. In general, however, the
values will be the closest corresponding .NET data type (ie, PDF strings will be .NET strings, PDF
numbers will be doubles or integers, PDF arrays will be ArrayList, etc.).

New to Atalasoft DotImage 8.0 was the ability for PDF annotations to contain embedded data.
Atalasoft DotImage can interpret this data as a serialized AnnotationData object that can be
deserialized into the original object. A PDF annotation that contains embedded data is acting as a
proxy. If that proxy has been moved/sized/edited by a user in the PDF, DotiImage Annotations have
a mechanism for merging changes in the proxy annotation into the embedded annotation. Most
of this is handled automatically, by copying over the most commonly used editable properties, but
through the use of collection of "mergers" it is possible to customize how proxy annotations are
merged into the embedded annotations.

The XmpAnnotationDatalmporter

Atalasoft DotImage Annotations also include the XmpAnnotationDatalmporter. Given an annotation
controller, the XmpAnnotationDatalmporter can read XMP data from either TIFF or JPEG streams
and convert them into Atalasoft DotImage Annotations.

Export annotations

In addition to being able to serialize Atalasoft Dotlmage Annotations, it is possible to export them
to other formats. Exporting is different from serializing. In many cases, simple serialization is
exactly what is needed for a task. Serialization produces one chunk of data that fully encompasses
all elements of a set of Atalasoft DotImage Annotations. Exporting involves taking the annotation
data and possible changing it from Atalasoft DotlImage Annotations into some other data type

and inserting it into or appending it onto some other file. The final file may not have an exact
representation of the original annotations. Exporting is done through an AnnotationDataExporter
object. Like AnnotationDatalmporter, it serves two purposes. It acts as a factory that can make new
AnnotationDataExporter objects and it can act as a writer.

Exporting annotations can happen in two ways. The first is simple exporting. The annotation is
given a source stream from which represents an existing file and a destination stream for writing
the annotations. In general, the source stream will be copied to the destination stream then

the annotations will be added on. Some exporters will read sections of the source stream and
intersperse annotations into the output stream. Some exporters will ignore the source stream
entirely.

The second way that annotations can be exported is by exporting over an existing file. This means
writing annotations into an existing file in such a way that it supersedes existing content. For
example, PDF is defined in such a way that exporting over is an existing file is a natural operations.
It is straightforward to modify a document to include new annotations without affecting the
existing document otherwise.

221

Atalasoft DotImage Developer's Guide

AnnotationDataExporter reports which methods are best handled via the properties CanExport and
CanExportOver. An AnnotationDataExporter needs to return true for at least one of these.

In spite of the restrictive appearance of Export and ExportOver, these methods are actually
implemented in terms of each other. If an AnnotationDataExporter reports that it is unable

to do ExportOver, the source stream will be copied to a temporary file and then Export will

be called with the temporary file as the source and the original file as the destination. If an
AnnotationDataExporter reports that it is unable to do Export, Export will copy the source stream to
the destination stream and then call ExportOver.

In general, client code should not care whether or not an AnnotationDataExporter supports one

or the other means of exporting except in the case of efficiency or resource management. The
properties CanExport and CanExportOver are meant to reflect what an AnnotationDataExporter can
do best, thereby allowing the client to choose the most efficient mode of operation.

Exporting is somewhat more complicated than importing in that it is necessary to know the
coordinate system of every page before exporting. To translate coordinate systems correctly, an
AnnotationDataExporter needs to know the size of each page in source page units, the resolution of
the source page and the units of all pages.

Write a custom AnnotationDataExporter

In order to create a custom AnnotationDataExporter, client code must inherit from
AnnotationDataExporter and at a minimum implement the following abstract methods:

public abstract bool CanExportOver { get; }

Indicates that the AnnotationDataExporter can export over an existing stream.

public abstract bool CanExport { get; }

Indicates that an AnnotationDataExporter can export from a source stream to a destination stream.
public abstract bool IsValidFormat (Stream stm);

Returns true if the stream is the correct format for this Exporter.

public abstract AnnotationDataExporter Construct();

Constructs a new AnnotationDataExporter.

protected abstract void LLExport (Stream sourceStream, Stream destStream,
SizeF pageSize, AnnotationUnit units, Dpi resolution, LayerData layer, int
frameIndex) ;

Exports a single page of annotations from a source stream to a destination stream. If CanExport
returns false, this method is never called.

protected abstract void LLExport (Stream sourceStream, Stream
destStream, SizeF[] pageSizes, AnnotationUnit units, Dpi[] resolution,
AnnotationDataCollection layers);

Exports an entire set of annotations from a source stream to a destination stream. If CanExport
returns false, this method is never called.

222

Atalasoft DotImage Developer's Guide

protected abstract void LLExportOver (Stream sourceStream, SizeF pageSize,
AnnotationUnit units, Dpi resolution, LayerData layer, int frameIndex);

Exports a page of annotations over an existing stream. If CanExportOver returns false, this routine
is never called.

protected abstract void LLExportOver (Stream sourceStream, SizeF[] pageSizes,
AnnotationUnit units, Dpi[] resolution, AnnotationDataCollection layers);

Exports an entire set of annotations from a source stream to a destination stream. If
CanExportOver returns false, this routine is never called.

The PdfAnnotationDataExporter

The PdfAnnotationDataExporter can export annotations to a PDF document, translating them
into annotations. The PdfAnnotationDataExporter translates the following Atalasoft Dotlmage
annotation types into PDF annotations:

+ Rectangle
+ Ellipse

» Text

* Freehand
+ Polygon

+ Lines

+ Line

+ PdfMarkup
« PdfLine

There are properties of AnnotationData that does not have equivalent properties in the PDF
annotations. Here is the list of those properties:

» Rotation from all AnnotationData objects.

+ Shadow from RectangleData, EllipseData and TextData.
+ LineType from FreehandData and PolygonData.

+ Fill from FreehandData.

+ Alignment from TextData.

+ FormatFlags from TextData.

These properties are ignored when converting.

The PdfAnnotationDataExporter can handle exporting annotations that do not necessarily make
sense in PDF. For example, if you have created an annotation in Atalasoft DotImage that includes
hooks into a database, it does not work in Acrobat or other PDF viewers without a custom plug-in.
Atalasoft DotImage annotations are, by default, embed a serialized version of the annotation inside
a PDF Rectangle annotation. The Rectangle annotation in turn will be given a custom appearance
take from the custom annotation itself. Although the PDF annotation will not have the same
behavior as in Atalasoft Dotlmage annotations, the embedded data can be deserialized into the
original object.

223

Atalasoft DotImage Developer's Guide

In addition, users can customize the annotation appearance in PDF via policies set within the
PdfAnnotationDataExporter. PdfAnnotationExportPolicy can be used to instruct the library on how
to handle AnnotationData and how it will appear within the PDF.

The PdfAnnotationDataConverter

The PdfAnnotationDataConverter can convert annotations to PDF annotations. The
converted annotations can be added to the PdfGeneratedDocument or PdfDocumentSigner.
The PdfAnnotationDataConverter has the same capabilities and limitations as the
PdfAnnotationDataExporter. (See The PdfAnnotationDataExporter for more information.)

Examples of using the PdfAnnotationDataConverter for converting annotations can be found in the
API Reference.

Create an annotation enabled control

The annotation component is designed to be very easy to implement and use. This section
describes how to quickly create an annotation enabled control.

Integrate with Atalasoft DotImage

When integrating with Atalasoft DotImage, an AnnotateViewer can be added to a Windows
Form or user control. This control is located in the Atalasoft.DotImage.Annotate assembly and
references the Atalasoft.Dotlmage and Atalasoft.DotImage.WinControls assemblies, part of
Atalasoft DotImage. The AnnotateViewer control derives from the WorkspaceViewer control with
added Annotation functionality. The AnnotationController is accessed through the Annotations
property. The AnnotateViewer also has a Burn() method which, as its name suggests, burns the
annotation onto the image.

Printing Annotations with the AnnotatePrintDocument makes printing annotations on top of
the image very easy. It derives from the ImagePrintDocument available in Atalasoft DotImage
WinControls. This control is also available only when integrating with Atalasoft DotImage.

Interactively create an annotation

To interactively create an annotation, an Annotation instance needs to be passed to the
CreateAnnotation() method. Once this method is called, a mouse down action adds the annotation
to the current layer and it is resized until the mouse is depressed. The resulting annotation can
then be edited (resized and repositioned) if the InteractMode in the AnotationController is set to
Author. If InteractMode is set to View, then the resulting annotation is locked and cannot be edited.
Setting InteractMode to None tells the AnnotationController to ignore mouse messages, allowing
the viewer to handle any mouse tools that may be used. All annotation types, and even custom
annotation types can be created in this manner.

The following code is shows how to set up code to create a "sticky note" annotation.

Example
C#

Creating a Sticky Note Annotation

224

Atalasoft DotImage Developer's Guide

TextAnnotation myAnnotation =
myAnnotation.Text =
myAnnotation.Fill =
myAnnotation.Shadow =

myAnnotation.ShadowOffset = new PointF (4,

new TextAnnotation();

"Annotations are cool";

new AnnotationBrush (Color.Yellow) ;
new AnnotationBrush (Color.Gray) ;

4);

annotationControllerl.CreateAnnotation (myAnnotation) ;

See Create a Template Annotation to see how to allow the user repeatedly to create the same

annotation.

Create an annotation programmatically

To create an annotation programmatically and add it to an image, one needs to simply add the

annotation object to the a LayerAnnotation in the Layers collection. The position of the annotation

in the collection defines the Z-order or order it's painted. The Add() method in the CurrentLayer
adds the annotation to the end of the collection, and is painted on top of all other annotations in

that layer.
The following code shows how to add annotations

Example
C#

Adding Annotations Programmatically

TextAnnotation myAnnotation =
myAnnotation.Text =
myAnnotation.Fill =
myAnnotation.Shadow =
myAnnotation.ShadowOffset =
myAnnotation.Location = new PointF (100,

myAnnotation.Size = new SizeF (100, 200);

new PointF (4,

annotationControllerl.Currentlayer.Items.

Annotation assemblies

programmatically.

new TextAnnotation();
"Annotations are cool";

new AnnotationBrush (Color.Yellow) ;
new AnnotationBrush (Color.Gray) ;

4);

100) ;

Add (myAnnotation) ;

The following DotImage assembly is available for work with Annotations.

Assembly

Description

Atalasoft.DotImage.WinControls.dll

Contains a control called AnnotateViewer
derived from our Atalasoft DotImage

toolkit's WorkspaceViewer control and an
AnnotatePrintDocument to print an image with
annotations

The AnnotationController component contains all the annotations in a viewer whether built in

or custom. It has a collection of LayerAnnotations,

AnnotationController contains properties that affect how the user interacts with the view port.
The InteractMode property can be set to View, Author, or None. When in Author mode, individual

annotations can be interactively moved, resized an
without the ability to interactively edit annotations

each with a collection of annotations. The

d rotated. View mode is for image display,
and make hot spot annotations active.

225

Atalasoft DotImage Developer's Guide

The AnnotationUI object is an abstract base class that all annotations derive from. New annotations
can be added to a document by creating an instance of any one of the annotation objects

derived from the AnnotationUI class and passing it into the CreateAnnotation() method in the
AnnotationController. This allows the user to interactively place an annotation onto the IAnnotate
view port or AnnotateViewer.

LayerAnnotations can be used to define a set of related objects that have specific permissions
or attributes. They can also be used when annotating multipage documents. The Layers
property contains a collection of LayerAnnotations loaded in the AnnotationController and each
LayerAnnotation can contain additional LayerAnnotation objects.

A group is a set of related annotations that act as one object. It is represented by a LayerAnnotation
with its GroupAnnotation property set to true. Groups can be created manually by setting the
GroupAnnotation property or by using the Group () method of the AnnotationController. Top level
LayerAnnotations in the Layers collection cannot be used as groups.

Create a template annotation

To allow a user repeatedly to create an annotation with the same properties, you can setup a
template and clone it after the earlier annotation is added to the control.

To do so, handle the AnnotationCreated event in the AnnotationController or AnnotateViewer and
clone the template annotation stored as a field. The user is then able to add multiple instances of
the same annotation onto a document.

Example
The following code demonstrates how to do this.

C#

public MainForm ()

{

InitializeComponent () ;

// create template annotation (allow users to modify these properties if required)
_template = new RectangleAnnotation();

// start creating annotations interactively
annotationViewer.Annotations.CreateAnnotation(template.Clone());

}

public void annotationViewer AnnotationCreated(object sender, AnnotationEventArgs e)
{
annotationViewer.Annotations.CreateAnnotation(template.Clone());

}

Print annotations

Atalasoft.DotImage.WinControls.dll includes the AnnotatePrintDocument component in the
Atalasoft.DotImage.Annotate assembly. This component derives from ImagePrintDocument which
derives from the .NET PrintDocument class. The .NET components that accept PrintDocument also
accept AnnotatePrintDocument which gives the application the ability to change printer settings,
page settings, and show a print preview.

226

Atalasoft DotImage Developer's Guide

Example
This example demonstrates how to show a print setup dialog, then print all images with
annotations.

C#

PrintDialog myPrintDialog = new PrintDialog() ;

AnnotatePrintDocument myAnnotatePrintDocument = new AnnotatePrintDocument () ;

myPrintDialog.Document = myAnnotatePrintDocument;

if (myPrintDialog.ShowDialog(this) == DialogResult.OK)

{
myAnnotatePrintDocument.Image = this.Viewer.Image;
myAnnotatePrintDocument.Annotations = this.Viewer.Annotations;
myAnnotatePrintDocument.Print () ;

Using IAnnotate
A few approaches are available for printing annotations.

1. Paint the annotations onto the image with the RenderAnnotations() method in
AnnotationController, then print the image using the PrintDocument class.

2. Using the PrintDocument class, handle the PrintPage event and draw the document, then draw
each annotation using its associated IAnnotationRenderer.

3. Derive from PrintDocument yourself and create your own annotation print document.

In each case, you must determine the scaling and offset required depending on the document size
and the page size and depending on how you wish the image to be printed.

Serialize to XMP And WANG data

DotImage Annotations support saving and reading XMP and WANG annotation data. Data can be
saved into a separate file or stored in an image usable with Atalasoft DotImage.

WANG annotations

This data format allows basic annotations to be stored into TIFF images. Many image viewers
are able to read WANG data, making it a good choice if the images are viewed in other products.
However, because only basic shapes and colors can be used, some annotation data will not be
reproduced by other products.

When integrating with Atalasoft DotImage, WANG data is saved into TIFF images using TAG ID
32932.

To retrieve WANG data from an image, use the GetTiffTag () method of the TiffDecoder.

To save WANG data into an image, create a new TiffTagCollection, adding a TiffTag with the ID of
32932, and set the Data object to the WANG data created with the WangFormatter class.

227

Atalasoft DotImage Developer's Guide

Saving annotations

This was developed by Adobe so applications can share metadata information using a standard
format. The data can be saved as a separate XML file or stored into TIFF, JPEG or PDF files.

In order to include annotation data, an annotation schema was developed to extend XMP. By
following this schema, other applications will be able to read and write the annotation data.

When integrating with Atalasoft DotImage, WANG data can be stored into JPEG, TIFF, and PDF
images, and retrieved from JPEG and TIFF images. To retrieve XMP data from an image, use the
BytesFromImage () method of the XmpParser class, and pass the returned byte array into the
Load() method of AnnotationController. To save XMP data including DotImage Annotations, use the
Save(Formatter) method of the AnnotationController,passing in an XmpFormatter and set the Xmp
property of the TiffEncoder, JpegEncoder, or PdfEncoder to the byte array returned from the Save()
method.

Custom annotations

If you have developed a custom annotation, the annotation data and UI classes should implement
the ISerializable interface. This serialization is used by the WANG and XMP formatters when saving
and loading annotations. An example appears below.

Example

C#

public TriangleData (SerializationInfo info, StreamingContext context)
base (info, context)
{
this. fill = (AnnotationBrush)SerializationInfoHelper.GetValue (info, "Fill",
new AnnotationBrush (Color.Blue)) ;
base.SetBrushEvents (this. fill);

}
[SecurityPermissionAttribute (SecurityAction.Demand, SerializationFormatter=true)]
public override void GetObjectData (SerializationInfo info, StreamingContext context)

{
base.GetObjectData (info, context) ;
info.Addvalue ("Fill", this. fill);

Work with unit systems

DotImage Annotations are designed to work in any unit system. You can set the unit system using
the Resolution property in IAnnotate . When this value is set to 1.0, the annotation objects are sized
to pixel coordinates. Adjusting this value scales the coordinate system relative to pixels.

Example

To position and size objects in inches on a 96 dpi display, set the Resolution value to 96.

228

Atalasoft DotImage Developer's Guide

Units in the AnnotateViewer control

The AnnotateViewer control has a Units property. This automatically sets the Resolution to the
appropriate value based on the resolution of the image in the control. Any value other than Custom
overrides the Resolution to a value based on the image's resolution scaled to the appropriate unit.

This is convenient when viewing images such as maps in units such as kilometers. When the X and
Y resolutions in the image differ, the control adjusts the aspect ratio and extends the height of the
image. Annotation objects can be precisely positioned in familiar coordinates without the need to
convert or track units in your own code.

Units in a custom IAnnotate control

Setting the Resolution property to a value (pixels per unit) allows you to specify the location and
size of all annotation objects using any unit you wish. The effect is the same as setting the Units
property in the AnnotateViewer to Custom and specifying a custom Resolution.

Render custom grips

With the DotImage Annotations polymorphic event-based model, many aspects of the user
interface can be customized including the grips.

By default, grips are represented by 10-pixel solid white squares with a black border. They can be
customized to any shape or size. You can also code special behaviors depending on the mouse
status (hovering, mouse down, and so forth).

There are a two ways to enable custom grip drawing:

 If you have a custom annotation rendering engine that derives from AnnotationRenderingEngine,
override the protected RenderGrips () method.

» Create a new class that implements the IAnnotationGripRenderer interface.

Overriding the RenderGrips method

Overriding the RenderGrips () method of AnnotationRenderingEngine is the easiest way to
provide custom rendering because the matrix manipulation is handled, leaving you with the
simple task of drawing the grips. To provide a greater understanding of how to deal with matrices
when drawing grips, the example that follows takes the challenging route of implementing
IAnnotationGripRenderer.

Example
Create a class that implements IAnnotationGripRenderer.

C#

public class MyCustomGripRenderer : Atalasoft.Annotate.Renderer.IAnnotationGripRenderer

Implement the RenderGrips () method by breaking this into section.

C#

229

Atalasoft DotImage Developer's Guide

public void RenderGrips (IAnnotationGrips grips, AnnotationData annotation,
Atalasoft.Annotate.Renderer.RenderEnvironment e)

{

if (annotation == null || grips == null || e == null) return;

// Section: Where will have to get the scaling being applied to the viewer matrix
(vm)

//and undo this change because a grips size should not scale.

// Multiple the annotation transform to the viewer matrix.

System.Drawing.Drawing2D.Matrix vm = null;

if (e.Transform != null)
vim = e.Transform.Clone();
else if (e.Graphics.Transform != null)

vin = e.Graphics.Transform.Clone () ;
float scaleX = vm.Elements[0];
float scaleY = vm.Elements[3];
// The annotation transform.
System.Drawing.Drawing2D.Matrix m = annotation.GetRenderTransform() ;
if (vm != null)
{

vm.Multiply (m) ;

m.Dispose () ;
}
else

vm = m;

// This will undo the scaling the transformation
// matrix wants to perform, since grips don't scale.
vm.Scale (1f / scaleX, 1f / scaleY);
System.Drawing.Drawing2D.GraphicsState state = e.Graphics.Save() ;
e.Graphics.Transform = vm;
// Section: Now we will create our drawing objects
// and perform the actual drawing.
// This is the code you would write if overriding
// the RenderGrips method in a rendering engine.
// Create the brush and pen objects.
Brush brush =
Atalasoft.Annotate.Renderer.AnnotationRenderingEngine.CreateBrush (grips.Fill) ;

Pen pen =
Atalasoft.Annotate.Renderer.AnnotationRenderingEngine.CreatePen (grips.Outline) ;
Brush rotateBrush = (grips.RotationFill == null ? brush
Atalasoft.Annotate.Renderer.AnnotationRenderingEngine.CreateBrush (grips.RotationFill)) ;
Pen rotatePen = (grips.RotationOutline == null ? pen
Atalasoft.Annotate.Renderer.AnnotationRenderingEngine.CreatePen (grips.RotationOutline)) ;
SizeF size = grips.Size;

float w2 = size.Width / 2f;
float h2 = size.Height / 2f;
foreach (AnnotationGrip grip in grips)
{
// Ignore grips that should not be drawn.
if (!grip.Visible) continue;
if (grip.Action == AnnotationGripAction.Rotating && !annotation.CanRotate)
continue;
// While the grip size does not scale, the position of the grip does.
RectangleF rc = new RectangleF (Convert.ToInt32 (grip.Position.X * scaleX - w2),
Convert.ToInt32 (grip.Position.Y * scaleY - h2), size.Width, size.Height);

if (grip.Action == AnnotationGripAction.Rotating && rotateBrush != null)
e.Graphics.FillRectangle (rotateBrush, rc);

else if (brush != null)
e.Graphics.FillEllipse (brush, rc);

if (grip.Action == AnnotationGripAction.Rotating && rotatePen != null)
e.Graphics.DrawRectangle (rotatePen, rc.X, rc.Y, rc.Width, rc.Height):;

else if (pen != null)

e.Graphics.DrawEllipse (pen, rc);

230

Atalasoft DotImage Developer's Guide

}
// Clean up

if (rotateBrush != null && rotateBrush != brush)
rotateBrush.Dispose () ;
if (rotatePen != null && rotatePen != pen)

rotatePen.Dispose() ;
if (brush != null)
brush.Dispose () ;
if (pen != null)
pen.Dispose() ;
// Section: Now we need to restore the Graphics
// state so any additional rendering will
// not be affected by our change.
e.Graphics.Restore (state) ;
vm.Dispose () ;

Respond to events

Clicking, double clicking, hovering over, resizing, moving, or activating an annotation results in an
event firing. That fact allows for easy customization and user interaction. AnnotationController
events can be fired for all annotations, or for a specific annotation object. The ActiveAnnotation is
always the annotation being interacted with.

HotSpot annotations allow end users to click an area of a document so that the application can
respond.

© 1ndividual Annotation objects can respond to actions as events. Most events in the
AnnotationController have the same event in the annotation object itself.

This example below shows a message box with the name of the HotSpotAnnotation the user
clicked.

Example
Triggering a Message Box from a HotSpot AnnotationHotSpot.

C#

annotationViewerl.AnnotationClicked +=
AnnotationEventHandler (annotation AnnotationClicked) ;

private void annotation AnnotationClicked(object sender, AnnotationEventArgs e)
{
if (e.Annotation is HotSpotAnnotation)

{

MessageBox.Show (this, "The hotspot named " + e.Annotation.Name +
" was clicked!", "Hot Spot Notification");

231

Atalasoft DotImage Developer's Guide

Add a context menu to an annotation

The ContextMenu property of the Annotation class allows a pop-up menu to be displayed when any
Annotation object is right clicked. This is a nice way to allow the user to edit and change properties
of the active annotation.

The Annotation object in focus is set to the ActiveAnnotation property in the AnnotationController
component. When using the AnnotateViewer, the active annotation property is accessed as
annotateViewer1.Annotations.ActiveAnnotation. In the context menu item clicked event, you can
change the properties of the active annotation, then refresh the controller.

Example

The following example demonstrates changing the background color of the annotation by:

1. Showing a color dialog
2. Checking for a Fill property and then
3. Adjusting the color.

Changing the Background Color

C#

private void menuBackColor Click(object sender, System.EventArgs e) {
// Display the pick color dialog.
ColorDialog dlg = new ColorDialog() ;
if (dlg.ShowDialog() == DialogResult.OK) {
AnnotationBrush brush = new AnnotationBrush (dlg.Color);
AnnotationUI annotation = annotateViewerl.Annotations.ActiveAnnotation;
SetProperty (annotation.GetType (), "Fill", annotation, typeof (AnnotationBrush),
brush) ;
}
dlg.Dispose () ;
}
private void SetProperty (Type annType, string propertyName, AnnotationUI annotation,
Type valueType, object value)
{
PropertyInfo info = annType.GetProperty (propertyName) ;
if (info != null && info.CanWrite)
{
if (info.PropertyType == valueType)
info.SetValue (annotation, value, null);

Highlight a document

To highlight an area of a document, use any annotation that implements the IHighlighter interface
and set the Translucent property to true.

232

Atalasoft DotImage Developer's Guide

Bright colors in the base image are replaced with the color of the annotation object. Dark colors will
show through. The results are very similar to those you would get using a highlighter on a paper
document.

The following annotations currently implement IHighlighter:

+ EllipseAnnotation

+ FreehandAnnotation
+ LinesAnnotation

+ PolygonAnnotation
+ RectangleAnnotation

Work with layers and groups

This section discusses how to work with layers and groups.

Layers

LayerAnnotations are container objects that can hold an arbitrary number of annotations, including
other LayerAnnotation objects. Layers can be used to differentiate pages in a multipage document.
Typically, a layer holds annotations from each document page.

When the Visible property of a LayerAnnotation is set to false, none of its child annotations are
rendered. This provides a convenient way to show or hide a collection of annotations.

Groups

A Group is a LayerAnnotation with its GroupAnnotation property set to true. When a layer works
as a group, the grips are shown around the layer instead of the annotations it contains. Moving or
resizing a group moves or resizes all of its annotations.

To create a group, begin by creating a new LayerAnnotation, adding annotations into the layer,
and set its GroupAnnotation property to true. The AnnotationController has Group() and Ungroup()
methods to simplify this process.

i J Top level layers, i.e. those in the Layers property of AnnotationController, cannot be used as a
group. Only LayerAnnotations contained in other layers can act as a group.

Create a custom annotation

DotImage Annotations, like all of Atalasoft Dotlmage, are designed to be extensible. Should you
encounter a case where the built-in annotation objects do not suffice, the polymorphic design of
DotImage Annotations allows you to create arbitrary objects defined by any number of points.

The AnnotationData and AnnotationUI classes are the base of all annotations. The PointBaseData
and PointsBaseAnnotation classes can be derived from to define an object as a series of points that
can be interactively edited either by redefining the overall rectangle, or by repositioning any point
represented as a grip.

233

Atalasoft DotImage Developer's Guide

In addition to the data and Ul classes, each annotation has a renderer associated with the data
class. The renderer implements IAnnotationRenderer and handles rendering the annotation and its

grips.

The example that follows demonstrates on how to create a custom annotation, in this case, a
triangle-shaped annotation.

Example
Step 1: Create the TriangleData class derives from AnnotationData.

Create the TriangleData class derives from AnnotationData. It implements ISerializable and
IConeable.

C#

public class TriangleData : Atalasoft.Annotate.AnnotationData, ISerializable,
ICloneable

Step 2: Add a Fill Property to the Annotation
Add a Fill Property to the Annotation.

The code below demonstrates raising the PropertyChanging event when a property value is being
modified as well as adding an entry in the AnnotationUndoManager for this change.

C#

public AnnotationBrush Fill
{
get { return fill; }
set
{
// If there is no change just ignore it.
if (Equals(value, fill))
return;

// Raise the PropertyChanging event so any derived classes are notified.
var e = new AnnotationPropertyChangingEventArgs (this, "Fill", fill, value);

// If IgnoreDataChanges is true, we should not raise events. This can
// happen when making internal changes that we don't want propagated.
if (!IgnoreDataChanges)
{

OnPropertyChanging (e) ;

if (e.Cancel) return;

}

// If we want this property to work with the UndoManager, we must
// pass in an AnnotationUndo object for this change.

var undo = new AnnotationUndo (this, "Fill", £ill, "Fill Change");
var newValue = (AnnotationBrush)e.NewValue;

// If dynamic changes are required for brush properties,
// the SetBrushEvents and RemoveBrushEvents methods should
// be used. These allow the brush properties to notify

// the AnnotationController that a change was made.
RemoveBrushEvents (_ fill);

_fill = newValue;

SetBrushEvents (fill);

234

Atalasoft DotImage Developer's Guide

// Finally, pass the undo object to the AnnotationController.
if (!IgnoreDataChanges)
{
OnAnnotationControllerNotification (
new AnnotationControllerNotificationEventArgs (
Atalasoft.Annotate.AnnotationControllerNotification.Invalidate,
undo)) ;

}

var eChanged = new AnnotationPropertyChangedEventArgs ("Fill", fill, newValue);
OnPropertyChanged (eChanged) ;

Step 3: Override the Clone () MethodClone ()
You must override the Clone () method when deriving from AnnotationData.

C#

public override object Clone ()

{
TriangleData data = new TriangleData();
base.CloneBaseData (data) ;
data. fill = (this. fill == null ? null : this. fill.Clone());
return data;

Step 4: Add serialization code
Add serialization code so this annotation can be serialized to XMP or WANG.

C#

public TriangleData (SerializationInfo info, StreamingContext context) : base(info,
context)
{

this. fill = (AnnotationBrush)SerializationInfoHelper.GetValue (info, "Fill", new
AnnotationBrush (Color.Blue)) ;

base.SetBrushEvents (this. fill);
}
[SecurityPermissionAttribute (SecurityAction.Demand, SerializationFormatter=true)]
public override void GetObjectData (SerializationInfo info, StreamingContext context)
{

base.GetObjectData (info, context);

info.AddvValue ("Fill", this. fill);

Step 5: Add serialization code

Add a method to return the points of the annotation in annotation space.

C#
public PointF[] GetTrianglePoints ()
{
PointF[] points = new PointF[3];
points[0] = new PointF (0, this.Size.Height);
points[l] = new PointF (this.Size.Width, this.Size.Height)
points[2] = new PointF(this.Size.Width / 2f, 0);

235

Atalasoft DotImage Developer's Guide

return points;

Step 6: Create a TriangleAnnotation class that derives from AnnotationUI and implements
[Serializable

Add a method to return the points of the annotation in annotation space.

C#

public class TriangleAnnotation : Atalasoft.Annotate.UI.AnnotationUI, ISerializable
Step 7:Add the default and serialization constructor.

Add the default and serialization constructor as shown below.

C#
private TriangleData data;
public TriangleAnnotation() : base(new TriangleData())

{
this. data = this.Data as TriangleData;
base.SetGrips (new RectangleGrips());
}
public TriangleAnnotation (SerializationInfo info, StreamingContext context)
base (info, context)
{
this. data = this.Data as TriangleData;
base.SetGrips (new RectangleGrips());

Step 8: Override the GetRegion () method
Override the GetRegion () method.

C#

public override AnnotationRegion GetRegion (AnnotateSpace space)
{

AnnotationRegion region = new AnnotationRegion () ;

SizeF size = this.Data.Size;

// Specify the points in annotation space.

PointF[] points = this. data.GetTrianglePoints();

// Convert to the requested space if required.

if (space == AnnotateSpace.Document)
AnnotateSpaceConverter.AnnotationSpaceToDocumentSpace (this.Data, points);

else if (space == AnnotateSpace.View)

AnnotateSpaceConverter.AnnotationSpaceToViewSpace (this.Controller.Parent,this.Data,
points) ;

region.Path.AddPolygon (points) ;

// Be sure to add the grips to the region.
base.AddGripsToRegion (region) ;

return region;

Step 9: Create a TriangleRenderingEngine class that will be used to render the annotation

Create a TriangleRenderingEngine class that will be used to render the annotation.

236

Atalasoft DotImage Developer's Guide

C#

public class TriangleRenderingEngine
Atalasoft.Annotate.Renderer.AnnotationRenderingEngine

Step 10: Override the RenderAnnotation () method
Override the RenderAnnotation () method and draw the triangle.

C#

public override void RenderAnnotation (AnnotationData data, RenderEnvironment e)
{

// Perform a basic check.

TriangleData data = annotation as TriangleData;

if (data == null) return;

if (data.Fill == null) return;

// SetGraphicsTransform handles combining multiple
// transformation matrix objects so you can render normally.
base.SetGraphicsTransform(annotation, e);
Brush b = base.CreateBrush(data.Fill);
if (b !'= null)
{
PointF[] points = data.GetTrianglePoints();
e.Graphics.FillPolygon (b, points);
b.Dispose () ;
}

// If you call SetGraphicsTransform you must also
// call RestoreGraphicsTransform when finished.
base.RestoreGraphicsTransform(e) ;

Step 11: Add Annotation's Engine to AnnotationRenderers Collection

Before the annotation can be rendered, its rendering engine must be added to the
AnnotationRenderers collection. A convenient way of doing this is with a static (Shared in VB)
constructor in the data class.

C#

static TriangleData ()
{

Atalasoft.Annotate.Renderer.AnnotationRenderers.Add (typeof (TriangleData), new
TriangleRenderingEngine ()) ;

}

Password-based authentication

A locked annotation object can have an associated password. Individuals with knowledge of that
password are able to unlock and remove the object. Password based authentication is the simplest
method for creating redactions.

The Lock () method in each annotation has an optional password that is encrypted in the object
and in the serialized data.

237

Atalasoft DotImage Developer's Guide

The Unlock () method can then be invoked with the associated password to allow editing of the
annotation.

Typically, the RectangleAnnotation with a solid alpha channel is used for redactions.

NT user authentication

If the application that uses redaction annotations needs NT user or role based authentication,
use the Microsoft .NET Framework by creating a custom security class which implements the
IAnnotationLock interface. See MSDN documentation for more details.

Burning annotations

The most secure way to prevent a user from viewing a section of a document is to permanently
remove that section. You can do this interactively by placing an annotation over the protected
area and burning it. If you are integrating with Atalasoft DotImage and using the AnnotateViewer
component, see the Burn() method. Otherwise use the RenderAnnotations() method in the
AnnotationController.

Example
Locking an Annotation.
C#

RectangleAnnotation myAnnotation = new RectangleAnnotation (new RectangleData (new
RectangleF (2.0f, 2.5f, 4.2f, 6.0f), new AnnotationBrush(Color.Black)));
myAnnotation.Fill = new AnnotationBrush (Color.Black);
myAnnotation.Data.Security = new AnnotationLock() ;
annotationViewerl.Annotations.CurrentLayer.Items.Add (myAnnotation) ;
myAnnotation.Data.Security.Lock (password) ;
//add code here to interact with the image
//to unlock the annotation, simply call the unlock method.
//This allows the annotation to be edited interactively
if (myAnnotation.Data.Security.Unlock (password))

MessageBox.Show (this, "Annotation Unlocked Successfully");
else

MessageBox.Show (this, "Incorrect Password");

Create a sticky note

A sticky note is a TextAnnotation that appears within a shadowed rectangle with a yellow
background and black text. To prevent the note from rotating with the image, a common preference
with sticky notes, set the CanRotate property to false.

Example
Create a Sticky Note
C#

TextAnnotation myAnnotation = new TextAnnotation();
myAnnotation.Text = "This is a sticky note";
myAnnotation.Fill = new AnnotationBrush (Color.Yellow) ;
myAnnotation.Shadow = new AnnotationBrush (Color.Gray) ;
myAnnotation.ShadowOffset = new PointF (4, 4);
myAnnotation.Data.CanRotate = false;

238

Atalasoft DotImage Developer's Guide

annotationViewerl.Annotations.CreateAnnotation (myAnnotation) ;

Work with unit systems

DotImage Annotations are designed to work in any unit system. You can set the unit system using
the Resolution property in IAnnotate . When this value is set to 1.0, the annotation objects are sized
to pixel coordinates. Adjusting this value scales the coordinate system relative to pixels.

Example
To position and size objects in inches on a 96 dpi display, set the Resolution value to 96.

Units in the AnnotateViewer control

The AnnotateViewer control has a Units property. This automatically sets the Resolution to the
appropriate value based on the resolution of the image in the control. Any value other than Custom
overrides the Resolution to a value based on the image's resolution scaled to the appropriate unit.

This is convenient when viewing images such as maps in units such as kilometers. When the X and
Y resolutions in the image differ, the control adjusts the aspect ratio and extends the height of the
image. Annotation objects can be precisely positioned in familiar coordinates without the need to
convert or track units in your own code.

Units in a custom IAnnotate control

Setting the Resolution property to a value (pixels per unit) allows you to specify the location and
size of all annotation objects using any unit you wish. The effect is the same as setting the Units
property in the AnnotateViewer to Custom and specifying a custom Resolution.

Annotate multipage documents

DotImage Annotations have built-in support for annotating multipage documents such as
multipage TIFF images. Each page of the TIFF has its own annotations that are displayed when the
page changes. When working with multipage images, Layers are used to separate annotations into
each page.

Handling multipage images using AnnotateViewer

In the AnnotateViewer, annotating multipage images is very straightforward. If you set the
MultipageAnnotateMode property to true, whenever a specific image in the ImageCollection is
set to current, the annotations associated with that page are displayed and annotations associated
with other pages are hidden. A layer is created for each page in the multipage document. The index
of each layer in the AnnotationController is associated with the same index of each image in the
ImageCollection in the same order.

When inserting, removing, or reordering images from the ImageCollection, you must manually
insert, remove, or reorder layers to their respective positions.

239

Atalasoft DotImage Developer's Guide

Handling multipage images using a custom viewer

The best way to handle multipage images is by using a separate layer for each page in the image. If
you do so, you need only set the visible property for each layer to control which annotations are
visible for a specific page. This approach is similar to that used in the AnnotateViewer.

Example
C#

this.annViewer.Annotations.Layers|[page] .Visible = true;

WANG annotations

When WANG data is read from a multipage TIFF, the data is stored separately for each page of the
image. As a result, you must pull the annotation data from each TIFF page and add it to a separate
layer.

The TiffDecoder can be used to read WANG data from each page. This is done by specifying which
frame (page) index to read from when calling the GetImagelnfo() method.

If the WANG data is being saved to a separate file instead of embedded into a TIFF, DotImage
Annotations save each layer in such a way that it can be retrieved later, while still maintaining
WANG compliance.

Metadata

Metadata is data that describes other data. Atalasoft DotImage Photo Pro and Document Imaging
allow viewing and manipulation of metadata stored in an image.

The Atalasoft.DotImage.Metadata namespace contains classes that handle image metadata.

Metadata is a convenient way to store textual information in an image. Atalasoft Dotimage allows
this information to be accessed and manipulated. For example, it is possible to store the metadata
information in a database, build a metadata viewer application , and to add your own metadata in
the form of EXIF, IPTC, XMP, or COM markers.

See the Metadata Demo installed with Atalasoft Dotimage for an example of metadata use.

Supported metadata types
Atalasoft DotImage supports the following metadata types:

+ Digital camera EXIF tags
+ IPTCtags

+ COM Text markers

+ Adobe XMP data

« TIFF Tags

240

Atalasoft DotImage Developer's Guide

» Photoshop Resources

In JPEG images, metadata is stored in "APPn markers". EXIF information is stored in an "APP1
marker", and IPTC and Photoshop Resource information is stored in an "APP13" marker. These
markers are created automatically when a JPEG image is encoded. Alternatively, you can use a
method to copy metadata without re-compressing JPEG images.

Image formats supporting metadata

The following Image Formats support Metadata:

Image Format Operations Metadata Types

JPEG read/write EXIF, IPTC, COM Text Markers,
JpegMarkers, XMP, Photoshop
Resources

PNG read/write COM Text Markers

TIFF read/write EXIF, IPTC, standard TIFF Tags, XMP,
Photoshop Resources

PDF write XMP

PSD read/write Photoshop Resources, IPTC

RAW read EXIF

See the TiffFile class for lower level access to TIFF files. This allows you to read or write non-standard
TIFF and EXIF Tags.

IPTC metadata

Together, the Newspaper Association of America (NAA) and the International Press
Telecommunications Council (IPTC) have designed a model to store multiple types of data
(metadata) in an image. This metadata is commonly known as IPTC. Adobe Photoshop, along with
many members of the newspaper and press industry, uses IPTC to store information in images.

Atalasoft DotImage can read and write IPTC information in both JPEG and TIFF images.

Read IPTC data

Similar to EXIF metadata, you can read IPTC metadata from an image by using the IptcParser class
which returns an IptcCollection. To read the metadata, pass the image filename or stream into the
ParseFromImage() method of the IptcParser. The IptcCollection is populated with each IPTC tag it
finds in the image. Then, you can modify, add, or remove IPTC tags as necessary.

The IptcTag object contains the IPTC information such as Section, ID, Index and Data. The Section is
usually "2", the ID is the unique identification of the type of tag, the Index is the tag number (there
can be multiple tags of the same ID), and Data is the actual value of the tag.

241

Atalasoft DotImage Developer's Guide

Modify and saving IPTC data

You can add, remove, or modify IPTC tags in the IptcCollection by using the appropriate collection
Add, Insert, and Remove methods. Your changes to the tags are saved with the image by setting the
IptcTags property of the JpegEncoder or TiffEncoder class.

Lossless modification of IPTC data

When you modify or add IPTC tags to an existing JPEG image, you should consider saving this
information losslessly in order to avoid re-compressing the JPEG image.

The following example demonstrates how to load IPTC metadata, add and modify tags, and then
save it back to the image losslessly.

Example
Losslessly Modifying IPTC Metadata
C#

string sourceFile = @"c:\C79A2086.Jpg";

//First get metadata from an image without reading the entire image
IptcParser iptcParse = new IptcParser();

IptcCollection iptcData = iptcParse.ParseFromImage (sourceFile) ;

//Determine if there is IPTC info

//Modify the caption if it exists, or add a caption if it does not
//An ID of 5 is the caption

if (iptcData == null)

iptcData = new IptcCollection();

if (iptcData != null && iptcData.LookupTag (5, 0) != null)
{

//Get the index of this tag

IptcTag tag = iptcData.LookupTag (5, 0);

int index = iptcData.IndexOf (tag) ;

iptcData[index] .Data = "Atalasoft DotImage Created This";
}
else
{

//Add the caption tag

iptcData.Add (new IptcTag(2, 5, 0, "Atalasoft DotImage Created This"));
}

//Get a temporary filename
string tempFile = System.IO.Path.GetTempFileName () ;

//Save the metadata changes back to the image losslessly
JpegEncoder jpeg = new JpegEncoder () ;

Jjpeg.AppMarkers = new JpegMarkerCollection (sourceFile);
jpeg.IptcTags = iptcData;

jpeg.CopydpegWithNewMarkers (sourceFile, tempFile);

//Delete the source file
System.IO.File.Delete (sourceFile) ;

//Move the temp file to the source file location

242

Atalasoft DotImage Developer's Guide

System.IO.File.Move (tempFile, sourceFile) ;

EXIF metadata

EXIF (Exchangeable Image File Format) is a standard for storing interchange information in image
files, particularly JPEG images.

EXIF metadata is commonly used in digital camera images to store information specific to digital

photography such as shutter speed, date taken, aperture, GPS information, and information specific

to the make of the camera.

Atalasoft Dotlmage parses the EXIF metadata information from a JPEG, TIFF, and RAW images using
the ExifParser class and loads each tag in the ExifCollection class.

An EXIF Tag is a special type of TIFF Tag, included in it's own SubIFD. Each EXIF tag is specified with
an ID, an IFD (Image File Directory), and TIFF Tag Type. The IFD indicates a section of the EXIF data
that holds a specific type of data.

The following table lists the available IFDs.

IFD Description
Main Primary image data information
Exif EXIF camera information

Interoperability

Tags that store the information to ensure interoperability

Thumbnail Thumbnail stored with the image
GPS GPS satellite information
MakerNoteUnknown Information specific to the make of an unknown camera

MakerNoteFujiFilm

Information specific to the make of a FujiFilm camera

MakerNoteOlympus

Information specific to the make of an Olympus camera

MakerNoteNikonType1

Information specific to the make of a Nikon Type 1 camera

MakerNoteNikonType3

Information specific to the make of a Nikon Type 2 or 3 camera

MakerNoteCasio

Information specific to the make of a Casio camera

MakerNoteCanon

Information specific to the make of a Canon camera

Maker notes

Atalasoft DotImage supports maker notes in some cameras. Because there is very little conformity
between camera manufacturer's maker notes, support is limited. The camera manufacturer is free
to change their own specification. We do our best to respond to the changes.

Atalasoft DotImage currently supports parsing of the following maker notes:

 FujiFilm
* Olympus
* Nikon

243

Atalasoft DotImage Developer's Guide

« Casio
« Canon

For maker note data that Atalasoft DotImage does not support, the data can still be persisted and
manually parsed as in this case Atalasoft Dotlmage stores the entire chunk of data as a byte array in
a single tag with an ID of OxFFFF and the IFD set to ExifTagIlfd.MakerNoteUnknown.

The EXIF Parser reads unknown EXIF Tags, that is tags whose format is not known to Atalasoft
DotImage. This is particularly an issue with Maker Note data as manufacturers tend to add new tags
in newer camera models. These tags are returned with their ID, and a byte array of data. It is up to
the developer to parse these unknown tags. The byte array could represent a single integer value, a
string, or a series of additional sub-tags.

Each unknown tag is identified as a separate tag unlike the case when the entire Maker Note chunk
is unrecognized.

For more information about EXIF, please visit http://www.exif.org/.

COM text

PNG and JPEG images support a type of metadata called COM Text. COM text is simple textual
information that you can store into an image. With Atalasoft DotImage, you can read and write this
information to an image.

Read COM text

Similar to EXIF and IPTC metadata, COM text data can be read invoking the parseFromImage ()
method in the ComTextParser class to return a ComTextCollection of all tags in a PNG or JPEG
image.

PNGs support a key/value pair, while JPEGs support only a value. In other words, the COMTextTag
has both a key and text. The key is ignored when saving COM text into a JPEG image.

Modify and saving COM text

You can add, remove, or modify COM Text tags in the ComTextCollection by using the appropriate
add, remove, and insert methods. To save changes to a JPEG or PNG image, set the ComText
property in the JpegEncoder or PngEncoder classes.

TIFF tags

There are two interfaces for working with TIFF Tags. Both of the methods listed below can be used
to retrieve and store standard TIFF tags.

« TiffDecoder's GetTiffTag () method
+ TiffEncoder's TiffTags properties

The TiffFile class provides far more flexibility, and low level access to TIFF structure including
retrieving and editing arbitrary TIFF Tags.

244

Atalasoft DotImage Developer's Guide

TIFF tag structure

Every TIFF image has a set of TIFF Tags containing descriptive information about the image data
such as width, height, compression, color depth, strip size, and so forth.

TIFF Tags can also contain custom metadata such as image description, date, and custom binary
data. A TIFF Tag is defined by

* auniquelD,
» a Type (i.e ushort, long, rational, byte, ascii),
+ the object Data associated with the tag.

The Data can be a single value, or an array of values. Test the the myTag.Data.GetType().IsArray
value to determine if the data is an array of values.

Some tag values are actually 32-bit pointers to the actual tag data. When this is the case, the
IsReference property is true. To access the actual data, invoke the LoadReferenceTagData in the
TiffDirectory class.

TIFF tag ID's
The following TIFF Tag ID's are tags that are supported using GetTiffTag and when saving Tiff Tags

using the TiffEncoder. The TiffFile class is not limited to these TIFF Tags. In that case, use the below
as a quick reference.

© sce the official TIFF specification for a full list of TIFF Tags.

Tag name ID TIFF DataType
TIFFTAG ORIENTATION 274 VT UIZ2
Values:

image orientation

ORIENTATION TOPLEFT 1 row 0O top, col 0 lhs
ORIENTATION TOPRIGHT 2 row 0 top, col 0 rhs
ORIENTATION BOTRIGHT E row 0 bottom, col 0 rhs
ORIENTATION BOTLEFT 4 row 0 bottom, col 0 lhs
ORIENTATION LEFTTOP 5 row 0 lhs, col 0 top
ORIENTATION RIGHTTOP 6 row 0 rhs, col 0 top
ORIENTATION RIGHTBOT 7 row 0 rhs, col 0 bottom
ORIENTATION LEFTBOT 8 row 0 lhs, col 0 bottom

TIFFTAG IMAGEWIDTH 256 VT UI4

TIFFTAG IMAGELENGTH 257 VT UTI4

TIFFTAG BITSPERSAMPLE 258 VT UI2

TIFFTAG COMPRESSION 259 VT UI2

Values:

COMPRESSTION NONE 1 dump mode
COMPRESSION CCITTRLE 2 CCITT modified Huffman RLE
COMPRESSION CCITTFAX3 3 CCITT Group 3 fax encoding
COMPRESSION CCITTFAX4 4 CCITT Group 4 fax encoding
COMPRESSION LZW 5 Lempel-Ziv & Welch
COMPRESSION OJPEG 6 6.0 JPEG
COMPRESSION JPEG 7 JPEG DCT compression
COMPRESSION NEXT 32766 NeXT 2-bit RLE
COMPRESSION CCITTRLEW 32771 #1 w/ word alignment
COMPRESSION PACKBITS 32773 Macintosh RLE

245

Atalasoft DotImage Developer's Guide

COMPRESSION THUNDERSCAN 32809 ThunderScan RLE

codes 32895-32898 are reserved for
ANSI IT8 TIFF/IT <dkelly@etsinc.com)

COMPRESSION IT8CTPAD 32895 IT8 CT w/padding
COMPRESSION IT8LW 32896 IT8 Linework RLE
COMPRESSION IT8MP 32897 IT8 Monochrome picture
COMPRESSION IT8BL 32898 IT8 Binary line art

compression codes 32908-32911 are reserved for Pixar
COMPRESSION PIXARFILM 32908 Pixar companded 10bit LZW
COMPRESSTION PIXARLOG 32909 Pixar companded 1llbit ZIP
COMPRESSION DEFLATE 32946 Deflate compression
COMPRESSION ADOBE DEFLATE 8 Deflate compression,

as recognized by Adobe

compression code 32947 is reserved for
Oceana Matrix <dev@oceana.com>

COMPRESSION DCS 32947 Kodak DCS encoding
COMPRESSION JBIG 34661 IS30 JBIG
COMPRESSION SGILOG 34676 SGI Log Luminance RLE
COMPRESSION SGILOG24 34677 SGI Log 24-bit packed
TIFFTAG PHOTOMETRIC 262 VT UIZ2
Values:
PHOTOMETRIC MINISWHITE O min value is white
PHOTOMETRIC MINISBLACK 1 min value is black
PHOTOMETRIC RGB 2 RGB color model
PHOTOMETRIC PALETTE E color map indexed
PHOTOMETRIC MASK Al holdout mask
PHOTOMETRIC SEPARATED 5 color separations
PHOTOMETRIC YCBCR 6 CCIR 601
PHOTOMETRIC CIELAB 8 1976 CIE L*a*b*
PHOTOMETRIC LOGL 32844 CIE Log2 (L)
PHOTOMETRIC LOGLUV 32845 CIE Log2 (L) (u',v'")
TIFFTAG RESOLUTIONUNIT 296 VT UIZ2
Values:
RESUNIT NONE 1 no meaningful units
RESUNIT INCH 2 english
RESUNIT CENTIMETER 3 metric
TIFFTAG XRESOLUTION 282 VT R4
TIFFTAG YRESOLUTION 283 VT R4
TIFFTAG NUMBEROFINKS 334 VT UI2
TIFFTAG DOCUMENTNAME 269 VT BSTR
TIFFTAG IMAGEDESCRIPTION 270 VT BSTR
TIFFTAG MAKE 271 VT BSTR
TIFFTAG MODEL 272 VT BSTR
TIFFTAG PAGENAME 285 VT BSTR
TIFFTAG SOFTWARE 305 VT BSTR
TIFFTAG DATETIME 306 VT BSTR
TIFFTAG ARTIST 315 VT BSTR
TIFFTAG HOSTCOMPUTER 316 VT BSTR
TIFFTAG INKNAMES 333 VT BSTR
TIFFTAG TARGETPRINTER 337 VT BSTR
TIFFTAG TILEWIDTH 322 VT UI4
TIFFTAG TILELENGTH 323 VT UI4
TIFFTAG INKSET 332 VT UI4
Values:
INKSET CMYK 1 CMYK image

246

Atalasoft DotImage Developer's Guide

TIFFTAG DOTRANGE 336 Binary
TIFFTAG EXTRASAMPLES 338 1-D SAFEARRAY or VT UIZ2
One value per 'extra' channel in the image.
Values:
EXTRASAMPLE UNSPECIFIED 0 unspecified
EXTRASAMPLE ASSOCALPHA 1 associated alpha (pre-multiplied)
EXTRASAMPLE UNASSALPHA 2 unassociated alpha
TIFFTAG EXTRASAMPLES 338 Binary
Purpose of any extra channels in the TIFF image.
TIFFTAG XMP DATA 700 Binary
Adobe XMP data
TIFFTAG ANNOTATIONS 32932 Binary
Wang annotations data
TIFFTAG RICHTIFFIPTC 33723 Binary
IPTC Data from the RichTIFF specification
TIFFTAG PHOTOSHOP 34377 Binary
Private tag registered to Adobe for PhotoShop (IPTC data)
TIFFTAG ICCPROFILE 34675 Binary

ICC profile block

XMP

Adobe's XMP Metadata is an effort to standardize on a well documented, easy to use metadata

format, replacing the existing metadata formats such as EXIF and IPTC. Based on ASCII XML data,

it's simple to parse and easily extensible.
Example

C#

XmpParser xmpParser = new XmpParser();
IXPathNavigable doc = xmpParser.ParseFromImage (file);

Example

Saving XMP Data

JPEG, TIFF, and PDF images can contain XMP data. To save an image with XMP, set the Xmp property

in the JpegEncoder, TiffEncoder, or PdfEncoder classes.

Save metadata with an image

To save an image with metadata, the metadata specific properties must be set in the Image

Encoder. For example, the IptcTags in the JpegEncoder and TiffEncoder, the Xmp property in the
JpegEncoder, TiffEncoder, or PdfEncoder, and the AppMarkers property in the JpegEncoder. Saving
EXIF Metadata in TIFF Files, requires use of the TiffFile object, in which case ExifTags must be set to
an ExifCollection

247

Atalasoft DotImage Developer's Guide

Example

This example demonstrates how to load a JPEG image with EXIF information, querying the DateTime
field, then re-saving the image back to a JPEG with just the EXIF tags intact.

C#

ExifParser exifParse = new ExifParser();
ExifCollection exifTags = exifParse.ParseFromImage (@"c\in.jpg") ;
//get JPEG Markers
JpegMarkerCollection appMarkersIn = new JpegMarkerCollection (@"c\in.jpg");
//read image
Workspace myWorkspace = new Workspace() ;
myWorkspace.Open (@"c\in.jpg") ;
//get the DataTime Tag from the image and display the value
if (exifTags != null)
{

ExifTag tag = exifTags.LookupTag ("DateTime") ;

if (tag != null)

MessageBox.Show ("This photo was taken on " + tag.Data.ToString()):;

}
JpegEncoder jpeg = new JpegEncoder (75) ;
//only write EXIF Tags back to the image (APP1)
JpegMarkerCollection appMarkersOut = new JpegMarkerCollection() ;
foreach (JpegMarker mk in appMarkersIn)

if (mk.Type == JpegMarkerTypes.MarkerAppl)

appMarkersOut.Add (mk) ;

jpeg.AppMarkers = appMarkersOut;
myWorkspace.Save ("c:\\out.jpg", jpeqg);

Retrieve metadata from an image

Metadata can be retrieved from an image, without loading the image data at all, by using the
ExifParser, IptcParser, ComTextParser, or XmpParser classes. Each metadata parser class allows a
filename or stream to be passed into the parseFromImage () method, which returns a collection
with all tags of the associated type in the image.

See each of the Parser classes for an example of its use.

Example

The following code returns a collection of EXIF tags from a JPEG image.

C#
ExifParser exifParser = new ExifParser();
ExifCollection exifTags = exifParser.ParseFromImage ("myimage.jpg") ;

Set metadata values

There are several ways to set PDF Translator's metadata.

248

Atalasoft DotImage Developer's Guide

PdfTranslator itself via its properties. When a document is translated through an OcrEngine object,
the PdfTranslator imposes its document properties onto the OcrDocument. The PdfTranslator
properties listed below are passed on directly to the output PDF.

Property Name Type |Meaning

Title string | Title of the document, initially set to the empty string ("")

Subject string | Subject of the document, initially set to the empty string ("")

Author string | Author of the document, initially set to the empty string ("")

Creator string | Creator of the document, initially set to Atalasoft DotImage

Producer string | Producer of the document, initially set to Atalasoft DotImage

Keywords string | Key words associated with the document, initially set to the empty string ("")

Each property corresponds to a piece of metadata within the PDF specification. Additionally, the
CreationDate property is set automatically to the current system time.

Example
Setting Metadata Properties Directly

While this is a simple mechanism for setting the metadata, there are times when it might not be
optimal for the circumstances. For example, if the PdfTranslator is used within several different
contexts, it might be difficult to set or reset the metadata values. In this case, it might be easier to
set the OcrDocument metadata properties directly. This is best done using the DocumentProgress
event within OcrEngine as shown below.

C#

public void SetMetadataHandler ()
{
engine.DocumentProgress += new
OcrDocumentProgressEventHandler (myMetadataHandlerOnPagePreprocessing) ;
}
private void myMetadataHandlerOnPagePreprocessing (object sender,
OcrDocumentProgressEventArgs e)

{

if (e.Document != null)
{
e.Document.Title = "An Illustrated Guide to Exhaust Manifold Cruciforms";
// etc.

O1is important to check the Document property for null. In native translators (i.e., translators
that are built-in to an OcrEngine), there may never be an OcrDocument. Since the event is a
function of the engine and not the translator, the client must be prepared to handle this case.

It is possible to pre-populate the metadata fields of OcrDocument by creating a subclass of
BasicOcrFactory and overriding the OcrDocument() method. In this method, the client instantiates a
new OcrDocument object then sets its metadata properties directly.

249

Atalasoft DotImage Developer's Guide

By default, the PdfTranslator overwrites any existing metadata within the OcrDocument. Setting the
PdfTranslator property SetDocumentMetadata to false prevents metadata from being overwritten.

Control PDF output characteristics

The properties are available for controlling the characteristics of the PDF Output are listed below.

Property Name Type Effect on Output Default
Value
UseTempFiles bool When set to true, creates temporary files | true
for each page and each thumbnail. When
set to false, a copy of each image and
thumbnail is kept in memory.
TempPath string String representing a path to a folder for
temporary image files.
OutputType PdfTranslatorOutputType Controls the means of laying out text and
images on each page of the file.
UseDocument bool When set to true, the PdfTranslator uses
TextColor text color as reported by the OcrEngine.
When set to false, all text is rendered with
the TextColor property.
TextColor Color When UseDocumentTextColor is set to black
true, this color is used to render all text.
CompressionSelecton PdfCompressionSelector Sets a delegate to use for selecting the
compression used by an image.
GenerateThumbnails| bool When true, the PdfTranslator generatesa | true
thumbnail image for each page.
UseNormalized bool When set to true, the PdfTranslator makes |true
Baseline sure that every word in a line has the same
baseline, unless it is clearly superscript or
subscript text. When set to false, individual
word baselines are used.

Attach metadata to objects

You can attach metadata to both the OcrDocument and OcrPage objects. Metadata is stored in
a Hashtable contained within the object. In the case of OcrDocument, there are certain pseudo
properties, which actually access the Metadata object instead.

While Atalasoft DotImage dictates a small number of guidelines for working with OCR metadata,
the use of Metadata is otherwise entirely up to the client.

In .NET any object type can act as a key to access a value within a Hashtable. Atalasoft DotImage
metadata is always accessed with enumerated values.

Atalasoft DotImage reserves all metadata that is associated with enumerated values or integral data

types.

250

Atalasoft DotImage Developer's Guide

In general, a client should adopt the following organizational mechanism for metadata:

+ Use strings as keys.
» Use a hierarchy for metadata for different applications
+ Group logically associated data

Retrieve a document title
It is strongly recommended that clients do not add application-specific values to this DocumentInfo
Hashtable. While we intend to support this hashtable in the future, the layout may change

significantly. Client applications should store their own metadata within the Metadata hashtable,
associating it with non-numeric keys (such as strings).

Example

C#

string docTitle = (string)GetDocumentInfoValue (OcrDocumentInfoKey.Title) ;

Read EXIF information

When Atalasoft DotImage reads EXIF data, it attempts to read all supported tags and populate them
in the ExifCollection object. You can then enumerate through the collection or retrieve a specific tag,
ID or IFD. This example reads EXIF tags from a JPEG image and outputs each tag it to the console.

Example

C#

ExifParser exifparse = new ExifParser();

ExifCollection exifTags = exifparse.ParseFromImage ("exif.jpg")

foreach (ExifTag tag in exifTags)
{

Console.Writeline (tag.ToString()) ;
}

Read EXIF thumbnails
Most images that contain EXIF data also contain a thumbnail in the Thumbnail IFD. Atalasoft
DotImage will read this thumbnail if it exists by setting the ThumbnailStream property in the

ExifCollection. Note that in TIFF images, the thumbnail is usually the second frame in the image and
it can be read normally by specifying 1 as the frame index.

Example

C#
Obtaining DPI information from a PSD File

251

Atalasoft DotImage Developer's Guide

private void ReadExif (string filename)
{
//read the EXIF metadata and thumbnail
ExifParser exifParse = new ExifParser();
ExifCollection exif = exifParse.ParseFromImage (filename) ;
AtalaImage thumb = new Atalalmage (exif.ThumbnailStream) ;

Store EXIF information

Atalasoft DotImage can store existing EXIF information in a new or existing JPEG image by copying
the APP1 JPEG marker from the source to destination image, or it can recreate EXIF data after the
data has been altered.

To store EXIF information when saving a new JPEG image, set the AppMarkers property of the

JpegEncoder containing the APP1 EXIF marker. To transfer the data from one JPEG image to another
without editing the EXIF data, use the CopyJpegWithNewMarkers() method in the JpegEncoder class.

Add an object to document metadata

A client might establish metadata for an OcrDocument by adding an object to an OcrDocument's
metadata as shown below.

Example

C#

private static string frobozzKey = "Frobozz, Inc.";
myOcrDocument .Metadata[frobozzKey] = frobozzMetadata;

Since the client might be producing several applications that operate in OcrDocuments, it might
make sense to make their Metadata itself a Hashtable which is accessed with a key defined by
the application itself. Assume that the client is building an application called POSmart to sort out
purchase orders from general correspondence. Assume further that there is an object of class
FrobozzRoutingInfo which should be associated with the document.

Example
Accessing the FrobozzRoutingInfo Object

C#

private static string POSmartKey = "Frobozz, Inc.";
static Hashtable EstablishFrobozzMetadata (OcrDocument document)
{
Hashtable ht;
ht = (Hashtable)document.Metadata[POSmartKey];
if (ht == null)
{
document .Metadata [POSmartKey] = ht = new Hashtable();
}

return ht;

252

Atalasoft DotImage Developer's Guide

static Hashtable GetFrobozzMetadata (OcrDocument document)
{
Hashtable ht;
ht = (Hashtable)document.Metadata[POSmartKey];
if (ht == null)
{
throw new Exception ("Unable to get metadata.");

retirn ht;
;tatic void EstablishPOSmartMetadata (OcrDocument document, FrobozzRoutingInfo info)
{ Hashtable ht = EstablishFrobozzMetadata (document) ;

ht [POSmartKey] = info;
;tatic FrobozzRoutingInfo GetPOSmartMetadata (OcrDocument document)

{
Hashtable ht = GetFrobozzMetadata (document) ;
return ht[POSmartKey];

Obtain DPI information from a .PSD File

Atalasoft DotImage supports reading and writing Adobe Photoshop Resource Blocks from PSD,
JPEG, and TIFF images. These resources store non-pixel data such thumbnails, ICC Color Profiles,
IPTC Data, DPI resolution information, and textual information.

The PhotoshopResourceParser class obtains a collection of PhotoshopResource items. Each
resource contains an ID, an object containing a byte array of the raw data, and an optional
description of the resource. This data could be string data with a header, an integer (Motorola Byte
Order), a byte array, or other custom data structures. To obtain the format specification, join the
Adobe's developer network.

The object stored in the Data property of the PhotoshopResource must be cast to a byte array.
Future versions may include a setting to request parsing of the byte array data into a typed object
such as an integer or string.

This example demonstrates how to obtain the DPI information from a PSD file.

Example

Ci#
Obtaining DPI information from a PSD File

PhotoshopResourceParser psdParser = new PhotoshopResourceParser () ;
PhotoshopResourceCollection psdResources = psdParser.ParseFromImage ("test.psd") ;
PhotoshopResource dpiData = psdResources.LookupResource (1005) ;

Losslessly copy metadata

The CopyJpegWithNewMarkers() method in the JpegEncoder class can be used to losslessly save
existing metadata to a copy of an existing JPEG image.

One use of this function is to modify IPTC data in a JPEG.

253

Atalasoft DotImage Developer's Guide

If you do not want to create a copy of the file, you must save the output to a temporary file, and
then overwrite the existing file with your own code.

Document and image formats

Atalasoft DotImage supports the following document and image formats.

Introduction to PDF technology

Atalasoft DotImage provides customers industry leading PDF technology included with Atalasoft
DotImage Document imaging and the following Atalasoft DotImage add-ons:

+ Atalasoft DotImage PDF Reader Module for high speed PDF viewing and text extraction.
+ Atalasoft DotImage Document Imaging for generating image-only PDF documents.

+ Atalasoft DotImage OCR Searchable PDF Module for generating searchable PDF documents from
images using OCR.

+ Atalasoft Dotimage PDF Annotations for annotating PDF documents.
+ Atalasoft DotImage PDF Document editing tools

Atalasoft DotImage can also generate PDF/A documents. PDF/A follows the ISO 19005-1:2005
standard for long-term electronic archiving. Atalasoft DotImage can process documents that follow
these parts of the PDF/A standard:

» PDF/A-1b: Restricts certain features as well as enforcing requirements to preserve the visual
appearance of the document. All images must include color profiles to ensure proper color
reproduction. All fonts must be embedded within generated PDF documents. Image compression
is restricted to a set that does not include JBIG or JPEG2000.

+ PDF/A-2b: Adds the ability to use compressed objects and XRef streams (for smaller file sizes) and
JBIG and JPEG2000 compressions.

i] Adding PDF annotations to an existing PDF/A document does not create PDF/A compliant
documents.

Multiprocessing for PDF documents

The PdfDecoder used for processing PDFs can be set to multiprocessing mode for faster handling of
PDF documents. This feature uses parallel processing to improve the handling of large documents.

© This feature is not supported by .NET Framework 3.5.

Initializing PdfDecoder multiprocessing

To use multiprocessing, make sure the Atalasoft.dotImage.PdfReader.Multiprocessing.dll assemlby
is available and initialize the feature in PdfDecoder. This only needs to be done once when starting
the application.

PdfDecoderMultiprocessor.Init ()

254

Atalasoft DotImage Developer's Guide

Using PdfDecoder multiprocessing in WebDocumentViewer

For PDF documents displayed in WebDocumentViewer, set the multiprocessing parameter to true.
This enables multiprocessing to be performed on these documents. All multiprocessing procedures
are encapsulated on the server side. Refer to the following code example.

var viewer = new Atalasoft.Controls.WebDocumentViewer ({

multiprocessing: true

}) i

var thumbs = new Atalasoft.Controls.WebDocumentThumbnailer ({

multiprocessing: true

1)
Migrating existing processing to multiprocessing

For libraries, consoles, and other types of standalone applications, you may already use PdfDecoder
to render pages in a loop, as in these examples.

PdfDecoder pdfDec = new PdfDecoder () ;
AtalaImage img = pdfDec.Read(stream, framelIndex, null);

PdfDecoder pdfDec = new PdfDecoder () ;
RegisteredDecoders.Decoders.Add (pdfDec) ;
AtalaImage img = new AtalaImage (stream, framelIndex, null) ;

Instead, use PdfDecoderMultiprocessor to render pages in parallel using multi-threaded processing.
The following code renders all pages in a PDF document.

PdfDecoderMultiprocessor.ReadPdfPages (
settings,
inStream,
(image, index) =>
{
// where image is an Atalalmage
// and index - 1is O-based page index

by

cts.Token) ;

PdfDecoderMutliprocessor also has methods for rendering page regions and reading. These
methods only improve performance when called from multi-threaded code.

In place of PdfDecoder.RasterizeScaledRegion() , use this multiprocessing version.

static AtalaImage RasterizeScaledRegion (
PdfDecoderMultiprocessorSettings pdfDecoderSettings,
Stream stream,
int framelIndex,
Rectangle srcRect,
Size scaledSize,
CancellationToken cancellationToken = default (CancellationToken))

And in place of PdfDecoder.Read(), use this multiprocessing version.

static AtalaImage NewAtalaImage (
PdfDecoderMultiprocessorSettings pdfDecoderSettings,
Stream stream,
int framelIndex,
CancellationToken cancellationToken = default (CancellationToken))

255

Atalasoft DotImage Developer's Guide

Setting the maximum number of pages to use multiprocessing

You can configure PdfDecoderMultiprocessor to use multiprocessing unless a document has a
certain number of pages. This can also be configured to use multiprocessing for all size documents.
Use the following code:

/// Gets or sets the maximum number of pages in a document to use multiprocessing.

/// If this value is exceeded, multiprocessing will not be used.

/// If this value is set to 0, multiprocessing will always be used.

/// Default value is 0.

/77
public static int PagesCountThreshold { get; set; } = 0;

Text extraction in PDF Reader

The Atalasoft DotImage PDF Reader add-on (formerly PDF Rasterizer) provides the ability to extract
text from PDF files. It provides two classes as detailed in the table below.

Class Description

PdfTextReader » Derived from System.IO.TextReader

« Use to read text from a PDF page, a set of pages, or the entire documentin a
stream-like fashion

PdfTextPage « Determine the number of characters on a page

+ Extract characters based on character index or count

« Determine the bounding box for a character

» Determine the bounding box for a range of characters

« Determine the character index for a given point

» Convert between PDF user coordinate space (paper) and image coordinate space

Opening PDF's with a PdfTextDocument

The first step in extracting text from a PDF is to create a PdfTextDocument. PdfTextDocument
objects implement IDisposable, so you must call Dispose () when you are done with the object.
The easiest way to do so is to create the object in a using block.

The example that follows shows how to get the number of pages from a PdfTextDocument given a
Stream that contains a PDF:

C#

public int GetPageCount (Stream s)
{

using (PdfTextDocument doc = new PdfTextDocument (s))

{

return doc.PageCount;
}
}

Once you have a document, you can get PdfTextPage objects from it. The code below gets the
number of characters on the first page of a PDF from a Stream.

public int GetCharCount (Stream s, int pageNum)
{

256

Atalasoft DotImage Developer's Guide

using (PdfTextDocument doc = new PdfTextDocument (s))

{
PdfTextPage textPage = doc.GetPage (pageNum) ;
return textPage.CharCount;

}

Reading text with a PdfTextReader

PdfTextReader inherits from TextReader thereby giving you access to the text in a PDF.
PdfTextReader objects are obtained from PdfTextDocument objects by calling GetPdfTextReader().

The example that follows shows you how to create a PdfTextReader and read all of its text.

Example

C#

public String ReadTextFromPages (Stream s)
{

using (PdfTextDocument doc = new PdfTextDocument (s))

{
PdfTextReader rdr = doc.GetPdfTextReader () ;
return rdr.ReadToEnd() ;

You can call GetPdfTextReader with a single page number, or a range of pages.

Using a PdfTextPage to Extract Text

A PdfTextPage can do much more than simply telling you the number of characters on a page. The
following example show how to get text from a page by providing an index and a count.

Example

C#

public String GetText (Stream s, int pageNum, int index, int count)

{

using (PdfTextDocument doc = new PdfTextDocument (s))

{
PdfTextPage textPage = doc.GetPage (pageNum) ;

return textPage.GetText (index, count);

As a range of text can span lines, it may have multiple bounding boxes. For this reason, a request
for the bounding boxes returns an array of bounding boxes (which need not be rectangular). This
next example shows how to determine the bounding boxes of a range of text.

C#

public QuadrilateralF[] GetText (Stream s, int page, int index, int cnt)

{

257

Atalasoft DotImage Developer's Guide

using (PdfTextDocument doc = new PdfTextDocument (s))

{
PdfTextPage textPage = doc.GetPage (page) ;
return textPage.GetBoxes (index, cnt);

These quadrilaterals returned are in PDF User Space, that is, they are in the PDF coordinate system
with the origin at bottom-left, increasing Y values as you go from bottom to top.

If you need to translate one of these quadrilateral to one that could be used on a rasterized version,
use PdfTextPage. ConvertPdfUnitsToPixels(), which takes the PDF User Space quadrilateral and the
resolution that the image was rendered at.

In the PDF Demo project, the class PdfFindHighlighter shows how to turn quadrilaterals from
PdfTextPage into RectangleAnnotation objects you can use to highlight characters. You can also use
this class in your own projects.

Using a PdfTextPage to Search for Text

A PdfTextPage can also search for text automatically. The following example shows how to do such
an automatic search.

C#

public void Search(Stream s, int pageNum, int index, string txt)

{

using (PdfTextDocument doc = new PdfTextDocument (fs))

{
PdfTextPage p = doc.GetPage (pageNum) ;
using (PdfSearchResults res = p.Search(index, txt, false, false))

{
while (res.FindNext ())

{
// res.StartIndex and res.CharCount have
// the results of the search
// you could call p.GetText () or p.GetBoxes () here

}

See the Atalasoft DotImage PDF Demo project for an example of how to search across an entire
document with the class PdfDocumentSearch as well as how to call delegates every time a new
instance is found. You can use this class in your own projects.

In the demo, it is wired to a PdfFindHighlighter object that puts RectangleAnnotation objects on the
image to show found text.

Editing PDF documents
Atalasoft DotImage provides tools for high level editing and composition of PDF documents.

With these tools you can:
* Rearrange, add, or remove pages from existing PDF documents.
+ Split existing PDF documents into separate documents.

258

ftp://ftp.kofax.com/proddev/xxyyzzyyxx/atalasoft_support/legacydemos/pdfdemo.zip
ftp://ftp.kofax.com/proddev/xxyyzzyyxx/atalasoft_support/legacydemos/pdfdemo.zip

Atalasoft DotImage Developer's Guide

+ Combine any number of existing PDF documents into a single document.

+ Create or edit book marks for navigation.

+ Create or edit document metadata, including title, subject, author, creator, keywords and custom
metadata.

* Encrypt or decrypt documents.

All this functionality is tied into a simple object model that doesn't require the programmer to
memorize the PDF specification. Much of this functionality has been extended to cover existing PDF
generation tools, including the Document Imaging tool for generating image-only PDF documents
and the OCR Searchable PDF module.

Create searchable PDFs with OCR

The PdfTranslator class allows client applications to generate high quality PDF documents from
scanned documents. The Atalasoft Dotimage PdfTranslator provides the following features:

+ Setting PDF Metadata fields

+ High quality thumbnail images

+ Accurate text placement

+ Text-Under-Image placement

+ Optional placement of picture regions

+ Automatic or client-controlled image compression
» Advanced codec support (JBIG2, JPEG 2000)

« Insertion of client synthesized pages

+ Creation of PDF/A-1b and PDF/A-2b documents

PDF file format

Adobe created the PDF file format to enable the encapsulation of any document that could be
printed digitally so that it retains its content as text, images or graphics in as high quality as
possible, typography as intended, and accurate color representation. The file format is an object-
oriented format that describes a document as a series of pages, each of which is represented by

a list of high-level drawing and compositing operations that were modeled after the PostScript
imaging model. In addition to page content, a document could also include interactive features,
navigation tools, dynamic forms, and multimedia. PDF was meant to be a publication format, rather
than an editable format. Generation of PDF was considered to be a final step in the creation of a
document.

Atalasoft DotImage provides the means to break into the PDF model for the purpose of making
PDF documents accessible for common operations. For example, an insurance company could
keep a stock collection of informational documents that could be assembled into a customized PDF
document tailored for a client. This type of operation in Atalasoft DotlImage can be done in a single
line of code.

Where possible, the details of PDF structure are hidden from client code. Instead, client code
works with higher level objects, such as documents, pages, bookmarks and actions, packaged in
familiar .NET objects and collections.

259

Atalasoft DotImage Developer's Guide

PDF page coordinates

Pages in PDF documents have a strongly defined coordinate system. Pages are based on standard
Cartesian coordinates in the first quadrant. In other words, when looking at a page, the coordinates
of the lower left hand corner are (0, 0), with X extending positively to the right and Y extending
positively up.

(0, O)

The PDF format is without resolution. This means that pages should be displayable at any zoom
with consistent fidelity. Pages, however do have measurements. Pages are measured in default user
space units, which are 1/72 inch. Although it is possible for a PDF file to specify other units for page
measurement, it is rare.

A letter sized page will therefore be 612 units wide and 792 units high. An A4 sized page will be
approximately 595.276 units wide and 841.89 units high.

Conversion of units from one space to another can be done with a set of classes for that

manage conversion to and from PDF page space and pixels measured in either inches or
centimeters. These classes are DpiToPdfCoordinateConverter, DpcmToPdfCoordinateConverter,
PdfToDpiCoordinateConverter and PdfToDpcmCoordinateConverter. See How To Convert AtalaImage
Coordinates to PDF Coordinates for more information.

PDF document objects

At the heart of the PDF manipulation API is a class called PdfDocument. This class represents the
main structure of a document and the pages it contains. When a PdfDocument object is created, the

260

Atalasoft DotImage Developer's Guide

PDF is briefly scanned to extract information about the pages and other document structures, but
none of the pages themselves are loaded. Within a PdfDocument object is the metadata associated
with the document, the tree of bookmarks, and a collection of PdfPage objects, one for each page in
the PDF.

PDF bookmarks

PDF documents can contain a collection of bookmarks that can be used to help navigate the
document. The structure of the bookmarks is hierarchical, but there are no requirements imposed
on the hierarchy. The bookmarks can be a single list or a tree. Any structure imposed on the
collection is at the discretion of the author.

In PDF, a bookmark is string displayed in the UL, some text appearance properties, and a collection
of actions to be performed when the bookmark is clicked. PDF offers a wide variety of possible
actions, all of which can be read and rewritten in Atalasoft DotImage, but at the release of 9.0
Atalasoft DotImage only offers the direct authoring of "Go To View" actions. This type of action
specifies a destination within the document. This destination specifies the page, a mode for viewing
the page and possible parameters to more finely control the mode. For example, a destination may
include "Page 18, fit page to width, view from the top of the page". Another might be "Page 2, view
on location (0, 0), use the current zoom".

To author PDF bookmarks, all of the PDF generation tools in Atalasoft DotImage or its add-ons
include a property called BookmarkTree which represents the desired collection of bookmarks for
the final document. In all cases, the BookmarkTree object is used late in the process of generating
the document. This allows client code the freedom to build the bookmark tree incrementally before
the PDF document is finalized.

View a PDF image

The PdfReader assembly includes PdfDecoder which derives from ImageDecoder. It acts
like any other Atalasoft DotImage decoder in that it has a Read () method which returns
an Atalalmage of the decoded image, in this case a PDF page. It also can be included in the
RegisteredDecoders collection which is used when opening images using the Atalalmage
constructor or Workspace.Open.

In the example that follows demonstrates how to view a PDF image. Included with the SDK is source
for a full multi-threaded multipage PDF Viewer.

Example

C#

using Atalasoft.Imaging;
using Atalasoft.Imaging.Codec;
using Atalasoft.Imaging.Codec.Pdf;

//register the PdfDecoder

PdfDecoder pdf = new PdfDecoder () ;
RegisteredDecoders.Decoders.Add (pdf) ;
//read and display the PDF
myWorkapceViewer.Open ("pdfdocument.pdf") ;

261

Atalasoft DotImage Developer's Guide

Translate a set of images to searchable PDF

The example that follows shows how to translate a set of images to PDF.
To translate a set of images to PDF, write code similar to that shown below.

Example

C#

public void TranslateToPdf (OcrEngine engine, ImageSource images, Stream outputStream)

{
engine.Translate (images, "application/pdf", outputStream) ;

}

Use advanced PdfTranslator controls

Managing the translation of an OcrDocument into PDF creates a number of challenging timing
issues as described below.

Timing issues

The Atalasoft DotImage OCR does not translate an OcrDocument until the document is complete. A
client can manipulate a recognized document (spell check, re-order pages, and so forth.) before the
translation happens.

Unfortunately, by the time translation actually occurs, the images used for OCR are no longer
available or have been substantially altered by the engine. This makes it tricky to create thumbnail
images for pages or to place the original image over the text in its maximum or native bit depth.

To overcome this problem, when a set of images is translated directly by the engine, the
PdfTranslator hooks itself into OcrEngine events, make copies of images, and saves them in
temporary files that can be used to create thumbnail images. When translation is complete, the
PdfTranslator removes itself from the OcrEngine's events.

If an OcrDocument has been recognized (via one of the Recognize() methods), there are no overlay
images associated with pages nor are there thumbnail images since the PdfTranslator was not
asked to generate this information.

There are two ways to handle this problem:

+ The client can request that the PdfTranslator hook itself into events before recognition and
unhook itself at the end.

» The client can add the extra information manually.

To add the information manually, the client should hook into the DocumentProgress event as
shown in the example below.

The following example demonstrates how to hook into the document progress event.

262

Atalasoft DotImage Developer's Guide

Example

C#

public void HookIntoDocumentProgress (OcrEngine engine)

{
engine.DocumentProgress += new
OcrDocumentProgressEventHandler (MyDocumentProgressHandler) ;

}

Next, allow the PdfTranslator to hook into the engine.

C#

public void MyDocumentProgressHandler (object sender, OcrDocumentProgressEventArgs e)

{

if (e.Stage == OcrDocumentStage.BeginDocument)

{

myTranslationObject = myPdfTranslator.Prepare (engine, e.Document) ;

}

After the document has been recognized and the client has completed any editing, call the
translator as shown below.

C#

myPdfTranslator.Translate (myEngine, recognizedDocument, "application/pdf",
destinationFile, myTranslationObject) ;
myPdfTranslator.Finish (myEngine, recognizedDocument, true, myTranslationObject) ;

If you need to add in pages that have not been generated by the OcrEngine itself, you must
generate the extra information manually.

Add PdfTranslator to Engine's translator collection

The following example shows how to add PdfTanslator to an engine's translator collection.

To use the PdfTranslator, you must add it to the Translators collection of the desired engine as
shown below. This installs the PdfTranslator into the engine so that it can be used like any other
type of translator.

Example

MIME type for PDF
The MIME type for PDF is application/pdf.
C#

private PdfTranslator myPdfTranslator;
private void InstallPdfTranslator (OcrEngine engine)
{
_myPdfTranslator = new PdfTranslator();
engine.Translators.Add(myPdfTranslator);

263

Atalasoft DotImage Developer's Guide

Manually generate PdfTranslator metadata

© The level of access to PdfTranslator internal structures described below is highly advanced and
should not be undertaken lightly.

An OcrPage has metadata available for general client use. While a document is being recognized
and translated by the PdfTranslator, the PdfTranslator stores metadata in each OcrPage.

The PdfPagelnfo class contains information on how to build this particular page and how to
set options for it. The properties listed in the table that follows typically are inherited from the
PdfTranslator:

Name Type Meaning

OutputType PdfTranslatorOutputType | Type of page generated. For example, text only,
image over text, and so forth.

UseDocumentTextColor bool Value is true if the text color should be taken
from the page rather than overridden.

TextColor Color Color to be applied to document text if
UseDocumentTextColor is false

CompressionSelector PdfCompressionSelector A delegate that can be used to select the
compression used for images.

GenerateThumbnails bool Property used by the PdfTranslator during
recognition, not during translation. Its value
is inconsequential if set on an OcrPagein an
existing OcrDocument.

Retrieve metadata
The following examples show how to:

+ Retrieve metadata from an object
+ Access the Pagelnfo object

To access this information, retrieve the object in the page's metadata using the PdfPagelnfo key as
shown below.

C#

object pdfMetadata = page.Metadata[OcrPageMetadataKey.PdfPageInfo];

Access Pagelnfo object

This object is a Hashtable. The Pagelnfo object within the Hashtable can be accessed using the key
OcrPdfPageMetadataKey.

To access this information, retrieve the object in the page's metadata using the PdfPageInfo key as
shown below.

264

Atalasoft DotImage Developer's Guide

C#

Hashtable ht = (Hashtable)pdfMetadata;
object pdfData = ht[OcrPdfPageMetadataKey.PagelInfo];
if (pdfData == null || ! (pdfData is PdfPagelInfo))
throw new Exception ("No PdfPageInfo in OcrPage Metadata.");
PdfPagelInfo pdfInfo = (PdfPagelInfo)pdfData;

Add support for reading PDFs
Use the following code to add support for reading PDFs.

C#

Atalasoft.Imaging.Codec.RegisteredDecoders.Decoders.Add (
new Atalasoft.Imaging.Codec.PdfDecoder()) ;

Print a PDF image
The following samples demonstrate how to print a PDF image efficiently.

C#

using System.IO;
using System.Drawing.Printing;
using Atalasoft.Imaging.Codec.Pdf;

private Pages imagesToPrint = null;
private int current = 0;
private void buttonl Click (object sender, System.EventArgs e)
{
OpenFileDialog d = new OpenFileDialog() ;

d.Filter = "PDF files(*.pdf) | *.pdf";
if (d.ShowDialog () == DialogResult.OK)
{
using (var fs = new FileStream(d.FileName, FileMode.Open))

{
Document theDoc = new Document (fs) ;
this.imagesToPrint = theDoc.Pages;
// Use System.Drawing.Print.PrintDocument
PrintDocument thePrintDoc = new PrintDocument () ;
thePrintDoc.PrintPage +=new
PrintPageEventHandler (thePrintDoc PrintPage) ;
this.current = 0;
thePrintDoc.Print () ;
}
}
}
private void thePrintDoc PrintPage (object sender, PrintPageEventArgs e)
{
e.HasMorePages = true;
Page p = imagesToPrint[current++];
// fit to page, only when image is too large.
float newX = (float) (e.PageBounds.Width / p.Width) ;
float newY = (float) (e.PageBounds.Height / p.Height) ;
if (! (newX > 1 && newY > 1))
e.Graphics.ScaleTransform(newX, newY);
// Draw pdf image onto graphics object here.
p.Draw(e.Graphics) ;
if (current >= imagesToPrint.Count)

265

Atalasoft DotImage Developer's Guide

e.HasMorePages = false;

Create PDF/A documents

Atalasoft DotImage has the ability to generate PDF/A-1b or PDF/A-2b compliant documents. Both
the PdfEncoder object and the OCR PdfTranslator object support this.

To support this in the PdfEncoder, you can set it in the constructor

C#

using Atalasoft.Imaging.Codec.Pdf;

using Atalasoft.PdfDoc;

// set the document type in the constructor

PdfEncoder encoder = new PdfEncoder (PdfDocumentType.PdfAlb) ;

In addition, you can set this using the DocumentType property.

C#

using Atalasoft.Imaging.Codec.Pdf;

using Atalasoft.PdfDoc;

// set the document type by changing a property
PdfEncoder encoder = new PdfEncoder () ;
encoder.DocumentType = PdfDocumentType.PdfAlb;

The PdfTranslator add-on to the OCR searchable PDF module has an identical constructor and an
identical DocumentType property and can be used in the same manner.

Compressed Object and XRef streams

Object streams and XRef streams allow to reduce size of the document, but to increase the creation
time of the document.

To create a PDF document with object streams and XRef streams, the
UseCompressedObjectStreans flag should be set to true:

PdfEncoder encoder = new PdfEncoder

{

UseCompressedObjectStreams = true
bi
PdfTranslator trans = new PdfTranslator
{

UseCompressedObjectStreams = true

}i

© PDF/A-1 does not support compressed object streams.

i) Compressed object streams in linearized PDFs are not supported.

266

Atalasoft DotImage Developer's Guide

Create PDF 2.0 documents

PdfEncoder and PdfTranslator support the creation of PDF 2.0 documents.

PDF 2.0 in PdfTranslator and PdfEncoder enables you to create password-protected PDF documents
with AES-256 encryption. To do this, set PdfVersion = 2.0 and pass the password to the method
SetOneTimePasswords().

Sample for PdfEncoder:

var encoder = new PdfEncoder {PdfVersion = 2.0};
encoder.SetOneTimePasswords (password) ;

using (var image = new Atalalmage (@"image.tif"))
using (var result = File.Create ("pdf 2 0 document.pdf"))

{
encoder.Save (result, image, null);

}

Sample for PdfTranslator:

using (GlyphReaderEngine engine = new GlyphReaderEngine())

{
PdfTranslator xlate = new PdfTranslator {PdfVersion = 2.0};
xlate.SetOneTimePasswords (password) ;
engine.Translators.Add (xlate) ;

engine.Initialize () ;
FileSystemImageSource source = new FileSystemImageSource (
new string[] { file }, false);

using (var stm = new FileStream(outputFile, FileMode.Create,
FileAccess.ReadWrite))
engine.Translate (source, "application/pdf", stm);

}

When saving a password-protected documents with version 1.7 and earlier, RC4 encryption
algorithm is used.

All other features of PDF 2.0 standard are not applicable to PdfTranslator and PdfEncoder.

Create an image only PDF document

There are several ways to create an image-only PDF document. If you're working with a single
Atalalmage, the simplest way is to use a PdfEncoder directly.

C#

public void SaveAsPdf (Stream stm, Atalalmage image)
{

PdfEncoder encoder = new PdfEncoder():;
encoder.Save (stm, image, null);

}
C#

using Atalasoft.Imaging.Codec.Pdf;
using Atalasoft.PdfDoc;
// set the document type by changing a property

267

Atalasoft DotImage Developer's Guide

PdfEncoder encoder = new PdfEncoder () ;
encoder.DocumentType = PdfDocumentType.PdfAlb;

O vou can generate PDF/A-1b files by passing in PdfDocumentType.PdfA1b to the PdfEncoder
constructor.

In many cases you may want to generate PDF files from several images. Keeping them all in
memory at once is inefficient. In these cases, it's best to use an ImageSource object such as
FileSystemImageSource to provide the images to PdfEncoder.

C#

public void SaveAsPdf (Stream stm, ImageSource images)
{
PdfEncoder encoder = new PdfEncoder();
encoder.Save (stm, images, null);

}

In this case, PdfEncoder takes care of loading and disposing images for you.

Convert Atalalmage coordinates to PDF coordinates

Given an Atalalmage, it is easy to convert its coordinate space to PDF coordinate space. Given the
image's resolution units, you select an appropriate converter. This can be done with the following
code:

public static PdfCoordinateConverter GetConverter (Atalalmage image)

{

if (image.Resolution.Units == ResolutionUnit.DotsPerCentimeters)
{
return new DpcmToPdfCoordinateConverter (image.Resolution.X, new Size (image.Width,
image.Height)) ;
}

return new DpiToPdfCoordinateConverter (image.Resolution.X, new Size (image.Width,
image.Height)) ;
}

Convert one space to another.

PdfCoordinateConverter converter = GetConverter (myImage) ;
Point pdfPoint = convert.Convert (new Point(x, y)); // x and y in image coordinate space

Author PDF bookmarks

To author PDF bookmarks, you need three basic objects: a PdfBookmarkTree object to hold a
collection of bookmarks, one or more PdfBookmark object to represent the actual bookmarks and a
PdfAction object which represents what will happen when the PdfBookmark has been clicked.

Bookmark tree:

Making a bookmark tree is easy.

PdfBookmarkTree tree = new PdfBookmarkTree(); // makes a new empty bookmark tree

This initial tree has no bookmarks in it. It's main property, Bookmarks, is a list of PdfBookmark
objects that represent the top-level bookmarks for the PDF document. To make a bookmark, you

268

Atalasoft DotImage Developer's Guide

simply call the constructor. The default constructor will make a PdfBookmark with no text and with
no action. There are other constructors that let you set the various properties as well. The most
commonly used constructor takes a string and an action.

Make a Bookmark

PdfBookmark bookmark = new PdfBookmark ("Introduction", null); // a null action will be
ignored - we can set it later

The only available action presently is the "Go To View" action. This is usually constructed with a
destination for the action. A destination is a combination of a viewing mode, some parameters and
a page reference. Page references are an abstract notion of a page. Presently, they only represent
a page in the current document associated with the action, but in the future they may also be
references to embedded or external PDF documents or external files. To make a destination, you
can use the default constructor directly, but the PdfDestination class has a number of static factory
methods to make it easier to author specific view modes and to ensure that the parameters are
correct.

Make an Action

PdfDestination dest = PdfDestination.FitPage () ;

dest.Page = new PdfIndexedPageReference(3); // page numbers a O-based. 0 is the first
page. 3 is the 4th page.

PdfGoToViewAction action = new PdfGoToViewAction (dest) ;

Putting it all together

Tying this together is a matter of association these objects with each other. We can do this in any

logical order:

PdfBookmarkTree tree = new PdfBookmarkTree(); // make the tree

PdfBookmark bookmark = new PdfBookmark ("Introduction", null); // make a bookmark
PdfDestination dest = PdfDestination.FitPage(); // make a destination

dest.Page = new PdfIndexedPageReference (3);

PdfGoToViewAction action = new PdfGoToViewAction (dest); // make an action

bookmark.ClickAction.Add (action); // add the action to the bookmark
tree.Bookmarks.Add (bookmark); // add the bookmark to the tree

The collection of bookmarks in PDF can be a tree structure. In order to describe the hierarchy, each
PdfBookmark object has a property called Children, which is a collection of PdfBookmark objects
that will be presented as a sub tree of that bookmark. By default, the list of the Children in any
PdfBookmark object is empty. The maximum depth to which PdfBookmarks can nest is limited only
by the maximum number of objects that are allowed within a PDF document - about 10 billion. The
only real restriction is that the tree may not have cycles in it. In other words, a PdfBookmark object
may not be put in any Children for which it is a parent or in a parent chain.

Add bookmarks with the PDF encoder

To author PDF bookmarks, you need three basic objects: a PdfBookmarkTree object to hold a
collection of bookmarks, one or more PdfBookmark objects to represent the actual bookmarks and
a PdfAction object which represents what will happen when the PdfBookmark is clicked.

FileSystemImageSource source = new FileSystemImageSource (@"multipage.tif", true);
PdfEncoder encoder = new PdfEncoder () ;
encoder.BookmarkTree = new PdfBookmarkTree () ;

using (FileStream stm = new FileStream("output.pdf", FileMode.Create))

{

int 1 = 0;

269

Atalasoft DotImage Developer's Guide

encoder.Save (stm, source, (sender, e) =>
{
if (e.Current == 0)
return;
PdfDestination dest = PdfDestination.FitWidth (null) ;
dest.Page = new PdfIndexedPageReference (i) ;
PdfGoToViewAction action = new PdfGoToViewAction (dest) ;
PdfBookmark mark = new PdfBookmark ("Page " + (i + 1), action);
encoder.BookmarkTree.Bookmarks.Add (mark) ;
AL

by s

Add bookmarks with the PdfTranslator

To create bookmarks on a page-by-page basis with the PdfTranslator, it is easiest to hook into the

PageConstructed event of the OcrEngine object to generate bookmarks for that page. In this event,

you will have access to the entire structure of the OcrPage that has just been recognized, so it is
possible to use contextual information on the page to generate more specific bookmarks or to

generate hierarchical information for the bookmark tree.

In this example, the code generates a simple bookmark with the page number and the view mode

set to FitPage.

void engine PageConstructed(object sender, OcrPageConstructionEventArgs e)
{
OcrEngine engine = sender as OcrEngine;
if (engine == null)
return;
PdfTranslator pdfTranslator = null;
foreach (ITranslator translator in engine.Translators)
{
pdfTranslator = translator as PdfTranslator;
if (pdfTranslator != null)
break;
}
if (pdfTranslator == null)
return;
PdfDestination dest = PdfDestination.FitPage () ;
dest.Page = new PdfIndexedPageReference (pageNumber) ;
PdfGoToViewAction action = new PdfGoToViewAction (dest) ;

PdfBookmark mark = new PdfBookmark ("Page " + (pageNumber + 1), action);

pdfTranslator.BookmarkTree.Bookmarks.Add (mark) ;
__pageNumber++;
}
int pageNumber;
void TranslateToPdf (FileSystemImageSource source, string outputPath)
{
GlyphReaderEngine engine = new GlyphReaderEngine () ;
PdfTranslator xlator = new PdfTranslator();
engine.Translators.Add (xlator) ;
xlator.BookmarkTree = new PdfBookmarkTree () ;
engine.PageConstructed += new
OcrPageConstructionEventHandler (engine PageConstructed);
_pageNumber = 0;
try
{

engine.Initialize();

using (FileStream stm = new FileStream(outputPath, FileMode.Create))

{

engine.Translate (source, "application/pdf", stm);

270

Atalasoft DotImage Developer's Guide

}
}
finally

{

engine.ShutDown () ;

}

Combine PDF documents

To combine PDF documents, you can use the PdfDocument class. There is a static method called
Combine, which takes either an output Stream or an output path and any number of input paths
or input Streams. The input PDF documents are combined in order to create one output PDF
document. This is essentially a one line task:

PdfDocument.Combine ("output.pdf", "MobyDick.pdf", "Pride and Prejudice.pdf",
"Metamorphosis.pdf") ;

You can also use a stream as the output:

using (Stream outputStream = GetStream())
{
PdfDocument.Combine (outputStream, "A Room With a View.pdf", "Howard's End.pdf", "A
Passage to India.pdf"):;
}

Finally, you can pass in streams for the output as well as the input. In this case, it is your
responsibility to close the Stream objects when you're done.

© 1f at least one of the documents being merged is PDF 2.0, the resulting document will be
version 2.0.

Encrypt a PDF document

The PdfDocument class can be used to encrypt existing PDF documents. To do this, you create a
PdfDocument object from your existing file and save with a password to a new file.

PdfDocument doc = new PdfDocument ("plaintext.pdf") ;
PdfSaveOptions options = new PdfSaveOptions () ;
options.SetOneTimePasswords (password) ;

doc.Save (output, options, null);

There are no restrictions on password length or content.

To create password-protected PDF documents with version 1.7 and lower, the RC4 encryption
algorithm is used.

When saving a password-protected PDF 2.0 documents, AES-256 encryption algorithm is used
automatically.

Decrypt a PDF document

The PDF Document class can be used to decrypt existing PDF documents. To do this, you create a
PdfDocument object from your existing file and password and save to a new file without a password

try

271

Atalasoft DotImage Developer's Guide

PdfDocument doc = new PdfDocument ("encrypted.pdf", password) ;
doc.Save ("cleartext.pdf");
}

catch (CodecException e)

{

Console.WritelLine ("Unable to open document: " + e.Message);

}

TIF files

Atalasoft DotImage provides the ability to manipulate TIFF IFD's, Tags, and Pages using the
TiffFile, TiffDirectory, and TiffDirectoryCollection classes located in the Atalasoft.Imaging.Codec.Tiff
namespace. This section introduces these classes and provides an overview of the structure of a
TIFF document.

A TIFF file, represented by the TiffFile class in Atalasoft DotImage consists of a header, which
identifies the data as a TIFF and points to the first Image File Directory (IFD), represented by a
TiffDirectory in Atalasoft DotImage. Every TIFF has at least one IFD, which contains TIFF Tags and
usually image data. Certain TIFF Tags are required for readers to read the encoded image data, such
as ImageWidth and ImagelLength. Other TIFF Tags can be stored within an IFD, including arbitrary
Tags that can store data in any of the available TIFF Tag data types.

A TIFF Tag can contain a single scalar value, or an array of scalars. Tags must be one of the following
available data types listed in the table.

Data Type Size

Byte =1 8-bit unsigned integer
Ascii =2 8-bit bytes w/ last byte null
Short=3 16-bit unsigned integer
Long =4 32-bit unsigned integer
Rational =5 64-bit unsigned fraction
SByte = 6 8-bit signed integer
Undefined =7 8-bit untyped data

SShort =8 16-bit signed integer
SLong =9 32-bit signed integer
SRational =10 64-bit signed fraction
Float = 11 32-bit IEEE floating point
Double =12 64-bit IEEE floating point
Ifd =13 32-bit unsigned integer (offset)

A TIFF File contains at least one image encoded to one of the supported compression formats.
The TiffFile class does not actually handle the compression or decompression of image data. It
only handles the TIFF Tags and supports reordering, inserting, removing, and adding existing TIFF

images into a new TIFF File.

272

Atalasoft DotImage Developer's Guide

TiffFile is also used to read all TIFF Tags from a file, and writes new TIFF Tags to a new file, including
EXIF data.

TiffFile basics

The TiffFile class can be used to manipulate images and Tags in a multipaged TIFF. This section
provides code examples that demonstrate how to perform these actions.

Read a TIFF file

The steps for reading a TIFF file are as follows:
1. Create an instance of the TiffFile class.
2. Invoke the Read() method to read the tags and IFD's from an existing TIFF document.

3. Asthe Read() method requires a Stream, open a Stream must be open for the entire time TIFF
File is being used.

4. Close the Stream after the image is saved, or after all Tags have been accessed.

Edit a TIFF file

Once a TIFF File has been read, the TiffDirectory objects can be modified, removed, inserted from
another TiffFile by accessing the Images property, and it's Tags can be edited.

A new image can be added or inserted from an existing AtalaImage object by using the appropriate
constructor in the TiffDirectory class. In this case, the image is compressed using a TiffEncoder, then
extracted into a new TiffDirectory just as if the image was saved as a separate file, then opened in
it's own TiffFile class.

Save a TIFF file

After a TIFF File has been read, you can save it by invoking the Save() method. This saves current
state of the TiffFile object to a new file or stream, including any modifications to the Tags and the
collection of TiffDirectories.

The filename or stream of the saved TIFF File must be different than that of the source.

When adding or editing TIFF Tags and saving to a file, ensure that the tags being edited are not
critical to decoding the TIFF. If they are, there is a chance that the resulting file will be corrupt. For
example, editing the Compression tag to a value other than what the underlying compressed data
is causes all readers, including Atalasoft DotImage to yield a corrupted image. Knowledge of the
TIFF Specification is needed if you edit TIFF Tags.

Catch errors and warnings

TiffFile is designed to parse as much as it can from TIFF images, even if there are errors with the file.
Instead of throwing exceptions when a problem is encountered while reading a particular tag, the
CodecError event is raised. Handle the CodecError event in order to view any warnings associated
with reading the TIFF directories.

273

Atalasoft DotImage Developer's Guide

Multipage TIFF file

A multipage tiff file consists of data structures called image file directories (IFD). Each IFD holds
information of an individual page of a TIFF image. As a singly-linked list, insertion/deletion/
rearrangement of IFDs is easy to do.

Managed code

Written in managed code, TiffFile provides functionalities to control IFDs of given tiff files. TiffFile
regards a multipage TIFF file as a collection of IFDs, and an IFD as a collection of directory entires
(DEs). Using TiffFile, clients can organize (insert/delete/swap pages) multipage TIFF and manage
(insert/delete arbitrary tiff tags) an individual TIFF page.

TIFF file interfaces

The TiffFile interfaces consist of TiffFile, TiffDirectoryCollection, TiffDirectory.

TiffFile contains TiffDirectoryCollection obtained through extracting IFDs from a tiff image. Use the
methods of TiffDirectoryCollection to control multi-TIFF images. The methods include swap and
anything provided by CollectionBase.

Designed for manipulation of TIFF Tags, TiffDirectory contains a TiffTagCollection obtained
automatically by extracting IFD.

TIFF tools

Atalasoft DotImage provides several different tools for creating or manipulating TIFF images. Each
tool is designed for specific a purpose, but there is also a certain amount of overlap in functionality.
The following table lists each of the tools and describes their features. With this information, you
can select the appropriate tool for your job.

Tool Description
TiffDecoder Reads images from TIFF files.
Provides read-only access to TIFF tags within a file.
TiffEncoder Creates new TIFFs or appends images to existing
TIFFs.

Add TIFF tags as images are added.

TiffFile, TiffDirectory, TiffDirectoryEntry Reads and writes entire TIFF files allowing full access
to tags and images.

Replace or insert images and tags in any order.
Must save to a new file.

Can read images from files, but TiffDecoder is more
efficient.

TiffDocument, TiffPage Simple, highly efficient set of objects for editing
pages in a TIFF file.

Easily insert pages from multiple files.
Trivially combine multiple files into a single file.
Does not provide access to TIFF tags.

274

Atalasoft DotImage Developer's Guide

TiffDocument and TiffPage

Atalasoft DotImage includes two classes for manipulating TIFF files:
» The TiffDocument class represents a high-level model of the pages within a TIFF file.

When a TiffDocument object is constructed from an existing TIFF file, it contains a collection of
TiffPage objects for each page within the file. TiffDocument attempts to be as efficient as possible
in retrieving information from the files and does not ever load the actual images into memory. As
such, it is possible to reorder and remove pages from files of arbitrary length. In addition, you can
mix pages from other TiffDocument objects as easily as working with a document’s own pages.
Finally, TiffDocument contains a set of static methods that can be used for combining existing
files, making the task of merging TIFF files into a simple one-liner.

+ TiffPage is a high-level model of a page within a TIFF file. It contains a number of read-only
properties that reflect the elements of each page within the file, including size, pixel format,
resolution and frame number. TiffPage objects do not provide the means to edit these details.
This is considered very advanced and is best handled by using the TiffFile, TiffDirectory, and
TiffDirectoryEntry objects.

In addition to being constructed from the contents of existing TIFF files, it is possible to create new
TiffPage objects from Atalalmage objects.

© When making a TiffPage from an Atalalmage, the TiffPage contains a compressed copy of the
Atalalmage.

For the reason just stated, the code that follows is perfectly valid.

C#

public TiffPage FromImage (Atalalmage image)
{
TiffPage page = new TiffPage (image) ;
image.Dispose(); // image memory no longer needed
return page;

}

Be aware that creating a TiffPage from an Atalalmage consumes memory. The intent when creating
TiffPage objects from AtalaImage objects is to make it easy to add a few pages to a document from
in-memory. If you need to create dozens of TiffPage objects, it is more memory efficient to save the
images into temporary files first using the TiffEncoder.

Work with TiffDocuments

Use TiffDocument to combine files. Either one of the code examples that follow combines several
TIFF documents into a single file.

TiffDocument.Combine (destFile, sourceFiles); // sourceFiles is an array
or
TiffDocument.Combine (destFile, sourceFilel, sourceFile2, ... sourceFileN);

This takes all of the source files and combines them in order into the destination file.

275

Atalasoft DotImage Developer's Guide

© sourceFiles and destFile can be either streams or path names. destFile cannot have the same
name as one of the source files as this damages the TIFF files.

Suppose you have job of adding a cover sheet onto a set of existing TIFF files. Using TiffDocument,
you can write the following method:

public void AddTPSCoverSheet (AtalalImage coverSheet, string sourceFile, string destFile)
{
TiffPage coverPage = new TiffPage (coverSheet) ;
TiffDocument doc = new TiffDocument (sourceFile);
doc.Pages.Insert (0, coverPage);
doc.Save (destFile) ;
}

AddTPSCoverSheet injects a new TiffPage into a TiffDocument and saves it into a new file.

Determine if the pages of TIFF document are 1-bit black and white

Write the following method to determine if all of the pages of a TiffDocument are 1-bit black and
white.

public bool IsBlackAndWhite (string sourceFile)
{

using (FileStream stm = new FileStream(sourceFile, FileMode.Open,
FileAccess.Read))
{
TiffDocument doc = new TiffDocument (stm) ;
foreach (TiffPage page in doc.Pages)

{
if (page.PixelFormat != PixelFormat.PixellbppIndexed)

return false;

}

return true;

}

The stream is closed after all the work with a document is complete. Closing a stream that is
contained in an active TiffDocument is an error. Using TiffDocument is more efficient than calling
TiffDecoder.GetImagelnfo() multiple times.

To intersperse the pages of two documents, use the following method:

public void Intersperse (Stream stml, Stream stm2, Stream output)

{

TiffDocument final new TiffDocument (stml) ;
TiffDocument mixin = new TiffDocument (stm2) ;
int index = 1;
foreach (TiffPage page in mixin.Pages)
{
if (index < final.Pages.Count)
{
final.Pages.Insert (index, page);
}
else
{
final.Pages.Add (page) ;
}
index += 2;
}

final.Save (output) ;

276

Atalasoft DotImage Developer's Guide

}

Read TIFF tags

To read a TIFF tag from an image, use the static GetSingleTag from the TiffDecoder. Standard TIFF
Tag ID's are stored in the TiffTagID enumeration.

The following example demonstrates how to obtain WANG annotation data from a TIFF image using
GetSingleTag.

C#

TiffTag tag = TiffDecoder.GetTiffTag((int) TiffTagID.WangAnnotations,
"myimagewithwang.tif", 0);
byte[] data = (bytel[])tag.Data;

Write TIFF tags

To write TIFF Tags with an image, set the TiffTags property of the TiffEncoder class to a collection of
TIFF Tags with the TiffTagCollection.

This example demonstrates how to save WANG annotation data with the image.

C#

TiffTagCollection tags = new TiffTagCollection();
tags.Add (new TiffTag (TiffTagID.WangAnnotations, data);
TiffEncoder tiffEncoder = new TiffEncoder () ;
tiffEncoder.TiffTags = tags;
myImage.Save ("myimagewithwang.tif", tiffEncoder, null);

Save an image to a multipage TIFF file
Use these samples to save an image into an existing multipage tiff file.

C#

FileStream saveFile = new FileStream(@"C:\existingTiff.tif", FileMode.Open) ;
TiffFile theFile = new TiffFile(saveFile);

// Remove the old Image
theFile.Images.Remove (5) ;

// Add new Image from viewer as a new TiffDirectory
theFile.Images.Insert (5,new TiffDirectory (WS Viewer.Image));

// Save to a temp file.
theFile.Save (@"C:\temp.tif") ;
saveFile.Close () ;

// Copy, and delete temp file.

File.Copy (Q"C:\temp.tif", Q@"C:\existingTiff.tif", true);
File.Delete (Q"C:\temp.tif");

Join two TIFF streams

Use these samples to save an image into an existing multipage tiff file.

277

Atalasoft DotImage Developer's Guide

C#

// open two TiffFiles using either stream or string
TiffFile oneTiff = new TiffFile (streamOne) ;
TiffFile twoTiff = new TiffFile (streamTwo) ;

// add two files
oneTiff.Images.Add (twoTiff.Images[0]) ;

// save
oneTiff.Save (targetStream) ;

Add an Atalalmage to a TIFF stream

C#

// open a TiffFile and an Atalalmage

TiffFile oneTiff = new TiffFile (streamOne) ;
TiffDirectory twoTiff = new TiffDirectory(atalalmage) ;
// add two files

oneTiff.Images.Add (twoTiff) ;

// save

oneTiff.Save (targetStream) ;

Remove pages from a multipage TIFF
C#

// open multipage TiffFile using either stream or string
TiffFile oneTiff = new TiffFile (streamOne) ;

// remove a page

oneTiff.Images.RemoveAt (1) ;

// save

oneTiff.Save (targetStream) ;

Merge two TIFF files

This code sample combines all images in two multipage TIFF files into one file.

C#

// open two TiffFiles using either stream or string
TiffFile oneTiff = new TiffFile (streamOne) ;
TiffFile twoTiff = new TiffFile (streamTwo) ;

// add two files

oneTiff.Images.Add (twoTiff.Images[0]) ;

// save

oneTiff.Save (targetStream) ;

Swap pages in a TIFF file

C#
TiffFile file = new TiffFile();

using (Stream fsl = new FileStream("filel.tif", FileMode.Open, FileAccess.Read,
FileShare.Read))
{
file.Read(fsl);
file.Images.Swap (0, 1);

278

Atalasoft DotImage Developer's Guide

file.Save ("swappedtiff.tif");

Add arbitrary TIFF tags

C#

// open a TiffFile
TiffFile oneTiff = new TiffFile (streamOne) ;

// access to a TiffDirectory
TiffDirectory image = oneTiff.images[0];

// access to TiffTagCollection
TiffTagCollection tags = image.Tags;

// add Tiff Tags (add copyright)
Tags.Add (33432, "Atalasoft”) ;

// add Tiff Tags
string datetime = “2005:07:26 09:31:23\0";
Tags.Add (306,datetime, TiffTagDataType.Ascii) ;

// save
oneTiff.Save (targetStream) ;

Delete a TIFF tag

C#

// open a TiffFile

TiffFile oneTiff = new TiffFile (streamOne) ;

// access to a TiffDirectory

TiffDirectory image = oneTiff.Images[0];

// access to TiffTagCollection

TiffTagCollection tags = image.Tags;

// remove Tiff Tags (remove copyright)

tags.Remove (new TiffTag (33432, "Atalasoft", TiffTagDataType.Ascii));
// save

oneTiff.Save (targetStream) ;

View all tags in a TIFF file

TiffFile file = new TiffFile();
using (Stream fsl = new FileStream("filel.tif", FileMode.Open, FileAccess.Read,
FileShare.Read))
{
file.Read(£fsl);
foreach (TiffDirectory image in file.Images)
{
foreach (TiffTag tag in image.Tags)
{
Console.Writeline (tag.ToString()) ;
}

279

Atalasoft DotImage Developer's Guide

Add a TIFF tag

The following example adds new TIFF tags to an existing image.

C#
TiffFile file = new TiffFile();
using (Stream fsl = new FileStream("filel.tif", FileMode.Open, FileAccess.Read,

FileShare.Read))
{
file.Read (fsl) ;
TiffTagCollection tags = file.Images[0].Tags;
tags.Add (new TiffTag(TiffTagID.Copyright, " (c) Atalasoft, Inc."));
tags.Add (new TiffTag (306, "2005:07:26 09:31:23", TiffTagDataType.Ascii));
file.Save ("newtags.tif");

Add and retrieve binary TIFF tag

The following example adds and retrieves a binary TIFF tag.
This code embeds an image inside an arbitrary tag, and retrieves that image back.

C#

AtalaImage imgl;
AtalalImage img2;
TiffFile file = new TiffFile();
using (Stream fsl = new FileStream("filel.tif", FileMode.Open, FileAccess.Read,
FileShare.Read))
{
file.Read (fsl) ;
imgl = new AtalaImage ("file2.tif");
TiffTag tag = new TiffTag (65535, imgl.ToByteArray(new TiffEncoder()),
TiffTagDataType.Byte) ;
file.Images[0].Tags.Add (tag);
file.Save ("embeddedimagetag.tif") ;
}
//verify
TiffFile file2 = new TiffFile();
using (Stream fsl = new FileStream("embeddedimagetag.tif", FileMode.Open,
FileAccess.Read,
FileShare.Read))

file2.Read (fsl) ;

TiffTag tag = file2.Images[0].Tags.LookupTag (65535) ;
MemoryStream ms = new MemoryStream((byte[])tag.Data);
img2 = new Atalalmage (ms) ;

Get All TIFF tags in image

The TiffFile class can be used to obtain all TIFF Tags in an image.
This code displays all of the TIFF tags in a TIFF document.
C#

280

Atalasoft DotImage Developer's Guide

using (Stream fs = new FileStream("multi.tif", FileMode.Open, FileAccess.Read,
FileShare.Read))
{
int count = 1;
TiffFile file = new TiffFile();
file.Read (fs);
foreach (TiffDirectory image in file.Images)
{
Console.WritelLine ("Tags in page: " + count) ;
foreach (TiffTag tag in image.Tags)
{
Console.WritelLine (tag.ToString()) ;
}
count++;
Console.WriteLine () ;

}

Convert between TIFF and JPEG

After parsing EXIF data, EXIF Tags and the thumbnail can be added, removed, and edited.

To save the edited ExifCollection back into a JPEG image, use the ToByteArray in the ExifCollection
to create a new APP1 JpegMarker. Then set the AppMarkers in the JpegEncoder prior to saving the
image, or prior to using CopyJpegWithNewMarkers. To save EXIF information into a TIFF image, use
the TiffFile class and set the TiffDirectory object's ExifTags property to the ExifCollection containing
the EXIF data.

With the EXIF editing capabilities of Atalasoft Dotlmage, it is possible to convert an image from JPEG
to TIFF, and retain the EXIF information. Likewise it is possible to convert from TIFF to JPEG, also
retaining the EXIF data. The following example demonstrate both techniques.

Convert from JPEG to TIFF with EXIF
C#

ExifParser exifparse = new ExifParser();

ExifCollection exifTags = exifparse.ParseFromImage (filename) ;
TiffFile tFile = new TiffFile();

tFile.Images.Add (new TiffDirectory(new AtalaImage (filename),
TiffCompression.JpegCompression)) ;

tFile.Images[0] .ExifTags = exifTags;

tFile.Save ("convertedTiffWithExif.tif");

Convert from TIFF to JPEG with EXIF

string filename = "exif.tif";

ExifParser exifparse = new ExifParser();

ExifCollection exifTags = exifparse.ParseFromImage (filename) ;
JpegMarkerCollection markers = new JpegMarkerCollection();

markers.Add (new JpegMarker (JpegMarkerTypes.MarkerAppl, exifTags.ToByteArray())):;
JpegEncoder jpg = new JpegEncoder () ;

jpg.AppMarkers = markers;

Atalalmage image = new Atalalmage (filename) ;

image.Save ("converteddJpegWithExif.jpg", Jjpg, null);

281

Atalasoft DotImage Developer's Guide

Work with multipage TIFFs

Many document imaging applications require the use of multipage TIFF images. Atalasoft DotImage
Document Imaging is designed to handle this with the MultiFramedImageDecoder (inherited by the
TiffDecoder), the IAppendable interface (implemented by the TiffEncoder), and the ImageSource
class which is designed to handle multi-framed images.

For manipulating TIFF pages (inserting, removing) and tags directly without re-encoding or
decoding image data, see the TiffFile overview.

Open a multipage TIFF image

There are two ways to open a multipage TIFF image. To load each image in the TIFF at the
same time for easy navigation and manipulation, use the Open() method in the Workspace

or WorkpaceViewer object without specifying a frame index. This method sets the Images
property with an ImageCollection containing each image in the file. We no longer recommend
this. However, if the TIFF contains many pages, it is best to open only one image at a time, as it
opens faster and conserves memory. This can be done manually, but we recommend using the
FileSystemImageSource object to loop over each frame in the file.

Read each page in the TIFF

The following example demonstrates how to load each image into the Images property, and then
loop through the ImageCollection to access information from each image.

C#

//load each image into the ImageCollection
myWorkspace.Open (filename) ;

//display information from each image
foreach (Atalalmage image in myWorkspace.Images)
Console.Writeline (image.ToString()) ;

Read each page in the TIFF using a FileSystemImageSource

The following example demonstrates how to loop over each page in an image using the
FileSystemImageSource object.

FileSystemImageSource source = new FileSystemImageSource (new string[] { filename },
true) ;

while (source.HasMoreImages ())

{
AtalalImage image = source.AcquireNext () ;
Console.WritelLine (image.ToString()) ;
source.Release (image) ;

}

Read a single page in the TIFF

You can open a specific page from a multipage TIFF file by specifying the frame index. The following
example loads only the first page by specifying a frameindex of 0.

C#
//load a specified page in the image
int frameindex = pagenumber - 1;

282

Atalasoft DotImage Developer's Guide

myWorkspace.Open (filename, frameindex);

Display and manipulate images in the ImageSource

To display a particular image in the FileSystemImageSource, or to apply an ImageCommand to an
image other than the first image in the collection, you need to release the old image, if any, and
then acquire the new image and set it to the current image. At that point, operations accessed
through the Workspace object will act on that image. For coding convenience, the Workspace.Image
property is a pointer to Workspace.Images.Current.

The following example demonstrates how to change the current image to the second image in the
image source.

Change the current image to the second in the image source

C#
// select the next image
if (myWorkspace.Images.Current != null)

source.Release (myWorkspace.Images.Current) ;

O the FileSystemImageSource object can be treated as an array of images. This is somewhat
confusing because the act of getting an element of the array does an implicit Acquire(). The
Acquire() must be paired with a matching Release().

Replace the current image

The Workspace.Image property has two purposes:
» To get the current image in the ImageCollection (same as Workspace.Images.Current),
» To replace the current AtalaImage with a new image (same as Workspace.Images.Replace).

Add an image to the ImageCollection

If you open an image with the Open() method, the image is automatically added to the
ImageCollection. However, there are situations where you may want to assemble a multiple page
file. You can add an existing Atalalmage into the existing ImageCollection with the Add() or Insert()
method of the ImageCollection class.

The following example shows how to load a series of single page images into one ImageCollection

C#

for(int 1 = 1; 1 < 4; 1i++)
{
//opens the images imagel.tif, image2.tif, and image3.tif
//and adds each image to the tiffAssembler workspace
myWorkspace.Images.Add (new AtalalImage ("c:\\image" + i.ToString() + ".tif"));
}

In addition to adding an image to the collection, you can also insert an image into a specified
position in the ImageCollection, or replace an existing image with another image.

283

Atalasoft DotImage Developer's Guide

Save or append a multiple page TIFF image

To save an existing ImageCollection as a multiple page TIFF, invoke the Workspace.Save() method
and specify the TIFF encoder image type. You do not need to specify a frameindex to save.

The following example demonstrates how to save the current ImageCollection as a multiple page
TIFF file with G4 FAX compression.

C#

for (int i = 1; 1 < 4; i++)
{
//opens the images imagel.tif, image2.tif, and image3.tif
//and adds each image to the tiffAssembler workspace
myWorkspace.Open ("c:\\image" + i.ToString() + ".tif");
myWorkspace.Save ("c:\\multiimage.tif", new TiffEncoder (
TiffCompression.Group4FaxEncoding, true));

}
Save an image specifying compression type
The following example shows how to save an image as a TIFF, specifying the compression type.

C#

myWorkspace.Save ("myImage.tif", new TiffEncoder (TiffCompression.Group4FaxEncoding)) ;

DICOM

Digital Imaging and Communications in Medicine (DICOM) is the standard format used to manage
medical imaging information and its related workflow. Developed in 1993, the DICOM standard
consists of a file format definition and a network communications protocol.

DICOM is rapidly becoming the standard for all electronic health record systems that include
imaging information as part of patient records. Adherence to the DICOM standard allows DICOM
compliant devices from multiple manufacturers to work together in a seamless fashion as every
DICOM complaint device must specify the DICOM classes it supports. Software developers who are
DICOM conformant ensure that every medical imaging facility can use their software and that their
tools can integrate with any electronic health records system.

DICOM was developed the the DICOM Standards Committee and is managed by the the
Association of Electical and Medical Imaging Manufacturers. For more information, go to http://
DICOM.nema.org/.

The DicomDecoder is an ImageDecoder that decodes DICOM images into an Atalalmage. The basic
information you need to create a DotImage Decoder for DICOM images is provided here.

» Assembly Atalasoft.dotImage.Dicom.dll
* Namespace Atalasoft.Imaging.Codec.Dicom

Use the DicomHeaderParser to read metadata from a DICOM image.

284

Atalasoft DotImage Developer's Guide

Some classes allow manipulation of DICOM datasets and images closer to the raw formats provided
by the file format. The classes DicomDataset and DicomImage allow more efficient repeated
dynamic adjustments to be made to images without having to repeatedly decode them.

Extra classes for handling DICOM images

In addition to the DicomDecoder object, Atalasoft DotImage includes classes for more efficient
manipulation of DICOM Images. In particular, it is often important to be able to manipulate the
brightness and contrast of a Dicom image and display the changes in an active user interface. While
this can be done by decoding a DICOM image into an AtalaImage object and repeatedly applying
the BrightnessContrastCommand, it can be important to perform these transformations in the
native image space that is produced by a specific imaging device. In DICOM parlance, this is called
applying window and leveling.

Three native DICOM image spaces are available to clients of Atalasoft DotImage:

» Raw: Format that represents the raw samples that are contained within the file.

» Modality Transformed: Format that represents the image transformed by a modality transform
supplied by the imaging device.

» Presentation: Format that represents the image transformed into ranges that are suitable for
presentation, usually via a window and leveling transform defined in the file.

DicomDataset

The DicomDecoder creates all three images to provide an AtalaImage. First the raw image is read,
then it is transformed into the modality image, then into the presentation image, before being put
into an AtalaImage.

In most cases, client code will use a modality transformed image then repeatedly apply a window
and leveling to produce a series of Atalalmage objects. By operating this way, the original image will
only be decoded once and the the modality transform will only be applied once.

The two main objects used for this process are DicomDataset and DicomImage. A DicomDataset
object models the dataset structure from within a DICOM file. Constructed from a Stream object,
the DicomDataset object implements IDisposable. It is very important for client code to call the
Dispose() method when it is done with a DicomDataset. If this is not done, an exception may be
thrown when the application exits.

A DicomDataset is a factory for DicomImage objects. Client code calls one of the Get...Image
methods to get a new DicomImage object of the desired type. Each Get...Image method requires an
index to the desired frame. Note that multiple calls with the same frame index will return unique,
newly-allocated images.

+ GetRawImage(int framelndex) - returns a new raw dicom image with minimal processing of the
image data

+ GetModalityTransformedImage(int framelndex) - returns a new raw dicom with the device
modality transform applied

+ GetPresentationImage(int framelndex) - returns a new raw dicom image with the modality
transform and a window and leveling transform applied.

285

Atalasoft DotImage Developer's Guide

DicomImage

The DicomImage object is a model of the underlying raw data format. Using the DicomImage
object, client code can transform it into a new or existing AtalaImage with an optional window and
leveling transform. In addition, the DicomImage object has information about how the image may
have been transformed.

For example, DICOM images are often represented by sample values that are signed rather than
unsigned. Since most imaging systems use signed sample values, it is necessary to shift the signed
values into an unsigned range. If an image was shifted out of the signed range, the property
ImageCameFromSignedSamples will be true and the amount of this shifting is available via the
ImageDataShiftedBy property.

DicomImage implements IDisposable and like the DicomDataset object, it is very important for
client code to call the Dispose() method when it is done with a DicomImage.

Use DicomDataset and DicomImage

Using DicomDataset and DicomImage it is possible to implement the functionality of the
DicomDecoder method:

Implement DicomDecoder.Read

public AtalaImage Read(Stream stm, int frameIndex)
{

using (DicomDataset dataset = new DicomDataset (stm)) {
if (frameIndex < 0 || frameIndex >= dataset.FrameCount)
throw new ArgumentOutOfRangeException ("frameIndex") ;
using (DicomImage image = dataset.GetPresentationImage (frameIndex)) {

return image.GetAtalalImage () ;

}

This code creates a DicomDataset object, range checks the framelndex, then retrieves the
presentation DicomImage and translates it to an AtalaImage. Note the use of the "using" syntax to
ensure that the DicomDataset and DicomImage objects are disposed.

A typical application will want to open a modality transformed image then repeatedly perform
window and leveling operations on the image. Rather than allocate a new Atalalmage for each
operation, it is desirable to apply the window and leveling operation directly into an existing image.
An appropriate image can be constructed via the DicomImage method AllocateAtalalmage.

Apply window and leveling

The window value is typically stored in a signed sample range and must therefore be shifted by the
same amount as the samples. If this is not done, then it is likely that the resulting image will be all
white or all black.

private void OpenDicomImage (Stream stm)

286

Atalasoft DotImage Developer's Guide

_dataSet = new DicomDataset (stm) ;

_dImage = dataSet.GetModalityTransformedImage (0);
_atalalmage = dImage.AllocateAtalalImage ()
_window = dImage.DefaultWindow;

_leveling = dImage.DefaultLeveling;

UpdateImage () ;
}
private void UpdateImage ()
{
int window = window;
if (dImage.ImageCameFromSignedSamples)
window += dImage.ImageDataShiftedBy;

_dImage.GetAtalaImage(image, window, leveling); // transforms into image

}

JPEG2000 - encoding images

Encoding JP2 images involves creating an instance of Jp2Encoder, which derives from
ImageEncoder, and then invoking the Save() method. The Standard edition, allows adjustment of

just one property, the Compression property. The Professional edition grants low level access to the
Codec. This covers all encoder settings.

Encode tiled images

Among the important features of JPEG2000 is capability of encoding a large image - up to *-1)

x (232 21) pixels - without breaking into tiles. JPEG2000 also has a facility of compressing an image

into tiles in which data may be compressed independently in each tile or in each color component.
Encoding with (or without) tiles using Atalasoft DotImage Jpeg2000 is explained here.

To encode without tiles Set the TileSize property to of Jp2Encoder to (0,0) or
Size.Empty which implies no tiles.

To encode with tiles Set the TileSize property of Jp2Encoder to any non-
zero size.

Encode region of interest
The JPEG2000 specification includes the ability to encode user specific areas of the image at higher

quality. This gives more detail to certain areas of an image, without compromising file size. The
Jp2Encoder has an EnhancedRegions property, which points to a collection of Jp2EnhancedRegion

287

Atalasoft DotImage Developer's Guide

objects. Setting the EnhancementFactor in the Jp2EnhancedRegions collection boosts the quality of
all regions by a factor over the Compression property.

Baseline encoder properties

The properties listed in the table below can be set for the entire image only (cannot be
independently set to tiles or components).

Compression
Gets or sets the compressed size of the image as a percentage of an uncompressed image.

EnhancedRegions

Gets a collection of Enhanced Regions that can be set at a higher quality level than the rest of the
image during compression.

FileFormat

Gets or sets the file format to generate (JP2, JPEG2000 codestream, or JPX).
IPData

Gets or sets intellectual property rights data to be encoded with the image.
IptcTags

Gets or sets IPTC data that will be stored in the encoded image.

Precision

Gets or sets a value indicating the precision of the wavelet coefficients.
QualityStyle

Gets or sets a value indicating the quality mode during lossy compression.
SpeedMode

Gets or sets the speed mode (Fast or Accurate) to use during lossy compression.
TileSize

Gets or sets the size in pixels of each individual tile.

UuidBoxes

Gets or sets UuidBox metadata to be stored in the encoded image.
UuidInfoBoxes

Gets or sets UuidInfoBox metadata to be stored in the encoded image.
WriteTileLengthMarker

Gets or sets a value indicating if a tile length marker is written to the encoded image.

XmiBoxes
Gets or sets XML metadata to be stored with the image.

Per tile encoder properties
These properties can be set for the entire image or independently for each tile. These properties

exist in EncoderOptions, and by default are applied to the entire image unless overriding
GetEncoderOptions.

288

Atalasoft DotImage Developer's Guide

QualityLayers
Gets or sets the number of quality layers in the code stream for use with progressive decoding.

ProgressionOrder
Gets or sets the organization of the coded data.

PacketMarkers

Gets or sets a value that creates special markers at the beginning and/or at the end of each block of
a coded area.

Per tile and per component properties

These properties can be set for the entire image, independently for each tile, and independently for
each component. These properties exist in EncoderOptions, and by default are applied to the entire
image unless overriding GetEncoderOptions.

WaveletFilterMethod
Gets or sets a value selecting reversible (WaveletFiveThree) or irreversible (WaveletNineFive) wavelet
filters.

WaveletLevels
Gets or sets the number of wavelet transformation levels.

QuantizationStyle
Gets or sets the quantization steps.

CodeBlockSize
Gets or sets the size of the blocks of coded data.

CoderOptions
Gets or sets the coder options for faster compression / decompression.

Getting Started with JPEG2000

This section gives you information to get started with JPEG2000.
Register the JPEG2000 codec in Atalasoft DotImage

To set up Atalasoft DotImage to decode JP2 images, add an instance of the Jp2Decoder to the
Atalasoft.Imaging.Codec.RegisteredDecoders.Decoders collection.

Use the JPEG2000 imaging codec

C#

Jp2Decoder jp2 = new Jp2Decoder () ;
RegisteredDecoders.Decoders.Add (jp2) ;

289

Atalasoft DotImage Developer's Guide

Link to the license file

To compile Atalasoft DotImage JPEG2000 in a Windows Forms application such that the royalty free
license is installed into the application resource, a file called 1icenses.1licx must be added to the
project, with the following line in that file:

Atalasoft.Imaging.Codec.Jpeg2000.Jp2Decoder, Atalasoft.dotImage.Jpeg2000

This instructs the Visual Studio .NET compiler to embed the license file to the resources in the exe.
For information about compiling and embedding the license, see Generating licenses.

Decode JPEG2000 images

Once the decoder is registered, all methods that decode an image, such as Workspace.Open or
new AtalaImage(filename) recognizes JP2 images as valid supported images. The Read() method of
Jp2Decoder can also be called directly to bypass the image format check determining the codec to
use.

Get information from JPEG2000 images

It is possible to retrieve information from a JPEG2000 image without decoding it by using

the GetImagelnfo() method of the Jp2Decoder class, or the GetImagelnfo() method of the
RegisteredDecoders class. Information, including width, height, bitdepth, is available. To access
Intellectual Property Rights data and the type of code stream, cast the returned Imagelnfo class to a
Jp2Imagelnfo.

Get image information

To encode JPEG2000 images, create an instance of the Jp2Encoder class, and pass it into the
Workspace.Save() method, the AtalaImage.Save() method, or the Save() method in the Jp2Encoder
class. The Compression property in the Jp2Encoder can be set to compress the resulting image

to the desired amount. For example, setting the compression to 5 results in an image that is
approximately five per cent of the size of the original uncompressed image.

C#

using Atalasoft.Imaging.Codec.Jpeg2000;

Jp2ImageInfo info = (Jp2Imagelnfo)RegisteredDecoders.GetImageInfo ("myimage.jp2");
Console.WritelLine (info.FileFormat) ;

Deploy Atalasoft Dotlmage JPEG2000

When deploying Atalasoft DotImage JPEG2000 to a client machine or server, the following must be
copied to the same folder as the exe which references the Atalasoft DotImage assemblies:

¢ Atalasoft.dotImage.dll
e Atalasoft.dotImage.Jdpeg2000.d1l1l
¢ Atalasoft.dotImage.Lib.dll

When distributing client desktop applications, the license file is embedded into the resource, and
there is no need to distribute or activate any additional licenses.

290

Atalasoft DotImage Developer's Guide

When installing on a production server, a server license must be acquired and activated for the
server.

Introduction to |JBIG2

Atalasoft DotImage JBIG2 codec can be used to decode and encode JBIG2 images using the
Microsoft .NET Framework. JBIG2 compression is an open standard and can compress bi-tonal
images 2 - 5 times more than the same image compressed with the industry standard TIFF CCIT
Group4 compression. The codec is available as a plug-in that integrates with Atalasoft Dotlmage
seamlessly. Atalasoft DotImage JBIG2 is based off of Luratech's Lurawave.jb2 compression
technology. Licensing is runtime royalty free for desktop applications.

The JBIG2 standard has been developed by the Joint Bi-level Experts Group (JBIG) for the efficient
lossless and lossy compression of bilevel (black and white) images. It is capable of compressing
black and white documents considerably more than the more commonly used CCIT Group 4 TIFF
compression.

The use of symbol dictionaries and symbol matching in JBIG2 enables very effective encoding of

documents containing recurring symbols, making JBIG2 ideal for compressing documents. JBIG2
has been made popular by Adobe PDF, which incorporates JBIG2 in the PDF 1.5 specification. PDF
Reader includes JBIG2 support for reading these types of PDF documents.

Product Features

+ Ability to decode any page from a 1-bit JBIG2 image.

» Encode a single or multipage document as a JBIG2 image, an image only PDF document.
» Supports Lossless or Lossy compression

» Supports encoding or decoding from any stream

» Read a specified region from an existing JBIG2 image stream.

» Generate image only PDF documents with embedded JBIG2 images.

+ Integrated with the Atalasoft DotImage PDFEncoder to encode PDF images with other
compression formats.

» Runtime Royalty Free Desktop Licensing

JBIG2 Compression

Jb2Encoder, derived from MultiFramedImageEncoder, can compress a bi-level image (i.e.
PixelFormat.Pixel1bppIndexed) to JBIG2 or PDF.

O An exception is thrown if the source image is not 1-bit image. To avoid the exception, convert
the image to 1-bit prior to compression.

The JBIG2 Codec can compress images as JB2 format, or PDF with embedded JBIG2 images, or
a JBIG2 stream that can be directly embedded inside a PDF. See the ExportFormat property for
specifying the export format.

The EncodingMode property indicates if an image is compressed Lossy or Lossless.

291

Atalasoft DotImage Developer's Guide

JBIG2 Decompression

The Jb2Decoder. derived from MultiFramedImageDecoder, can access an existing JBIG2 file or JBIG2
embedded stream. To decode a stream, see the Read() method.

The decoder supports decoding a single frame, specifying the frame index, or directly to an
ImageCollection. To register the JBIG2 decoder in the list of known codecs, add an instance of the
Jb2Decoder into the Atalasoft.Imaging.Codec.RegisteredDecoders.Codecs collection.

Compression Examples

Uncompressed | CCIT GroupIV |)BIG2 Lossless |JBIG2 Lossy PDF w/ Lossless

JBIG2

3-page FAX, 1,454 Kb 121 Kb 24 Kb 23 Kb 26 Kb

1728 x 2293

strip chart grid | 8,321 Kb 1,088 Kb 675 Kb 674 Kb 676 Kb

scan, 9760x6976

Mechanical 7,716 Kb 209 Kb 104 Kb 100 Kb 105 Kb

CAD drawing,

9259x6816

Custom codecs - image codec

An image codec is a program that can encode and decode an image.

Atalasoft DotImage can read and write most common image formats. Images are read with
ImageDecoders and written with ImageEncoders. The extensibility model of Atalasoft Dotlmage
allows custom encoders and decoders to be created easily by Atalasoft DotImage or third parties.
Plug-ins for Jpeg2000 and other codecs are available separately.

Supported formats

Format ImageDecoder ImageEncoder Assembly location
Jpeg JpegDecoder JpegEncoder Atalasoft.dotImage
Png PngDecoder PngEncoder Atalasoft.dotimage
Bmp BmpDecoder BmpEncoder Atalasoft.dotimage
Tiff TiffDecoder TiffEncoder Atalasoft.dotiImage
Gif GifDecoder GifEncoder Atalasoft.dotiImage
Pcx PcxDecoder PcxEncoder Atalasoft.dotiImage
Tga (Targa) TgaDecoder TgaEncoder Atalasoft.dotImage
Psd PsdDecoder PsdEncoder Atalasoft.dotImage
Wbmp WbmpDecoder WbmpEncoder Atalasoft.dotiImage
Emf EmfDecoder EmfEncoder Atalasoft.dotImage

292

Atalasoft DotImage Developer's Guide

Wmf WmfDecoder WmfEncoder Atalasoft.dotImage

Tla TlaDecoder TlaEncoder Atalasoft.dotImage

Pcd PcdDecoder - Atalasoft.dotlImage

Pnm PnmDecoder PnmEncoder Atalasoft.dotiImage

Pdft - PdfEncoder Atalasoft.dotiImage.Pdf
Pdf** PdfDecoder - Atalasoft.dotImage.PdfReader
Raw* RawDecoder - Atalasoft.dotImage.Raw
JPEG 2000** Jp2Decoder Jp2Encoder Atalasoft.dotImage.Jpeg2000
JBIG2** Jb2Decoder Jb2Encoder Atalasoft.dotimage.Jbig2
DWG** DwgDecoder - Atalasoft.dotimage.Dwg
DXF** DwgDecoder - Atalasoft.dotimage.Dwg
DICOM** DicomDecoder - Atalasoft.dotiImage.Dicom
XPS XpsDecoder - Atalasoft.dotImage.Wpf
JpegXR JpegXrDecoder JpegXrEncoder Atalasoft.dotImage.Wpf
Heif HeifDecoder - Atalasoft.DotImage.Heif

* Included with Atalasoft DotImage Photo Pro and Atalasoft DotImage Document Imaging
**Available as a separate plug-in module

1 Included with Atalasoft DotImage Document Imaging

Create a decoder

The Decoder class reads image data and converts it into an AtalaImage object. This class inherits
from the Atalasoft.Imaging.Codec.ImageDecoder object.

Required methods
The following methods are required to qualify as a compatible Atalasoft DotImage plug-in.

C#

public override ImageInfo GetImageInfo (Stream stream)

This method is used to gather information about this image, including ImageType, width, height,
bit depth, PixelFormat and DPI. You can also create your own custom Imagelnfo object if the image
format contains additional information. See Create Custom Image Information.

C#

public override bool IsValidFormat (Stream stream)

Atalasoft DotImage uses this method to find out if the image being opened can be read by your
plug-in. The method returns true if it can be read.

C#

293

Atalasoft DotImage Developer's Guide

public override AtalaImage Read(Stream stream, ProgressEventHandler progress)

This method is called to ask the plug-in to read the image from a stream and convert it into an
Atalalmage object. If possible, you should also raise the progress event for each scan line. If you are
unable to read the image in the stream, return null.

In addition to the preceding methods, you must also include the following property.

C#

public override ImageType SupportedImageType
{
get { return ImageType.Unknown; }

}

This property indicates what image type your plug-in can read. If the image type is unknown to
Atalasoft DotImage, you should return ImageType.Unknown.

Additional methods and properties

If the image format your decoder reads can make use of additional methods and/or properties, go
ahead and add them. While Atalasoft DotImage does not use them, you can use your class to access
those features directly.

Atalalmage data format

It is very important that you know how the image data should be formatted in order for Atalasoft
DotImage to display and manipulate it properly.

Internally, the image data is stored as a top-down, 32-bit aligned buffer. This makes it very likely
that you will have to add padding to the end of each row. In addition, the colors of 24- and 32-bit
images are stored in BGR and BGRA order.

Palettes

If the image format you are reading requires a palette, you will have to add the palette entries to
the Atalalmage.Palette object. You can do this by using the Palette.SetEntry() method.

If the image is grayscale, a standard grayscale palette is automatically be added when you create
the Atalalmage object. This palette is ordered from black (0) to white (255).

If the image is 1-bit, a black and white palette is automatically created in which white is 0 and black
is 1. If the image requires different colors, you can change them with the SetEntry() method.

ImageData

The AtalaImage.ImageData property is a pointer to the beginning of the image data. You can set
the image data using Marshal.Copy, or you can use unsafe code to set the image data directly to the
pointer.

There is also an AtalaImage constructor which lets you to set the value of the ImageData property.
You may prefer this if you want to control the memory allocation.

294

Atalasoft DotImage Developer's Guide

Create an encoder

The image encoder is used to save an Atalalmage object into a specific image format. Your encoder
must inherit the Atalasoft.Imaging.Codec.ImageEncoder class.

There is only one required method for the encoder as shown in the example.

Required method for image encoder

This method is used to save the AtalaImage into the specified stream. If possible, you should raise
the progress event for each scan line. The return value is the number of bytes written to the stream.

C#

public override int Save (Stream stream, Atalalmage image, ProgressEventHandler
progress) ;

Additional methods and properties

You are free to add any additional methods and properties to your encoder. If you review the source
code for PortableImageEncoder, you see that Atalasoft DotImage has added multiple constructors
and three properties that provide easy access to the features of this image format.

AtalaImage data format

Image data is stored as a top-down, 32-bit aligned buffer. You must be sure to watch for row
padding in the image data, and remember that 24- and 32-bit images are stored in BGR and BGRA
order.

Extend a codec

Atalasoft DotImage was designed with extensibility in mind. Advanced .NET programmers can
extend or override existing functionality. Many methods are marked as virtual, meaning that they
can be overridden when the class is inherited. This allows native functionality to be overridden and
enhanced.

The Atalasoft DotImage ImageCommands and Codecs provide good examples of how a developer
can extend and customize the Atalasoft DotImage application. By inheriting the ImageCommands
and Codecs base classes, you can add your own plug-ins to the product.

For example, you can create an ImageCommand that uses your own special algorithm.
Alternatively, you can add an ImageDecoder for your favorite, but unsupported and obscure, image
format. You have the option to sell your plug-ins commercially.

To create a custom decoder or encoder, you must inherit the abstract base class
%ImageDecoder:Atalasoft.Dotimage~Atalasoft.Imaging.Codec.ImageDecoder% or
%ImageEncoder:Atalasoft.DotImage~Atalasoft.Imaging.Codec.ImageEncoder% respectively. The
next section explains how to create a custom decoder and encoder.

295

Atalasoft DotImage Developer's Guide

Decoder tutorial

One of the great features of Atalasoft DotImage is the ability to create your own plug-in to support
extra file types. You can even create your own image format and take advantage of the image
processing features of Atalasoft DotImage.

This tutorial covers they key concepts you need to create your own plug-in. The code examples are
taken from the PortableImage component. The tutorial includes the following:

+ The Decoder
* Requirements
» Additional Methods and Properties
« The Atalalmage Data Format
+ Palettes
+ Image Data
+ Example Code
+ Custom Imagelnfo
+ The Constructor
» The Encoder
* Requirements
« Additional Methods and Properties
» The Atalalmage Data Format
« Example Code

Adjust decoder properties

Some Image Decoders have properties that can be set to change the decoding behavior. For
example, the JpegDecoder can be set to read at scaled down levels.

The following example shows how to change the image loading scale for a JPEG image.

Reset decoder properties

This example demonstrates how to change the properties of the default JpegDecoder so that the
image is loaded at one-half scale.

C#

JpegDecoder jpeg =
(JpegDecoder) RegisteredDecoders.GetDecoderFromType (typeof (JpegDecoder)) ;
jpeg.ScaleFactor = JpegScaleFactor.Half;

Read a PPM image

The following example shows how to write code to read a PPM Image into an Atalalmage object.
Reset decoder properties

The following code is used to read a PPM (24-bit) image into an Atalalmage object.

296

Atalasoft DotImage Developer's Guide

The method in the following example loops through each pixel, reads the three bytes which make
up the RGB data and sets the memory values to this data in BGR order. At the end of each row, it
moves to the beginning of the next row by advancing the pointer by offset amount.

To calculate the offset (padding), take the number of bytes required for one row (width * 3 in this
case) and subtract it from the number of bytes in a 32-bit aligned row (image.RowStride).

C#

private Atalalmage Read24BitBinary(Stream stream, int width, int height, int
maxColor,
ProgressEventHandler progress)

Atalalmage image = new AtalalImage (width, height, PixelFormat.Pixel24bppBgr) ;
ProgressEventArgs e = new ProgressEventArgs (0, height,
System.Reflection.MethodInfo.GetCurrentMethod () .Name) ;

unsafe

{
int offset = (image.RowStride - (width * 3));
byte[] bytes = new byte[3];
byte* pointer = (byte*)image.ImageData;

// Read each line into the image buffer with padding.
for (int y = 0; y < height; y++)
{
// Raise the progress event.
if (progress != null)
{
e.Current = y;
progress (this, e);

for (int x = 0; x < width; x++)

stream.Read (bytes, 0, 3);
Utilities.GetReadColorValue (ref bytes, this.maxColor);

// The color is stored in BGR order.

pointer[0] = bytes[2];
pointer[l] = bytes[1l];
pointer[2] = bytes[0];

// Move to the next pixel.
pointer += 3;

}

// Advance to the next row.
pointer += offset;

}

// Send final progress event.
if (progress != null)
{
e.Current = height;
progress (this, e);

}

return image;

297

Atalasoft DotImage Developer's Guide

Save an Atalalmage to a PPM file

The following is the code used to save an Atalalmage object into a PPM (24-bit) file. Take a look at
the PortableImagePlugin source code for 8 and 1-bit saving.

C#

private int Save24Bit (Stream stream, Atalalmage image, ProgressEventHandler
progress)

{

// Save the header information.
int count = WriteTheHeader (stream, image);

int height = image.Height;

int widthBytes = image.Width * 3;
byte[] bytes = new byte[widthBytes];
int rs = image.RowStride;

int padding = rs - widthBytes;
byte[] ascii;

IntPtr p = image.ImageData;

ProgressEventArgs progressArgs = new ProgressEventArgs();

for (int y = 0; y < height; y++)
{

// Raise the progress event.

if (progress != null)

{
progressArgs.Current = y;
progress (this, progressArgs);

}

// Read one line of the image.
Marshal.Copy (new IntPtr(p.ToInt32() + y * rs), bytes, 0, widthBytes);

// Remember, internally the image is a DIB in BGR format.
Utilities.SwapRedAndBlue (ref bytes, widthBytes);

if (this.binaryEncoding)
{
// Adjust the color values if needed.
if (this.maxColor != 255)
Utilities.GetSavedColorValue (ref bytes, this.maxColor);

stream.Write (bytes, 0, widthBytes):;
count += widthBytes;
}
else
{
// Convert the data into its ascii version and do the color correction.
ascii = Utilities.BinaryToAscii (bytes, this.maxColor) ;
stream.Write (ascii, 0, ascii.Length);
count += ascii.Length;

}

// Raise the progress event.
if (progress != null)

298

Atalasoft DotImage Developer's Guide

progressArgs.Current = height;
progress (this, progressArgs);

}

return count;

}

Create custom image information

When creating a decoder for an image, there may be times when the image format contains unique
information beyond what the Imagelnfo object provides. Create a class that inherits Imagelnfo to
allow users access to this extra information.

The image formats supported by the PortableImagePlugin contain a parameter called MaxColor,
which specifies the maximum value of a single color component in the image data. The Imagelnfo
object does not contain this property, so the custom class, PortableImagelnfo provides that
information upon return from the GetImagelnfo() method in the decoder.

This allows Atalasoft DotlImage to use the known properties of Imagelnfo and also allows users of
the to get the MaxColor value from your plug-in.

C#
public class PortableImageInfo : ImageInfo

The constructor

The constructor of your custom class must also create the Imagelnfo object to set the properties. As
these properties are read-only, use the following syntax to accomplish this.

C#

public PortableImagelInfo (Size size, int colorDepth, PixelFormat pixelFormat, int
maxColor)
: base(size, colorDepth, ImageType.Unknown, new Dpi (0, O,
ResolutionUnit.Undefined),
pixelFormat)

This code creates the base (Imagelnfo) constructor, using the parameters of the PortableImagelnfo
constructor. Because the image formats supported by this plug-in always return
ImageType.Unknown, we removed this parameter from our constructor, and placed it in the base
constructor.

© The addition of the maxColor parameter in our constructor. The parameter sets the value
returned my the MaxColor property of the custom Imagelnfo class.

Bar code reading

Atalasoft DotImage BarcodeReader was designed to be very easy to use. An application needs just a
few lines of code to read all supported bar codes located within an image.

Before working with bar codes, you may also wish to review the Barcode Reader Demo supplied
with the Atalasoft DotImage Toolkit. It is a working Windows Forms application that demonstrates

299

Atalasoft DotImage Developer's Guide

the abilities of the component. Full source code is supplied. For more information on this demo, see
Atalasoft DotImage Demos.

As of Atalasoft Dotlmage 7.0b, there is a new Barcode Reader. It was designed to be as compatible
as possible with the old Barcode Reader, but there are a few differences:

1.
2.

The new object for reading is call BarCodeReader.

BarCodeReader implements the IDisposable interface and should be disposed as soon as you
are done with it. We recommend putting BarCodeReadings in a C# using block.

BarCodeReader is highly optimized for 1-bit images. To make this easier, there are two new
constructors:

» BarCodeReader(AtalaImage image, bool autoThreshold) - if autoThreshold is true, this
constructor will convert images that are not 1-bit to 1-bit. This process is done with the
DynamicThresholdCommand if it is licensed or with the ThresholdCommand otherwise.

« BarCodeReader(AtalaImage image, ImageCommand thresholdCommand) - if the image
is not 1-bit, thresholdCommand will be applied to the image to convert it. If the processed
image is not 1-bit, it will be disposed and ignored.

BarCodeReader now includes the property SupportedSymbologies which returns a
Symbologies enumeration that includes all bar code symbologies recognized and licensed
for use by the BarCodeReader. In addition, there is the method IsSymbologySupported(),
which returns true if a passed in Symbologies enumeration is recognized and licensed by the
BarCodeReader.

The new BarCodeReader no longer supports the MicroQr, Planet, AustraliaPost, Code11,
IntelligentMail, 1tf14, Rss14, RssLimited, Telepen or Rm4scc symbologies.

6. The XOptions property of the ReadOpts class is no longer used and has been marked obsolete

7. The Directions enumeration now includes diagonal compass points (Northeast, Southeast,

etc.). Directions.Northeast is not equivalent to Directions.East | Directions.North.

8. The Scanlnterval property of the ReadOpts class is not currently used.

9. ReadOpts now includes a property called ReadingQuality, which controls the balance of speed

10.

11.

vs. accuracy in the BarCodeReader. The default value, ReadingQuality.MostAccurate, reads with
the greatest accuracy. ReadingQuality.Fastest reads as fast as possible, but with less accuracy.

The Symbologies enumeration now includes convenience values All1D, AlI2D, and All,
which represent all one-dimensional symbologies, all two-dimensional symbologies, and all
symbologies, respectively.

The BarCode object now includes a property, Data, which contains the data for a bar code as an
array of bytes.

Upgrade tips

In most cases, all that needs to be done is to reference the new assembly
Atalasoft.dotImage.BarCoding and change the name of the Barcode Reader class from BarReader
to BarCodeReader. It is strongly recommended that you dispose BarCodeReader objects as soon
as possible after you are done with them. This can be done in a C# using block. In addition, we
recommend that you read 1-bit images. You can convert them 1-bit yourself, or construct the
BarCodeReader with autoThreshold set to true:

300

Atalasoft DotImage Developer's Guide

using (BarCodeReader reader = new BarCodeReader (image, true))
{
BarCode[] bars = reader.ReadBars (myReadOpts) ;

ProcessBars (bars) ;

Use the BarcodeReader

The BarcodeReader was designed to be very easy to use. An application needs just a few lines of
code to read all supported bar codes located within an image.

The following examples demonstrate how to read bar codes from an Atalasoft.Imaging.Atalalmage
object.

The steps involved in reading a bar code are as follows:
1. Create an instance of BarCodeReader by passing in an Atalalmage object.

2. Create an instance of the ReadOpts class and set the symbology(s) and directions you wish to
read.

3. Invoke the ReadBars() method in the BarCodeReader class. This returns an array of Barcode
instances. Each element of the array corresponds to a bar code read from the image:

Reading a bar code

You can use a single BarCodeReader instance to read the same image a number of times, each time
with different options as shown in the example that follows.

C#

// 1l: Load the image containing bar codes
AtalaImage myImage = new Atalalmage ("barcodes.tif");
// 2: Create BarCodeReader for specified image.
using (BarCodeReader br = new BarCodeReader (myImage))
{

// 3: Create a ReadOptions.

ReadOpts options = new ReadOpts() ;

// 4: Read left to right.

options.Direction = Directions.East;

// 5: Symbology to read.

options.Symbology = Symbologies.Codel28;

// 6: Read the bar codes contained in the image.

BarCode[] bars = br.ReadBars (options) ;

// T: Process the results.

for (int i = 0; i < bars.Length; i++)

System.Console.Writeline (bars([i] .ToString()) ;

Read a bar code with options set

C#

// 1: Load the image containing bar codes

301

Atalasoft DotImage Developer's Guide

AtalaImage myImage = new Atalalmage ("barcodes.tif");
// 2: Create BarCodeReader for specified image.
using (BarCodeReader br = new BarCodeReader (myImage))
{
// 3: Create a ReadOptions.
ReadOpts options = new ReadOpts() ;
// 4: Read left to right.
options.Direction = Directions.East;
// 5: Symbology to read.
options.Symbology = Symbologies.Codel28;
// 6: Read the barcodes contained in the image.
BarCode[] bars = br.ReadBars (options) ;
if (bars.Length == 0)
{
// No bar codes read. Maybe the image was scanned upside down. Recheck by
scanning the opposite direction.
options.Direction = Directions.West;
bars = br.ReadBars (options) ;

Render a bar code into an Atalalmage

Even though the Barcode Writing assembly has no direct Atalasoft DotImage dependencies,
it's easy to write bar codes into an AtalaImage. The process is simple, first create a 24-bit color
Atalalmage, then use the GetGraphics method to get a Graphics object, then use the bar code
writers Render method.

This process is shown in the following code sample.

C# - Code 39 Barcode Writing

AtalaImage CreateBarcodeImage (string text, int width, int height)
{
AtalaImage image = new Atalalmage (width, height, PixelFormat.Pixel24bppBgr,
Color.White);
BarcodeWriter bc = new BarcodeWriter (BarcodeStyle.Code39) ;
Graphics g = image.GetGraphics () ;
bc.Render (text, g, new Rectangle(0, 0, width, height));
return image;

Verify a bar code can represent a string

Since some 1-D bar codes are limited in what they can represent, it is useful to be able to ask the
BarcodeWriter if it can correctly render a given string. This is done by calling the BarcodeWriter's
Validate method. Validate takes a string and a boolean and will return true if the string can

be rendered in the BarcodeWriter's current BarcodeStyle. If the boolean passed in is true, the
BarcodeWriter will throw an ArgumentException if given an invalid string. If the boolean passed in is
false, the Validate will return false if given an invalid string.

This process is shown in the following code sample.

C# - Validating Code 39

public void CheckCode39String (string s)
{

302

Atalasoft DotImage Developer's Guide

BarcodeWriter bc = new BarcodeWriter (BarcodeStyle.Code39) ;
if (!bc.Validate (s, false))
{
Console.WritelLine ("Invalid bar code string: " + s);
}

else
{
Console.WriteLine ("Barcode string accepted.");

}

Barcode Writing

The Dotlmage Barcode Writing assembly is designed to be a simple set of classes that make it easy
to create bar codes within a .NET application. There are objects that are designed for writing directly

into Graphics objects and corresponding Win Forms Controls that allow bar codes to appear in
window-based applications.

The Barcode Writing classes can be used for many common 1-D bar code types as well as PDF417
and DataMatrix bar codes.

Deployment
When using Barcode Writing, the assemblies that need to be copied with your application include:
Assembly Description
Atalasoft.Shared.dll Shared classes such as licensing management
Atalasoft.dotImage.Barcoding.Reading.dll Barcode Writing Engine

Use the Barcode Writer
The simplest way to use the Atalasoft Dotlmage Barcode Writer is to drag a bar code control onto a
window form. There are three main controls:
1. BarcodeControl - for all 1-D bar codes such as Code 39, Codabar, UPCA etc.
2. DataMatrixBarcodeControl - for DataMatrix 2-D bar codes
3. Pdf417BarcodeControl - for PDF417 2-D bar codes.

Once placed on a form, you can change the size and placement in the designer and adjust specific
settings in the Properties window.

Each control has a property called Text which is used to set the text encoded in the bar code. Note
that many 1-D barcodes have restrictions as to what characters can be encoded in the bar code- for
example, many 1-D bar codes only represent numbers and letters.

The bar code writers can also be used to write into a Graphics object directly. For each bar code
control, there is a corresponding class that will write the bar code:

1. BarcodeWriter - writes all 1-D bar codes.

303

Atalasoft DotImage Developer's Guide

2. Pdf417BarcodeWriter - writes PDF417 2-D bar codes.

3. DataMatrixBarcodeWriter - writes DataMatrix 2-D bar codes.

Each of these classes contains a method called Render which draws the requested bar code.
All bar code writers have a flavor of Render that handles strings. Pdf417BarcodeWriter and
DataMatrixBarcodeWriter have methods for handling raw data in the form of a byte array.

Writing a raw data PDF417 bar code

public void WriteRawPDF41l7Data (Graphics g, Rectangle bounds, byte[] data)
{

Pdf4l7BarcodeWriter writer = new Pdfd4l7BarcodeWriter () ;

writer.Render (data, g, bounds);

OCR document design considerations

Since some 1-D bar codes are limited in what they can represent, it is useful to be able to ask the
BarcodeWriter if it can correctly render a given string. This is done by calling the BarcodeWriter's
Validate method. Validate takes a string and a boolean and will return true if the string can

be rendered in the BarcodeWriter's current BarcodeStyle. If the boolean passed in is true, the
BarcodeWriter will throw an ArgumentException if given an invalid string. If the boolean passed in is
false, the Validate will return false if given an invalid string.

The design of the OcrDocument hierarchy reflects the conflicting needs of OCR engines and OCR
clients.

It is highly likely that a client of an OcrEngine will modify the OcrDocument and OcrPage classes.
For example, a client may add keywords to the OcrDocument object or thumbnail images to the
pages. Therefore, concrete engine implementations should never construct an OcrDocument or
OcrPage class directly. It is the responsibility of the client to supply code to construct the objects
within the hierarchy.

On the other hand, the engine is likely to supply implementations of OcrLine, OcrWord, and
OcrGlyph that can be tightly coupled to data supplied by the engine. This means the engine needs
to be able to make very specific versions of these classes.

To manage these conflicting goals, the Ocr namespace uses two patterns. The first is a factory used
to construct document elements. Never access constructors for document elements directly. Use
the engine's Factory property instead as shown in the example below.

Use the factory property to construct a document
OcrPage page;

//Do not do this!
page = new OcrPage (width, height, resolution);

//This is much better
page = engine.Factory.OcrPage (width, height, resolution);

304

Atalasoft DotImage Developer's Guide

The page element object represents an extensible interface to the element without dictating the
implementation. The data accessor defines how that data is stored and retrieved.

For example, the implementation of the Baseline property in OcrLine does not use a member
variable to store the baseline. Instead, it uses an object called an OcrLineAccessor to get the
baseline. In this way, a client can supply definitions for OcrLine, OcrWord, and OcrGlyph.The engine
supplies the accessors that define how the object's information is retrieved. A client could then
override OcrLine to include extra information about a line of text without affecting how any given
engine is required to provide information that meets the core definition of an OcrLine.

Furthermore, once an OcrDocument has been constructed, its elements can be edited, augmented,
deleted, or merged without affecting any of the existing components. For example, OcrPage objects
taken from an OcrDocument recognized by one engine can be inserted into an OcrDocument that
was produced by another engine, or words can be changed (spell corrected, moved, replaced)
without affecting any of the other elements, even if they are still tied to a specific engine.

To get an OcrDocument or an OcrPage from an image, use the OcrEngine's Recognize() method.
There are versions that operate on single images and ImageSource objects.

Load OCR resources

In order to operate, each of our OCR engines require some external resources. The particular type
and content of those resources as well as how they are structured vary greatly from one engine to
another. Thankfully, we have taken care to streamline the management of these resources for you.
There are only two potential issues you need to keep in mind when developing an OCR product with
Atalasoft DotImage: Initialization and Deployment.

Initializing resources

Most supported OCR Engines are external programs you can interface with. These programs may
need to be run or otherwise loaded into memory before they can be used. To simplify this we have
provided specialized loaders which take care of this for you.

GlypthReaderLoader

C#

static Forml ()

{
//Preload the GlyphReader resources from a default location.
GlyphReaderLoader loader = new GlyphReaderLoader() ;

}

To make it easy to jump in and start developing an OCR application, our packaged OCR engines
know where your OCR resources are installed and will access them automatically. For similarly
simple deployment, you can copy the ocrResources directory located within the bin directory

of your Atalasoft DotImage installation directly into the directory which holds your application's
assemblies. All of our engine's wrappers are designed with this case in mind and should require no
further configuration. However, if you wish to place these resources elsewhere, some care must
be taken to ensure they are loaded properly. Exactly what must be done can vary from engine to
engine.

305

Atalasoft DotImage Developer's Guide

GlyphReader

All of the resources required by GlyphReader are contained within it's own executable. Therefore,
there is no need to worry about them once the GlyphReaderLoader has been called. However, you
will need to ensure that the loader can find the executable, the configuration file, and the dll found
within the GlyphReader subdirectory of OcrResources.

GlyphReaderLoader will look in the following locations for its resources, in order:

If the resourceDir constructor parameter is supplied:
1. The "OcrResources\GlyphReader\v5.0" subdirectory of the specified directory is checked.
2. The "GlyphReader\v5.0" subdirectory of the specified directory is checked

If the resourceDir constructor parameter is not supplied:

1. The bin\OcrResources subdirectory of your Atalasoft DotImage installation directory is
checked.

2. The OcrResources\GlyphReader\v5.0 subdirectory of the directory where the GlyphReader
Assembly is located is checked.

3. The GlyphReader\v5.0 subdirectory of the directory where the GlyphReader Assembly is
located is checked.

To place the resources in a different directory you will need to specify that location inside the
GlyphReaderLoader constructor.

C#

static Forml ()
{
//Preload the GlyphReader resources from a subfolder of the
//global ApplicationData directory.
string appdata =
Environment.GetFolderPath (Environment.SpecialFolder.CommonApplicationData) ;
string subfolder = @"GlyphReader Resources";
string resourcePath = Path.Combine (appdata, subfolder);
GlyphReaderLoader loader = new GlyphReaderLoader (resourcePath);
}

Tesseract

Atalasoft DotImage supports the Tesseract 3 and 5 engines. Both versions require a large number
of external files. Most of these are datasets for each of the languages Tesseract supports. These
are loaded at construction time from a folder within the Tesseract folder in OcrResources. The
loading process depends on the version of the Tesseract Engine.

i J Although Atalasoft DotImage supports the Tesseract3Engine, it is obsolete. If you select
Tesseract3Engine, you will receive a warning that the engine is obsolete.

306

Atalasoft DotImage Developer's Guide

Tesseract3Engine resource loading

When the Tessearct3Engine resources are loaded, the folder list is created and each folder in that
list is checked to see if it contains the Tesseract\v3.04\tessdata folder structure. When the
matching folder is found, it is checked to ensure that it contains all of the correct resource files. If
any of the resources are missing an OcrException is thrown.

Each of the following is checked for the Tesseract\v3.04\tessdata path in order:

1. If the constructor's resources argument is supplied, it is checked. (For example: C:
\Tessearct3ResourcesFolder.)

2. If the constructor's resources argument is supplied, the OcrResources folder of the argument
is checked. (For example: C:\Tessearct3ResourcesFolder\OcrResources.)

3. The SDK ocrResources folder, as determined by a registry key, is checked. (For example, C:
\RegistryKeyFolder\OcrResources.)

4. The location of the Tesseract Assembly is checked. (For example, C:
\Tesseract3AssemblyFolder.)

5. The location of the Tesseract Assembly's OcrResources folder is checked. (For example, C:
\Tesseract3AssemblyFolder\OcrResources.)

6. The value of the TESSDATA_PREFIX environment variable is checked. (For example, C:
\Tess3DataPrefixFolder.)

To place the resources in a different directory you will need to specify that location inside of the
Tesseract3Engine constructor:

C#

private OcrEngine MakeTesseractEngine ()
{
//Load the Tesseract resources from a subfolder of the
//global ApplicationData directory.
string appdata =
Environment.GetFolderPath (Environment.SpecialFolder.CommonApplicationData) ;
string subfolder = @"Tesseract Resources";
string resourcePath = Path.Combine (appdata, subfolder);
Tesseract3Engine engine = new Tesseract3Engine (resourcePath);
return engine;

}
Visual Basic

Private Function MakeTesseractEngine () As OcrEngine
'Load the Tesseract resources from a subfolder of the
'global ApplicationData directory.
Dim appdata As String =
Environment.GetFolderPath (Environment.SpecialFolder.CommonApplicationData)
Dim subfolder As String = "Tesseract Resources" Dim resourcePath As String =
Path.Combine (appdata, subfolder)
Dim engine As New Tesseract3Engine (resourcePath)
Return engine
End Function

307

Atalasoft DotImage Developer's Guide

Tesseract5Engine resource loading

When the Tessearct5Engine resources are loaded, the folder list is created and each folder in that
list is checked to see if it contains the Tesseract\v5. 3.0 folder structure. When the matching
folder is found, it is checked to ensure that it contains all of the correct resource files. If any of the
resources are missing an OcrException is thrown.

Each of the following is checked for the Tesseract\v5.3.0 path in order:

1. If the constructor's resources argument is supplied, it is checked. (For example, C:
\Tesseract5ResourcesFolder.)

2. If the constructor's resources argument is supplied, the OcrResources folder of the argument
is checked. (For example, C:\Tesseract5ResourcesFolder\OcrResources.)

3. The SDK ocrResources folder, as determined by a registry key, is checked. (For example, C:
\RegistryKeyFolder\OcrResources.)

4. The location of the Tesseract Assembly is checked. (For example, C:
\Tesseract5AssemblyFolder.)

5. The location of the Tesseract Assembly's OcrResources folder is checked. (For example, C:
\Tesseract5AssemblyFolder\OcrResources.)

6. The value of the TESS5DATA_PREFIX environment variable is checked. (For example, C:
\Tess5DataPrefixFolder.)

To place the resources in a different directory you will need to specify that location inside of the
Tesseract5Engine constructor:

C#

private OcrEngine MakeTesseractEngine ()
{
//Load the Tesseract resources from a subfolder of the
//global ApplicationData directory.
string appdata =
Environment.GetFolderPath (Environment.SpecialFolder.CommonApplicationData) ;
string subfolder = @"Tesseract Resources";
string resourcePath = Path.Combine (appdata, subfolder);
Tesseract5Engine engine = new TesseractbEngine (resourcePath) ;
return engine;

}
Visual Basic

Private Function MakeTesseractEngine () As OcrEngine
'Load the Tesseract resources from a subfolder of the
'global ApplicationData directory.
Dim appdata As String =
Environment.GetFolderPath (Environment.SpecialFolder.CommonApplicationData)
Dim subfolder As String = "Tesseract Resources" Dim resourcePath As String =
Path.Combine (appdata, subfolder)
Dim engine As New TesseractbEngine (resourcePath)
Return engine
End Function

308

Atalasoft DotImage Developer's Guide

OmniPagelLoader

C#

static Forml ()
{
//Preload the OmniPage resources from the directory to which they
// were downloaded into.
OmniPageloader loader = new OmniPageLoader (@"c:\OmniPageEngineOcrResources ") ;

}

© There is the second OmniPagelLoader constructor without parameters that is used when
resources are located in the predefined locations.

OmniPagelLoader loader = new OmniPageLoader () ;

OmniPage

The resources required for the initialization of the OmniPage Engine are not included in the main
Atalasoft DotImage installation. They must be downloaded separately, and a link and details are
issued to the customers of this add-on. The resources are delivered in a single compressed file that
must be decompressed into a folder for Atalasoft DotImage to read them.

The location of the resource folder, whether absolute or relative, can then be passed in as a
parameter to the loader. This resource folder will have to be included into any distribution of your
application.

Stages in OCR translation

Broadly speaking, the stages in OCR translation are:
+ Preparing for the translation

» Doing the work of translation

+ Cleaning up after the translation

Work of translation

The work of translation can, for most OCR engines, be broken down into several stages. Typically
there are three stages as shown below.

« During preprocessing, an image is treated to make it more likely that it is correctly recognized.

» During location, an image is broken up into regions that contain specific content such as text,
images, bar codes, and so forth.

+ During recognition, these regions are analyzed and scanned for content.

Preprocessing
Image preprocessing options allow you to make changes to an image before it is processed by

the OcrEngine. These options serve to clean up the image so that the results of optical character
recognition are improved.

309

Atalasoft DotImage Developer's Guide

Engines that support built-in document preprocessing provide a number of options. The
OcrPreprocessingOptions class maintains options settings as a 32-bit integer with each bit
representing an option.

+ To select an option, set the property corresponding to the option you want on to true.
+ To deselect an option, set the property corresponding to the option you want off to false.

The pre-processing options are listed in the following table.

Option Description

Deskew Image is straightened

Autorotate Image is rotated so that it is oriented correctly for reading
Despeckle Noise in the image is stripped out

ToBilevel Image is down-sampled to 1 bit per pixel

Invert Image's sense of black and white is reversed

FlipLeftRight Image is mirrored left/right

Not all engines support these options. Use the OcrEngine property AvailablePreprocessingOptions
to determine if an option is supported by a particular engine.

Atalasoft DotImage performs all Deskew operations. This is done via the AutoDeskewCommand
by default. This behavior can be overridden in two ways. In both cases, clients start by creating

a subclass of the specific OcrEngine object. To change how the AutoDeskewCommand operates,
override the factory method MakeDeskewCommand and return a new AutoDeskewCommand
object with properties set to your needs. The second way is to override the virtual method
HandleDeskew. HandleDeskew takes an input image and returns a deskewed version of the image
as well as the angle detected, or null if there was no need to deskew.

All other operations are performed by the engine itself. The order of operations is entirely engine
dependent.

A client could add any or all of these methods to an engine by attaching to the ImageSendOff event
and performing the operations there.

Recognition / Translation

OcrEngine supports the events listed in the table below.

When a page is recognized, the following events are fired and are in this order listed in the table

below.

Event When fired Notes

DocumentProgress When document processing starts. | Indicates in broad terms what an
engine is in the process of doing
and how far along it is.

PageProgress When page processing starts. Indicates in broad terms what an
engine is in the process of doing
and how far along it is

310

Atalasoft DotImage Developer's Guide

Imagelntroduction

When image is first presented to
the engine.

This is the first opportunity that a
client has to manipulate the image.

ImageTransformation

When an image is processed in
such a way that it might affect the
overall page coordinate system.

This is where deskewing is done

PageConstructing

OcrPage object for this page has

been constructed and its size fixed.

This is an opportunity to hang
client specific data onto the page
object to be accessed later (ie,
metadata, page numbers, etc).

ImageSendOff

Image is in its final state before
being sent to the engine.

This is the last opportunity to
access or modify the image before
it is otherwise changed by the
engine (turned to black and white
or processed)

PagelLocation

Bounding region have been
identified.

If the engine supports this
capability, provides a set of
bounding regions that represent
areas identified for recognition.
Engines that do not support this
capability return a single text
region encompassing the entire
page. A client may choose to
modify this set of regions to limit
OCR to particular areas.

PageConstructed

After a page had been fully
populated with all page elements.

A client may opt to spell-check or
otherwise edit the page contents at
this point.

The DocumentProgress and events can be used to cancel an OCR in progress.

If an engine has Native Translators, it may not fire all of these events during translation. In
particular, PageConstructing and PageConstructed do not make sense in a NativeTranslator

context.

Translator types

Broadly speaking, here are two different types of translators: native and foreign. Native translators
are built into a particular engine, foreign are not.

Native translators

Native translators never create an OcrDocument object. It may be difficult or impossible to adjust
their feature sets and if they do not provide an interface for streaming. Foreign translators are
those that are supplied from outside of an engine. A foreign translator is likely to be flexible in its
configuration and output styles, but can be less efficient, when used with some engines, since it
operates at a significantly higher level than native translators.

Typically, native translation never incurs the generation of an OcrDocument and foreign translations
always incur the generation of an OcrDocument. This distinction allows us to publish low-level

31

Atalasoft DotImage Developer's Guide

engine's translators and to provide a means of adding other translators that are treated as first

class objects.

Text translator

A TextTranslator class implements is a foreign translator that is used to generate text files from an

OCR engine. TextTranslator properties are used primarily to control how much the TextTranslator

attempts to mimic the layout and format of the original document.

PDF translator

The Atalasoft DotImage PdfTranslator class allows client applications to generate high quality PDF
documents from scanned documents. PdfTranslator provides the following features:

Ability to set PDF Metadata fields
High quality thumbnail images
Accurate text placement
Text-Under-Image placement
Optional placement of picture regions

Automatic or client-controlled image compression

Advanced codec support (JBIG2, JPEG 2000)
Insertion of client synthesized pages
Generation of PDF/A-1b and PDF/A-2b compliant documents with embedded fonts and color

profiles

Page region types

Once the images that make up a page are located or recognized, an OcrPage is created. The
OcrEngine also creates an OcrRegionCollection that contains OcrRegion objects for every located or

recognized area on the page.

Atalasoft DotImage OCR defines the set of OcrRegion types listed in the following table.

Region type
OcrTextRegion

Area type

Contains text

OcrImageRegion

Contains an image

OcrBarcodeRegion

Contains a bar code

OcrTableRegion

Contains a table

OcrFormElementRegion

Contains form elements such as check boxes or
bubbles

Picture

shown in illustration

312

Atalasoft DotImage Developer's Guide

Barcode~

Text <

Pictu re""#

gl

1 ipaurm dolor =it amet,
ronsechatuer adipiscing ali
Furs pelenbesous risus au
o, Cursdiur git ameat diam
tristigue risus rutmm matlis.
Marmn ged anci. Exam punis
eral, sagittis cheifend,
laonsat ot gosuers mec,

el CRIE MARER

¢ blardil. Pallerfasque
habitant morhi retkgue
senechus of nehus B
malesuada fameas 3 lumps
egestas. Prain & quam
Danec parttitor. Mullam
commcds sapien e ligula.
Morhi salicituding lacus witae
crmang bibendum, sem nibah

Lorem ipsum dobar s amet,
COnaedletuer &:Iipﬁ::ir‘q =11
Munc pallardasaue nsLs 6
dui. Curabitur =it ame? diam
Tistopue figLs malis
Marn mad arzu Eli

aral, =apns aleifand,
laaraet &7, POSLAATE NAC
neque. Donsc quis masss,
Dones blendit Pellenbasgus
habirari marhi ristigue
saEnedius el netus al
malesuads Temes ac surpis
agesiys. Proin e quam.
Domned: porsRor

[£] vote Yes

Table

Form
Element

Bounding boxes

Every OcrRegion has a property called Bounds which is the bounding box for that element on the
page. The bounding box is always measured in pixels using the source image resolution for units.

The GlyphReader engine only supports OcrTextRegion.

OCR engine

Atalasoft DotImage OCR is designed to easily interface with other aspects of your application.
It is extensible with an event driven object-oriented object model. In just a few lines of code, a

313

Atalasoft DotImage Developer's Guide

developer can recognize an image and output that image to a file, or enumerate its lines, words,

and characters with confidence.

Data sources for the engine can be scanned images or files. The engine output consists of either a
file or a class hierarchy. This model is illustrated below.

Scanner

Filas

Data Sources

——>

Atala
OCR Engine
Object

™

File
Cutput

Data Qutput

As the OcrEngine object is abstract, you cannot create an instance of this object. Nevertheless, the
object definition contains most of the necessary functionality needed for a concrete subclass to

function with a minimum of extra code.

The OcrEngine object has five primary components as illustrated below:

* Preprocessing options
+ Document translators
+ Page element factory

+ Font mapping

+ Font building

314

Atalasoft DotImage Developer's Guide

Preprocessing
Options

Page
EF'?;Qt Atala Element
uriaer OCR Engine Factory
Object

GlyphReader engine

The GlyphReader engine is a highly accurate OCR engine built for Atalasoft DotImage. The engine

has been tested with the ISRI OCR Performance Toolkit and has been found to be more accurate,

with a 99.5% accuracy rate, than other expensive industry leading OCR engines.

GlyphReader is a lexicon OCR engine requiring no dictionary. It supports European characters only.

The following ASCII characters are supported.

D" (# (S| & 0"+ - [F)0)1|2(3|a|a|6|7|8(9]:|;|=[=]|=|7
@A|B|C|DE[F|GIH|T [J|K|LIM[N[O|P|Q|R[S|T UV [W[HS|Y I]]"]_
alblc|d|e|flalh|i]|]|k|l|m|n]jo|p|q sltfu|v|wl|x|y|[z|I]]1]|}~
£ Tt 5| || |Z 5| [=| [£]¥
i g5 |=|% & @ I E: (T AR
AlALA|ALAIAEICIEIEIE|E[T[T|T]T|B|H[OQ|O[O|O]=@|uju|d|0]Y|p|&
alala|d|a|d|e|c|e|e|d|a|i|i|T|i|d|A|d|da|d|d|a|=|s|0[a|{d|a]|y|pk]|F

The GlyphReader engine does not support font name or family determination. This engine does

support font size, baseline, glyph bounds, and confidence.

315

Atalasoft DotImage Developer's Guide

Features
GlyphReader supports the following features:

» European Character Set.

* Reports individual character position and size.

» Reports character confidence.

* OCR's of rotated pages, reports the rotation angle.

+ Automatically breaks merged characters, or merges broken characters.

« Optionally rejects low confidence characters.

» Optionally reject low confidence lines.

+ Disabling recognition of specific characters.

+ Full Page color OCR can be generated when combined with the Searchable PDF Module.

Features that are found in some engines but not in GlyphReader include zoning, and determining
font characteristics.

Output formats

As with any OCR engine using the Atalasoft Dotlmage OCR interface, all foreign translators are
supported. Text translation is supported out of the box. Searchable PDF is available with the PDF
Translator add-on. Therefore, the following mime types are supported for output:

+ text/plain
+ application/pdf (requires PDF Translator add-on)

Licensing

The Atalasoft DotImage OCR GlyphReader Engine is licensed per concurrent use. Two GlyphReader
licenses are required for two applications to use GlyphReader simultaneously. If the application
will only be residing on the server, you have the option of purchasing a server license granting

an unlimited number of users connected to the server running the Atalasoft DotImage OCR
GlyphReader Engine enabled application with up to 20 concurrent processes/threads running at
once.

Deployment

e Atalasoft.Shared.dll

* Atalasoft.dotImage.Lib.dll

e Atalasoft.dotImage.dll

¢ Atalasoft.dotImage.Ocr.dll

¢ Atalasoft.dotImage.GlyphReader.dll

GlyphReader also requires the following unmanaged assemblies and support files, located in: C:
\Program Files\Atalasoft\DotImage 11.5\Bin\OcrResources\GlyphReader\v5.0:

« TOCR50.gnp

316

Atalasoft DotImage Developer's Guide

+ TOCR50.teh

+ TOCR50de.gar

+ TOCR50el.gar

+ TOCR50en.gar

» TOCR50es.gar

« TOCR50fr.gar

« TOCRS5O0it.gar

+ TOCR50nl.gar

* TOCR50no.gar

» TOCR50ru.gar

+ TOCR50sk.gar

+ TOCRS5O0tr.gar

e x86
» GlyphReader.dll
+ GlyphReaderEngine.exe
» GlyphReader.ini

e x64
» GlyphReader.dll
+ GlyphReaderEngine.exe
» GlyphReader.ini

Please leave the directory structure intact when deploying the engine. Code inside
Atalasoft.dotImage.GlyphReader.dll will determine which GlyphReaderEngine.exe will be
executed. If 64-bit dlls are used the 64-bit engine will be executed, if 32-bit dlls are used then the 32-
bit engine will be executed.

These assemblies can be installed along side the managed assemblies only if the
OcrResourcelLoader or GlyphReaderLoader class is instantiated in a static constructor of the class
that invokes GlyphReader.

By default the unmanaged assemblies are found in <SDK folder>\OcrResources\GlyphReader
\v5.0\.

Due to the architecture of the GlyphReader engine, to specify a location other than a default
search path you need to create an instance of the OcrResourceLoader or GlyphReaderLoader in a
static constructor before any OCR code is loaded. This is the case even if the resources are in the
assembly folder. There you can specify an alternate location of the resources if desired.

Tesseract engine

The Tesseract OCR engine, which is presented by two classes, Tesseract3Engine and
Tesseract5Engine, is an open source engine that we provide without charge to those who purchase
the OCR Package. It is a commercial quality OCR engine originally developed at HP between 1985
and 1995. HP and UNLV open-sourced this engine in 2005.

317

Atalasoft DotImage Developer's Guide

Features

The Tesseract OCR engine is fast and runtime royalty free although it is not quite as powerful as the
other engines supported by Atalasoft DotImage. In particular, it lacks segmentation and it is not
very good at recognizing low quality documents.

Supported languages

The Tesseract OCR engine supports the following languages:

+ Dutch

* English

* French

* German

+ Italian

+ Norwegian
* Portuguese
* Spanish

Supported output formatters

The Tesseract OCR engine supports the following output formatters and provides a structure that
allows you to build your own.

¢ Text
- PDF

Deployment

+ The assemblies listed below are required for deployment.
+ Atalasoft.dotImage.Ocr.Tesseract3 or Atalasoft.dotImage.Ocr.Tesseract5
+ Atalasoft.dotlmage
+ Atalasoft.dotImage.Ocr
+ Atalasoft.dotimage.Lib
» System
+ System.Data
» System.Drawing

Additionally, the Tesseract language files must be accessible. These are automatically placed in the
Atalasoft DotImage directory during toolkit installation. When deploying, you must either copy the
OcrResources to your application directory or tell the engine their location explicitly by passing it
into the Tesseract OCR engine constructor.

See the Tesseract3Engine or Atalasoft.dotImage.Ocr.Tesseract5 class documentation for additional
information.

318

Atalasoft DotImage Developer's Guide

The Tesseract OCR engine is used in exactly the same way as the other OCR engines, all of which
inherit from the same base class, Atalasoft.dotImage.OCR.

Special considerations

Once the Tesseract OCR engine is used and recognize is called with a language, you cannot change
to an alternate language. The initialization happens the first time a document is recognized.
Attempting to change the language at any time beyond that point results in an exception being
thrown.

OmniPage Engine

The OmniPage Capture SDK lets developers access a broad range of algorithms and workflows that
can recognize machine printed text as well as hand printed text in a variety of languages. Atalasoft
DotImage includes the OmniPage Engine as an optional, purchasable add-on.

Features

The OmniPage Engine supports nearly all of the standard functionality defined by the
Atalasoft.dotImage.Ocr.OcrEngine base class. This includes recognition and translation, whether
using foreign translators (TextTranslator and PdfTranslator), or the engine's own built-in translation
functions.

In addition to the standard functionality, the OnmiPage engine supports some additional features.

ICR (Intelligent Character Recognition) is used for recognizing printed handwritten text. In order to
provide support for ICR, OmniPagelcrTextRegion class is used to represent an area of hand-printed
text on a page with optional parameters specific to the OmniPage OCR engine.

This additional Recognize method is added:

OcrPage Recognize (Atalalmage image, List<OmniPageOcrTextRegion> regionList)

This method takes an Atalalmage as a parameter and a List consisting of OmniPageOcrTextRegion
objects which extends OcrTextRegion. There are several implementations which specifies certain
regions for recognition:

+ OmniPageOcrMicrTextRegion
* OmniPageOcrCMC7TextRegion
* OmniPagelcrTextRegion

This feature enables you to create a list consisting of a mix of these objects or a list consisting of
just one type or the other type and pass them into a Recognition process along with the image
(AtalaImage) they pertain to. An object of one of these types holds information on a location

in the image (x and y coordinates for width and height). Optionally, the object can contain the
orientation of the text marked by its relation to the page. This info is used by the OmniPage Engine
for configuration of the recognition process. The type of object itself instructs the OmniPage Engine
which operation to perform on the corresponding region in the image.

Construction of an OmniPageOcrTextRegion (also as any of the implementations) can be performed
through one of these constructors:

+ OmniPageOcrTextRegion (Rectangle bounds)

319

Atalasoft DotImage Developer's Guide

+ OmniPageOcrTextRegion (PolygonF bounds)
+ OmniPageOcrTextRegion (Rectangle bounds, OcrTextRotation rotation)

The bounds parameter referenced in all of these constructors designates the location of the region
in the image. The OcrTextRotation rotation parameter designates the orientation of the text in
relation to the top of the document. If this parameter is not given, the text referred to by this
OmniPageOcrTextRegion is assumed to be at 0 degrees in relation to top.

An alternative way to set specific recognition regions is to create a custom
OcrPagelocationEventHandler by the client and register it to the PageLocation event of the
OmniPageEngine instance. It should be registered before Recognition or Translation is launched.

The handler should retrieve the collection (OcrRegionCollection) of recognized regions output by
the engine from the RegionsIn property of the OcrPagelLocationEventArgs object returned from the
event or create a new collection if this property is null. After retrieving this collection, the client can
add new regions, remove or change located regions.

The result regions collection should be assigned to the RegionsIn property of the
OcrPagelocationEventArgs object as in the following example code:

engine.Pagelocation += (sender, e) =>

{
OcrRegionCollection regionsColl = e.RegionsIn ?? new OcrRegionCollection () ;
var regionl = new OmniPageOcrTextRegion (new Rectangle (150, 150, 350, 187));
var region2 = new OmniPageOcrTextRegion (new Rectangle (538, 216, 319, 67));
regionsColl.Add (regionl) ;
regionsColl.Add (region2) ;
e.RegionsOut = regionsColl;

}i

Supported languages

Use the GetSupportedRecognitionCultures method of the Atalasoft.dotImage.Ocr.OcrEngine base
class to obtain a full list of supported languages.

The following table shows all supported languages:

English Moldavian Interlingua Shona

German Bulgarian Kasub Sioux

French Byelorussian Kawa Sami

Dutch Ukrainian Kikuyu Sami(Lule)
Norwegian Russian Kongo Sami(Northern)
Swedish Chechen Kpelle Sami(Southern)
Finnish Kabardian Kurdish Somali

Danish Afrikaans Latin Sotho
Icelandic Aymara Luba Sundanese
Portuguese Basque Luxembourgish Swahili

Spanish Bemba Malagasy Swazi

Catalan Blackfoot Malay Tagalog

320

Atalasoft DotImage Developer's Guide

Galician Breton Malinke Tahitian
Italian Brazilian Maori Pirez
Maltese Bugotu Mayan Tongan
Greek Chamorro Miao Visayan
Polish Tswana(Chuana) Minangkabau Welsh
Czech Corsican Mohawk Sorbian(Wend)
Slovak Crow Nahuatl Wolof
Hungarian Eskimo Nyanja Xhosa
Slovenian Faroese Occidental Zapotec
Croatian Fijian Ojibway Zulu
Romanian Frisian Papiamento Japanese
Albanian Friulian PidginEnglish Chinese(S)
Turkish Gaelic(Irish) Provencal Chinese(T)
Estonian Gaelic(Scottish) Quechua Korean
Latvian Ganda(Luganda) Rhaetic Thai
Lithuanian Guarani Romany Arabic
Esperanto Hani Rwanda Hebrew
Serbian(Latin) Hawaiian Rundi Vietnamese
Serbian Ido Samoan

Macedonian Indonesian Sardinian
The following table shows all supported ICR languages:

Catalan Finnish Latvian Spanish
Croatian* French Lithuanian Swabhili
Czech Gaelic Norwegian Swedish
Danish German Polish Tagalog
Dutch Hungarian Portuguese Turkish*
English Indonesian Slovak Welsh*
Estonian Italian Slovenian

* Minor limitations

Note the following:
+ Cyrillic languages and Greek are not supported for ICR.

» In Hungarian, lowercase i acute (i), o acute (6), and u acute (U) are not supported, which limits
recognition to uppercase characters for ICR.

« There are limitations when combining Asian and Western language recognition on the same
page. Asian languages are handled differently from Western languages. Only one Asian language

321

Atalasoft DotImage Developer's Guide

should be set for recognition, and Western languages should not be set alongside an Asian
language. The exception is English because the Asian OCR Engine can recognize short English
text embedded in any Asian language.

With CCJK OCR, English text is recognized by default without requiring English to be set. Some

other languages with Latin alphabets might also be recognized, but accented characters might
not always recognized correctly. For Thai, Viethamese, and Hebrew, Western languages should
not be set, except for English. Limitations have also been noted when attempting to recognize

Arabic, Japanese, and English text on one page.

MICR E13B and CMC7 fonts support

The appropriate region (OmniPageOcrMicrTextRegion or OmniPageOcrCMC7TextRegion) should be
added to RegionsOut property in PageLocation event. Only the necessary detection region can be
set to recognize MICR.

MICR E13B and CMC7 fonts are supported by OmniPage. E13B contains digits and 4 special
symbols. CMC7 has a 15-character set, comprising the 10 numeric digits and 5 control characters:
internal, terminator, amount, routing, and an unused character. The control characters are set
correspondingly to A, B, C, D, and E.

% PP BT~ O 1 B O LT T -

Output formats

The OmniPage Engine supports the following output formats, which are listed with their
corresponding MIME types.

Output document type

Corresponding MIME type

Plain Text (.txt)

text/plain

Rich Text (.rtf)

text/richtext

HTML

text/html

XML

text/xml

XML Paper Specification (.xps)

application/vnd.ms-xpsdocument

PDF

application/pdf

EPUB

application/epub+zip

Microsoft Word 2007+ format (.docx)

application/vnd.openxmlformats-
officedocument.wordprocessingml.document

Microsoft Excel format (.xls)

+ application/vnd.ms-excel
» application/excel

Microsoft Excel 2007+ format (.xIsx)

application/vnd.openxmlformats-
officedocument.spreadsheetml.sheet

Microsoft PowerPoint format (.ppt)

application/vnd.ms-powerpoint

322

Atalasoft DotImage Developer's Guide

Output document type Corresponding MIME type

Microsoft PowerPoint 2007+ format (.pptx) application/vnd.openxmlformats-
officedocument.presentationml.presentation

CSV format text/csv

Deployment

The OmniPage Engine requires all assemblies and support files within the resource archive that is
distributed to customers of the add-on.

The x86/bin and x64 /bin folders are within the resources folder. These folders correspond to
the resources for x86 and x64 processor architectures, respectively. The sets of resources are loaded
upon initialization depending on which processor configuration of Atalasoft Dotlmage is installed
and packaged with your application (x86 or x64).

Leave the folder and document structure unchanged. Any changes could adversely affect the
correct initialization of the engine.

Special consideration

The OmniPage Engine enables to use the multiprocessing capabilities of the user's hardware
configuration. The number of processes to run is detected automatically, depending on the number
of available logical CPU cores and the number of images passed to the engine.

When in multiprocessing mode, the following limitations apply:

» PageProgress, ImageTransformation, and PageConstructed events are not fired during the OCR
process.

+ Itis not possible to modify images in event handlers. In case of not using multiprocessing
mode, OcrEngine allows to modify images in Imagelntroduction , ImageTransformation and
ImageSendOff events handlers. With multiprocessing mode enabled, the engine discards image
modifications.

» ImageSource objects have to be used in order to process images in parallel. Other
methods that accept single images work in singleprocessing mode regardless of the
OmniPageEngine.ParallelProcessing property value.

* You can only cancel in multiprocessing mode at the OcrDocumentStage.BeginPage stage.
To turn on the multiprocessing mode, do the following:

1. Set the OmniPageEngine.ParallelProcessing property to true.

2. Prepare the list of images to be recognized as ImageSources.

3. Use the OmniPageEngine.Translate() or OmniPageEngine.Recognize() methods, which accept
ImageSource as a parameter.

O Eveninthe multiprocessing mode, recognition methods run synchronously and parallel OCR
processing is performed internally.

323

Atalasoft DotImage Developer's Guide

Use an OCR engine

Using an OCR engine entails four steps:
Engine construction
Engine initialization

Translation of an image collection into a document

> W h =

Engine shutdown

Engine usage example

Any number of Translate operations can be performed between Initialize and Shutdown. In most
cases, you construct exactly one instance of a given engine, initialize that instance, use the object
through the life of the application, and call shutdown at application close.

Although it is possible to shut down and reinitialize the engine any number of times, be aware that
in some engines, initialization may be a costly operation

OcrEngine engine;

// Initialize your application here
// Construct a new engine

engine = new SpecificEngine () ;

// Initialize the engine
engine.Initialize () ;

// Translate an ImageCollection into a document.
engine.Translate (imageCollection, "application/msword", outputPath);

// Terminate your application here
// Shut the engine down
engine.Shutdown () ;

Get and set engine options

You can get or set engine options using the PreporcessingOptions property.

Get engine options

Use the PreprocessingOptions property to get the set of options currently employed by an engine.
This property only contains options supported by the engine.

When an engine is initialized, PreprocessingOptions are set to reasonable defaults for that engine.
Use the following code to reset the options to those defaults.

engine.PreprocessingOptions = engine.GetDefaultPreprocessingOptions () ;

Set engine options

The GetDefaultPreprocessingOptions() method is abstract and is defined by concrete OcrEngine
objects. If you are unhappy with the particular set of defaults supplied by an engine, you can

324

Atalasoft DotImage Developer's Guide

change the PreprocessingOptions shortly after engine construction or, alternatively, you can
subclass the engine in question and override the GetDefaultPreprocessingOptions() method.

Despite the fact that you can request that any of the options be given default values, the actual
values are constrained by the options available for a given engine.

Determine if an engine supports a mime type

Translation of an image or set of images to another file format is managed through a collection of
ITranslator objects contained within the engine. To translate a set of images, the engine is asked
for a translator that supports a desired mime type and a specific output style. If the engine finds a
translator that supports these conditions, that translator is applied to the set of images.

The set of supported mime types varies by engine. Use the engine's CanTranslate() method to
determine if an engine can translate to a given mime type. The method returns true if there is an
installed translator that supports a given mime type. To find out if it's possible to translate to a
stream, use the engine's CanStream() method.

You can choose either of the two methods shown below to obtain this information.

Example

You can make the determination in one of the two ways shown below.

Both of the following code samples are exactly equivalent.
if (engine.CanTranslate (mime) && engine.CanStream(mime)) { ... }

if (engine.CanStream(mime)) { ... }

Alter the interpretation of page elements

A client can use the PagelLocation event of type OcrPagelLocationEventHandler to alter the
interpretation of page elements.

For example, if a set of documents contain landmark text or form information in particular locations
on a page, the locations to be searched can be reduced to just these locations. If a set of scanned
pages with page numbers are out of order, they can be sorted by looking only at the bottoms and
tops of the pages for page numbers.

The Pagelocation event is fired after the engine has performed its location operation. A handler for
this type is passed an object of type OcrPagelLocationEventArgs which contains the properties listed
in the table below

Property Description
Image Image that is currently being scanned for regions.
RegionsIn Object of type OcrRegionCollection which contains the list of regions detected

on the current page.

RegionsOut Object of type OcrRegionCollection which contains a list of regions that should
be used by the engine for this image.

325

Atalasoft DotImage Developer's Guide

Regionsln is a read-only property. Do not modify the contents of RegionsIn. Changes to this object
or its contents are ignored by the engine. Even though each of the OcrRegion objects within the
collection are real objects, with the exception of the Bounds property, they have no valid content.

RegionsOut is initially set to null. If you wish to change the regions used for recognition on a page,
make a new OcrRegionCollection and populate it with the regions you want to use.

Remove non-text regions

To export text and nothing else, use the following code shown below to remove everything but the
text regions.

void TextFilterLocationHandler (object sender, OcrPagelocationEventArgs e)

{
foreach (OcrRegion region in e.RegionsIn) {
if (region is OcrTextRegion) {
if (e.RegionsOut == null) {
e.RegionsOut = new OcrRegionCollection () ;

}
e.RegionsOut.Add (region) ;

}
}
}

Not every engine understands every type of page element. For example, if an engine does not
support the recognition of tables, then an OcrTableRegion object added to RegionsOut is ignored.

The OcrEngine that is currently locating is located in the sender object.

Determine translation type
For most OCR applications, it is important to know whether a translation is handled natively.

For an object that implements ITranslator, you can determine whether it is a native translator by
checking to see if the class is an INativeTranslator. An example is provided below.

Determine if native translator is in use

The following code snippet can be used to determine if a native translator is in use.

if (myTranslator is INativeTranslator) { ... }

Distinguish between OCR region types
You can distinguish between OcrRegion object types by getting their class at runtime.

For example, the code that follows determines a region's type and draws each region type's
bounding box in a different color.

Color region's bounding box ot reflect region type

The following code snippet can be used to determine if a native translator is in use.

Color GetRegionColor (OcrRegion region)

326

Atalasoft DotImage Developer's Guide

if (region is OcrTextRegion)

{ return Color.Red;

élse if (region is OcrImageRegion)
{ return Color.Blue;

}

else if (region is OcrBarcodeRegion)

{

return Color.Yellow;

}

else if (region is OcrTableRegion)

{

return Color.Green;

}

else if (region is OcrFormElementRegion)

{

return Color.Magenta;

}

return Color.Black;

}

void PaintBounds (OcrRegionCollection regions, Graphics qg)

{
foreach (OcrRegion region in regions)
{

Rectangle destRect = region.Bounds;
Color theColor = GetRegionColor (region) ;
Pen thePen = new Pen (theColor):;
g.DrawRectangle (thePen, region.Bounds) ;
thePen.Dispose () ;

Clean up after translation

The Finish() method allows the translator to clean up translation session specific data or whatever

else is necessary after translation.

Example

The following code shows how to create the Finish() method.

public void Finish (OcrEngine engine, OcrDocument document, bool successful,

translationObject)
{
}

Traverse an OCR document

The Translate() method traverses the OcrDocument, writing its contents to the appropriate

destination.

Translate a document into plain text file using a stream

The following example demonstrates how to translate a document into a plain text file using a

stream.

327

Atalasoft DotImage Developer's Guide

public void Translate (OcrEngine engine, OcrDocument doc, string mimeType,
System.IO.Stream outStream, object translationObject)
{
System.IO.StreamWriter writer = new System.IO.StreamWriter (outStream) ;
foreach (OcrPage page in doc.Pages) {
foreach (OcrRegion region in page.Regions) {
if (region is OcrTextRegion) {
OcrTextRegion textRegion = (OcrTextRegion)region;
foreach (Ocrline line in textRegion.Lines) {
for (int i=0; i<line.Words.Count; 1i++) {
writer.Write (line.Words[i].Text) ;
if (i<line.Words.Count-1) {
writer.Write(" ");
}
else {
writer.Write ("\n");

}

Cancel OCR in progress

To cancel an OCR in progress
1. Create an OcrPageProgressEventHandler.
2. Set the Cancel property of the EventArgs to true.

3. Hook into the event handler.

Create OCR page progress handler

The following code example shows how to create an OCR page progress handler.

private void PageProgressHandler (object sender, OcrPageProgressEventArgs e)
{
//Boolean set elsewhere in your code
if (CancelHasBeenRequested) {
e.Cancel = true;
}
}

Hook into an event handler

The following code example shows how to hook into the event handler.

// install the handler
engine.PageProgress += new OcrPageProgressEventHandler (PageProgressHandler) ;

Track page progress in a Ul

To track page progress, create a PageProgressEventHandler and translate the information in the
event arguments to your UL

1. Translate OCR Page Stage Information to a string.

328

Atalasoft DotImage Developer's Guide

2. Create the event handler.

3. Install the event handler.

Translate the OcrPageStage information to a string

The first step in this task is to translate the OcrPageStage information to a String, which can be
done with a method like the one shown in the code.

private string TranslatePageStageToString (OcrPageStage stage)

{

string message = "";
switch (stage) {
case OcrPageStage.Analysis:

message = "Analyzing";
break;

case OcrPageStage.Canceling:
message = "Canceling";
break;

case OcrPageStage.Export:
message = "Exporting";
break;

case OcrPageStage.Location:
message = "Locating";
break;

case OcrPageStage.Postprocessing:
message = "Post Processing";
break;

case OcrPageStage.Preprocessing:
message = "Preprocessing";
break;

case OcrPageStage.Recognition:
message = "Recognition";
break;

case OcrPageStage.Spellchecking:
message = "Checking spelling";
break;

default:
message = "Unknown stage";
break;

}

return message;

Create the event handler

The next step is to create the event handler.

private void PageProgressHandler (object sender,

{

}

string message = TranslatePageStageToString (e.Stage) ;

MyUITextDisplay.Text = message;

MyPageProgressBar.Value = e.Progress;

The final step is to install the event handler.

OcrPageProgressEventArgs e)

329

Atalasoft DotImage Developer's Guide

Use page deskew events

Atalasoft DotImage OCR now includes a built-in facility for automatically deskewing images. In
previous versions, this facility was provided by the OcrEngine.

In some cases, an OcrEngine will not provide this facility, as the quality might not be acceptable
or because itis required that the image be bi-level, making antialising or creation of high quality
thumbnails impractical. More importantly, coordinates of bounding boxes of page elements (lines,
words, images, and so forth.) are accurate since any coordinate transform and image dimension
changes happen before the actual OcrPage object has been constructed.

All engines report Deskew as an available preprocessing option and they also report that it is part of
the default set of preprocessing options.

Out of necessity, deskew is performed before all other preprocessing operations and is not included
in the preprocessing event. In other words, when the preprocessing event is fired, the OptionsIn
flag will never have the deskew bit set.

In addition, the OcrEngine now adds an event for tracking the deskew operation specifically. The
following example shows how to track a deskew event.

Deskew method

To track a deskew event, a client implements a method like that shown below.

void PageDeskewedHandler (object sender, OcrPageDeskewdEventArgs args)
{
}

The event arguments object includes the following members listed below.

Property Description

Page OcrPage that will be associated with this image

BeforeImage AtalaImage that was deskewed

AfterImage Image that was created. If AfterImage is null, there
was no deskew operation

Angle Detected angle of rotation

IsDeskewed true if a deskew operation was performed

This event allows the client to perform additional processing, to inform a UI about the deskew
amount and to cache the final image.

The deskewed image, if any, is owned and managed by the OcrEngine. It is not recommended that
client code keep a reference to the deskewed image, as it is very likely that it will be disposed by the
Engine.

Deploy an OCR engine

Each OCR engine has different deployment requirements. We have tried to formalize this process as
much as possible by providing guidelines on the mechanism for deployment.

330

Atalasoft DotImage Developer's Guide

This shows how you can ensure that an OcrEngine can start and is able to find its resources.

Loading and locating folders

Before thinking about deploying an application it is helpful to know about the following key file

folders.
Folder Typical file name or location Contents
SDK C:\Program Files\Atalasoft |All the Atalasoft DotImage

\DotImage 11.5\Bin

assembly files as installed as part
of the Atalasoft DotImage SDK.

OCR resources engine resources

C:\Program Files\Atalasoft
\DotImage 11.5\Bin
\OcrResources

such as C:\Program Files
\Atalasoft\DotImage
11.5\Bin\OcrResources
\GlyphReader\v5.0

All OCR Engine resources.

Individual OCR Engine's resource
files.

32-bitengine module

C:\Program Files
\Atalasoft\DotImage
11.5\Bin\OcrResources
\v5.0\x86\GlyphReader.dll

Engine supplied 32-bit dll that
provides engine functionality.

64-bitengine module

C:\Program Files
\Atalasoft\DotImage
11.5\Bin\OcrResources
\v5.0\x64\GlyphReader.dl1l

Engine supplied 64-bit dll that
provides engine functionality.

assembly C:\Program Files\Atalasoft |Atalasoft DotImage
\DotImage 11.5\Bin\3.5 assembly files (such as
Atalasoft.dotiImage.Ocr.dll), this
may be the same as the application
folder.
application ___Your choice Install location for your application.

Most of the work of loading and locating resources is managed by Atalasoft Dotlmage or by the
engine itself. In custom situations, however, the client may have work to do.

Before you can use most engines, the following must be available:

+ An engine module is needed for some aspects of OCR functionality.

» Resource files used to configure the engine or otherwise provide necessary data or services. This
may include such things as dictionaries, grammar rules, glyph shapes, neural networks, and so

on.

An engine that requires engine modules typically needs to have those modules loaded before
it attempts to construct a class. The assembly that uses the engine module should contain the
knowledge of how to find the engine module but the engine module needs to be loaded before
the module that needs be able to find it is loaded. Atalasoft DotiImage OCR tries to handle this
conundrum for you when possible but there are some cases, as outlined below, where you must

handle the problem yourself.

331

Atalasoft DotImage Developer's Guide

Options for the developer

You can select from the options in the table.

Option Consequences

Leave the engine module in the OcrResources folder | You must put the OCR resources folder within the
as shipped. assembly folder.

Move the OcrResources folder in the location of your |You must load the dll. If the OcrResources folder
choice. is not in the assembly folder, you are required to

resource loader.

pass its location in to the OcrEngine's constructor or

Move the engine module out of the OcrResources If the engine module is put into the application
folder. folder or the assembly folder, it should be located
automatically. If the engine module is located
somewhere else, you must locate the module and
load it. If the OCR resources folder is within the
assembly folder, you can pass null to the engine

location in.

constructor for the path, otherwise you must pass the

Access document information properties

The OcrDocument class provides the document information properties listed in the table below.

Except for Metadata, these are not true properties in that they are not contained within the
OcrDocument object itself. The actual values are contained within an object in the Metadata
hashtable.

To retrieve the document information properties, you need code similar to the following.

Retrieve document information properties

public static Hashtable GetDocumentInfo (OcrDocument document)

{

object infoObject = document.Metadata[OcrDocumentMetadataKey.DocumentInfo];

if (infoObject == null)
throw new Exception ("Unable to find document info.");
Hashtable infoTable = (Hashtable)infoObject;

return infoTable;

}

Access document information properties

public static object GetDocumentInfoValue (OcrDocumentInfoKey key)
{
Hashtable ht = GetDocumentInfo (document) ;
if (ht == null)
throw new Exception ("Unable to get document info.");
return ht[key];

332

Atalasoft DotImage Developer's Guide

Color management

Atalasoft DotImage enables images to be correctly adjusted based on color profiles and the
international standard established by the International Color Consortium. You need only minimal
knowledge of color management or ICM 2.0 to add full color management support to your
applications using Atalasoft DotImage.

The ImageViewer and WorkspaceViewer controls have built-in support for color management with
color profiles. Atalasoft DotImage uses Little CMS Color Management to automatically transform an
image for display based on the device and output profiles. To enable automatic color management
in the control, set the ColorManage property to true. With color management enabled, the colors
are adjusted based on the color profile associated with the image (See the Atalalmage.ColorProfile
property) and the color profile associated with the display device. If no profile is found for either the
image or the monitor, the default sRGB profile is used.

Color profiles

Color profiles are used to adjust colors so that they correctly match the desired visual or printed
color when you display an image. You can also use color profiles to convert images from one color
space to another (for example, from CMYK to RGB), store them on a disk as ICM or ICC files, or
embed them in an image. Atalasoft DotImage supports reading color profiles from a file, or in TIFF,
PNG, or JPEG images.

You can use the ColorProfile object in the ColorManagement namespace to set the ColorProfile
property in an Atalalmage object. Normally, an Atalalmage object would not have a color profile; it's
value would be set to null. However, if the image has an embedded profile, the ColorProfile value is
set, and the specified color profile is used when converting between color spaces. The ColorProfile
is most relevant when you display a CMYK image, and when you convert from the CMYK color space
to the RGB color space.

CMYK images

CMYK images are commonly used in the pre-press industry. They contain color values for cyan,
magenta, yellow, and black. These images occupy a different color space than RGB images,

the most commonly used color space for image formats, because the colors are subtractive.

For example, when you increase the value of one of the four color values, that color is actually
subtracted from the image. For example, increasing the value of cyan in an image subtracts cyan
from the color. In CMYK images, the color value 0,0,0,0 is white, while in RGB images, the absence of
color is black.

Because CMYK displays are additive and no color is perceived as black, you must convert a CMYK
image to an RGB image to display it. Because Atalasoft Dotimage uses Color Profiles (commonly
saved as ICC or ICM files), it can display CMYK images properly, without losing the integrity of the
data. Atalasoft DotImage does this by converting the CMYK image to RGB for display, and then
creating a cache of the image.

Most Atalasoft DotiImage commands work on CMYK images.

333

Atalasoft DotImage Developer's Guide

Draw on the canvas

The Atalasoft DotImage Drawing namespace can be used to draw text, lines, rectangles, and other
primitives onto images and graphic objects. The Drawing namespace is very similar to native GDI+
drawing in .NET, but while GDI+ can draw only on RGB and RGBA images, Atalasoft DotImage can
draw on RGB, RGBA, CMYK, grayscale, grayscale-alpha, colormapped, and 1-bit images.

The canvas

Before drawing on an image, a Canvas object must be created. The constructor of the Canvas object
requires either an Atalalmage object or a Graphics object.

The canvas is similar to .NET's graphics object in that it is where primitives and text are drawn onto
other images. All drawing operations are drawn directly onto the Atalalmage or the Graphics object.

Atalasoft DotImage drawing versus GDI+

The Drawing namespace in Atalasoft DotImage is not meant entirely to replace the drawing
features in .NET's GDI+ implementation. It is designed to allow drawing text and primitives on
CMYK, grayscale, colormapped, and binary images where GDI+ requires RGB or RGBA.

GDI+ offers more features, and is a good choice when drawing onto RGB or RGBA images.

The following table explains the key differences between the Atalasoft DotlImage Drawing
namespace and GDI+.

Feature Atalasoft DotImage drawing .NET GDI+ crawing (graphics)
(Canvas)
RGB and RGBA support X X

Grayscale support

X
CMYK support X
X

Color-mapped and 1-bit black and
white support

Floating point positioning and X
accuracy

Antialiasing* X X

Draw borders and fills for solid
entities

Hatched fills

Set the transparency

Geometric transforms XOR
inverted pens

* GDI+ uses different antialiasing technology than Atalasoft DotImage.

334

Atalasoft DotImage Developer's Guide

Draw text

Using Atalasoft DotImage to draw high quality text involves setting the FontQuality property in the
Canvas class to a value of ClearType of Antialias. ClearType is only supported on XP Machines, while
Antialias is supported on all machines.

The following illustrates the differences in FontQuality as it relates to drawing text with DrawText:
* NonAntialiased

+ Antialiased

» ClearType

Draw primitives and text onto a workspace or WorkspaceViewer object

The following example shows how to draw primitives and text onto a Workspace or
WorkspaceViewer object. It draws a blue-filled rectangle with a red border and then draws
transparent text on top of the rectangle.

i S update the display in a WorkspaceViewer after using the Canvas object, the Refresh()
method must be invoked to cause a repaint and update the cached display image.

C#

Canvas myCanvas = new Canvas (myWorkspaceViewer.Image) ;
myCanvas.DrawRectangle (new Rectangle (10, 10, 100, 100),

new AtalaPen (Color.Red, 5), new SolidFill (Color.Blue));
myCanvas.DrawText ("Atalasoft DotImage", new Point (20, 20), new Font (new

FontFamily ("Arial"), 24),

new SolidFill (Color.FromArgb (127, Color.Black))):
//Update the display
myWorkspaceViewer.Refresh () ;

Draw shapes

It is possible to draw text, lines, circles, rectangles, and other shapes, but they are not visible until
they are "burned" into the image. You cannot edit them once they are drawn.

For example, suppose the user creates a rectangular selection (RubberBand) on the image. When
the mouse is released, the event can automatically post back to the server, and programmatically
draw a circle on the image, using the bounding box that the user just created.

1. Set the AutoPostBack property of the WebImageViewer 's Selection, to true.

2. Create a new event handler for the WebImageViewer' s SelectionChanged event similar to the
method shown in the following example.

Draw a rectangle using the rubber band selection mousetool

C#

Canvas myCanvas = new Canvas (this.WebImageViewerl.Image) ;
Rectangle mySelection = this.WebImageViewerl.Selection.Rectangle;

335

Atalasoft DotImage Developer's Guide

// Draws a black rectangle, with a semi-transparent orange fill
myCanvas.DrawRectangle (mySelection, new AtalaPen (Color.Black), new
SolidFill (Color.FromArgb (128, Color.DarkOrange))) ;

// Resets the Selection so it's no longer there
this.WebImageViewerl.Selection.Reset () ;

// Notifies the control that the Image was modified
this.WebImageViewerl.Update () ;

Draw with rubber bands

The Atalasoft DotImage Rubberband class provides a convenient way to allow a user draw onto an
image.

When using a rubberband for WinForm drawing, be sure that the Persist property is set to false.
This causes the Rubberband to disappear once the entity is drawn.

The RectangleSelection can be used to draw rectangles, but the Persist property is true by default.
In addition, the pen in the RubberBand probably should be set to the same pen being used to draw
on the image. In this case, it renders the entity onto the image, and only permanently marks it after
the user depresses the mouse button.

1. Open Visual Studio and start a new WPF Windows Application project.

2. Drop a RectangleRubberband onto the form and set the Parent property to the
WorkspaceViewer that was just added Drop a WorkspaceViewer or ImageViewer onto the form
and set the Image property to any image.

3. Inthe RectangleRubberband, set the Active property to true.

4. Change the Pen properties to the desired color and style. Be sure to turn Inverted off so the
rubber band draws with a particular color.

5. To add code to the changed event, in the property grid, click the Events button, and then
double-click the Changed event in C#. Enter the following code.
C#

private void rectangleRubberbandl Changed(object sender,
Atalasoft.Imaging.WinControls.RubberBandEventArgs e)
{
Atalasoft.Imaging.Drawing.Canvas myCanvas =
new Atalasoft.Imaging.Drawing.Canvas (workspaceViewerl.Image) ;
myCanvas.DrawRectangle (e.GetBounds (), rectangleRubberbandl.Pen) ;
workspaceViewerl.Refresh () ;

}
6. Finally, run the project and draw away! Keep in mind that you can draw other shapes by using
other Rubber band obijects, such as the EllipseRubberband and LineRubberband.

Interoperability - Work with GDI+ images

You can use Atalasoft DotImage to:
+ Directly process native .NET Bitmap images by creating a copy of the data.
+ Pass the data directly into the AtalaImage constructor.

336

Atalasoft DotImage Developer's Guide

Create a copy of the data

To process a native .NET Bitmap image by creating a copy of the data:
1. Create an Atalalmage copy of the Bitmap.
2. Process the image.

3. Create a bitmap copy of the results.

O Atalasoft DotImage has a built-in type converter that can be used to cast a bitmap to an
Atalalmage and vice versa.

Pass the data directly to the Atalalmage constructor

Manipulate the Bitmap bits directly by creating an AtalaImage that points to the same block of
memory as the Bitmap.

i J Directly manipulating the bits is more difficult than creating a copy, but does conserve
memory.

Process a bitmap directly

You can create an AtalaImage directly from a Bitmap object using the static
Atalalmage.FromBitmap() method.

O when you use this method, Atalalmage takes ownership of the Bitmap and its associated
memory and manages its disposal. Assume that when you create an AtalaImage from a Bitmap,
you lose permission to access the Bitmap object.

The following example shows direct processing of a bitmap.
Create a bitmap object using AtalaImage.FromBitmap() method

C#

Atalalmage image = Atalalmage.FromBitmap (srcBitmap) ;

BlurGaussianCommand blur = new BlurGaussianCommand (2) ;

AtalaImage newlImage = blur.Apply(image) .Image;

// Dispose of srcBitmap

image.Dispose () ;

//Bitmap only points to the newlmage.

// The newImage still controls the memory and it must be disposed when done.
Bitmap bm = new Bitmap (newImage.Width, newImage.Height, newImage.RowStride,

(System.Drawing.Imaging.PixelFormat) ((int)newImage.PixelFormat),
PixelMemory.PixelDataFromPixelMemory (newImage.PixelMemory)) ;

Interoperability - Work with WPF images

This topic explains how to use the AtalalmageViewer in a WPF application.

337

Atalasoft DotImage Developer's Guide

The example code that follows is written in C#; however any CLS compliant language can be used.

Add the AtalalmageViewer control to a WPF windows application

You have several options for creating a WPF application. The following example uses Visual Studio
and its XAML source editor to create the project.

1. Open Visual Studio and start a new WPF Windows Application project.

2. Add the following references:

+ Atalasoft.dotimage

+ Atalasoft.dotImage.Lib

+ Atalasoft.dotImage.Wpf

+ Atalasoft.Shared

Double-click Window1.xaml to launch the editor.

Use the form designer to set the window size, title and other common options.
Switch to XAML source view.

Add the following XML namespace to the Window tag:

U

xmlns:atala="clr-
namespace:Atalasoft.Imaging.Wpf;assembly=Atalasoft.dotImage.Wpf"

7. Inside the Grid tag, add the following code:

<Grid.ColumnDefinitions>
<ColumnDefinition/>
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinitionHeight="22"/>
<RowDefinition/>
</ Grid.RowDefinitions>
<MenuGrid.Column="0"Grid.Row="0">
<MenultemHeader=" File">
<MenultemHeader="_ Open"Click="OnOpenFile"/>
<MenulItemHeader="_ Save"Click="OnSaveFile"/ >
<Separator/>
<MenultemHeader="E xit"Click="OnExit"/>
</Menultem>
</Menu>
<atala:AtalalmageViewer Name="Viewer" Grid.Column="0" Grid.Row="1"/>

8. Open the Window1.xaml.cs file and add the file menu event handlers.
9. Build and run the application.

Use mouse tools

AtalaImageViewer has a MouseTool property that takes any class deriving from the MouseTool
class. This allows you to create custom mouse tools for the viewer. The Atalasoft DotImage WPF
component provides several commonly used tools including selection, panning, magnifier and
zoom.

The following code tells the viewer to use the panning tool:

this .Viewer.MouseTool = new PanningMouseTool () ;

338

Atalasoft DotImage Developer's Guide

All the viewer mouse tools have common default values making it easy to switch between the tools.
You may want to modify the look or behavior of a tool to better fit your application or preference.
For instance, the PanningMouseTool can have two cursors: one for the normal cursor and another
for a mouse down (grab) cursor.

Forms processing

Forms processing brings the ability to analyze and process documents containing user-filled forms
to the Atalasoft DotImage Document Imaging toolkit.

Key features:

+ Document alignment: With the DocumentAligner class you can align one document to a
predefined template. This allows for the reliable extraction of individual bar codes, small sections
of text via OCR, and marks via OMR.

+ Alignment rejection: After performing alignment, use the AlignmentRejector class to test if the
alignment was successful.

+ OMR (Optical Mark Recognition): Using the OmrEngine class you can check for expected marks
on a document.

Align an image to a template

Aligning an image to a template is a three-step process:
1. Generate PageFingerprints with the PageFingerprintGenerator.
2. Generate an AlignmentResult by passing those fingerprints into the DocumentAligner.
3. Validate that AlignmentResult with the AlignmentRejector.
C#

//Load Images
AtalalImage sourcelmage
AtalaImage targetImage

new AtalaImage (@"C:\temp\sourcelImage.tif");
new AtalaImage (@"C:\temp\targetImage.tif");

//Generate PageFingerprints

PageFingerprintGenerator generator = new PageFingerprintGenerator () ;
PageFingerprint sourceFingerprint generator.GenerateFingerprint (sourcelmage) ;
PageFingerprint targetFingerprint generator.GenerateFingerprint (targetImage) ;

//Align with PageFingerprints
DocumentAligner aligner = new DocumentAligner () ;
AlignmentResult result = aligner.Align (sourceFingerprint, targetFingerprint);

//Validate Alignment
AlignmentRejector rejector = new AlignmentRejector();
rejector.TestAlignmentResult (result) ;

Disable alignment rejection heuristics

In some cases you might find that one of the AlignmentRejector's alignment rejection heuristics
is incorrectly reporting your document as misaligned. In this case, you can disable this particular
heuristic by removing it from the AlignmentRejectionHeuristics enumeration property with the
exclusive-or operator.

339

Atalasoft DotImage Developer's Guide

C#

AlignmentRejector rejector = new AlignmentRejector();
rejector.AlignmentRejectionHeuristics "=
AlignmentRejectionHeuristics.AlignmentConfidence;

Use the OMR engine to recognize marks on a page

Given an existing OmrTemplateDocument and an FileSystemImageSource, basic usage of the
OmrEngine class is a three step process:

1. Create an OmrEngine instance.
2. Pass your document and template in to the OmrEngine.

3. Parse the OmrEngine results.
Ci#

//Create engine instance
OmrEngine engine = new OmrEngine () ;

//Load OMR Template
OmrTemplateDocument docTemplate = OmrTemplateDocument.Load (@"C:\temp
\document.template") ;

//Load Document to perform OMR on
FileSystemImageSource imageSource = new FileSystemImageSource (@"C:\temp\omrimage.tif",
true) ;

//Perform OMR
OmrDocument results = engine.RecognizeDocument (imageSource, docTemplate) ;

//Parse Results
foreach (OmrPage page in results.Pages)

{
foreach (OmrGroup group in page.Groups)
{
foreach (OmrMark mark in group.Marks)
{
string markString = String.Format ("Mark {0}: {1}",
mark.Template.Name,
mark.IsMarked) ;
System.Console.WritelLine (markString) ;

Create and save an OMR template

Creating OMR templates is simply a matter of stacking together the various OmrTemplate classes.
Each represents a different template concept:

+ An OmrTemplateDocument represents an entire document.

+ An OmrTemplatePage represents a single document page.

+ An OmrTemplateGroup represents a group of marks.

+ An OmrTemplateMark represents a single location to check for a mark.

1. Create an OmrTemplateDocument to hold your template pages:

340

Atalasoft DotImage Developer's Guide

OmrTemplateDocument templateDoc = new OmrTemplateDocument () ;

2. Whenever you open a new image as a page for this template, you'll also want to create a new
OmrTemplatePage to go with it.

AtalaImage templateImage = new AtalaImage (@"C:\Temp\templateImage.tif");
OmrTemplatePage templatePage = new OmrTemplatePage (templateImage) ;
templateDoc.Pages.Add (templatePage) ;

3. Create a group to hold your marks, which are currently for organizational purposes but can be
used for more complex tasks. When creating a group, assign it a name that can be used to find
it after processing. For this reason, each group's name should be unique within the page.

String groupName = "Group One";
OmrTemplateGroup templateGroup = new OmrTemplateGroup (groupName) ;
templatePage.Groups.Add (templateGroup) ;

Perform additional preprocessing in the OMR engine

Sometimes you may wish to do additional image preprocessing before entering the rest of the OMR
process.

1. Create an EventHandler<OmrImagePreprocessingEventArgs> which:
+ Performs the desired preprocessing.

« Assigns the result to the InMarkedImage property of the
OmrImagePreprocessingEventArgs.

2. Install the event handler.

Create an OmrImagePreprocessingEventArgs event handler

As images are passed in to the OmrEngine do not have the AutoDeskewCommand applied by
default, this is one example of when you may want to perform additional preprocessing.

1. Perform the desired preprocessing.
2. Assign the result to OmrImagePreprocessingEventArg's InMarkedImage property.

void PreprocessingHandler (object sender, OmrImagePreprocessingEventArgs e)
{
AutoDeskewCommand command = new AutoDeskewCommand () ;
AtalaImage newImage = command.Apply (e.InMarkedImage) .Image;
e.InMarkedImage = newlmage;

}
3. Install the handler into the OmrEngine instance's ImagePreprocessing event.

omrEngine.ImagePreprocessing += new
EventHandler<OmrImagePreprocessingEventArgs> (PreprocessingHandler) ;

Cancel OMR in progress

Use this procedure to cancel an OMR session that is in progress.

1. Create a PageProgress event handler which sets the Cancel property of the OmrPageProgress
EventArgs to true.

2. Install the event handler.

341

Atalasoft DotImage Developer's Guide

Create an OMR page progress handler

The following code example shows how to create an OMR page progress handler that cancels
processing when the class-wide boolean CancelHasBeenRequested is set to true.

1. When the desired conditions for cancellation are met, set the Cancel property to true.

private void CancelPageProgressHandler (object sender, OmrPageProgressEventArgs e)
{

//Boolean set elsewhere in your code

if (CancelHasBeenRequested)

{

e.Cancel = true;

}

}

2. Install the handler into the OmrEngine instance's PageProgress event.
// Install the handler

omrEngine.PageProgress += new
EventHandler<OmrPageProgressEventArgs> (CancelPageProgressHandler) ;

Track OMR engine page progress in a Ul

To track page progress, create an EventHandler<OmrPageProgressEventArgs> and translate the
information in the event arguments to your UL

1. Create an event handler that:
+ Translates OMR Page Stage Information to a String.
+ Passes that string and current progress to your UL
2. Install the event handler.

Translate the OmrPageStage information to a string

1. Translate the OmrPageStage information to a String.

private string TranslatePageStageToString (OmrPageStage stage)
{

string message = "Unknown Stage";

switch (stage)

{

case OmrPageStage.Preprocessing:

message = "Preprocessing Image and Template";
break;

case OmrPageStage.Aligning:
message = "Aligning Template";
break;

case OmrPageStage.Recognizing:
message = "Recognizing Marks";
break;

case OmrPageStage.Finishing:
message = "Finishing";
break;

}
return message;

}
2. Create the event handler.

342

Atalasoft DotImage Developer's Guide

private void TrackingPageProgressHandler (object sender, OmrPageProgressEventArgs
e)
{
string message = TranslatePageStageToString (e.Stage) ;
TextToShow = message;
if (e.Progress.HasValue)
ProgressBarValue = e.Progress.Value;

}
3. The handler must be installed into your OmrEngine instance's PageProgress event.

omrEngine.PageProgress += new EventHandler
<OmrPageProgressEventArgs> (TrackingPageProgressHandler) ;

Web Document Viewer

The WebDocumentViewer is JavaScript based image viewing control that can be created on the
client side without the need for a traditional WebServerControl back end. It communicates directly
with a WebDocumentRequestHandler on the server side, so there are no page lifecycle problems to
deal with.

A WebDocumentViewer only requires a few snippets of HTML and JavaScript on your page, and a
separate bare-bones handler.

The WebDocumentViewer doesn't have a Toolbox item to drag onto a form, so you can create

the control on any page that you need to use it, without forms. See our Web Document Viewer
Guide for a step-by-step tutorial of setting up a WebDocumentViewer in a new project and
deploying it to an IIS server. A complete example of the WebDocumentViewer is also included in the
DotImageWebForms demo projects that are installed with Atalasoft DotImage.

The Web Document Viewer online documentation is available at https://
atalasoft.github.io/web-document-viewer. The offline verison can be downloaded from the
public GitHub repository at https://github.com/Atalasoft/web-document-viewer/tree/
master/docs.

343

Chapter 4

Deploy Atalasoft DotImage

Atalasoft DotImage does not contain COM components to register, and no Registry modifications
are required to use the SDK. To deploy the SDK, copy Atalasoft DotiImage assemblies alongside your

EXE.

Visual C++ Runtime dependencies

Atalasoft DotImage is distributed in several configurations, which are listed in the Atalasoft
DotImage Technical Specifications.

Deploy Atalasoft Dotlmage in ASP.NET

When deploying Atalasoft DotImage in an ASP.NET application, the Atalasoft Dotlmage license file
must be located in the bin directory of the application.

Dependencies using Atalasoft DotImage class library

The following files must be included on the server that usesAtalasoft Dotimage. This is all that is
required when using the class library only:

e Atalasoft.
¢ Atalasoft.
e Atalasoft.
¢ Atalasoft.

dotImage.dll
dotImage.Lib.dll
Shared.dll
dotImage.lic

All of these files must be placed in the application's bin folder.

Dependencies using Atalasoft DotImage with WebControls

The following files must be included on the server that uses Atalasoft DotImage with WebControls:

* Atalasoft.
.dotImage.WebControls.dll
* Atalasoft.
e Atalasoft.
* Atalasoft.
e Atalasoft.

¢ Atalasoft

dotImage.dll

dotImage.Lib.dll
Shared.dll
dotImage.lic
dotImage.Pdf.dll

344

Atalasoft DotImage Developer's Guide

e Atalasoft.dotImage.PdfReader.dll

* Atalasoft.dotImage.PdfDoc.Bridge.dll

e Atalasoft.dotImage.PdfDoc.dll

¢ Atalasoft.dotImage.Ocr.dll

e Atalasoft.dotImage.AdvancedDocClean.dll

All of these files must be placed in the application's bin folder.

Generating licenses

To license application components, a license file is generated or updated and compiled into the
project output.

The licenses.licx file is generated or updated automatically by Windows Form Designer when a
licensed control is added to a form. For console application, this file is added manually as shown in
HOWTO: License an EXE for Deployment on the Atalasoft website. During compilation, the project
system transforms licenses.licx into a .licenses binary resource that provides support for .NET
control licensing. The binary resource is embedded in the project output.

For .NET Framework, use the License Compiler (Ic.exe) to compile and embed the license binary
resource. (See the Microsoft website for instructions.) For .NET 6 or later, the License Compiler is
not supported. Instead, use the Atalasoft License Compiler (AtalasoftLicenseCompiler.exe) provided
with Atalasoft Dotlmage to transform and embed the license binary resource. Just like the License
Compiler, the Atalasoft License Compiler takes the licenses.licx file that was generated or updated
by Windows Form Designer or added manually, transforms the file into a .licenses binary resource,
and embeds it into the project output.

The Atalasoft License Compiler can be run separately, and it uses the same command-line
arguments as the License Compiler, as in this example:

AtalasoftLicenseCompiler.exe

/complist:<licenses.licx path>

/outdir:<result folder path> /target:<application name>
/i:"<refassemblyl>;<refassembly2>;<refassembly3>;..;<refassemblyN>"

But to embed licensing, you need to install the Atalasoft.dotimage.AtalasoftLicenseCompiler.x86
or Atalasoft.dotImage.AtalasoftLicenseCompiler.x64 NuGet package for .NET 6 project. The NuGet
package includes AtalasoftLicenseComplier.exe and the appropriate targets and instructions for

* licenses generation. Targets are added to the .csproj file during compilation.

To use the Atalasoft License Compiler, follow these steps:

1. Install the NuGet package, either Atalasoft.dotImage.AtalasoftLicenseCompiler.x86 or
Atalasoft.dotImage.AtalasoftLicenseCompiler.x64.
2. Create or add the licenses.licx file.

If you create the file, make sureitisin <project folder>/Properties.If you add it, follow
the instructions in HOWTO: License an EXE for Deployment on the Atalasoft website.

3. Build the project.

345

https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.atalasoft.com%2FKB2%2FKB%2F50311%2FHOWTO-License-an-EXE-for-Deployment&data=04%7C01%7C%7C971ff3ee3ae6449a73b808d9db47d7fb%7Cbcd8ba5f75e24d6c8aa5fff6c8baa1ff%7C0%7C0%7C637781923916032734%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=2ExbgwCsbIR26P7wgx3ptGKUKv5OKLD35W2v8Xylep8%3D&reserved=0
https://docs.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/ha0k3c9f(v=vs.100)?redirectedfrom=MSDN
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.atalasoft.com%2FKB2%2FKB%2F50311%2FHOWTO-License-an-EXE-for-Deployment&data=04%7C01%7C%7C971ff3ee3ae6449a73b808d9db47d7fb%7Cbcd8ba5f75e24d6c8aa5fff6c8baa1ff%7C0%7C0%7C637781923916032734%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=2ExbgwCsbIR26P7wgx3ptGKUKv5OKLD35W2v8Xylep8%3D&reserved=0

Atalasoft DotImage Developer's Guide

During compilation, the following takes place:

a. The AtalasoftLicenseComplier.exe utility and necessary assemblies are copied to
<destination folder>/1lib.

b. The <application name>.licenses file is generated and embedded into the resulting
application file.

4. Check the build log file for any errors.

© 1 the license is not found for the assembly, an error message is added to the build log,
but the build does not fail.

346

Chapter 5

Program with DotPdf

DotPdf is a set of tools used for creating or manipulating PDF documents. PDF is a file format
created by Adobe Systems that is used to represent the content and structure of a document in a
way that the appearance of the document will maintain its quality independent of the device on
which it is displayed. For example, TIFF documents are scanned images that only look as good as
the resolution of the scan, whereas PDF documents can contain text and graphic content that do
not have a fixed resolution and render well on low or high resolution devices.

In addition, PDF can contain a number of interactive features including hyperlinks, annotations,
bookmarks.

DotPdf includes two main tools for operating on PDF files:

» PdfDocument - Object for performing efficient, document-level manipulation of PDF documents,
including rearranging or deleting existing pages, adding pages from another document, creating
or editing the bookmark tree, creating or editing document metadata, or combining multiple
documents into one.

+ PdfGeneratedDocument - Object capable of doing everything PdfDocument can do, but requires
reading in the full content of the document. In addition, PdfGeneratedDocument can be used for
adding content to existing pages and creating new content from scratch.

Both PdfDocument and PdfGeneratedDocument have the ability to detect and repair many types of
broken or non-compliant PDF documents.

The PDF document format is a standard format that describes the appearance layout, and to

a certain extent the behavior of a collection of pages. PDF documents are designed to look
consistently good on whatever device is used to display them, whether the device is a computer
screen, a desktop printer, a phototypesetter, or a cell phone. Unlike most image formats, PDF has
no sense of resolution. This means that a document can viewed at arbitrary magnification with little
or no loss of information.

The Atalasoft PDF Generating library provides a mechanism for creating PDF documents that is
simple, consistent, and extensible. Since the underlying document format is complicated, the library
is built to separate the document format from the means used to create the document. Client code
needs to concern itself with the content and the mathematical modeling. The actual production of
PDF from this is handled behind the scenes.

In addition to basic shapes, images and text, the Atalasoft library has tools for creating your own
shapes from primitive shapes, composites of basic shapes, as well the ability to stitch all of these
together into high-level tools for creating documents from very little code.

To create a PDF document, one needs to make a document object, add pages to the document, put
content onto the pages and save the document. The following example demonstrates how to make
a basic PDF:

347

Atalasoft DotImage Developer's Guide

PdfGeneratedDocument doc = new PdfGeneratedDocument () ;

PdfGeneratedPage page = PdfDefaultPages.Letter;

doc.Pages.Add (page) ;

string font = doc.Resources.Fonts.AddFromFontName ("Times New Roman") ;

PdfTextLine line = new PdfTextLine (font, 12, "Hello, PDF", new PdfPoint (72, 400));
page.DrawingList.Add (line) ;

doc.Save ("hello.pdf") ;

The authoring library has seven main components: resources, pages, drawing primitives, shapes,
forms, annotations and rendering. Resources are collections of large objects that may be used
multiple times on a page or a document such as fonts or images. Resource objects are named

and are always referred to by name. Pages are objects that contain dimensions as well as a list

of drawings that make the visible contents of the page. Pages may be moved freely from one
document to another, cloned and serialized. Drawing primitives are objects that can directly
generate PDF page content. Primitives include paths, rectangles, primitive text, and images. Shapes
are higher level objects that are more easily described and controlled and may include transforms
to apply to the shape like scale and rotation. Shapes can be built in terms of primitives or in terms
of other shapes. Rendering is the process of turning a collection of pages and their content into
PDF or some other format. Although most applications concerned with making PDF documents will
only need to concern themselves with resources, pages and shapes, the Atalasoft library is designed
to be open and extensible. Advanced applications can work with primitives directly, create their
own higher level shapes or create their own renderers. And while the rendering process is typically
invisible to client code, the mechanism is open so that documents can be created that are limited
only by the PDF specification.

Mathematical model

In PDF, a page is based on a formal Cartesian coordinate system. In this model, the origin is in the
lower left corner of the page with the positive X axis stretching to the right and the positive Y axis
extending up. Units are in PDF standard units which are 1/72 of an inch. Coordinates are expressed
in floating point numbers. Every page includes an Affine transformation matrix through which all
coordinates are pushed before being placed on the page.

© This differs from conventional image coordinates where the origin is in the upper left corner of
the image and the positive Y axis extends down.

For drawing, there are five main primitives: paths, rectangles, images, text, and templates. A path is
a collection of lines and Bezier curves. Paths may be disjoint or non-disjoint. In non-disjoint paths,
all elements are connected. A non-disjoint path may be closed or open. In a closed path, there is an
explicit step to connect from the first element in the path to the last element in the path. A disjoint
path may consist of any number of sub paths which may be open or closed.

Paths and rectangles are placed on the page. After a shape has been placed on the page, it may be
stroked, filled or clipped. Outlines in the path may be stroked with solid or dashed lines. Line ends

348

Atalasoft DotImage Developer's Guide

may rounded, square projecting, or square flat. Line joints may be beveled or mitered. Paths may
filled with solid colors. Clipping and filling are done based on one of two different filling rules, the
even-odd rule and the non-zero winding rule.

Images in PDF are considered to be 1 by 1 in PDF units. To place an image on the page, one sets a
transform to set the location and size of the image on the page.

Templates are encapsulated collections of other PDF primitives. In PDF Generating they are
intended for two main purposes: creating reusable page content like letterhead, backgrounds or
watermarks. Templates can also be used for building transparency or blending layers.

Transformations

The PDF imaging model includes the notion of a current transformation. All objects that are
rendered get pushed through the transformation before being rendered.

Transformations are represented by an Affine transformation matrix which is a 3x3 matrix of the
form:

a b 0
Ic d D]
e f 1

When a point (x, y) is transformed by the matrix, the output of the transformation will be (x".5"),
where x' = ax + cy + e and ¥' = bx + dv + f . In the Atalasoft Pdf Generating library, transformations
are represented by the class PdfTransform. Within that class there are some factory methods for
making common transformations.

PdfTransform.Identity() returns a new identity matrix:
1 0 0
0 1 0
0 0 1
PdfTransform.Translate(double x, double y) returns new matrix that will perform a translation:
1 0 0
y 1
PdfTransform.Scale(double s) returns a new matrix that will perform a uniform scale:

s 0 0
0 = 0
0o 0 1

PdfTransform.Scale(double x, double y) returns a new matrix that scales in x and y directions,
possibly by different amounts:

349

Atalasoft DotImage Developer's Guide

x 0 0
0 v 0
0 0 1

PdfTransform.Rotate(double theta) returns a new matrix that will perform a counter clockwise
rotation by theta radians:

cosd sind 0
—szinf cosf O
0 0 1

PdfTransform.Skew(double x, double y) performs a two dimensional skew operation by x and y
radians:

1 tanx 0
tany 1 0
0 0 1

PdfTransform includes a property, TransformType that attempts to determine if the transform is
one of the primary transformation types. If the transform type can't be determined, the property
will be set to PdfTransformType.Other.

To transform a point, use the Transform methods. For example, to rotate a point counterclockwise
around the origin, you can do this:
PdfPoint p = new PdfPoint(x, y);

PdfTransform transform = PdfTransform.Rotate (angle) ;
p = transform.Transform(p) ;

PdfTransform can also combine transformation by using the Concat() method:

PdfTransform combined = PdfTransform.Rotate (angle) ;
PdfTransform translate = PdfTransform.Translate(x, V)
combined.Concat (translate) ;

Note that the Concat operation is not reflexive - a.Concat(b) is not necessarily the same as
b.Concat(a).

In PdfDrawingSurface, there is a method called ApplyTransformation() which takes a PdfTransform
object and Concats it onto the drawing surface's current transformation. In this way, transforms are
cumulative. Applying a transformation will accumulate changes into the drawing surface. To undo a
transform, there are two approaches. The first is to apply the inverse transformation:

PdfTransform transform = GetTransform();

if (!'transform.IsInvertable())

return;
PdfTransform itransform = transform.GetInverse();

Renderer.DrawingSurface.ApplyTransformation (transform) ;
...perform drawing operations
Renderer.DrawingSurface.ApplyTransformation (itransform) ;

In order to do this, the specific transform to be applied must have an inverse. In all but degenerate
transformations (scale by 0 or a skew that creates a flat line), there will be an inverse that can be
applied. Using the IsInvertable() method will tell you if an inverse exists.

350

Atalasoft DotImage Developer's Guide

The second way to undo a transform is to use the GSave() and GRestore() methods that are part of
the PdfPageRenderer objects. GSave() takes the entire drawing state of the PdfPageRenderer and
saves it on a stack. GRestore() pops the most recently saved drawing state and restores it. GSave()/
GRestore() performs a great deal more work than saving and restoring the current matrix. It will
also save line style, clipping, and more. Generally speaking, for working with transformations, it's
best to always avoid degenerate transformations and to apply the transform, perform operations
and then apply the inverse.

The power of the cumulative approach to transformation is that it is straight forward to encapsulate
drawing within another transformation. For example, the entire DrawingList of an existing
PdfGeneratedPage could be rendered as a the contents "thumbnail" shape with a dog-eared page
by applying a scale transform, doing a GSave(), clipping to the dog eared page boundary, calling the
DrawingList's Render() method, doing a GRestore(), stroking the dog-eared page boundary and then
undoing the transform.

PdfBaseShape provides indirect access to the transforms by breaking out Translation, Scale, and
Rotation into separate properties and concatenating them together before drawing the shape.

When any of the Add or Place methods are used in PdfDrawingSurface, an implicit transform will
be applied before the operation and the inverse afterwards. For example, AddRect(PdfBounds r) is
implemented in terms of AddRect(r, PdfTransform.Identity()).

PdfGeneratedDocument

For creating or modifying exist PDF documents, use the PdfGeneratedDocument object. Unlike
the PdfDocument object, the PdfGeneratedDocument object allows you to directly manipulate
the content and details of PDF documents to a much greater depth (and is also more resource
intensive). Strictly speaking, PdfGeneratedDocument offers a superset of the features in
PdfDocument.

With both PdfGeneratedDocument and PdfDocument, you can rearrange or delete pages,

add pages from other documents, rotate pages, set document permissions, create or modify
bookmarks, encrypt or decrypt documents, set automatic printing, or create or edit document
metadata. With PdfGeneratedDocument, you can replace images in a document, add new pages
with new content, add content to existing pages, create or edit annotations, create and edit data
collection forms, import SVG artwork, and define high level shapes.

PdfGeneratedDocument can be the cornerstone of a report generation system, a document
format converter, a document review system, or a print driver. Since content created within a
PdfGeneratedDocument can be serialized and embedded within the output PDF itself, it is easy to
create content and read it back for editing.

Pages

The main page class PdfGeneratedPage is a container class that represents a page in a PDF
document. It contains a set of PdfBounds objects that are used to describe the page's dimensions

351

Atalasoft DotImage Developer's Guide

as well as PdfDrawingList object that represents the page's contents. The main dimensions of the
page are described with the following:

+ Media Box - this is the size of the physical media on which the page is to be printed.

» Crop Box - this is the area to which all content on the page will be cropped when being displayed
or printed.

+ Bleed Box - this is an area that defines the area that will be used for cropping in a production
environment, which may include extra area to accommodate cutting folding and trimming
equipment.

» Trim Box - this is the area of that page to be trimmed to in a production environment. It may
be smaller than the Media Box to allow for printing instructions, cut marks, color bars or other
printer's marks.

« Art Box - this is the area of the page that contains meaningful content intended by the creator.

Each of these areas are measured in PDF units and are subject to PDF's size limitations (3 units (1/24
inch) minimum and 14400 units (200 inches) maximum).

When a new PdfGeneratedPage is constructed only the MediaBox property is set to an area. All
other boxes are set to null PdfBounds objects, indicating "not used". In addition, all boxes must be
either the same size or within the MediaBox.

Standard page sizes

The object PdfDefaultPages contains a number of static properties that create new
PdfGeneratedPages initialized to standard sizes. While it is straightforward enough to create a page
with the PdfGeneratedPage constructor and pass in the desired width and height in PDF units, the
factory properties in PdfDefaultPages make it easy to work with common standard page sizes such
as letter, legal, ledger, A4-A6, B4-B6, and C4-C6. For each default size in portrait layout (the page is
thinner than it is tall), there is also a landscape version of the same.

Create stationery

There are a number of ways to create the effect of stationery in the PDF Generating API. Since each
PdfGeneratedPage object contains a list of things that are drawn on the page, it can be as simple
as prepopulating that list with a few items. Here is a simple example that creates a page that will
appear to be a note card.

In this sample, we first make a page that is wide x high in inches. Next we make a background
rectangle the same size as the page and add it to the drawing list. Then we make a path that is a
single red line a half inch (36 PDF units) down from the top and add it to the page. Finally, we make
a disjoint path of blue lines that are evenly spaced by quarter inches down from the red line. Since
each line in the path is defined with a separate MoveTo/LineTo pair, the path is disjoint. When the
page is returned from this method, there will be three items in the page's drawing list: a rectangle, a
red path and a blue path.

public PdfGeneratedPage Notecard(double wide, double high, IPdfColor backGroundColor)
{

352

Atalasoft DotImage Developer's Guide

PdfGeneratedPage page = new PdfGeneratedPage (wide * 72, high * 72);
double top = page.MediaBox.Top;
double right = page.MediaBox.Right;
PdfRectangle backGround = new PdfRectangle (page.MediaBox, backGroundColor) ;
page.DrawingList.Add (backGround) ;
PdfPath redLine = new PdfPath (PdfColorFactory.FromRgb (.75, .16, .45), 0.5);
redLine.MoveTo (new PdfPoint (0, top - 36));
redLine.LineTo (new PdfPoint (right, top - 36));
page.DrawingList.Add (redLine) ;
PdfPath bluelines = new PdfPath (PdfColorFactory.FromRgb (.08, .64, .89), 0.5);
for (double y = top - 36 - 18; y >= 0; y —= 18)
{
bluelines.MoveTo (new PdfPoint (0, y));
bluelines.LineTo (new PdfPoint (right, v));
}
page.DrawingList.Add (bluelLines) ;
return page;

}

If you wanted to structurally organize your drawing so that the background of the page was a single
layer, you could use a separate layer for background. Although the PDF file format doesn't have
strong support for this kind of structural organization, the Atalasoft Generating library gives you the
ability to generate with structure if you choose via the PdfDrawingList object. In this way, we could
rewrite the note card sample to use a PdfDrawingList for the background:

public PdfGeneratedPage Notecardl (double wide, double high, IPdfColor backGroundColor)
{

PdfGeneratedPage page = new PdfGeneratedPage (wide * 72, high * 72);

double top = page.MediaBox.Top;

double right = page.MediaBox.Right;

PdfDrawingList backLayer = new PdfDrawingList () ;

backLayer.Name = "background";

page.DrawingList.Add (backLayer) ;

PdfRectangle backGround = new PdfRectangle (page.MediaBox, backGroundColor) ;
backLayer.Add (backGround) ;

PdfPath redLine = new PdfPath (PdfColorFactory.FromRgb (.75, .16, .45), 0.5);
redLine.MoveTo (new PdfPoint (0, top - 36));

redLine.LineTo (new PdfPoint (right, top - 36));

backLayer.Add (redLine) ;

PdfPath bluelines = new PdfPath (PdfColorFactory.FromRgb (.08, .64, .89), 0.5);
for (double y = top - 36 - 18; y >= 0; y —= 18)

{

bluelines.MoveTo (new PdfPoint (0, y));

bluelines.LineTo (new PdfPoint (right, v));

}

backLayer.Add (bluelLines) ;

return page;

}

Every object that can be in a PdfDrawingList implements the interface IPdfRenderable. One element
of that interface is the property "Name" which is a string that names that item. This property is
never used by the PDF Generating library. It is intended for client code. In this example, the Name
property is used to make the backLayer object easy to identify in later code. For example, if you
wanted to create a sense of back-, mid- and foreground layers you could add three PdfDrawingList
objects to the page and name them appropriately.

353

Atalasoft DotImage Developer's Guide

Clipping

In every PDF page there is always an area that clips drawing to a reduced area. The initial clipping
region for any page is the rectangle that defines the page itself. When creating PDF content, it is
possible to change that clipping region. Clipping in PDF is different than clipping in GDI. In GDI, any
region can be set as the current clipping region. In PDF when you request a new clipping region, the
result is the intersection of the current clipping region and the requested one. The net result is that
in PDF, it is only possible to reduce the current clipping region or keep it the same. It is, however,
possible to save and restore the current clipping region through calls to PdfPageRenderer.GSave()
and PdfPageRenderer.GRestore().

In this example, a circle is added to the page as a clipping shape and the rectangle added
afterwards will be clipped to the circle.

C# code

PdfCircle circle = new PdfCircle(new PdfPoint (72, 600),

100, PdfColorFactory.FromGray (1)) ;
circle.Clip = true;
page.DrawingList.Add (circle) ;
PdfRectangle rect = new PdfRectangle(new PdfBounds (72, 600, 288, 72),
PdfColorFactory.FromGray (0), 6, PdfColorFactory.FromRgb (0.1, 0, .9));
page.DrawingList.Add (rect) ;

This code produces this output.

Since clipping is permanent outside of calls to PdfPageRenderer.GSave() and
PdfPageRenderer.GRestore(), there are two IPdfRenderable objects named GSave() and GRestore()
which make those calls for you. By modifying the previous sample, the clipping region can be saved
and restored:

C# code

page.DrawingList.Add (new GSave());

PdfCircle circle = new PdfCircle (new PdfPoint (72, 600), 100,
PdfColorFactory.FromGray (1)) ;

circle.Clip = true;

page.DrawinglList.Add (circle) ;

PdfRectangle rect = new PdfRectangle (

new PdfBounds (72, 600, 288, 72),

PdfColorFactory.FromGray (0),

6,
PdfColorFactory.FromRgb (0.1, 0, .9));
page.DrawingList.Add (rect) ;
page.DrawingList.Add (new GRestore());
rect = new PdfRectangle (

354

Atalasoft DotImage Developer's Guide

new PdfBounds (36, 636, 400, 18),
PdfColorFactory.FromRgb (1, 0, 0));
page.DrawingList.Add (rect) ;

This code produces this output.

As with any filled shape, clipping to a path or shape is done via either the non-zero winding rule or
the even odd rule.

Colors

The color model in PDF is very flexible. Colors are associated with a notion of a current color space.
Color spaces can include RGB, Gray, CMYK, Lab, and others. Color spaces may also be calibrated or
uncalibrated. The Atalasoft PDF Generating library gives you access to colors through a color factory
which hides the complexity of the PDF color model. To make a color, use the PdfColorFactory static
methods FromRgb, FromColor, FromGray, or FromCmyk. Each of these methods will return a new
IPdfColor object that represents the requested color. Color channel values go from 0.0, representing
the minimum value, to 1.0, representing the maximum value. Colors may be associated with the
name of a PdfColorSpaceResource object. If a color has a resource name, then the color will be a
calibrated color, possibly with an associated ICC color profile.

To use RGB colors with an ICC color profile, you can use the resource name "sRgb" as the resource
name for your colors. This uses the "standard" RGB ICC color profile which is always available in
the color space resources. While there will always be a profile named "sRgb", it is better to use
the property DefaultRgbColorSpace as the default resource name. This allows you code to change
the name of the default RGB color space resource without changing the calibration of any colors
already selected with the previous default.

To add additional color profiles to the resources, you only need a stream, path or the raw data itself.
For example, you could use the following C# code to add in a new ICC profile:

PdfGeneratedDocument doc = new PdfGeneratedDocument () ;
String csname = doc.Resources.ColorSpaces.AddFromFile ("mycolorprofile.icm") ;
IPdfColor color = PdfColorFactory.FromRgb (1.0, .8, .8, csname);

Note that it is up to client code to create colors that are in the appropriate color space for a given
resource. In the previous example, if the color profile had been for a CMYK color space, the code
requesting an RGB color would be in error and may result in an invalid PDF. In addition to a
standard RGB color space, there is also a calibrated gray color space preinstalled. The calibrated
gray color space has the resource name "CalGray" and is also accessible using the string property

355

Atalasoft DotImage Developer's Guide

DefaultGrayColorSpace. While there is a property for a default CMYK color space, there is no default
installed. A standard CMYK color profile can be downloaded from Microsoft from the link http://
msdn.microsoft.com/en-us/windows/hardware/gg487391.

All color space resources include a property called ColorSpaceType which can be used to find the
type of color space represented by the resource.

Rendering

The PdfGeneratedDocument and the PdfGeneratedPage classes are representations of PDF
documents and PDF pages, but they are not actual documents or pages. No PDF is created until the
document is saved. The process of saving a document to PDF is part of a more general rendering
process and in this case, the output of rendering is a PDF document.

The rendering process involves creating an object that is a subclass of the abstract
DocumentRenderer class. DocumentRenderer defines the overall process that is used to render a
document including firing events, error handling and page rendering. The overall process follows
this outline:

1. Notify that the document has begun.

2. Render each page.
a. Notify that a page has begun.
b. Construct a PdfPageRenderer object for the page.
c. Generate the page.

d. Notify that the page has finished.
3. Notify that the document has finished.

Behind the scenes, the PdfGeneratedDocument.Save() method creates a PdfPageRenderer object
and uses it to create the PDF. In most cases, it will not be necessary to use any other means to
save a PDF document. The PDF Generating library is robust for creating documents that may
have a thousand pages or more without having to worry about memory use. However, in some
cases client code may wish to use another mechanism to produce documents. In this case, the
client code can construct the PdfPageRenderer directly and use the Render method that takes a
PdfGeneratedDocument and an ICollection<BasePage>. In this way client code can use their own
collections of pages instead.

Resources

PDF has the notion of document resources. These are objects or chunks of data that may be shared
within a page or several pages to reduce the memory needed for the document. There are several
classes of resources within PDF. Of them, the Atalasoft PDF library exposes four types: fonts,
images, templates and color spaces. In the Atalasoft PDF library, to use a resource, you create it and
assign it a name. From then on the resource is referred to by name.

The PdfGeneratedDocument class contains a property, Resources, of type GlobalResources. This
object contains properties which represent "managers" for each type of resource. While each

356

http://msdn.microsoft.com/en-us/windows/hardware/gg487391
http://msdn.microsoft.com/en-us/windows/hardware/gg487391

Atalasoft DotImage Developer's Guide

resource manager shares a common base class which contains methods for adding, getting, and
querying resources, each manager also contains convenience factory methods specific to each
resource type so that making resources is easier.

For example, it might be easier to work with a font by its font name, so The PdfFontManager has a
method that will search through installed fonts and attempt to create a font resource based on that.

Font resources

The PDF Generating library supports fonts in PDF via True Type font files. Fonts resources can be
created from a font's name (such as Goudy Old Style Bold), a path to a .ttf or .otf file or a Stream
containing the True Type font. Note that .otf files may contain either True Type or Type 1 fonts, but
only True Type fonts are accepted.

When creating a font resource, client code assigns the font a name (or accepts an auto-generated
one). The actual name is inconsequential and is only used as a unique identifier for the font. Client
code should feel free to use any name it wishes. All references to that font will be made through
that name and not the resource object.

In version 10.4 and above, there is support for PDF standard Type 1 fonts. In the original version of
Acrobat, there were a set of standard fonts that did not need to be embedded within a PDF file and
were guaranteed to render accurately. These fonts will be pre-installed in any new GlobalResources
object.

The fonts are referred to by their PostScript names:

+ Times-Roman

+ Times-Bold

» Times-Italic

+ Times-BoldItalic

* Helvetica

+ Helvetica-Bold

» Helvetica-Oblique

+ Helvetica-BoldOblique
« Courier

» Courier-Bold

+ Courier-Oblique

» Courier-BoldOblique
* Symbol

» ZapfDingbats

i J Type 1 fonts do not typically have support for more than 255 simultaneously encoded
characters. The standard Roman fonts use PDF Standard Encoding, but Symbol and Zapf Dingbats
use an Identity encoding scheme where the character value corresponds to the Adobe index of a
particular glyph name for the font.

357

Atalasoft DotImage Developer's Guide

Type 1 symbol font encoding

Unicode Character code |Glyph Unicode Character code |Glyph
character character
space 32 space ! 33 !
" 34 A # 35 #
$ 36 3 % 37 %
& 38 & ' 39 >
(40 () 4)
* 42 * + 43 +
. 44 , - 45 -
46 / 47 /
0 48 0 1 49 1
2 50 2 3 51 3
4 52 4 5 53 5
6 54 6 7 55 7
8 56 8 9 57 9
58 ; 59 ;
< 60 < = 61 =
> 62 > ? 63 ?
@ 64 = A 65 A
B 66 B C 67 X
D 68 A E 69 E
F 70 O] G 71 r
H 72 H I 73 I
J 74) K 75 K
L 76 A M 77 M
N 78 N (0] 79 (0]
P 80 n Q 81 C]
R 82 P S 83 z
T 84 T u 85 Y
\% 86 G W 87 Q
X 88 = Y 89 W
Z 90 z [91 [
\ 92 1 93 1

358

Atalasoft DotImage Developer's Guide

Unicode Character code |Glyph Unicode Character code | Glyph
character character
A 94 1 . 95 _
96 a 97 a
b 98 B C 99 X
d 100 6 e 101 €
f 102 ¢ g 103 y
h 104 n [105 L
j 106 ¢ k 107 K
I 108 A m 109 g
n 110 Y o 111 o]
p 112 L q 113 0
r 114 p S 115 o
t 116 T u 117 v
\ 118 [w 119 w
X 120 € y 121 U
z 122 ¢ { 123 {
124 | } 125 }
~ 126 _ 127
128 A 129 A
130 C 131 E
132 N 133 o]
134 U 135 a
136 a 137 a
138 a 139 a
140 a 141 o
142 é 143 é
144 é 145 é
146 i 147 i
148 7 149 T
150 f 151 6
152 o} 153 o}
154 o} 155 o}
156 u 157 u
158 a DYD 159 1]

359

Atalasoft DotImage Developer's Guide

Unicode Character code |Glyph Unicode Character code | Glyph
character character

160 € i 161 Y
¢ 162 ' £ 163 <
o 164 / ¥ 165 o
! 166 f § 167 »

168 . © 169 v
2 170 * « 171 -
- 172 - . 173 1
® 174 - - 175 !
° 176 ° + 177 +
2 178 4 3 179 >

180 x u 181 «
q 182 o 183 .
, 184 + ! 185 *
° 186 = » 187 =
A 188 % 189 |
% 190 # ¢ 191 a
A 192 N A 193 3
A 194 R A 195 @
A 196 ® A 197 ®
£ 198 @ C 199 n
E 200 U E 201 >
E 202 2 E 203 ¢
i 204 c i 205 c
i 206 = i 207 ¢
1) 208 N 209 v
o] 210 ® o] 21 ©
0] 212 ™ 0 213 I
o) 214 N x 215
? 216 - U 217 A
U 218 v U 219 o
U 220 e Y 221 f
P 222 > B 223 Y
a 224 3 4 225 %

360

Atalasoft DotImage Developer's Guide

Unicode Character code |Glyph Unicode Character code | Glyph
character character

a 226 ® a 227 ©
a 228 ™ a 229 z
ES 230 ES C 231 d
e 232 e é 233 é
é 234 é é 235 é
i 236 i i 237 i
7 238 1 T 239 T
3 240 fi 241 i
o 242 | 6 243 (
6 244 0 o) 245)
6 246 6 + 247 +
4] 248 (4] u 249 u
u 250 u a 251 a
u 252 u y 253 y
b 254 b y 255

Embed fonts

Standard Type 1 Fonts are not embedded. Allowed True Type fonts are embedded within created
PDFs by default. True Type fonts contain information about the contexts in which embedding is
permissible.

To embed a font, the PdfFontManager provides the embedding policy for the font. The policy
provided looks at the embedding permissions and returns a PdfFontEmbeddingPolicy object
containing an action to take.These actions include embed, don't embed, or throw an exception. The
default policy provider will embed where allowed and throw an exception when not allowed.

You can also replace the policy provider with a provider that embeds all fonts. Policy providers may
also exclude a set of common fonts that are typically on all systems or are known to Acrobat. In this
case, when a common font is not present, Acrobat will create a matching "faux font".

Color space resources

PDF allows the use of calibrated colors within documents. This can be done through specific
calibrated color spaces or through an ICC Color profile. To handle this the PdfColorSpaceManger
object holds a set of color space resources which can be embedded in PDF documents. See the
section on Colors for more information.

361

Atalasoft DotImage Developer's Guide

Image resources

In PDF images resources are stored as a resolution free stream of two dimensional samples. The
stream is typically compressed in some manner within the file. The Atalasoft DotImage model for
image resource handling to allow the resource manager to accept any object type as an image and
then use a set of installed image compressors to determine how to handle that object type. When
an image resource is created, all handlers are iterated until one determines that it can handle the
object type. That handler then reports a list of possible ways that it can compress the object into a
stream suitable for PDF. A compression method is then selected and subsequently applied to the
object. For example, if presented with a .NET Bitmap object that is 24 bit RGB, the default handler
will report that the image can be compressed using either DCT (JPEG), Flate, or no compression. A
compression selector in the PdflmageManager then selects the most appropriate compression to
use from that list and then the image is compressed to a stream suitable for PDF.

Image resource streams are kept in a "Stored Stream" object. This object is used to allow a chunk of
data to be written out to an appropriate storage device for later retrieval. The default StoreStream
type uses the systems temp folder for creating file streams that will be used for storing data.

This mechanism can be replaced with other systems if needed by changing the StreamProvider
property in the PdflmageManager object. In addition to the default TempStreamProvider, there is a
MemoryStreamProvider which is equivalent, but keeps compressed streams in memory. This will be
fast, but will clearly place a load on memory used and is therefore not recommended for anything
but small images.

The PdflmageManager contains a collection of objects that implement the IPdflmageCompressor
interface for compressing images. By default, this will be initialized to contain an instance of the
GdiImageCompressor object for handling .NET Bitmap objects.

Compressors are selected by their ability to handle a particular object type. For any given object, a
compressor is asked if it can handle the object at a particular "skill." Skills are an indication of the
type of work needed to create the actual image data and includes:

» Perfect: The image is handled as is with no changes.

+ Increaselnformation: The image is handled, but the output image will have more information
(for example, a compressor might not handle 1-bit perfectly, but instead converts it to 24 bit rgb
color).

» Decreaselnformation: The image is handled, but the output image will have less information (for
example, a compressor might not handle 48 bit rgb, but reduces it to 24 bit rgb).

For any given image format, there may be a number of different codecs that could be used to
compress that image. When an IPdfImageCompressor has been selected, it will return a collection
of PdflmageCodec enums that describe how the image will be compressed. Before compressing
the image data, the PdfImageManager calls a CompressionSelector with the set of available
PdflmageCodecs and returns back a PdfimageCompression object which fully describes all the
parameters need to compress the image data. The default CompressionSelector always chooses the
first compression in the list.

When an image is compressed and cached, the PdflmageManager uses a IStoredStreamProvider
object to provide a way to get at the cache later. The default implementation is the
TempFileStreamProvider, which creates a temporary file for the compressed stream for retrieving
later. There is also a MemoryStreamProvider that keeps compressed image data in memory. In

362

Atalasoft DotImage Developer's Guide

most cases, it will not be necessary to change the default selections, but every step is the process is
replaceable if need be.

In addition, there is an extra assembly for interacting with Atalasoft DotImage that contains an
AtalalmageCompressor object for handling all Atalalmage types.

See Integrate with Atalasoft DotImage for more information.

Template resources

PDF defines a way to create page content that can be reused efficiently. In the PDF specification,
these are called Form XObjects, but they are unrelated to the process of data input and collection
(Acro Forms). In Atalasoft DotImage, these are called Templates or Drawing Templates. A template
resource is a reference to a DrawingTemplate object. A DrawingTemplate object is very similar to a
PdfGeneratedPage in that it contains a bounding rectangle which defines a clipping rectangle for
the entire DrawingTemplate and a DrawingList which contains the shapes or operations that will
mark the page. DrawingTemplate objects themselves can refer to all other resource types.

Shapes

The Atalasoft PDF Generating library includes a hierarchy of high-level shapes. Each shape is
meant to fully encapsulate the shape's parameters and be able to draw itself. There are shape
objects that represent paths, circles, arcs, rounded rectangles, images, and text. Each of these
objects descends from a single class, PdfBaseShape. PdfBaseShape contains the definitions for the
shape's color (fill and stroke), the line style used for stroking, and the location, scale and rotation
of the object. Shapes that descend from PdfBaseShape typically only have to concern themselves
with how they are drawn (how they are filled or stroked) and not with how they are placed on

the page (location, scale, rotation). There is no requirement to use any of the PdfBaseShape-
derived classes. Each shape is implements at least the PdfRenderable interface and optionally the
PdfRenderableContainer and PdfResourceConsumer interfaces. All shapes must be serializable.

PdfPath

Path shapes are one of the fundamental components of PDF rendering. A path is a list of operations
that are performed in sequence to draw the path. There are four operations that can be performed:
move, line, curve and close. For example, you could create a square path with the following C#
code:

private PdfPath Square (double wide, IPdfColor outlineColor, double lineWidth)

{
PdfPath path = new PdfPath (outlineColor, lineWidth) ;

path.MoveTo (0, O0);
path.LineTo (wide, O0);
path.LineTo (wide, wide) ;
path.LineTo (0, wide);
path.Close() ;

return path;

}

The path starts with a move operation and traces the outline of the square. Notice that the square
ends with a close operation and not another line. This is because PDF recognizes closed paths and
treats them differently. When path is closed, the PDF viewer will automatically connects a straight

363

Atalasoft DotImage Developer's Guide

line from the last point to the first point and creates a joint to make a clean corner. If you connect
the line directly yourself, the PDF viewer doesn't know that it should create a clean corner. The
results may not be what you expect. For example, the square on the left was drawn with a close
operation. The square on the right was drawn without a close operation.

O Al the path operations return the PdfPath object itself so you can use a "fluent" style if you
choose. The previous path construction could have been written as:

return path.MoveTo (0, 0).LineTo(wide, 0).LineTo(wide, wide) .LineTo (0,
wide) .Close () ;

Curves in PDF are represented by cubic Bézier functions. A Bézier is represented by four points, a
start point and an end point (P 0 and P 3) and two control points (P 1 and P 2) and is represented
by the following formula:

B(t) = (1—t)3P, + 3t(1 — t)*2P, + 3t*(1 —)P, + t3P,

Where t represents time and ranges from 0.0 to 1.0. B(t) represents a point on the curve at time t.

Bézier curves have a number of desirable properties including: a small amount of information (4
points) can represent a wide variety of curves, they can be rendered efficiently, the entire curve will
always be contained within a rectangle bounded by the minima and maxima of the four points and
the segments POP1 and P2P3 are tangent to curve at the start and end points respectively.

In the PdfPath shape, you can add a curve using the CurveTo method. This method takes three
points which represent the two control points and the end point of the curve. The start point of the
Bézier will be the last point in the path from any of MoveTo, LineTo or CurveTo methods.

Paths can be filled, stroked or clipped. When a line is stroked, there are a variety options that can be
selected for the style of the line, including thickness, joint style, end caps and dashes. These are all
available in the LineStyle property of PdfBaseShape.

364

Atalasoft DotImage Developer's Guide

The thickness of a line is in PDF units and defaults to 1.0. When set to 0, the PDF viewer is instructed
to render the line in the thinnest possible way. Since this is device-dependent, the final output

will not be consistent from device to device and this should be avoided (consider the difference
between the thinnest possible line on a 96 dpi monitor versus a 2400 dpi phototypesetter). If a
client application wants to create a hairline, it should pick an appropriate thickness instead of 0.

The joint style for a path is how consecutive segments are merged together. There are three
possible styles, square, rounded and beveled as shown in these squares.

L1010

Paths may be stroked in an arbitrary dash pattern. The pattern is a phase number and a collection
of alternating dash lengths and gap lengths. The dash and gap lengths are distances along the path
in PDF units. The phase is how far into the pattern to start a line. The entire collection of dash and
gaps is used until it is exhausted, then it is repeated until the complete path has been stroked.

The following figure shows dash patterns, from top to bottom: [1], [1 2], [0.5], [0.5, 1, 2, 1]

In the sample dash patterns, a single entry implies alternating dash and gaps of the same length. In
the bottom example, you can see how complex dashes patterns can be made. Each pattern above
has a phase of 0, meaning that the PDF viewer starts the pattern at the beginning. If the phase were
0.5, the first example would have started with a half dash then continued normally.

Paths may be stroked with three different types of ends: butt, round or projecting square.

The final line style is the miter limit. This is a parameter that is used to handle cases when a path
with a highly acute angle will project in a reasonable way. In this picture the path is shown with an
acute angle and the full miter is project from the line in blue. The miter limit prevents the miter
from extending out this distance.

365

Atalasoft DotImage Developer's Guide

miter length

The miter limit is a point at which the mitering will be turned off. It is defined by the ratio of the
miter length and the line thickness. When this ratio exceeds the miter limit, mitering will not be
done on the line. Since the miter length is related to the angle between the two lines, there is also a
relationship between miter limit and line join angle:

miter length 1
line width . (g)

Where theta is the angle between the two lines.
A miter limit of 2.0 will cut off miters at angles less than 60 degrees. The default miter limit is 10.

In addition to stroking, paths may be filled with a color. A path may be filled using one of two
techniques, either the non-zero winding rule or the even-odd rule. In the non-zero winding rule,
horizontal rays are shot through the path. Whenever a path segment crosses the ray going up,
one is added to a winding number. Whenever a path segment crosses the ray going down, one

is subtracted from the winding number. Whenever the winding number is non-zero, areas along
the ray will be filled. In the even odd rule, rays are shot through the path. Whenever the ray has
crossed an odd number of path segments, areas along the ray will be filled. The choice of the rule
will produce different filled areas in compound paths or paths that self-intersect.

The following figure shows the same shape with the non-zero winding rule (left) and the even-odd
rule (right).

PdfRectangle

PdfRectangle is a shape that represents a rectangle. In addition to the properties of PdfBaseShape,
itincludes a property Bounds, which represents the area of the rectangle. The fill method doesn't
affect how a rectangle is filled.

366

Atalasoft DotImage Developer's Guide

PdfRoundedRectangle

PdfRounded rectangle is a shape that represents a rectangle with rounded corners. In addition to
the normal PdfBaseShape properties, PdfRoundedRectangle includes a property Bounds, which
represents the area of the rectangle and a property CurveRadius that represents the radius of each
corner.

PdfCircle

PdfCircle is a representation of a circle from a center and radius. The circle itself is drawn in PDF
using a Bézier path approximation of the circle. By changing the Scale property to a non-uniform
scale you can get an ellipse.

PdfArc

PdfArc represents a circular arc. It consists of a the center and radius of a circle as well as the start
angle and end angle of the arc in degrees. If the property Clockwise is set to true, the arc will be
drawn from the start angle to the end angle in a clockwise direction, otherwise the arc will be drawn
counterclockwise. If the property IncludeWedge is set to true, the center will be added to the path
drawn.

The following figure shows two PdfArc shapes stroked and filled with IncludeWedge set to false
(left) and IncludeWedge set to true (right).

PdfiImageShape

PdflmageShape represents an image placed in a rectangular area on the page. It includes a Bounds
property representing the area that will be covered with the image and ImageName, the name

of an image resource to use to fill the shape. The FillColor, OutlineColor and Clip properties of
PdfBaseShape are ignored.

The following C# code creates an image shape from a bitmap.

PdfImageShape ConvertBitmapToShape (PdfGeneratedDocument doc, Bitmap bmp)
{
string imageName = doc.Resources.Images.AddImage (bmp) ;
PdfImageShape shape = new PdfImageShape (imageName, new PdfBounds (0,
0, bmp.Width, bmp.Height)) ;
bmp.Dispose(); // if you don't need the Bitmap, dispose it
return shape;

367

Atalasoft DotImage Developer's Guide

If you have also purchased the DotImage DocumentImaging toolkit, then you will have access

to the classes AtalalmageCompressor and AtalajpegStreamCompressor in the assembly
Atalasoft.dotImage.PdfDoc.Bridge. The AtalalmageCompressor can be added to Images resource
manager in a PdfGeneratedDocument's Resources and will handle compressing any object of
type Atalalmage. Similarly the AtalaJpegStreamCompressor can be added to the Images resource
manager and will handle streams that represent JPEG images. Any stream passed in will, if it is a
JPEG image, be copied to the current StoredStreamProvider (default is a temporary file) without
recompressing the JPEG data.

To install AtalaJpegStreamCompressor, use the following C# code;

doc.Resources.Images.Compressors.Insert (0, new
AtaladpegStreamCompressor ()) ;

In addition to the above method to install a new compressor, the AtalalmageCompressor object
contains a utility factory method which will construct a new PdfGeneratedDocument with both the
AtalalmageCompressor and the AtalaJpegStreamCompressor pre-installed.

To create a document using the factory method, use the following C# code:

PdfGeneratedDocument doc = AtalaImageCompressor.CreateDocument () ;

O the CreateDocument() method also has a flavor that accepts instances of the Jpeg2000Encoder
and Jb2Encoder objects (or null for none). If you have a license for these objects, you can pass
them in and they will automatically be used for color images and 1-bit images respectively.

When the AtalaImageCompressor is installed in a PdfGeneratedDocument, you can pass an
AtalaImage directly into the resource manager.

In addition to the AtalaImageCompressor, the bridge assembly also contains a class,
AtalalmageCoordinateConverter, which can be used to convert coodinates back and forth between
image coordinates and image resolution to PDF coordinates and PDF units.

Remember that images can consume very large amounts of memory. Keeping images in memory
will not scale well beyond a few dozen images. If you're working with hundreds of pages with
hundreds of images, you should adopt an approach where you create image resources as early as
possible and dispose the original images soon thereafter.

You can convert a folder of images to a PDF by using the following C# code:

public void OneImagePerPage (string inputDirectory, string outputFile)
{

PdfGeneratedDocument doc = AtalalImageCompressor.CreateDocument () ;

FileSystemImageSource images = new FileSystemImageSource (inputDirectory, true);
while (images.HasMoreImages()) {
Atalalmage image = images.AcquireNext () ;

PdfImageShape shape = AtalaImageCompressor.CreateImageShape (doc.Resources, image) ;
PdfGeneratedPage page = doc.AddPage (new PdfGeneratedPage (shape.Bounds.Width,
shape.Bounds.Height)) ;
page.DrawingList.Add (shape) ;
images.Release (image) ;
}
if (doc.Pages.Count > 0)
doc.Save (outputFile) ;
}

368

Atalasoft DotImage Developer's Guide

PDF text shapes

There are six main text shapes available, PdfTextLine, PdfClippedTextLine, PdfTextPath, PdfTextBox,
PdfStyledTextBox and DynamicPdfTextBox. Each of the set have different uses and constraints.

PdfTextLine is the simplest of the set. It represents a horizontal line with text on top of it. Text is
drawn along the line as people tend to hand write - the bottoms of most letters will be tangent
to the line, except for letters with descenders (such as g, p, q, y etc.) which will appear with the
descender below the line.

This is a PdfTextLi

PdfClippedTextLine represents a line of text that will be clipped inside a bounding box on the page.
It uses a PdfTextLine shape internally to draw the text.

PdfClippedTextLine will clip

PdfTextPath is similar to PdfTextLine except that instead of a horizontal line, text will follow any
arbitrary set of path operations, including Bézier curves.

OWS g 4
o Pos

el
this is text&

PdfTextBox is a shape that draws formatted text on a page. The text will be formatted to fit the
bounds using the text properties.

PdfTextBox will
format text to fit
in the box.

PdfStyledTextBox is similar to PdfTextBox except that it accepts a StyleTextInput object which can be
used to add new styled text to the box. Typically this will be used for font changes or color changes.

DynamicPdfTextBox is similar to PdfTextBox except that instead of the text being limited to a fixed
box, the DynamicPdfTextBox lets you set a fixed width and it will grow the box up to a maximum.

Each text shape that inherits from PdfBaseTextShape will include the RenderMode property. This is
a flags enumeration that allows you to pick one of 8 possible modes of rendering the text which are
a combination of filling, stroking, and clipping.

369

Atalasoft DotImage Developer's Guide

The following C# code provides a demonstration of the RenderMode property.

The code produces the following output.

FillText R

StrokeText W

FilThenStrokeText NS ——
Invisible S

FillTextAndClip 12YT

strokeTextandclip |} @XE

FillStroke TextAndClip Text

Clip 1 BYT

PdfTable

PdfTable is a conceptual model of a table of text. The table is broken down into a collection of
columns. Rows are added to the table to fill out the columns with data. Once the data has been
added to the table, call the Fill() method to finalize the content.

Columns are defined by a few properties:

» Akey or name for referring to the column
+ Text to display as the column header

The width of the column in PDF units

+ The alignment of text in the column

+ Left and right padding of the column

Rows can be represented by a Dictionary<string, string> where each key corresponds to a key in the
columns. The value associated with that key in the dictionary will be displayed in the row under the
column. In addition, rows can be represented by an enumeration of objects that have properties
that correspond to the column names.

The following C# creates a simple table.

[Serializable]
public class Person
{
public string Name { get; set; }
public int Age { get; set; }
public string Color { get; set; }
}

public void MakeSimpleTable ()
{

PdfGeneratedDocument doc = new PdfGeneratedDocument () ;

370

Atalasoft DotImage Developer's Guide

PdfGeneratedPage page = doc.AddPage (PdfDefaultPages.Letter) ;
PdfTable table = new PdfTable (new PdfBounds (72, 300, 400, 400), "Arial", 12);

table.HeaderFontName = "Arial Bold Italic";

table.BorderStyle = PdfTableBorderStyle.Grid;

table.Columns.Add (new PdfTableColumn ("Name", "Person", 120, PdfTextAlignment.Center,
8, 8));

table.Columns.Add (new PdfTableColumn ("Age", "Age", 60, PdfTextAlignment.Center, 8,
8));

table.Columns.Add (new PdfTableColumn ("Color", "Favorite Color", O,
PdfTextAlignment.Center, 8, 8));

List<Person> people = new List<Person> () {

new Person() { Name = "John", Age = 15, Color = "Orange" },
new Person () { Name = "Emily", Age = 37, Color = "Blue" },

new Person() { Name = "Philippe", Age = 19, Color = "Green" },
new Person () { Name = "Jill", Age = 23, Color = "Ochre" }

}i

table.AddRows (people.GetEnumerator ()) ;
table.Fill (doc.Resources.Fonts) ;

page.DrawingList.Add (table) ;
doc.Save ("basictable.pdf") ;

Parson Age Favorite Color
Johm 15 Orange
Emnily 37 Blue
Philippe 18 Green
Jill 23 Cichre
PdfTemplateShape

The PdfTemplateShape is a very simple shape that is used to place a DrawingTemplate (represented
by a Template resource name) on a page. In order to work with a PdfTemplateShape, you need

to first create a DrawingTemplate object and add it to your document's Template resources. Then
construct a PdfTemplateShape using the resource's name and a desired Bounds on the page. The
PdfTemplateShape will be drawn using the all the transformation information in PdfBaseShape
(Location, Scale, and Rotation).

© 1t is easier to make a template shape with coordinates that is based around the origin and
Bounds that match the DrawingTemplate's bounds, then use the Location to place it where you
want.

The following C# code makes a simple template.

public void SimpleTemplate ()
{

PdfGeneratedDocument doc = new PdfGeneratedDocument () ;
doc.EmbedGeneratedContent = false;

PdfGeneratedPage page = doc.AddPage (PdfDefaultPages.Letter) ;
DrawingTemplate template = new DrawingTemplate (new PdfBounds (0, 0, 200, 200));

template.DrawingList.Add (new PdfRoundedRectangle (template.Bounds, 12,
PdfColorFactory.FromRgb (.8, .8, 0)));

371

Atalasoft DotImage Developer's Guide

template.DrawingList.Add (new PdfCircle (new PdfPoint (template.Bounds.Width / 2,

template.Bounds.Height / 2),
template.Bounds.Height / 4, PdfColorFactory.FromRgb (0, 0, 0), 2,

PdfColorFactory.FromRgb (.8, .2, .1)));

string resourceName = doc.Resources.Templates.Add (template) ;

page.DrawingList.Add (new PdfTemplateShape (resourceName, new PdfBounds (144, 400,
template.Bounds.Width, template.Bounds.Height)))

doc.Save ("simpletemplate.pdf") ;
}

Note that the DrawingTemplate object has a DrawingList in it that is identical to a
PdfGeneratedPage object. As such, you can put any PDF shape (and any IPdfRenderable) object into

the your DrawingTemplate.

The output of this example is shown below:

372

Atalasoft DotImage Developer's Guide

© when the DrawingList in a DrawingTemplate is rendered it will be clipped to the
DrawingTemplate.Bounds property. Since lines in PDF are centered in width over the
mathematical line that defines them, adding a PdfRectangle with a drawn outline that is
coincident with the DrawingTemplate.Bounds will result in half of the rectangle's outline being
clipped (since it extends beyond the DrawingTemplate.Bounds.

Although DrawingTemplates offer a great deal of flexibility, there are a few artifacts that may

be undesirable. All graphic elements will be scaled to the PdfTemplateShape's bounds (and it's
Scale). You might wish to make a background box to represent an underlay of a highlighted area
and define a single unit-sized DrawingTemplate to represent it it. This will work as expected if the
template only uses filled shapes, but if you add any lines, the line width will also be scaled, possibly
non-uniformly, producing unpleasant results. In fact, anything with a typically fixed aspect ration
(images, text, circles) will get scaled and may look off.

The original intent for DrawingTemplates in PDF was to create letterhead or logos that could be
shared from page to page without appreciably increasing the document size.

By modifying the previous sample slightly, we can see how multiple PdfTemplateShapes can be
used on a page without altering the original shape.

The following code uses multiple copies of the sample DrawingTemplate.

public void SimpleTemplate3 ()

{

PdfGeneratedDocument doc = new PdfGeneratedDocument () ;
doc.EmbedGeneratedContent = false;

PdfGeneratedPage page = doc.AddPage (PdfDefaultPages.Letter) ;

DrawingTemplate template = new DrawingTemplate (new PdfBounds (0, 0, 204, 204));
template.DrawingList.Add (new PdfRoundedRectangle (new PdfBounds (2, 2,
template.Bounds.Width - 4, template.Bounds.Height - 4),

12, PdfColorFactory.FromRgb (.8, .8, 0), PdfColorFactory.FromRgb (0, 0, 0), 4));
template.DrawingList.Add (new PdfCircle (new PdfPoint (template.Bounds.Width / 2,
template.Bounds.Height / 2),

template.Bounds.Height / 4, PdfColorFactory.FromRgb (0, 0, 0), 2,
PdfColorFactory.FromRgb (.8, .2, .1)));

string resourceName = doc.Resources.Templates.Add (template) ;

PdfTemplateShape shape = page.DrawingList.Add<PdfTemplateShape> (new
PdfTemplateShape (resourceName, new PdfBounds (0, 0, template.Bounds.Width / 4,
template.Bounds.Height / 4)));

shape.Location = new PdfPoint (144, 400);

for (int 1 = 1; i <= 30; i++)

{

shape = page.Drawinglist.Add<PdfTemplateShape> (new PdfTemplateShape (shape)) ;
shape.Rotation = i * 3;

}

doc.Save ("simpletemplate3.pdf") ;
}

373

Atalasoft DotImage Developer's Guide

PostnetBarcodeShape

The PostnetBarcodeShape is an example shape that renders a zip code using a Postnet Barcode. A
Posnet bar code accepts a text string with either 5, 9, or 11 digits. The bar code is placed starting at
the Location property and moving to the right. Full height bars will be 0.125 inches high and short
bars will be 0.05 inches high.

GSave / GRestore

The GSave and GRestore objects are not strictly shapes — they are IPdfRenderable objects that
perform graphics state save and restore operations in a DrawingList object.

In PDF (and historically in PostScript), many graphics operations make changes to the current
graphic state that aren't changeable. For example, if the clipping area in a PDF page can only be
made smaller by clipping operations, not larger. To work around this issue, there are operations in
PDF to save and restore the current graphics state. Graphics state includes:

+ Stroke Color

» Fill Color

374

Atalasoft DotImage Developer's Guide

+ Transformation matrix

* Font name

+ Fontsize

+ Text rendering mode

+ Font leading

+ Word spacing

» Character horizontal scaling

+ Line style (width, dash pattern, line caps, line join, miter limit)

+ Clipping
+ Current path

Normally, client code will not need these operations as PdfBaseShape is careful to save and restore
the current transformation matrix and shapes that clip automatically generate GSave and GRestore
operations.

There are cases, where it does make sense. For example, if you need to watermark or otherwise
add content on top of existing content an existing PDF document created by software that is not

so careful, it will be vital to ensure that the graphics state is predictable. This can be done either by
inserting a GSave object in the beginning of the DrawingList and a GRestore object at the end of the
list.

The following C# code ensures a clean graphics state in existing content.

PdfGeneratedDocument doc = new PdfGeneratedDocument (sourceStream, true);
PdfGeneratedPage page = doc.Pages|[0] as PdfGeneratedPage;

if (page == null) throw new Exception ("unable to import page 0");
page.DrawinglList.Insert (0, new GSave());

page.DrawingList.Add (new GRestore());

// add more content here

doc.Save ("output.pdf") ;

Transform

The Transform object is not a shape. It is an object that implements IPdfRenderable. Transform
encapsulates a PdfTransform object that will be applied to the PDF content that follows it. Note
that transformations are cumulative not commutative. A scale transform applied after a translate
transform is rarely the same as a translate transform followed by a scale transform.

Marked content

PDF allows content on a page to contain special markups that define special areas of interest with a
name. The meaning of these names are highly specific to the task they represent. For example, the
tag "Tx" is used to mark where text operations should fall for rendering an annotation with variable
text; the tag "ReversedChars" is usually used for text in a right-to-left reading system that is being
rendered by a font that follows left-to-right advancing.

The PdfMarkedContent object encapsulates the PDF marked content markups. It is not a shape
itself, but instead contains a DrawingList that will contain content that will be surrounded by
marked content markups.

375

Atalasoft DotImage Developer's Guide

Make custom shapes

To make custom shapes, the easiest approach is to subclass the PdfBaseShape object. Consider

the task of making a shape that represents a regular polygon. To make a regular polygon, you

need a center, a radius and the number of sides. One way to generate the points is to use get one
starting point and rotate it around the center by the angle subtended each side. In creating a new
descendant of PdfBaseShape, you need to write a constructor, a clone method and a means to draw

the shape:

[Serializable]
public class RegularPolygon : PdfBaseShape

{

public RegularPolygon (PdfPoint center, double radius, int sides)
base (PdfColorFactory.FromGray (0.0), 5.0)

{
if (sides < 3) throw new ArgumentException ("Polygons must have at least 3 sides");

GeneratePoints (center, radius, sides);
Center = center;
Radius = radius;
Sides = sides;
}
public PdfPoint Center { get; private set; }
public double Radius { get; private set; }
public int Sides { get; private set; }
private void GeneratePoints (PdfPoint center, double radius, int sides)
{
Points = new List<PdfPoint> () ;
PdfPoint currPoint = new PdfPoint (0, radius):;
Points.Add (currPoint + center);
PdfTransform transform = PdfTransform.Rotate (2 * Math.PI / (double)sides);
for (int 1 = 1; 1 < sides; i++)
{
currPoint = transform.Transform(currPoint) ;
Points.Add (currPoint + center);
}

}
public List<PdfPoint> Points { get; private set; }

protected override PdfBaseShape ClonelInstance ()
{

return new RegularPolygon (Center, Radius, Sides):;

}
protected override void DrawShape (PdfPageRenderer pdfPageRenderer)

{
PdfPath path = new PdfPath (this);
for (int 1 = 0; 1 < Points.Count - 1; i++)
{
PdfPoint p = Points[i];
if (1 == 0) { path.MoveTo(p); }
else { path.LineTo(p); }
}
path.Close () ;
path.Render (pdfPageRenderer) ;
}
}

In this example, a private list of points is used to hold the points at the corners of the polygon.
GeneratePoints() creates a start point at (0, radius) and adds successive rotations of the point to

376

Atalasoft DotImage Developer's Guide

the list. DrawShape is an abstract method defined in PdfBaseShape. Overriding this method lets us
draw the polygon as we see fit - in this case we use a PdfPath object to draw the shape for us.

Suppose that you want to create a check box shape. A check box could have a property for its size
as well as a property for whether or not it is checked. We could implement this very simply with a
PdfBaseShape.

Create a check box with a PdfBaseShape using C#.

[Serializable]
public class PdfCheckBoxShape : PdfBaseShape
{
public PdfCheckBoxShape (double size, bool isChecked, IPdfColor outlineColor, double
lineWidth)
base (outlineColor, lineWidth)
{
Size = size;
IsChecked = isChecked;
}

public double Size { get; set; }
public Dbool IsChecked { get; set; }

protected override PdfBaseShape CloneInstance ()

{

return new PdfCheckBoxShape (Size, IsChecked, OutlineColor, Style.Width);
}

protected override void DrawShape (PdfPageRenderer w)
{

PdfRectangle rect = new PdfRectangle (new PdfBounds (0, 0, Size, Size), OutlineColor,
Style.Width, FillColor);

rect.Render (w) ;

if (IsChecked)

{

PdfPath path = new PdfPath (OutlineColor, Style.Width) ;

path.MoveTo (new PdfPoint (0, 0));

path.LineTo (new PdfPoint (Size, Size));

path.MoveTo (new PdfPoint (0, Size));

path.LineTo (new PdfPoint(Size, 0));

path.Render (w) ;

}
}
}

When adding these shapes to a PDF, we get something that looks like this:

Or like this when a fill color has been set:

377

Atalasoft DotImage Developer's Guide

This may be satisfactory for your needs, but what if you didn't want to have a fill color at all and
maybe you feel that PdfBaseShape does too much work for you? In either case, you could define
your own class from the ground up. All you would need to do is create a class that implements the
interface IPdfRenderable, as in this C# code.

[Serializable]
public class PdfSimplestCheckBoxShape : IPdfRenderable
{
public PdfSimplestCheckBoxShape (double size, bool isChecked, PdfPoint location, double
lineWidth)
{
Size = size;
IsChecked = isChecked;
Location = location;
LineWidth = lineWidth;
}

public double Size { get; set; }
public bool IsChecked { get; set; }
public PdfPoint Location { get; set; }
public double LineWidth { get; set; }

public string Name { get; set; }

public void Render (PdfPageRenderer w)
{

w.DrawingSurface.Begin () ;
w.DrawingSurface.AddRect (new PdfBounds (Location.X, Location.Y, Size, Size));

if (IsChecked)

{
List<PdfPathOperation> path = new List<PdfPathOperation>();
path.Add (PdfPathOperation.MoveTo (Location)) ;
path.Add (PdfPathOperation.LineTo (Location.X + Size, Location.Y + Size));
path.Add (PdfPathOperation.MoveTo (Location.X, Location.Y + Size));
path.Add (PdfPathOperation.LineTo (Location.X + Size, Location.Y));
w.DrawingSurface.AddPath (path) ;

}

PdfLineStyle style = PdfLineStyle.Default;
style.Width = LineWidth;
w.DrawingSurface.Stroke (style, PdfColorFactory.FromGray (0))
w.DrawingSurface.End() ;
}
}

In this case, the infrastructure of PdfBaseShape is gone, so we have to implement the method
Render(). This method is give an object called PdfPageRenderer which is responsible for creating
content that will go into the pages content. This object itself is an abstraction of the PDF rendering
model and provides a number of operations that make is easy to create correct PDF content. Within
the PdfPageRenderer object, there is a property called DrawingSurface. The DrawingSurface is

a virtual canvas for performing drawing operations, including paths, rectangles, templates, and
images. To draw shapes, you add path elements (paths or rectangles) then either stroke or fill them.

378

Atalasoft DotImage Developer's Guide

Before performing any drawing operations, you must call the Begin() method and after you are
done, you must call the End() method. Begin() and End() calls may be nested to any depth.

Note the following:

* Whether you are subclassing PdfBaseShape or implementing IPdfRenderable, you should
make your object serializable. When document content is embedded within a PDF document,
the elements of drawing lists will be serialized into the final PDF. If any element is not
serializable, this will cause a failure during a Save when the PdfGeneratedDocument property
EmbedGeneratedContent is true.

« Ifyou are implementing a shape that uses document resources (fonts, colorspaces, templates,
images, etc.) or contains an object that implements IPdfResourceConsumer, you must
implement the interface IPdfResourceConsumer. This interface allows an object to report the
resources it uses as well as rename them if needed. In implementing ResourcesUsed and
NotifyResourceRenamed, if you refer to Template resources or any other object that implements
IPdfResourceConsumer, you must also find and return the resources consumed by them.

» Ifyou are implementing a shape that contains text, consider implementing the interface
IPdfTextContainer which will allow a standard way of setting and getting text from a shape.

« Ifyou are implementing a shape that may contain sub-shapes, consider making a property
of type PdfDrawingList and implementing IEnumerable<IPdfRenderable> and returning
the PdfDrawingList's GetEnumerator(). This will ensure that child enumeration happensin a
predictable manner.

Round trip documents

PDF documents can be created with a number of different tools and the process or toolset used

in their creation determines the actual PDF data content, which in turn may bear little or no
resemblance to the original data structures. As such, PDF is often considered to be a write-only

or final format. The Atalasoft PDF Generating toolkit provides some means around this limitation.
If you create a PDF from a PdfGeneratedDocument object and set the EmbedGeneratedContent
property to true, then after the PDF content has been rendered, the DrawingList object in the
PdfGeneratedPage will be serialized and embedded in the PDF so that it can be retrieved later and
rebuilt.

In other words, you can get full round-trip editing of PDFs by embedding your Generated content
within the PDF itself. This also means that shape objects like PdfCircle which generate Bezier curves
in the final PDF will come back as PdfCircle objects and not as a PdfPath object.

Embedding the Generated content adds a moderate amount of overhead to the final PDF, but
resource objects do not count in this overhead as these resources will get rebuilt from the PDF
content itself.

The Atalasoft PDF Generating toolkit also includes the ability to import pages from the Atalasoft
PdfDocument object. For example, you can dynamically insert a cover page into an existing
document or easily pull in a page, say a legal disclaimer, from an existing PDF. PdfPage objects from
the Pages property of PdfDocument also inherit from the BasePage object and can therefore go
into the Pages collection of a PdfGeneratedDocument.

379

Atalasoft DotImage Developer's Guide

PdfPage objects from PdfDocument objects are very light-weight in comparison to
PdfGeneratedPage objects as they only reference the original page instead of containing a
representation of data within the page (size, rotation, annotations, scripts, etc.).

Integrate with DotImage

In addition to the main assembly, there is an additional assembly, Atalasoft.PdfDoc.Bridge. This
assembly provides a bridge between Atalasoft DotImage classes and the PDF Generating classes.
The main class is the AtalalmageCompressor. To use this class, make an instance of it and add it to
the Compressors collection using the following code.

PdfGeneratedDocument doc = new PdfGeneratedDocument () ;
doc.Resources.Images.Compressors.Insert (0, new AtalalmageCompressor()):;

This will provide tools that will allow the PdflmageManager method FromImage to accept
Atalalmage objects. All pixel formats are accepted by the AtalalImageCompressor. In addition, if the
AtalalmageCompressor object is constructed with instances of the Atalasoft Jpeg2000Encoder and
Jb2Encoder objects, then images can be compressed using JPX and JBIG2 encoding.

There is also another image compressor, the AtalajpegStreamCompressor. This compressor accepts
a .NET stream object and if the stream contains a JPEG image, it will create an image resource with
the already compressed stream and will not degrade the image by decoding and re-encoding it.

To make this process easier, AtalalImageCompressor has a static factory method called
CreateDocument which will create a new, empty PdfGeneratedDocument object with the
AtalalmageCompressor and AtalajpegStreamCompressor preinstalled.

C#

PdfGeneratedDocument doc = AtalalImageCompressor.CreateDocument () ;

PdfGeneratedDocument docl = AtalalImageCompressor.CreateDocument (new Jpeg2000Encoder (),
null);

string imName = doc.Resources.Images.AddImage (atalaImage) ;
string imNamel = docl.Resources.Images.AddImage (atalalImage) ;

In this example, doc1 is created with the Atalasoft Jpeg2000Encoder which will provide JPX
compression, if it is available.

Since Atalalmage objects may contain calibrated color profiles through the ColorProfile property,
it is advantageous to pass this on to the generated PDF. This can be done manually, by creating a
PdfColorSpace resource through the PdfColorSpaceManager, but it can be done automatically via
the static method AddImageResource in the AtalalmageCompressor:

C#

AtalaImage image = new Atalalmage (200, 200,

PixelFormat.Pixel24bppBgr) ;

image.ColorProfile = ColorProfile.FromSrgb () ;

string[] names = AtalaImageCompressor.AddImageResource (doc.Resources, image) ;

In this example, AddImageResource will first see if the image has a non-null ColorProfile and if so it
will create a PdfColorSpaceResource for that ColorProfile and will then make a PdfImageResource

380

Atalasoft DotImage Developer's Guide

for the Atalalmage using the created PdfColorSpaceResource. The method returns an array of two
strings. The first string is the name of the image resource and the second will be the name of the
color space resource or null if there was no color profile.

When working with PdfImageShape objects, it is necessary to size the resulting object to

PDF dimensions. This can be done automatically by using the static methods ImageSize and
ImageSizeAt in AtalalmageCompressor. Given an Atalalmage object, these methods return a
PdfBounds object that is sized in PDF units to match the image's real-world dimensions as specified
by the Width, Height, and Resolution property of the image. If the units are not specified in the
resolution, they will be treated as if they were pixels per inch.

Finally, there are a pair of utility methods in AtalalImageCompressor to make PdfimageShapes as
automatically as possible. They are called CreateImageShape() and CreateImageShapeAt(). Both
are passed the PdfGeneratedDocument Resources property and the source AtalaImage and return
a new PdflmageShape object representing that image. CreateImageShapeAt() also takes an x and
y in PDF coordinates specifying location of the lower left corner of the image. Note that once a
PdflmageResource or PdfImageShape object has been created from an AtalaImage, the source
image is no longer necessary and may be disposed freely. The PdfimageShape object and the
PdflmageResource are themselves very lightweight when compared with the original Atalalmage
as the actual image data will have been written out to a temporary stream on resource creation
and is kept out of memory entirely - even at the point of calling PdfGeneratedDocument, the data
is streamed across from the temporary stream to the final PDF and never stays in memory beyond
buffering.

Actions

PDF defines a set of actions that can be performed in response to user interaction on a page or
in response to other events that happen at a page or document level. In general, anything that
cause or respond to an event usually has a suite of actions associated with it. For example, any
PDF document may contain a list of bookmarks and instead of having each bookmark be simply
associated with a location within the document, they are instead an action list of actions to take,
one of which is likely to be a "go to view" action.

Actions may be put in a number of places within a PdfGeneratedDocument including:

» PdfGeneratedDocument.AdditionalActions: A set of actions that are triggered by document-level
events.

+ PdfGeneratedDocument.GlobaljavaScriptActions: A set of JavaScript-only actions that are
performed when a document has been opened. This is intended to be used to define global
functions to be shared across all JavaScript actions in the entire document.

« PdfGeneratedPage.AdditionalActions: A set of actions that are triggered by page-level events.

+ BaseAnnotation.AdditionalActions: A set of actions that are triggered by annotation events. Even
though the PDF spec allows for these to exist in all annotation types, they appear to only be
honored by Adobe Acrobat with BaseWidgetAnnotation objects.

+ Bas