
Atalasoft DotImage
Developer's Guide

Version: 11.5.0
Date: 2024-05-24



© 2024 Tungsten Automation. All rights reserved.

Tungsten and Tungsten Automation are trademarks of Tungsten Automation Corporation, 
registered in the U.S. and/or other countries. All other trademarks are the property of their 
respective owners. No part of this publication may be reproduced, stored, or transmitted in any 
form without the prior written permission of Tungsten Automation.



Table of Contents
Preface................................................................................................................................................... 12

Related documentation......................................................................................................................12
Resources............................................................................................................................................. 12

Chapter 1: Atalasoft DotImage.......................................................................................................... 13
Atalasoft DotImage Photo................................................................................................................. 13

Scenarios................................................................................................................................... 14
Sample code............................................................................................................................. 14

Atalasoft DotImage Photo Pro..........................................................................................................14
Scenarios................................................................................................................................... 15

Atalasoft DotImage Document Imaging......................................................................................... 15
Scenarios................................................................................................................................... 16

Atalasoft DotImage add-ons............................................................................................................. 17
BarcodeReader......................................................................................................................... 17
Barcode Writing....................................................................................................................... 18
OCR.............................................................................................................................................18
Text translator.......................................................................................................................... 20
PDF Translator.......................................................................................................................... 20
PDF Reader............................................................................................................................... 21
JPEG2000 Codec....................................................................................................................... 22
DICOM Codec........................................................................................................................... 23
Advanced Document Cleanup................................................................................................23
Advanced Photo Effects.......................................................................................................... 26
DWG decoder............................................................................................................................27
Office Decoder..........................................................................................................................27
OfficeAdapterDecoder.............................................................................................................28
Common Decoders.................................................................................................................. 32
Atalasoft DotImage ISIS..........................................................................................................32

Chapter 2: Use Atalasoft DotImage.................................................................................................. 34
Atalasoft DotImage documentation.................................................................................................34
Atalasoft DotImage NuGet Packages...............................................................................................34

Visual Studio Activation Wizard Extension........................................................................... 34
Getting Started with Web Capture................................................................................................... 35

Atalasoft DotImage demos.................................................................................................... 35
Set up a new project...............................................................................................................35

3



Atalasoft DotImage Developer's Guide

Add the Web Document Viewer handler..............................................................................37
Add the Web Capture handler...............................................................................................37
Set up the scanning controls and viewer.............................................................................40
Wrap-up..................................................................................................................................... 41
Deploy on multiuser environment........................................................................................ 42
Configure Kofax Import Connector.......................................................................................43
Upload sizes and limits...........................................................................................................44

Document management.................................................................................................................... 46
Capture and view documents with a scanning client.........................................................46
Submit captured documents to a central database repository.........................................52
View documents from a central database repository in a browser.................................. 59
Collaborate on documents using AJAX-enabled annotations............................................62

Chapter 3: Program with Atalasoft DotImage.................................................................................66
Getting started.................................................................................................................................... 66

Core Atalasoft DotImage editions......................................................................................... 66
Add-on modules.......................................................................................................................67
.NET assemblies....................................................................................................................... 68
Create images...........................................................................................................................71
Open images............................................................................................................................ 72
Save images..............................................................................................................................73
Process and clean up images................................................................................................ 74
Image controls for Windows Forms applications................................................................75
Image controls for web applications.................................................................................... 76
TWAIN scanning....................................................................................................................... 78

Imaging.................................................................................................................................................79
Dithering....................................................................................................................................79
Compression............................................................................................................................. 80
Asynchronous image processing...........................................................................................81
Resampling................................................................................................................................82
Morphology...............................................................................................................................84

Best practices.......................................................................................................................................88
Memory management............................................................................................................ 88
Pixel memory............................................................................................................................89
Image Source............................................................................................................................96

Access images................................................................................................................................... 112
Read and write images to a database................................................................................112
Access multipage images..................................................................................................... 113
Add support for RAW images.............................................................................................. 113

4



Atalasoft DotImage Developer's Guide

Get image information......................................................................................................... 114
View images.......................................................................................................................................114

ASP.NET WebForm controls.................................................................................................. 114
Windows form control.......................................................................................................... 177
Work with WPF images.........................................................................................................183
Use ASP.NET WebForm controls.......................................................................................... 184

Image Capture...................................................................................................................................192
Web scanning......................................................................................................................... 192
TWAIN scanning.....................................................................................................................193
ISIS scanning.......................................................................................................................... 200

Image processing and cleanup...................................................................................................... 204
Manipulate colors with Lookup Tables............................................................................... 204
Resize images.........................................................................................................................205
Process an image using a Workspace object.................................................................... 207
Process an image using the Apply method.......................................................................208
Process a Bitmap image.......................................................................................................208
Extend ImageCommands..................................................................................................... 208
Upload an image to a server...............................................................................................214

Annotations........................................................................................................................................216
Annotations.............................................................................................................................216
Import and export annotations...........................................................................................217
Create an annotation enabled control............................................................................... 224
Annotation assemblies..........................................................................................................225
Create a template annotation..............................................................................................226
Print annotations................................................................................................................... 226
Serialize to XMP And WANG data........................................................................................227
Work with unit systems........................................................................................................ 228
Render custom grips.............................................................................................................229
Respond to events.................................................................................................................231
Add a context menu to an annotation...............................................................................232
Highlight a document........................................................................................................... 232
Work with layers and groups...............................................................................................233
Create a custom annotation................................................................................................ 233
Password-based authentication...........................................................................................237
Create a sticky note...............................................................................................................238
Work with unit systems........................................................................................................ 239
Annotate multipage documents..........................................................................................239

Metadata............................................................................................................................................ 240

5



Atalasoft DotImage Developer's Guide

Supported metadata types...................................................................................................240
Image formats supporting metadata................................................................................. 241
IPTC metadata........................................................................................................................241
EXIF metadata........................................................................................................................ 243
COM text................................................................................................................................. 244
TIFF tags..................................................................................................................................244
XMP.......................................................................................................................................... 247
Save metadata with an image.............................................................................................247
Retrieve metadata from an image......................................................................................248
Set metadata values..............................................................................................................248
Attach metadata to objects..................................................................................................250
Retrieve a document title.....................................................................................................251
Read EXIF information.......................................................................................................... 251
Read EXIF thumbnails........................................................................................................... 251
Store EXIF information..........................................................................................................252
Add an object to document metadata............................................................................... 252
Obtain DPI information from a .PSD File........................................................................... 253
Losslessly copy metadata..................................................................................................... 253

Document and image formats........................................................................................................254
Introduction to PDF technology.......................................................................................... 254
.TIF files................................................................................................................................... 272
DICOM..................................................................................................................................... 284
JPEG2000 - encoding images............................................................................................... 287
Introduction to JBIG2............................................................................................................ 291
Custom codecs - image codec.............................................................................................292

Bar code reading.............................................................................................................................. 299
Upgrade tips...........................................................................................................................300
Use the BarcodeReader........................................................................................................ 301
Read a bar code with options set....................................................................................... 301
Render a bar code into an AtalaImage.............................................................................. 302
Verify a bar code can represent a string........................................................................... 302

Barcode Writing.................................................................................................................................303
Deployment.............................................................................................................................303
Use the Barcode Writer........................................................................................................ 303

OCR document design considerations.......................................................................................... 304
Use the factory property to construct a document.......................................................... 304
Load OCR resources.............................................................................................................. 305
Stages in OCR translation.....................................................................................................309

6



Atalasoft DotImage Developer's Guide

Translator types..................................................................................................................... 311
Page region types..................................................................................................................312
OCR engine.............................................................................................................................313
GlyphReader engine..............................................................................................................315
Tesseract engine.................................................................................................................... 317
OmniPage Engine.................................................................................................................. 319
Use an OCR engine............................................................................................................... 324
Get and set engine options................................................................................................. 324
Determine if an engine supports a mime type.................................................................325
Alter the interpretation of page elements.........................................................................325
Determine translation type.................................................................................................. 326
Distinguish between OCR region types..............................................................................326
Clean up after translation.................................................................................................... 327
Traverse an OCR document................................................................................................. 327
Cancel OCR in progress........................................................................................................ 328
Track page progress in a UI.................................................................................................328
Use page deskew events......................................................................................................330
Deploy an OCR engine..........................................................................................................330
Access document information properties..........................................................................332

Color management...........................................................................................................................333
Color profiles.......................................................................................................................... 333
CMYK images..........................................................................................................................333

Draw on the canvas..........................................................................................................................334
The canvas.............................................................................................................................. 334
Atalasoft DotImage drawing versus GDI+......................................................................... 334
Draw text.................................................................................................................................335
Draw shapes........................................................................................................................... 335
Draw with rubber bands...................................................................................................... 336

Interoperability - Work with GDI+ images.................................................................................... 336
Create a copy of the data.................................................................................................... 337
Pass the data directly to the AtalaImage constructor......................................................337
Interoperability - Work with WPF images.......................................................................... 337

Forms processing..............................................................................................................................339
Align an image to a template..............................................................................................339
Disable alignment rejection heuristics............................................................................... 339
Use the OMR engine to recognize marks on a page........................................................340
Create and save an OMR template.....................................................................................340
Perform additional preprocessing in the OMR engine.................................................... 341

7



Atalasoft DotImage Developer's Guide

Cancel OMR in progress....................................................................................................... 341
Track OMR engine page progress in a UI..........................................................................342

Web Document Viewer.....................................................................................................................343
Chapter 4: Deploy Atalasoft DotImage...........................................................................................344

Visual C++ Runtime dependencies................................................................................................. 344
Deploy Atalasoft DotImage in ASP.NET......................................................................................... 344

Dependencies using Atalasoft DotImage class library.....................................................344
Dependencies using Atalasoft DotImage with WebControls...........................................344

Generating licenses.......................................................................................................................... 345
Chapter 5: Program with DotPdf..................................................................................................... 347

Mathematical model.........................................................................................................................348
Transformations................................................................................................................................ 349
PdfGeneratedDocument...................................................................................................................351
Pages...................................................................................................................................................351
Standard page sizes......................................................................................................................... 352
Create stationery...............................................................................................................................352
Clipping...............................................................................................................................................354
Colors.................................................................................................................................................. 355
Rendering........................................................................................................................................... 356
Resources........................................................................................................................................... 356

Font resources........................................................................................................................357
Type 1 symbol font encoding.............................................................................................. 358
Embed fonts........................................................................................................................... 361
Color space resources...........................................................................................................361
Image resources.................................................................................................................... 362
Template resources............................................................................................................... 363

Shapes.................................................................................................................................................363
PdfPath.................................................................................................................................... 363
PdfRectangle...........................................................................................................................366
PdfRoundedRectangle...........................................................................................................367
PdfCircle...................................................................................................................................367
PdfArc.......................................................................................................................................367
PdfImageShape...................................................................................................................... 367
PDF text shapes..................................................................................................................... 369
PdfTable...................................................................................................................................370
PdfTemplateShape................................................................................................................. 371
PostnetBarcodeShape........................................................................................................... 374
GSave / GRestore...................................................................................................................374

8



Atalasoft DotImage Developer's Guide

Transform................................................................................................................................375
Marked content......................................................................................................................375
Make custom shapes............................................................................................................ 376

Round trip documents..................................................................................................................... 379
Integrate with DotImage................................................................................................................. 380
Actions................................................................................................................................................ 381

PdfAction................................................................................................................................. 382
Go To View actions................................................................................................................ 382
URI actions..............................................................................................................................383
JavaScript actions................................................................................................................... 383
Sound actions.........................................................................................................................383
Show/Hide action...................................................................................................................384
Named actions....................................................................................................................... 385
Submit Form Actions.............................................................................................................386
Reset Form Action................................................................................................................. 386

Annotations........................................................................................................................................386
Properties common to all annotations...............................................................................387
Properties common to all mark up annotations...............................................................390
Properties common to all widget annotations..................................................................391
General annotations..............................................................................................................392
Markup annotations.............................................................................................................. 395
Widget annotations............................................................................................................... 406

Use annotations................................................................................................................................ 415
Place an annotation.............................................................................................................. 415
Create an annotation with a custom border..................................................................... 416
Add a pop-up to a markup annotation.............................................................................. 417
Create an annotation with transparency........................................................................... 418
Skin an annotation................................................................................................................ 419
Make an annotation with a rollover appearance..............................................................420
Make a sticky note annotation............................................................................................ 421
Add a review state to a sticky note.................................................................................... 421
Make a highlight annotation............................................................................................... 422
Set a redaction area.............................................................................................................. 426
Use JavaScript to calculate values....................................................................................... 427

PDF Forms..........................................................................................................................................429
PdfForm...................................................................................................................................430
Node form fields....................................................................................................................431
Leaf form fields......................................................................................................................431

9



Atalasoft DotImage Developer's Guide

Visiting nodes......................................................................................................................... 431
Form actions...........................................................................................................................432

Merge PDF forms..............................................................................................................................433
Import pages..........................................................................................................................434
Merge forms...........................................................................................................................434
Default merging.....................................................................................................................435

DotPdf repair..................................................................................................................................... 435
DotPdf repair process........................................................................................................... 435
Detect errors...........................................................................................................................436
Repair errors...........................................................................................................................437
Repair events..........................................................................................................................437
Repair filtering........................................................................................................................438
Structure options................................................................................................................... 439
Array options.......................................................................................................................... 441
Property repair....................................................................................................................... 441

Digital signatures.............................................................................................................................. 442
Certify documents................................................................................................................. 443
Get signer information......................................................................................................... 445
Document signing operations............................................................................................. 448
Customize signature appearance........................................................................................451
Certify a document with PdfDocument..............................................................................452
Determine if a document is certified or signed................................................................ 452
Fill fields of a certified document........................................................................................453
Sign a document with an existing signature.....................................................................453
Add a signature to a document.......................................................................................... 453

Linearized PDF...................................................................................................................................454
PdfDocument and PdfGeneratedDocument integraton...................................................454
PdfEncoder integration......................................................................................................... 455

PDF/A...................................................................................................................................................455
PDF/A in PdfDocument......................................................................................................... 455
PDF/A data in PdfDocumentMetadata................................................................................458
PDF/A in PdfGeneratedDocument.......................................................................................458

PDF 2.0................................................................................................................................................466
Document upgrade to PDF 2.0............................................................................................467

Chapter 6: DotTwain..........................................................................................................................468
About DotTwain.................................................................................................................................469

Acquire images.......................................................................................................................469
Document feeder control..................................................................................................... 469

10



Atalasoft DotImage Developer's Guide

Navigating files in a camera................................................................................................ 470
ActiveX control API reference..........................................................................................................470

Class events............................................................................................................................ 471
Getting started.................................................................................................................................. 471

Add DotTwain to the toolbox...............................................................................................471
Set application information..................................................................................................472
Model acquisition...................................................................................................................472
Set up events..........................................................................................................................472
Show the Select Source dialog............................................................................................ 473
Properties................................................................................................................................473
Acquire an image...................................................................................................................473
Acquire images with TWAIN.................................................................................................474
Acquire a select region of the device................................................................................. 474
Acquire and save images directly to a file......................................................................... 475
Detect a camera device........................................................................................................ 476
Upload an image to a server...............................................................................................477
Deploy DotTwain....................................................................................................................478

Chapter 7: OCR engine...................................................................................................................... 479
Tesseract engine............................................................................................................................... 480

Features...................................................................................................................................480
Supported languages............................................................................................................480
Supported output formatters.............................................................................................. 481
Deployment.............................................................................................................................481

11



Preface

The Atalasoft DotImage Developer's Guide contains information about how to install and customize 
your Atalasoft DotImage installation. This guide explains how to:
• Use .NET assemblies to acquire, read, write, display, annotate, or process images
• Use WebForms controls to scan, display, and manipulate images and documents
• Add .NET controls to WinForms, WPF, and WebForms projects

Related documentation
In addition to this guide, the Atalasoft DotImage documentation set includes the following:
• API Reference: Gives the complete Atalasoft DotImage class library in online help format.
• API Reference (.chm file): Gives the complete Atalasoft DotImage class library for offline use.
• Atalasoft DotImage Release Notes: Contains late-breaking product information not included in this 

guide. You can download the release notes from the Atalasoft Web site at www.atalasoft.com. 
View the release notes from the Support pages.

• Atalasoft DotImage Demos

Resources
The following resources are available for Atalasoft products:
• Purchase Atalasoft DotImage
• Knowledgebase
• Atalasoft DotImage Feature Matrix
• Atalasoft DotImage Support
• Sample applications
• Atalasoft DotImage Dev Team Blog
• Contact information.

12

https://docshield.tungstenautomation.com/AtalasoftDotImage/en_US/11.5.0-8wax4k031j/help/DotImage/html/Atalasoft_DotImage_Welcome.htm
https://docshield.kofax.com/AtalasoftDotImage/en_US/11.5.0-8wax4k031j/help/ApiReference.chm
https://www.atalasoft.com/
http://github.com/Atalasoft/
http://www.atalasoft.com/buy/dotimage
https://www.atalasoft.com/kb2/
http://www.atalasoft.com/Technical-Details/net-technical
http://www.atalasoft.com/support/
https://www.atalasoft.com/Support/Sample-Applications
https://atalasoft.github.io/
http://www.atalasoft.com/Contact


Chapter 1

Atalasoft DotImage

Atalasoft DotImage is a suite of .NET assemblies to use in projects to acquire, read, write, display, 
annotate or process images. Atalasoft DotImage assemblies can be used in desktop and ASP.NET 
projects and the various objects and methods are accessible from any .NET-compliant language 
including C# and Managed C++.

Atalasoft DotImage WebForms controls include innovative AJAX controls for scanning, displaying 
and manipulating images and documents, all with a minimal or no client-side footprint.

Images used in Atalasoft DotImage controls or objects can come from files or databases, as well as 
from scanners or cameras.

In addition to standard objects, Atalasoft DotImage includes .NET controls you can add to 
WinForms, WPF, and WebForms projects. These controls make it easy to create applications that 
display or edit images.

Atalasoft DotImage Photo
Atalasoft DotImage Photo is a raster imaging toolkit that can add advanced image viewing, editing, 
and printing to an application. Atalasoft DotImage compliments GDI+ in .NET by adding more 
advanced codecs, image processing, and UI controls. Atalasoft DotImage Photo includes an 
imaging class library, and a Windows Forms control library. The Atalasoft DotImage class library is 
used for all image processing, encoding, and decoding, in Windows Forms or ASP.NET WebForms 
applications. It is broken up into logical namespaces such as Imaging, Codecs, Drawing, and 
ImageProcessing. The Windows Forms library includes visual UI controls for viewing, printing, and 
rubberbanding images.

The toolkit includes the following features:
• Read write, and convert to popular image formats such as JPEG, PNG, BMP, DIB, TIFF, GIF, PCX, 

TGA, PSD, WBMP, EMF, WMF, TLA, PCD, PCD, with a plug-in interface to add new ones.
• Compress images using algorithms such as JPEG, LZW, Deflate/ZIP, RLE, Packbits, CCIT Group 3/4, 

and Huffman.
• Over 100 image processing commands to apply filters, effects, and transforms to images.
• Over 20 different resampling commands for fast or high quality enlargements or thumbnail 

creation.
• Advanced image viewing, scrolling, zooming, and rubberbanding with the BitmapViewer, 

ImageViewer, and WorkspaceViewer controls.
• Control over printing single or multiple images with the ImagePrintDocument component 

including properties to center, fit to margins, and fit to edges.

13



Atalasoft DotImage Developer's Guide

• Support for streaming images to any .NET Stream or byte arrays to support saving and retrieving 
images from SQL, Access, Oracle, and other databases using binary streams.

• Load or save images from HTTP or FTP. Includes an HTTP Post object for posting images directly 
to a server.

• A Workspace object for easily handling and processing images with no need to worry about 
memory cleanup.

• Full alpha transparency support.

Scenarios
Atalasoft DotImage Photo is used in a variety of imaging applications and industries. some sample 
scenarios include:
• Digital imaging applications
• Stock photo Web sites
• Employee photo ID application
• Advanced photo resizing

Sample code
This example demonstrates how to open a TIFF image, apply a marble transform, save it as a JPEG 
with a quality of 90, and stream to the browser for display.

C#

myWorkspace.Open("myimage.tif");  
myWorkspace.ApplyCommand(  
new MarbleTransform(1.4, new Size(5, 5)));  
Response.ContentType = "image/jpeg";  
myWorkspace.Save(Response.OutputStream,  
new JpegEncoder(90));

Atalasoft DotImage Photo Pro
Atalasoft DotImage Photo Pro is an advanced raster imaging toolkit that can add image viewing, 
editing, printing, and metadata support to an application. Atalasoft DotImagee compliments 
GDI+ in .NET by adding more advanced codecs, image processing, and UI controls. Atalasoft 
DotImage Photo Pro includes all the features of Atalasoft DotImage Photo as well as high-end 
photographic/prepress support, and an AJAX enabled ASP.NET Server- Side Image Viewer. Full 
documentation is integrated into Microsoft Visual Studio .NET. See Atalasoft DotImage Document 
Imaging for document imaging functionality and support. For the high-end photography and pre-
press market, the Atalasoft DotImage Advanced Photo Effects Module is an add-on that can be used 
to automatically enhance digital photos without laborious manual touch-ups.

In addition to the features included in Atalasoft DotImage Photo , Photo Pro includes the following:
• Support for 32-bit CMYK images.
• Support for 16-bit grayscale, 48-bit RGB, and 64-bit RGBA color depths.

14



Atalasoft DotImage Developer's Guide

• An ASP.NET AJAX-enabled server-side image viewer to view, pan, zoom, process, and rubberband 
images without the need for client applets or plug-ins. New AJAX controls for viewing thumbnails 
and editing images on the with full scrolling support and on-demand tiled loading.

• Support for reading over 100 RAW digital camera formats including support for decoding the 
DNG RAW image format.

• A multi-threaded Thumbnail List Viewer control to display thumbnails from custom sources, or 
list thumbnail images from a directory with horizontal or vertical scrolling support, and ability to 
customize thumbnail size, position, and style.

• A composite printing component that will print multiple images as a photo composite or contact 
sheet.

• Support for reading metadata such as EXIF, IPTC, XMP, TIFF Tags, COM Markers, Adobe 
Photoshop Resources, and Eastman WANG annotations.

• Support for writing metadata such as EXIF, IPTC, XMP, TIFF Tags, COM Markers, Adobe Photoshop 
Resources, and Eastman WANG annotations as well as creating EXIF Thumbnails in TIFF images.

• Full color management support including the ability to extract and embed ICC color profiles, 
automatically adjust colors based on target and destination color profiles and create virtual 
proofs.

• AutoLevels, AutoColor, Curves, and Levels commands that automatically adjust colors, just like 
the Adobe Photoshop equivalent functions.

• Red Eye Removal.
• Dust and Scratch Removal.
• Region of Interest Processing.

Scenarios
Atalasoft DotImage Photo Pro is used in a variety of imaging applications and industries. In addition 
to the features included in Atalasoft DotImage Photo, Photo Pro includes the following scenarios.
• Pre-press printing application.
• Online image viewing application.

Atalasoft DotImage Document Imaging
Atalasoft DotImage Document Imaging is an advanced document imaging toolkit that can add 
high performance image viewing, editing, printing, scanning, and annotating support to an 
application. The toolkit includes an imaging class library, a Windows Forms control library, an 
ASP.NET AJAX-Enabled Server-Side Image Viewer, DotTwain for advanced TWAIN scanning, and 
advanced annotations support for both Windows Forms and ASP.NET WebForms.

In addition to all features in Atalasoft DotImage Photo Pro and the AJAX-enabled thin-client image 
viewer, the toolkit includes the following features:
• Multipage TIFF encode and decode with support for many obscure flavors of TIFF (including most 

Old Style JPEG-In-TIFF images).
• Multipage PDF Encoding Support (embedded images only) l TWAIN Scanning support with the 

included DotTwain SDK* l Advanced Windows Forms Annotations support webForms Annotations 
support featuring AJAX technology*.

15



Atalasoft DotImage Developer's Guide

• TIFF Directory manipulation controls for inserting, removing, and reordering TIFF pages in a 
multipage TIFF without re-encoding the entire image.

• Advanced TIFF Tag editing support to edit standard and arbitrary TIFF Tags.
• Optimized Scale to Gray display, fastest in the industry.
• Optimized Scale to Gray display when viewing 1-bit documents using the AJAX- enabled thin client 

image viewer.
• Document Processing Functions including:

• Fast Auto-Deskew for binary images.
• Despeckle binary images.
• Remove noise from binary images.
• Auto border detection and removal
• Adaptive and Global Thresholding to convert grayscale or color images to binary.
• Binary Morphological Filters (Erode, Dilate, Boundary Extraction, Thinning).

• Render FAX images with different X and Y resolutions properly (both WinForm and WebForm 
controls).

• Thresholding Commands optimized for multi-core processors.
• The Advanced Document Cleanup (ADC) add-on module providing the ability to auto- matically 

remove specks, borders, lines, blobs, hole punches, and halftones for improved image quality 
using unique proprietary algorithms.

• The ADC add-on also provides blank page detection, as well as the ability to auto-negate inverted 
text and inverted documents.

• High quality character recognition with the GlyphReader OCR add-on module, a highly accurate 
and cost-effective OCR engine. Provides a generic interface for OCR with integration with other 
industry leading OCR engines.

• A Searchable PDF add-on module for OCR that generates high-quality searchable PDF documents 
from any Atalasoft DotImage-supported OCR engine. Produces documents with hidden text 
behind image for color, gray, or bitonal images. Supports JBIG2 and JPEG2000 compression.

• View PDF documents with the PDF Reader add-on module.
• Recognize 1D and 2D bar codes with the BarcodeReader add-on module.

*Requires additional licensing for production server distribution.

Scenarios
Atalasoft DotImage Document Imaging is used in a variety of imaging applications and industries. 
Some sample scenarios include:
• Medical records
• Insurance documents Management Solution
• Mailroom document application
• Check management in financial/banking industries
• Online Mechanical Drawing Viewer

See our online AJAX Image Viewer for an example on how to use Atalasoft DotImage on the to view 
and cleanup multipage documents.

16



Atalasoft DotImage Developer's Guide

Atalasoft DotImage add-ons
You can enhance the capabilities of Atalasoft DotImage by using add-ons such as Barcode Reader, 
Barcode Writer, OCR, PDF Reader, JPEG2000 Codec, JBIG2 Codec, DICOM Codec, DWG Decoder, and 
Atalasoft DotImage ISIS.

BarcodeReader
The Atalasoft DotImage BarcodeReader add-on provides advanced bar code image recognition 
for your .NET applications. This component is very easy to use and designed specifically for 
Microsoft .NET.

 Licensing is runtime royalty free for desktop applications.

Features
• Recognizes all bar codes in an image
• Returns the string value of each bar code recognized
• Reads twenty-one industry 1D symbologies as well as QR Code, PDF417 and DataMatrix 2D 

symbologies
• Automatically detects orientation of bar code (East, South, West, North)
• Returns the bounding rectangle of all recognized bar codes
• Returns the coordinates of the start and end lines, can be used to construct a polygon 

encompassing the bar code area
• Detects the type of bar code recognized
• Integrates with Atalasoft DotImage with the ability to include an image viewer and pre-

processing capabilities such as deskew, despeckle, and annotations. Returns position of 
checksum character (if present)

• Returns any supplemental bar codes
• Deploys as a single managed assembly alongside Atalasoft DotImage dependencies

Supported symbologies

1D Barcodes

Codabar Code93 Patch code RM4SCC (Royal Mail)

code 11 EAN-13 Planet Telepen

code 128 EAN-8 Plus 2 UPC-A

code 32 Interleaved 2 of 5 Plus 5 UPCE-E

code 39 ITF-14 Postnet

2D Barcodes

Aztec

DataMatrix

17



Atalasoft DotImage Developer's Guide

2D Barcodes

PDF417

QR Code

Deployment
When using the BarcodeReader, the assemblies that need to be copied with your application 
include:

Assembly Description

Atalasoft.Shared.dll Shared classes such as licensing 
management

Atalasoft.dotImage.Lib.dll DotImage low level library assembly

Atalasoft.dotImage.dll DotImageAtalasoft DotImage class library 
assembly

Atalasoft.dotImage.Barcoding.Reading.dll Barcode Recognition Engine

Barcode Writing
The DotImage Barcode Writing assembly is designed to be a simple set of classes that make it easy 
to create bar codes within a .NET application. There are objects that are designed for writing directly 
into Graphics objects and corresponding Win Forms Controls that allow bar codes to appear in 
window-based applications.

The Barcode Writing classes can be used for many common 1-D bar code types as well as PDF417 
and DataMatrix bar codes.

Deployment
When using Barcode Writing, the assemblies that need to be copied with your application include:

Assembly Description

Atalasoft.Shared.dll Shared classes such as licensing management

Atalasoft.dotImage.Barcoding.Reading.dll Barcode Writing Engine

OCR
Atalasoft DotImage OCR is an adapter module for Microsoft .NET developers that allows 
programmers to add character recognition (OCR) to their applications.

The Atalasoft.Ocr namespace contains a set of classes for managing and processing documents 
to be processed for optical character recognition (OCR). These classes provide the functionality 
necessary for OCR, without being tied directly to any particular OCR engine. This allows client code 
to be insulated from changes in the underlying engine, and makes it easy to test and evaluate 
different OCR engines.

18



Atalasoft DotImage Developer's Guide

OCR engines are supported through engine-specific add-ons that fit into the Atalasoft DotImage 
OCR framework.

Engine Add-Ons
You can add these corresponding OCR engines:
• GlyphReader Engine Add-on
• Tesseract Engine Add-on
• OmniPage Engine Add-on

Features
• Fully extensible file and stream export

• OCR Engine neutral, open API
• Built-in image preprocessing
• Fully overridable image preprocessing
• Easy event model for tracking progress and reporting/modifying document layout
• Fully extensible document and page model
• Font management and abstraction
• Confidence level provided at region, line, word, and glyph levels
• OCR capability for any image that can be read by Atalasoft DotImage
• Easy integration with DotTwain
• Images can come from any source, not just files
• Output formats specified by MIME standard
• Built-in Text Translator for formatted text output
• Searchable PDF module for outputting results in highly compressed JBIG2 Adobe PDF as Text 

Only, or Hidden Text Underneath Image
• Supports engines that automatically identify regions (or zones) of an image, or manually zone 

images yourself

Licensing
To use OCR functionality, you must have an Atalasoft DotImage license, licenses for any OCR Engine 
Add-On(s) you use, and a license for any OCR engines you use.

 A license to use an Atalasoft DotImage OCR Add-On is not a license to use the corresponding 
3rd-party OCR engine.

There is also an add-on module to generate searchable PDF documents from OCR.

Output Formats
Atalasoft DotImage OCR provides a flexible means for translating OCR output to alternative 
document formats. Client code requests a mime type that represents the desired output format and 
specifies whether the output should go to a file or stream. If the engine can provide the requested 
output format, it goes ahead with the work. The output translation mechanism is fully extensible 
and changeable by client code.
Broadly speaking, there are two different types of translators: native and foreign. Native translators 
are built into a particular OCR engine, foreign translators are those that are supplied from outside 
of an engine. Typically, native translation avoids the overhead of constructing an OcrDocument and 

19



Atalasoft DotImage Developer's Guide

foreign translation always requires construction of an OcrDocument. Foreign translators are like to 
be flexible in their configuration and output styles but can be less efficient when used with some 
engines because they operate at a significantly higher level than native translators.
This distinction allows us to publish low-level engine translators and to provide a means of adding 
other translators that are treated as first class objects.

Text translator
A TextTranslator class implements a foreign translator that is used to generate text files from an 
OCR engine. The TextTranslator has properties to control how much the TextTranslator attempts to 
mimic the layout and format of the original document.

PDF Translator
The PdfTranslator class allows client applications to generate high quality PDF documents from 
scanned documents.

Features
• Ability to set PDF Metadata fields
• High quality thumbnail images
• Accurate text placement
• Text-Under-Image placement
• Optional placement of picture regions
• Automatic or client-controlled image compression
• Advanced codec support ( JBIG2, JPEG 2000)
• Insertion of client synthesized pages
• Generation of PDF/A-1b and PDF/A-2b compliant documents with embedded fonts and color 

profiles

Font Building
Atalasoft DotImage OCR defines an IFontBuilder interface which is used to construct fonts in 
documents. Since the elements within a document page can come from many different sources, 
it is advantageous to have a central resource location for fonts. The FontBuilder allows fonts to 
be retrieved for every text element without the need to construct any more font objects than are 
needed for the page. If a document needs to enumerate all the font resources on a page, it is 
possible to do so by scanning every font in the document and then enumerating those objects 
within the FontBuilder.
Atalasoft DotImage OCR provides a simple implementation of the IFontBuilder interface called 
BasicFontBuilder. This object caches font building requests and only returns one instance of a font 
for every unique font requested.

Font Mapping
When recognizing a document, it is necessary to create fonts associated with text
elements. There is, however, no guarantee that an identified font in a given document is available 
on the computer that is doing the recognition. Further, some engines might not be able to do any 
better than "this font looks like it has serifs" or "this font looks like it is monospaced." For those 
reasons, every engine build contains a FontMapper object which can be used to map one set of 

20



Atalasoft DotImage Developer's Guide

font characteristics to another. This makes it possible to turn a generic "sans serif" font into, for 
example, Gill Sans or Helvetica, rather than Arial. It also makes it possible to strip out all "strike out" 
font characteristics.
When constructing an OcrDocument, the engine's FontMapper determines which font should 
be used for a page element. You may supply your own FontMapper to replace the standard font 
mapper.
Atalasoft DotImage provides a simple implementation of the IFontMapper interface called 
BasicFontMapper. This object attempts to map a requesting font to a matching system font, using 
Arial as the default when no font matches are present.

Metadata
The OcrPage object includes a property called Metadata which is reserved for holding metadata 
associated with a given page. At present, only the PdfTranslator uses the Metadata property, but 
the same conventions applied to the OcrDocument metadata should be honored: client code should 
only use add values using non-integral keys, such as strings.

PDF Reader
Atalasoft DotImage PDF Reader (formerly PDF Rasterizer) quickly decodes PDF documents into color 
or grayscale raster images. It seamlessly integrates into Atalasoft DotImage and associated image 
viewing components as an image decoder.

PDF Reader supports simple image-only PDF's as well as complicated PDF's with vectors, text, 
patterns, and transparency. You can:
• Rasterize any PDF to an image
• Extract images from a PDF document
• Extract text and text locations from a PDF document
• Search for text in a PDF document
• Render a PDF directly to a printer

Atalasoft DotImage PDF Reader provides a PdfDecoder which seamlessly integrates into Atalasoft 
DotImage and associated image viewing components.

To use PDF Reader to rasterize images:

1. Add an instance of the decoder to the Decoders collection.

2. Open the PDF with Workspace.Open(), new AtalaImage(), or any Atalasoft DotImage method 
that takes a stream containing an image.

For further details, see How to: View a PDF Image.

Features
• Add high speed viewing of PDF documents to your applications
• Convert PDF's to raster images in the Atalasoft DotImage Image Viewers without the Adobe 

Acrobat SDK
• Extracts and searches for text in a PDF document
• Print PDF Documents using the Atalasoft DotImage Printing components or by rendering onto a 

printer graphics object.

21



Atalasoft DotImage Developer's Guide

• Convert PDF Documents into any supported Atalasoft DotImage image format (multipage TIFF, 
JPEG, etc).

• Integrates with our AJAX enabled Web Image viewer for server-side viewing, panning, and 
zooming of PDF documents

• Extract all images from a specified PDF page to their native bit depth
• Specify a resolution to use when rasterizing the PDF for instant PDF thumbnails
• Supports CCIT G3, G4, Flate, and JPEG embedded images
• Support for JBIG2 and JPEG2000 compressed images
• Supports PDF Specification versions 1.3, 1.4, 1.5, and 1.6
• Supports all font types: Type1, TrueType, Type0, Type3
• Supports all text rendering modes (full, stroke, clipping)
• Supports tiling patterns and shadings
• Supports all colorspaces: RGB, Gray, CMYK, ICCBased, Lab, Indexed, and Separation
• Runtime Royalty Free Desktop Licensing

Deployment
When using PDFReader, the assemblies you need to copy with your application include these:

Assembly Description

Atalasoft.Shared.dll Shared classes such as licensing management

Atalasoft.dotImage.Lib.dll Low level Atalasoft DotImage Library

Atalasoft.dotImage.dll Atalasoft DotImage class library

Atalasoft.dotImage.PdfReader.dll PDF Decoder

When using other Atalasoft DotImage functionality, such as WinControls, those assemblies must be 
distributed as well.

JPEG2000 Codec
Atalasoft DotImage JPEG2000 codec can be used to decode and encode JPEG2000 images using 
the Microsoft .NET Framework. It uses wavelet compression technology to compress photographic 
images further then any other available compression scheme. The codec is available as a plug-in 
and integrates with Atalasoft DotImage seamlessly. Atalasoft DotImage JPEG2000 is based off of 
Luratech's Lurawave.jp2 wavelet compression technology.

 Licensing is runtime royalty free for desktop applications.

Features
Standard Edition
• Ability to decompress JPEG2000 images stored in any compatible jp2, j2k, or jpc code stream
• Supports decoding directly to 8-bit grayscale, 24-bit RGB, 16-bit grayscale, and 48-bit RGB
• Supports encoding 8-bit grayscale and 24-bit RGB to jp2 code stream
• Specify compression ratio (0 - 100)
• Lossless compression

22



Atalasoft DotImage Developer's Guide

• Integrated with Atalasoft DotImage's PdfEncoder to encode PDF images with JPEG2000 
Compression.

• Integrated withAtalasoft DotImage's searchable PDF module for OCR to encode PDF images 
with JPEG2000 Compression

• Runtime Royalty Free Desktop Licensing

Professional Edition
• Supports decoding to CMYK colorspace
• Supports encoding 16-bit grayscale and CMYK images
• Full Metadada support, such as IPTC, XMP, XML Box, and UUID Boxes
• Precise control over the decoder and encoder settings
• Progressive Decoding Support

DICOM Codec
Atalasoft DotImage DICOM codec can be used to decode DICOM images and metadata using the 
Microsoft .NET Framework. DICOM stands for Digital Imaging and Communications in Medicine and 
is typically used to hold medical images and information about a patient. Our DICOM Decoder has 
the ability to decode images compressed with JPEG2000, JPEG, JPEG Lossless, and RLE.

 Licensing is runtime royalty free for desktop applications.

The Atalasoft DotImage DICOM Codec is an add-on module to Atalasoft DotImage for viewing 
medical images and requires a Atalasoft DotImage license. Add DICOM viewing to your applications 
when integrating with our AJAX-Enabled Image Viewing technology for ASP.NET.

Features
• Views both old and new style DICOM Formats
• Decodes images into 8-bit Gray, 16-bit gray, 24-bit RGB, or 48-bit RGB colorspaces
• Supports 10-bit, 12-bit, and 14-bit gray promoting them to 16-bit gray for viewing
• Read all patient metadata from the image
• Supports advanced JPEG2000 compression
• Reads a specified frame in a multi-framed DICOM image
• Full Annotations support
• Integrates with the Atalasoft DotImage image processing and windows based or based 

component features
• Supports access to raw images for efficiently applying repeated window and leveling operations

Advanced Document Cleanup
The Advanced Document Cleanup (ADC) add-on provides document cleanup algorithms you 
can apply applied to scanned documents to clean them up for better compression and archival, 
increased readability, and for improved OCR accuracy.

23



Atalasoft DotImage Developer's Guide

Atalasoft DotImage ADC uses proprietary algorithms developed by our research and development 
team that are designed to automatically select the best parameters to apply for fast and accurate 
processing. The commands included in ADC extend the command interfaces in Atalasoft DotImage 
and can easily be applied to an existing application built with Atalasoft DotImage.

ADC features
Atalasoft DotImage Advanced Document Cleanup (ADC) provides the features listed below. These 
commands can all be applied to an entire image or to a region of interest.

Binarize
Binarize uses your choice of three thresholding methods (adaptive, global, or simple) to efficiently 
and accurately convert a color or grayscale image to binary.
Binarize often results in better bi-tonal documents than those obtained when scanning directly to 
black and white.

Advanced Border Removal
Advanced Border Removal removes black borders from a bi-tonal image using a sophisticated 
object detection algorithm. This is useful because scanning documents often results in an 
unnecessary border around the image.

24



Atalasoft DotImage Developer's Guide

Margin Crop
Removes margins (white space) from each side of an image. Useful for decreasing image size, and 
isolating relevant features on an image for processing.

Auto Border Crop
Auto Border Crop is similar to Advanced Border Removal, but crops the border as opposed to 
removing the feature. It uses a higher speed algorithm than Advanced Border Removal.

Speck Removal
Removes specks of a specified size from a bi-tonal image. Useful for removing noise from an image 
introduced by a scanner or when thresholding from a color or grayscale image.

Hole Punch Removal
Detects and removes hole punch artifacts from a bi-tonal image. Will automatically remove round 
hole punches from bi-tonal images from any of the 4 sides that appear when these documents are 
scanned.

25



Atalasoft DotImage Developer's Guide

Blob Removal
Removes arbitrary blobs of a specified size from a bi-tonal image.

Blank Page Detection
Automatically detects if a bi-tonal document is blank using a sophisticated object detection 
algorithm. Useful when scanning duplex (both sides) when the back side of the document is blank.

Automatic Page Inversion
Automatically detects and optionally inverts an image when the background is black and the 
foreground is white. Useful when a scanner mistakenly inverts image data, or if the image was 
saved with incorrect tags resulting in inverted data.

Automatic Text Inversion
Detects inverted text regions in a bi-tonal image and automatically inverts them so that OCR 
engines can recognize the text.

Line Removal
Automatically removes horizontal or vertical lines from a bi-tonal image and reconnects broken 
characters. Useful for pre-processing a form prior to OCR.

Halftone Removal
Detects and removes shaded regions in a bitonal image, created when thresholding color or gray 
images to bitonal with shaded image areas. Often referred to as Dot Shade Removal.

Auto Deskew
Detects skew in a bi-tonal document and corrects the image by rotating it. Useful for deskewing 
scanned documents.

Advanced Photo Effects
The Atalasoft DotImage Advanced Photo Effects (APE) add-on automatically corrects digital 
photographs. Using proprietary algorithms, functions that typically require many manual steps 
when carried out in a photo editing tool such as Adobe Photoshop can be accomplished with a 
single line of code.

Features
• Automatic color correction
• Automatic skin tone correction
• Manual/Automatic levels adjustment
• Portrait enhancement effect
• Color warming and cooling
• ND Gradient filters
• Photo Color Magic *

26



Atalasoft DotImage Developer's Guide

* Automatically enhances the colors in a photographic image. Designed to improve the colors in any 
photograph - Results are nearly always better than Automatic levels adjustment.
Examples of these effects can be found in the Photo Effect Demo on the Atalasoft DotImage 
website.

DWG decoder
Use DWG codec to decode AutoCad DWG and DXF images using the Microsoft .NET Framework.

DWG and DXF files are vector images that are used in CAD/CAM applications for designing or 
visualizing objects, architecture, maps, or other drawings.

This is an Atalasoft DotImage add-on module for viewing CAD images. In addition to the DWG codec 
licenses, you must also have a license for Atalasoft DotImage Document Imaging.

Features
• Views both DWG and DXF format files
• Decodes into 24 bit images with arbitrary image resolution
• Decodes at any zoom factor, including automatic "fit-to-page" viewing
• Selectable background color
• Reads individual layouts within a file as frames
• Provides access to names and dimensions of available layouts within a file
• Integrates with the Atalasoft DotImage image processing and windows based or based 

component features

Office Decoder
The OfficeDecoder codec can be used to decode MS Office documents using the Microsoft .NET 
Framework. Unlike OfficeAdapterDecoder, it does not require that MS Office be installed.

OfficeDecoder derives the ImageDecoder class and acts like any other Atalasoft DotImage decoder 
in that it has a Read() method which returns an AtalaImage of the decoded document. It can be 
included in the RegisteredDecoders collection which allows to open office documents using the 
AtalaImage constructor.

OfficeDecoder supports Microsoft Office Word, Excel, PowerPoint, Visio, and Email (.msg) 
documents using the following formats:
• Office 97-2003 Document (.doc)
• Office 97-2003 Document Template (.dot)
• Office Open XML Document (.docx)
• Office Open XML Document Template (.dotx)
• Office Word XML Document (.xml)
• Rich Text Format (.rtf)
• Open Document Text Format (.odt)
• Office 97-2003 Spreadsheet (.xls)

27



Atalasoft DotImage Developer's Guide

• Office 97-2003 Spreadsheet Template (.xlt)
• Office XML Spreadsheet (.xlsx)
• Office XML Spreadsheet Template (.xltx)
• Microsoft Powerpoint (.ppt)
• Office 97-2003 Presentation (.ppt)
• Office 97-2003 Presentation Template (.pot)
• Office XML Presentation (.pptx)
• Office XML Presentation Template (.potx)
• Message objects, including email, appointments, and contacts (.msg)
• Visio drawings and templates (.vdx, .vsd, .vsdx)

In order to work properly the following modules should be installed along with 
Atalasoft.dotImage.Office assembly:
• ISYS11df.dll

• ISYSreaders.dll

• ISYSreadershd.dll

• Perceptive.DocumentFilters.dll

The modules are available for both x86 and x64 platforms.

Note the following when using .msg files in OfficeDecoder:
• Attachments are shown as a list in the result image. Inline attached images are shown in the 

message body of the result image.
• HTML content has the following limitations:

• Only CSS2 styles are supported. CSS 2.1, CSS 2.2, and CSS3 styles are not supported.
• Only inline styles and local CSS files are supported.
• JavaScript is not supported. Visible content from JavaScript code is not decoded.

OfficeAdapterDecoder
Atalasoft DotImage Office decoders can be used to decode Word, Excel, and PowerPoint 
documents. The codec is available as a plug-in that integrates with Atalasoft DotImage seamlessly.

The Office assembly includes the OfficeAdapterDecoder class which derives from the 
ImageDecoder. This class implements the Read method to use Microsoft Office to render pages 
from the document. It acts like any other Atalasoft DotImage decoder in that it has a Read() 
method which returns an AtalaImage of the decoded document. It also can be included in 
the RegisteredDecoders collection which is used when opening images using the AtalaImage 
constructor.

It supports Microsoft Office Word and Excel, and Powerpoint using the following formats:
• Office 97-2003 Document (.doc)
• Office 97-2003 Document Template (.dot)
• Office Open XML Document (.docx)
• Office Open XML Document Template (.dotx)
• Office Word XML Document (.xml)

28



Atalasoft DotImage Developer's Guide

• Rich Text Format (.rtf)
• Open Document Text Format (.odt)
• Office 97-2003 Spreadsheet (.xls)
• Office 97-2003 Spreadsheet Template (.xlt)
• Office XML Spreadsheet (.xlsx)
• Office XML Spreadsheet Template (.xltx)
• Microsoft Powerpoint (.ppt)
• Office 97-2003 Presentation (.ppt)
• Office 97-2003 Presentation Template (.pot)
• Office XML Presentation (.pptx)
• Office XML Presentation Template(.potx)

Example how to register the OfficeAdapterDecoder:

RegisteredDecoders.Decoders.Add(new OfficeAdapterDecoder());

OfficeSession
For situations where the OfficeAdapterDecoder will be used to read a batch of documents, it is 
recommended that the OfficeSession class be used. The OfficeSession class will keep Office loaded 
in the background ready to render documents and will remain open until its Close method is called 
or it is disposed.

If an OfficeSession is not provided to the OfficeAdapterDecoder, the Read method will create 
and release a new instance of Office each time it is called, which can have a negative impact on 
performance.

An OfficeSession is created by the static Open method. Alternately, the OpenCached method will 
create an OfficeSession which will cache the documents it reads, consuming more memory but 
providing faster performance for subsequent reads on the same stream.

How to: Convert an Office document to an AtalaImage

The OfficeAdapterDecoder class can be used in the same was as any other ImageDecoder. The 
following C# code demonstrates using the OfficeAdapterDecoder to create a method which will 
convert a document stream and page index to an AtalaImage.
AtalaImage RenderDocument(Stream documentStream, int pageIndex)

{

OfficeAdapterDecoder decoder = new OfficeAdapterDecoder();

return decoder.Read(documentStream, pageIndex, null);

}

How to: Convert a collection of Office documents to AtalaImages using an OfficeSession

The OfficeAdapterDecoder has an overloaded constructor which takes an OfficeSession to 
 use to perform rendering.

IEnumerable<AtalaImage> RenderDocuments(Stream[] documentStreams)

29



Atalasoft DotImage Developer's Guide

{

using(OfficeSession officeSession = OfficeSession.Open())

{

OfficeAdaptorDecoder decoder = new OfficeAdaptorDecoder(officeSession); 

  

foreach(Stream stream in documentStreams)

{

int frameCount = decoder.GetFrameCount(stream);

for(int frameIndex = 0; frameIndex < frameCount; ++frameIndex)

{

yield return decoder.Read(stream, frameIndex, null);

}

}

}

}

How to: Create a WebDocumentRequestHandler configured to handle Office documents using 
 an OfficeSession.

This sample implements the WebDocumentRequestHandler to decode Office documents using 
 an OfficeSession in the WDV.

internal sealed class OfficeWebDocumentRequestHandler : WebDocumentRequestHandler

{

private readonly OfficeSession officeSession = OfficeSession.Open();

public OfficeWebDocumentRequestHandler()

{

OfficeAdapterDecoder officeDecoder = new OfficeAdapterDecoder(this.officeSession);

this.DocumentInfoRequested += (o, e) =>

{

string fileName = HttpContext.Current.Request.MapPath(e.FilePath);

if(File.Exists(fileName))

{

using(Stream stream = File.OpenRead(fileName))

{

if(officeDecoder.IsValidFormat(stream))

30



Atalasoft DotImage Developer's Guide

{

ImageInfo imageInfo = officeDecoder.GetImageInfo(stream);

int dpi = officeDecoder.Resolution;

e.Resolution = new Dpi(dpi, dpi, ResolutionUnit.DotsPerInch);

e.PageCount = imageInfo.FrameCount;

e.ColorDepth = imageInfo.ColorDepth;

e.PageSize = imageInfo.Size;

}

}

}

};

this.ImageRequested += (o, e) =>

{

string fileName = HttpContext.Current.Request.MapPath(e.FilePath);

if(File.Exists(fileName))

{

using(Stream stream = File.OpenRead(fileName))

{

if(officeDecoder.IsValidFormat(stream))

{

e.Image = officeDecoder.Read(stream, e.FrameIndex, null);

}

}

}

};

}

~OfficeWebDocumentRequestHandler()

{

this.officeSession.Close();

}

}

31



Atalasoft DotImage Developer's Guide

Common Decoders
The Atalasoft.dotImage.CommonDecoders assembly provides decoders for several popular file 
formats.

CommonDecoders derives the ImageDecoder class and acts like any other Atalasoft DotImage 
decoder in that it has a Read() method which returns an AtalaImage of the decoded document. It 
can be included in the RegisteredDecoders collection which allows to open office documents using 
the AtalaImage constructor.

CommonDecoders include decoders for the following formats:
• EmlDecoder: Decodes email message files (.eml) from supported email programs like Microsoft 

Office and Apple Mail. The file can contain the sender, recipients, subject, message content, and 
any attachments.

• TxtDecoder: Decodes plain text files (.txt) and XML files (.xml).
• HtmlDecoder: Decodes HTML files (.html), including all formatting, hyperlink, and text formatting.
• WebpDecoder: Decodes WebP (.webp) image files.

In order to work properly the following modules should be installed along with 
Atalasoft.dotImage.CommonDecoders assembly:
• ISYS11df.dll

• ISYSreaders.dll

• ISYSreadershd.dll

• Perceptive.DocumentFilters.dll

The modules are available for both x86 and x64 platforms.

Note the following when using CommonDecoders:
• Attachments in .eml files are shown as a list in the result image. Inline attached images are 

shown in the message body of the result image.
• Only static .webp files are supported. Animated .webp images are not supported.
• HTML content (.html files and .eml and .msg message files in HTML format) has the following 

limitations:
• Only CSS2 styles are supported. CSS 2.1, CSS 2.2, and CSS3 styles are not supported.
• Only inline styles and local CSS files are supported.
• JavaScript is not supported. Visible content from JavaScript code is not decoded.

Atalasoft DotImage ISIS
Atalasoft DotImage ISIS is a .NET component for capturing images from scanners that use an ISIS 
driver. It takes advantage of the speed and stability of ISIS drivers available from most scanner 
manufacturers.

Supported Features
• Direct in-memory scanning
• Scanning directly to a variety of file formats (provided through ISIS drivers)

32



Atalasoft DotImage Developer's Guide

• Access to dozens of scanner property values
• Automatic Document Feeder support
• Supports custom interface creation or, use the default driver interface
• Support for saving and restoring scanner settings to a file or stream
• Barcode detection (when supported by the scanner)
• In-memory images can be returned as a .NET Bitmap or an AtalaImage
• Use the IsisController for more direct lower-level scanner control

33



Chapter 2

Use Atalasoft DotImage

This chapter describes information resources that are available to help you learn about Atalasoft 
DotImage.

Atalasoft DotImage documentation
The Atalasoft DotImage documentation provides detailed information on how to develop Windows 
Form and ASP.NET WebForm applications using the Atalasoft DotImage SDK.

We recommend that you read the Getting Started section before beginning your first project. 
Atalasoft DotImage has many classes and namespaces. This section should help you gain an 
understanding of where to start and of the classes that are relevant to your specific imaging needs.

The documentation covers the Atalasoft DotImage Photo, Atalasoft DotImage Photo Pro, and 
Atalasoft DotImage Document Imaging products as well as all Atalasoft DotImage Add-ons. The 
Atalasoft DotImage documentation is available as an HTML Help collection and as a PDF suitable for 
printing.

Atalasoft DotImage NuGet Packages
NuGet is a deployment mechanism for development artifacts (.NET assemblies, JavaScript files, etc.). 
It is the standard deployment option for Microsoft products, and even for the .NET Framework itself.

By introducing NuGet packages for Atalasoft DotImage, it becomes possible for users to install 
Atalasoft DotImage components right from within Visual Studio, eliminating the need to provide 
a complete Atalasoft DotImage installer. This streamlines the whole development process. NuGet 
packages also simplify upgrading to newer versions of the packages.

Note that you cannot use the NuGet infrastructure to generate a Atalasoft DotImage license. 
Historically, Activation Wizard tools were part of the complete installation package and were not 
available otherwise. To accommodate Atalasoft DotImage NuGet packages and simplify the license 
generation process, Activation Wizard is provided as an extension for Visual Studio, so clients can 
request trial or generate Atalasoft DotImage licenses without a complete installation of Atalasoft 
DotImage SDK in their environment.

Visual Studio Activation Wizard Extension
For convenience, the Activation Wizard is ported to a VSIX, so NuGet package consumers do not 
have to download a full installer for the Atalasoft DotImage SDK to get the Activation Wizard.

34



Atalasoft DotImage Developer's Guide

The Activation Wizard extension can be installed or upgraded right from within Visual Studio, using 
Tools -> Extension and Updates.

After installing Atalasoft DotImage or downloading the Atalasoft DotImage NuGet packages, you 
need to activate your serial number. You can do this using the "Activate Atalasoft DotImage.." item 
from the Visual Studio Tools menu.

The activation process varies with your situation:
• If you have not yet purchased Atalasoft DotImage, select the Request 30-day Evaluation radio 

button and follow the instructions in Requesting an Evaluation License.
• If you have purchased Atalasoft DotImage, or related toolkits, you need your serial number to 

continue with the activation process.

Your Atalasoft DotImage serial number belongs only to you and must be kept in a safe place. You 
need this serial number to request license files. The activation wizard will generate the necessary 
license files (.lic) in your Local Application Data folder, located at:

%LOCALAPPADATA%\Atalasoft\DotImage X.Y

Where X and Y are the major and minor versions of the release covered by the license.

Getting Started with Web Capture

Follow these steps to create a new capture-enabled Web project. Topics include adding the 
document viewer and scanning controls to your Web page, and handling uploaded content on the 
server. Several steps will contain cross-references to other sections with more detailed information.

This guide is intended to be followed exactly, but it is not intended to give you a solution that is 
ready to deploy. Once you have succeeded building the example project, you can begin modifying it 
to fit your organization.

Make sure you read the Atalasoft DotImage Technical Specifications for supported products and 
versions.

Atalasoft DotImage demos
The demo programs provided at our demo gallery demonstrate the wide range of capabilities 
available to you while developing applications with Atalasoft DotImage.

These demos are designed as a reference and an evaluation tool, and are provided as compiled 
executables, as well as Visual Studio projects in C# and VB.NET in Visual Studio. The executables 
generally run without a license, but licenses are required to compile the source code.

To view a complete list of demos, go to: http://www.atalasoft.com/Support/Sample-Applications.

Set up a new project
A capture-enabled application requires these basic elements:
• A client-side ASPX page containing the scanning controls and document viewer.

35

http://www.atalasoft.com/Support/Sample-Applications


Atalasoft DotImage Developer's Guide

• A server-side ASHX handler for the Web Document Viewer.
• A server-side ASHX handler for the Web Capture back end.
• WebCapture and WebDocumentViewer resources files.
• An upload location for scanned documents.

Start by creating a new ASP.NET Web Application in Visual Studio.

 In the following instructions the project is called BasicWebCapture.

Visual Studio automatically gives you Default.aspx as a page, which we will use for placing the 
scanning controls and viewer.

Modify the MSBuild project file when using .NET 6
If you are using .NET 6, you need to modify the MSBuild project file (which has a .csproj extension) 
to add Windows Forms support and enable Atalasoft DotImage libraries to be imported.
Search the MSBuild project file to see if <UseWindowsForms> is already in the file. If so, change
false to true. If not, add the following line to the file:
<UseWindowsForm>true</UseWindowsForm>

Add assembly references
Add the following DotImage assemblies to your project:
• Atalasoft.dotImage.WebControls
• Atalasoft.Shared

In a default installation, these assemblies can be found in the following folders:
• .NET Framework 4.6.2 (64-bit): C:\Program Files (x86)\Atalasoft\DotImage 11.5\bin
\4.6.2\x64

• .NET Framework 4.6.2 (32-bit): C:\Program Files (x86)\Atalasoft\DotImage 11.5\bin
\4.6.2\x86

• .NET Framework 3.5 (64-bit): C:\Program Files (x86)\Atalasoft\DotImage 11.5\bin
\3.5\x64

• .NET Framework 3.5 (32-bit): C:\Program Files (x86)\Atalasoft\DotImage 11.5\bin
\3.5\x86

There may be further dependencies on any of the remaining DotImage assemblies. Include all 
DotImage assemblies in your project if there are problems resolving them.

Copy resources
DotImage comes with two sets of resources: WebCapture and WebDocumentViewer. In a 
default .Net installation, these directories are located in C:\Program Files (x86)\Atalasoft
\DotImage 11.5\bin\WebResources.
Copy the WebCapture and WebDocumentViewer directories into the root of your project.

Create the upload location
Create a new directory in the root of your project called atala-capture-upload. This is the default 
path that will be used for storing images uploaded by the scanning controls.
If you need to change the location of the upload path (for example, to place it in a location outside 
of your document root), you can set an atala_uploadpath value in the appSettings section of 
either your web.config or app.config.

36



Atalasoft DotImage Developer's Guide

<appSettings> 
  <add key="atala_uploadpath" value="c:\path\to\location"/>
</appSettings>

Add the Web Document Viewer handler
The Web Document Viewer handler is responsible for communicating with the Web Document 
Viewer embedded in your page, and is separate from the capture handler.

Add a new Generic Handler to your project. For the purposes of this guide, it is assumed this file will 
be called WebDocViewerHandler.

Change the class definition to extend WebDocumentRequestHandler (part of
Atalasoft.Imaging.WebControls). Your handler should resemble the following example.

C#
using Atalasoft.Imaging.WebControls;
namespace BasicWebCapture
{
public class WebDocViewerHandler : WebDocumentRequestHandler
{ }
}

There is no need for further modification to your handler.

Add the Web Capture handler
The Web Capture handler is responsible for handling file uploads from the scanning controls 
embedded in your page, and routing them to their next destination along with any necessary 
metadata. It is also responsible for supplying the scanning controls with the available content and 
document types, and status information.

For this guide, we will create a custom handler that provides a few static content and document 
types, and saves uploaded files to another location. Using this baseline, you can continue modifying 
the handler to suit your own document handling needs.

If your organization uses Kofax Import Connector (KIC), DotImage ships with handlers to connect to 
the service.

 Kofax Import Connector handlers are only supported with .NET Framework 3.5 and 4.6.2.

Create a handler
Add a new Generic Handler to your project. For the purposes of this guide, it is assumed this file will 
be called WebCaptureHandler.ashx.
The handler should be modified to extend from WebCaptureRequestHandler (part of
Atalasoft.Imaging.WebControls.Capture), and should not implement the IHttpHandler interface, as 
is done when a generic handler is first created. Instead your handler will need to override several 
methods of WebCaptureRequestHandler. Your handler should resemble the following example.

C#
using System;

37



Atalasoft DotImage Developer's Guide

using System.Collections.Generic;
using System.IO;
using System.Web;
using Atalasoft.Imaging.WebControls.Capture;

namespace BasicWebCapture
{ 
    public class WebCaptureHandler : WebCaptureRequestHandler 
    { 
        protected override List<string> GetContentTypeList(HttpContext context) 
        { 
            // ... 
        } 

        protected override List<Dictionary<string, string>> 
 GetContentTypeDescription(HttpContext context, String contentType) 
        { 
            // ... 
        } 

        protected override Dictionary<string, string> ImportDocument(HttpContext 
 context, string filename,  
            string contentType, string contentTypeDocumentClass, string 
 contentTypeDescription) 
        { 
            // ... 
        } 
    }
}

The three stubs represent the minimum number of methods that must be implemented for basic 
functionality, but there are other methods available in the public API that can also have their 
behavior overridden, such as methods to generate IDs or query the status of documents. Refer to 
the accompanying object reference for the complete WebCaptureRequestHandler API.

GetContentTypeList
This method returns the collection of available content types that can be used to organize scanned 
and uploaded documents. Content types are the top-level organizational unit, and each one has its 
own collection of document types (also called document classes) below it.
For this example, GetContentTypeList will be implemented to return a fixed list of two types: 
Accounts and HR. In a real system, this would probably query a database or other data source 
instead. In the KIC handler, this method queries the system for these values.
C#
protected override List<string> GetContentTypeList(HttpContext context)
{ 
    return new List<string>() { "Accounts", "HR" };
}

GetContentTypeDescription
This method returns a collection of data describing all the document types under a single content 
type. The return data is a list of dictionaries, where each dictionary contains a set of properties 
describing a single document type. In this example, the only property returned for a document type 
is its documentClass, which serves as its name.

C#

protected override List<Dictionary<string, string>> 
 GetContentTypeDescription(HttpContext  

38



Atalasoft DotImage Developer's Guide

 context, String contentType) 
    { 
        switch (contentType) 
        { 
            case "Accounts": 
                return CreateDocumentClassDictionaryList(new string[] 
 { "Invoices",  
                "Purchase Orders" }); 
            case "HR": 
                return CreateDocumentClassDictionaryList(new string[] 
 { "Resumes" }); 
            default: 
                return base.GetContentTypeDescription(context, contentType); 
        } 
    } 
  
 private List<Dictionary<String, String>> 
 createDocumentClassDictionaryList(String[] docList) 
 { 
  return docList.Select(doc => new Dictionary<String, String> {{"documentClass", 
 doc}}).ToList(); 
 }

A helper method is provided to produce the actual list of document types, while 
GetContentTypeDescription switches on a given content type to determine what document types 
should be included in the list. As with content types, it is expected that this data will originate from 
another data source, instead of being hard-coded.

ImportDocument
This method is responsible for actually moving a document and its metadata to its real destination, 
which could be a directory, database, or system such as KIC.

C#
protected override Dictionary<string, string> ImportDocument(HttpContext context, 
 string filename,  
    string contentType, string contentTypeDocumentClass, string 
 contentTypeDescription)
{ 
    string docId = Guid.NewGuid().ToString(); 
    string importPath = @"C:\DocumentStore"; 

    importPath = Path.Combine(importPath, contentType); 
    importPath = Path.Combine(importPath, contentTypeDocumentClass); 
    importPath = Path.Combine(importPath, docId + "." + 
 Path.GetExtension(filename)); 

    string uploadPath = Path.Combine(UploadPath, filename); 

    File.Copy(uploadPath, importPath); 

    return new Dictionary<string, string>() 
    { 
        { "success", "true" }, 
        { "id", docId }, 
        { "status", "Import succeeded" }, 
    };
}

In this example, imported documents are copied into a directory tree rooted at C:\DocumentStore, 
using the content type and document class as subdirectories for organizing files. The imported file 
is copied and given a new name based on a GUID, which is also passed back to the client in the "id" 

39



Atalasoft DotImage Developer's Guide

field of a dictionary. The id could be used by the client to query the handler at a future time for the 
status of the imported document, but this functionality is not included in the guide.

Set up the scanning controls and viewer
The setup for scanning just requires placing some JavaScript, CSS, and HTML into your page. The 
page itself could be HTML, ASPX, JSP, or anything else, as the client-side technology is not directly 
tied to .NET or IIS. For this guide however, we will update the document Default.aspx, which was 
originally included in the new project.

Include the resources
Include the following script and link tags in your page's head section to include the necessary Web 
Document Viewer and Web Capture code and dependencies.

HTML
<!-- Script includes for Web Viewing -->
<script src="WebDocViewer/jquery-3.4.1.min.js" type="text/javascript"></script>
<script src="WebDocViewer/atalaWebDocumentViewer.js" type="text/javascript"></
script>

<!-- Style for Web Viewer -->
<link href="WebDocViewer/jquery-ui-1.12.1.custom.css" rel="Stylesheet" type="text/
css" />
<link href="WebDocViewer/atalaWebDocumentViewer.css" rel="Stylesheet" type="text/
css" />

<!-- Script includes for Web Capture -->
<script src="WebCapture/atalaWebCapture.js" type="text/javascript"></script>

Configure the controls
The scanning and viewing controls need to be initialized and configured to set up connections to 
the right handlers, specify behavior for events, and so forth. This can be done with another block 
of JavaScript, either included or pasted directly within your page's head somewhere below the 
included dependencies.

JavaScript
<script type="text/javascript"> 
    // Initialize Web Scanning and Web Viewing 
    $(function() { 
        try { 
            var viewer = new Atalasoft.Controls.WebDocumentViewer({ 
                parent: $('.atala-document-container'), 
                toolbarparent: $('.atala-document-toolbar'), 
                serverurl: 'WebDocViewerHandler' 
            }); 

            Atalasoft.Controls.Capture.WebScanning.initialize({ 
                handlerUrl: 'WebCaptureHandler', 
                onUploadCompleted: function(eventName, eventObj) { 
                    if (eventObj.success) { 
                        viewer.OpenUrl("atala-capture-upload/" + 
 eventObj.documentFilename); 
                        Atalasoft.Controls.Capture.CaptureService.documentFilename 
 = eventObj.documentFilename; 
                    } 
                }, 
                scanningOptions: { pixelType: 0 } 

40



Atalasoft DotImage Developer's Guide

            }); 

            Atalasoft.Controls.Capture.CaptureService.initialize({ 
                handlerUrl: 'WebCaptureHandler.' 
            }); 
        } 
        catch (error) { 
            alert('Thrown error: ' + error.description); 
        } 
    });
</script>

Note that the URL for the WebDocViewer handler is specified once and the URL for the WebCapture 
handler is specified twice, since two capture services must be initialized.
There are several additional options and handlers that can be specified in the initialization routines 
for scanning and viewing. This example represents the minimal configuration necessary for 
scanning with an integrated document viewer.

Add the UI
Add the following HTML to your project to create a basic viewer UI. This includes the Web Document 
Viewer, drop-down boxes to choose scanners, content types, and document types, and buttons to 
drive the UI. The scanning demos included with DotImage also include more complete examples.

HTML
<p>Select Scanner: 
  <select class="atala-scanner-list" disabled="disabled" name="scannerList" 
 style="width: 22em"> 
    <option selected="selected">(no scanners available)</option> 
  </select>
</p>
<p>Content Type: 
  <select class="atala-content-type-list" style="width:30em"></select>
</p>
<p>Document Type: 
  <select class="atala-content-type-document-list" style="width:30em"></select>
</p>
<p> 
  <input type="button" class="atala-scan-button" value="Scan" /> 
  <input type="button" class="atala-import-button" value="Import" />
</p>       
<div> 
  <div class="atala-document-toolbar" style="width: 670px;"></div> 
  <div class="atala-document-container" style="width: 670px; height: 500px;"></div>
</div> 

Wrap-up
Your project should be ready to deploy to an app server. It is also ready to run from your developing 
environment, for testing purposes.

Web server Upload size limits
By default, IIS limits uploads to 30MB. Estimate the maximum upload size your application could 
generate, and adjust the server limits accordingly.

41



Atalasoft DotImage Developer's Guide

Deploy on multiuser environment
There are scenarios where Web Capture Service is used on multiuser environments (MS Terminal 
Server, Citrix). On these environments, multiple users work with Web Capture Service at the same 
time from different Windows logon sessions. We need to support such environments and provide 
the same experience as on single-user machine.

Terminal server
When using a terminal server, users can connect to the scan server simultaneously and perform 
scanning tasks or import files in parallel.

In this case, the Web Capture Service Host determines who exactly has made a request to it, and 
forwards the request to the appropriate Web Capture Service Worker which, in turn, works with 
devices and files that are available to the specific user. For the end user, this detection process is 
transparent, and takes the same as in the simple single-user environment.

Web Capture Service can work only with scanners attached to a remote Terminal Server. Locally 
connected scanners are not available in this scenario. The same goes for file import – Web Capture 
Service provides access to files on a Terminal Server.

Citrix
The major difference, in comparison with the standalone scenario, when both the Browser app 
and Web Capture Service are installed on client machine, is that Web Capture Service is physically 
running on a remote Citrix server, while a scanner is connected to the client user’s computer. This 
works transparently for Web Capture Service when Citrix TWAIN Redirection is enabled.

Installation
Web Capture Service can be installed as a Windows Service, enabling the multiuser support features 
described above by using the INSTALLASSERVICE command line option as shown below:

msiexec /I Kofax.WebCapture.Installer.msi INSTALLASSERVICE=1

The same command line parameter should be passed to upgrade Web Capture Service installed as 
Windows Service.

Administrator rights are required to deploy and upgrade Web Capture Service installed as Windows 
Service; therefore it is the responsibility of server Administrator to deploy/upgrade it.

Upgrade
You cannot upgrade Web Capture Service installed as a Windows Service to the standalone version. 
The following error message is shown if you try to do so:

This application can't be installed because you already have Web Capture 
Service install as Windows service.

42



Atalasoft DotImage Developer's Guide

However, upgrading from the standalone installation to Windows Service is supported and works as 
expected.

Configure Kofax Import Connector
This is not intended to be a full set of instructions to install, set up, and maintain a Kofax Import 
Connector server. The following information provides the minimum amount of configuration 
needed for the DotImage Web Scanning Control to successfully connect, and import into Kofax 
Import Connector.

For information on connecting to an already configured Kofax Import Connector server, see
Connect to Kofax Import Connector (KIC) Web Services.

 Kofax Import Connector handlers are only supported with .NET Framework 3.5 and 4.6.2.

Required license
For the KIC server to accept documents imported from the DotImage assembly, a KIC – Electronic 
Documents – Web Service interface.

The license must be installed on your KIC server.

To verify that the correct minimum license has been installed go to the Message Connector Monitor, 
which by default is located on the KIC server at https://localhost:25086/file/index.html where under 
the Status->license section.

Configure the service
The DotImage Web scanning control connects via KIC’s service via a server-side handler that 
extends the KicHandler found in the Atalasoft.dotImage.WebControls assembly.

Once in the message connector, go to the “General” section, and verify that the “.

1. From the App Programs list, select Kofax > KIC Electronic Documents > Message Connector 
Configuration.
The message connector opens.

2. in the General section, verify the Own Computer Name is filled in with the current server’s 
domain qualified name.

3. Next, go to the Web-Service Input section.
• If only a HTTP based connection is desired set the HTTPS port to 0

This will be the port which the endpoint in the application's web.config will point to. If 
HTTPS is desired, then enter the port which will be used.

• If HTTPS is enabled the HTTP port will not be able to be connected to, and the endpoint in 
the application's web.config will need to point at the URL using the HTTPS port.

4. Once all of the desired changes to the KIC Message Connector have been made save, and 
restart the Message Connector service.

43



Atalasoft DotImage Developer's Guide

Configure the Electronic Documents plugin
In the Kofax Capture (KC) Administration application, open the 'Electronic Documents-
>Configuration' window, and configure the necessary Connections, and Destinations.

When finished, stop and start the service.

Test the configuration
To test that the KIC server has been minimally configured correctly in a browser either on the 
server, or at a client that might connect to the server enter the following URLs (all on one line of 
course):

HTTP enabled webservice
http://[kic_servername]:[http_port]/soap/tsl/Import?<OwnerReference>myref</
OwnerReference>
<Address>importaddr</Address><Part><ContentType>text/plain</ContentType>
<Content><Text>hello</Text></Content></Part>

HTTPS enabled webservice
https://[kic_servername]:[https_port]/soap/tsl/Import?<OwnerReference>myref</
OwnerReference>
<Address>importaddr</Address><Part><ContentType>text/plain</ContentType>
<Content><Text>hello</Text></Content></Part>

Upload sizes and limits
By default, IIS limits uploads to 30MB. If your application may sometimes generate larger uploads, 
you will need to adjust this limit for the server, or at least for your application.

Estimate upload sizes
The size of an upload is approximately the sum of the compressed sizes of the uploaded images x 
4/3 (1.333).

The calculations below are for images. Remember that duplex scanning generates two images per 
page, minus any blank sides discarded by setting discardBlankPages:true.

Raw uncompressed image size
Uncompressed image size in bytes = (width x DPI x height x DPI x depth) / 8
Where depth is 24 for color, 8 for grayscale, and 1 for B&W images.
Example, an 8.5" x 11" color page, scanned at 200 DPI: (8.5 x 200 x 11 x 200 x 24) / 8 = 11,220,000 
bytes (~11MB)

Compression ratios
Typical office documents in B&W will compress by ~10X. White space increases the compression, 
lots of text or detailed graphics of any kind decreases the compression. 50KB per compressed B&W 
image is not a bad average, 70KB is conservative.
Grayscale and color images will compress by 20X-30X, sometimes more. As with B&W, blank paper 
compresses more, detailed content compresses less.

44



Atalasoft DotImage Developer's Guide

For our example 8.5" x 11" color page scanned at 200 DPI, with a raw size of 11MB we estimate a 
compressed size in the range 374KB - 560KB.

Factor in Base64 encoding
We multiply by 4/3 (1.33) because uploads are encoded in Base64, which encodes 3 binary bytes as 
4 text characters.

Adjust the IIS upload limit
IIS, by default, limits any single upload to 30MB. If you attempt a larger upload, the server will 
(oddly) return a 404 error.

If you expect to upload larger files, you will need to increase this limit

Edit web.config
(from http://www.webtrenches.com/post.cfm/iis7-file-upload-size-limits)

Add to web.config

<system.webServer> 
  <security> 
    <requestFiltering> 
      <requestLimits maxAllowedContentLength="524288000"/> 
    </requestFiltering> 
  </security>
</system.webServer>

If you add the above code to the web.config file for your site, you can control the maximum 
upload size for your site. In many cases, the system.webServer node will already be in the file, so 
just add the security node within that.

 The maxAllowedContentLength is in BYTES not kilobytes.

You may also need to restart your Web site (not the whole server) to enable the setting.

Configure interactivity
The limit can also be changed interactively (quoting from the same blog post)

1. Open IIS 7 SnapIn.

2. Select the Web siteyou want enable to accept large file uploads.

3. In the main window double-click Request filtering.
The Request filtering window opens.
The tab list shows options such as file name extensions, rules, and hidden segments.

4. Select one fo the tabs. and in the main window right-click and select Edit Feature Settings.

5. Modify the Maximum allowed content length (bytes).

In-Memory limitation
Note that you should not expect Atalasoft DotImage to collect and upload a set of images that 
exceeds (approximately) 500MB of memory when uncompressed, whether the uploaded file is 

45



Atalasoft DotImage Developer's Guide

compressed or not. This corresponds to approximately 20 pages of 200 DPI full-color US Letter or 
A4 size. Grayscale images use 1/3 the space of color images, and B&W images use 1/24.

Server timeouts
With larger uploads, you may need to also increase the Params.serverTimeout: Integer value, which 
is 20 seconds by default.

Document management
The following set of tutorials are designed to teach you how to use Atalasoft DotImage by taking 
you through the development of a real world application, an enterprise document management 
solution.

To complete the tutorial, you need the following:
• Atalasoft DotImage installed on your computer
• Supported versions of Visual Studio and .NET (see the Atalasoft DotImage Technical Specifications)

Off-the-shelf document management solutions for your business may never meet all of your 
company’s requirements, can be painful to deploy, expensive to train your users on, and costly to 
license. Atalasoft DotImage Document Imaging enables .NET developers to quickly and easily build 
document management solutions that meet 100% of your company’s requirements with reasonable 
licensing, and with advanced Enterprise 2.0 features typically not found in off-the-shelf solutions.

This step-by-step tutorial demonstrates how to build an n-tier enterprise client-server document 
capture and viewing application in just a few hours. The tutorial describes the following:
• Building an application that captures documents from a scanner.
• Submitting those documents to a server via services.
• Storing the document and associated metadata into a database.
• Viewing the documents in a zero footprint web-client.
• Adding collaboration features with web-based annotations support.

To get started, continue to the next section.

Capture and view documents with a scanning client
This tutorial builds a windows forms application that can be deployed via an MSI installer or .NET 
Click-Once deployment.

This tutorial consists of the following lessons:
• Create the Windows Forms project
• Design the user Interface
• Add toolstrip controls
• Open a multipage docment from a file
• Configure AutoZoom and image scaling
• Save a multipage document to a file
• Capture documents from a scanner

46



Atalasoft DotImage Developer's Guide

Create the Windows Forms project
1. Create a new Windows Forms project called CaptureClient.
2. Choose the language you wish to code in, such as C#.

Design the user interface
1. Add a ToolStrip control to the top of the form by dragging it from the Visual Studio Toolbox.
2. Drag a DocumentViewer control from the Visual Studio Toolbox Atalasoft DotImage tab.

Use this control to open, view, navigate, and save a multipage document.
3. Select Fill from the Dock property located in the property grid of the DocumentViewer control.

This docks the DocumentViewer to the form so that resizing the form, also resizes the control.
4. Drag an Acquisition Component from the same Atalasoft DotImage tab in the toolbox.

This component acquires images from scanners.
The Atalasoft DotImage references added to your project up to this point include:
• Atalasoft.dotImage
• Atalasoft.dotImage.WinControls
• Atalasoft.DotTwain
• Atalasoft.Shared

The form created should have a Thumbnail Viewer in the left pane and an ImageViewer on the 
right.

Add toolstrip controls
In this lesson you add the toolstrip control that allows the user to interact with your application.

When complete, your toolstrip should have the six commands listed in the table. You also need to 
set the ToolStrip ImageScalingSize to 24,24 and name each control in the toolstrip as shown in the 
table.

Control Name

Open from a file tsbOpen

Save to a file tsbSave

Choose a scanner tsbChooseScanner

Scan tsbScan

Fit to width tbsFitToWidth

View full size tbsFullSize

1. Select ComboBox from the Add ToolStripButton menu.
You need the ComboBox for the "Choose a scanner" control.

2. Represent your commands using images from your own icon library or use text.

47



Atalasoft DotImage Developer's Guide

Open a multipage document from a file
After the user interface is finished, use this procedure to start coding.

1. Add "using" ("Imports" in VB) statements to the form as shown in the following C# example. 
This prevents you from having to declare the entire namespace for each class reference.

using System.IO;
using Atalasoft.Imaging;
using Atalasoft.Imaging.Codec;
using Atalasoft.Twain;

2. Drag an OpenFileDialog from the Visual Studio Toolbox to your form.
3. Double-click the Open button.
4. Add the following code in the event handler:

private void tsbOpen_Click(object sender, EventArgs e)
{ 
    if (openFileDialog1.ShowDialog(this) == DialogResult.OK) 
    { 
      documentViewer1.Open(new FileSystemImageSource(new string[] 
     { openFileDialog1.FileName }, true)); 
    }
}

This code presents an Open File dialog box. If an image is selected, it loads the image into 
the DocumentViewer control using a FileSystemImageSource. An ImageSource is designed to 
efficiently manage multiple images, keeping in memory only those that are necessary. This is 
the ideal way to navigate a multipage document such as a TIFF or PDF.

5. Build and run your project.

a. Open a multipage TIFF such as the one found in Images\Documents under the Atalasoft 
DotImage installation folder.

b. Use your toolstrip to open, view and navigate the pages of any supported image format.

Configure AutoZoom and image scaling
In this lesson, you add two buttons. Each affects document scaling by using the AutoZoom setting.
• The first button makes the entire document width visible in the viewer.
• The second button restores the document to full size view.

The first button is implemented by setting the AutoZoom property to the FitToWidth setting to make 
the entire document width visible in the viewer.

The Full Size View button sets the AutoZoom property to None and the Zoom property to 1.0.

 When users view a page at a zoom level less than 1.0, the control uses the fast ScaleToGray 
resampling on 1-bit black and white images when the AntialiasDisplay property for the 
DocumentViewer is set to a value other than none.

1. Double-click each button.
2. Add the following event handler to your application to configure these buttons:

48



Atalasoft DotImage Developer's Guide

private void tsbFitToWidth_Click(object sender, EventArgs e)
{ 
    documentViewer1.ImageControl.AutoZoom = 
 Atalasoft.Imaging.WinControls.AutoZoomMode.FitToWidth;
} 
  
private void tsbFullSize_Click(object sender, EventArgs e)
{ 
    documentViewer1.ImageControl.AutoZoom = 
 Atalasoft.Imaging.WinControls.AutoZoomMode.None; 
    documentViewer1.ImageControl.Zoom = 1.0;
}

You now have a simple, fast, and useful multipage document viewer.

Save a multipage document to a file
Use this procedure to save a multipage document to a file.

1. Drag a SaveFileDialog from the Visual Studio Toolbox to your form.
2. As the Save() method of the DocumentViewer handles all of the complexities involved in 

efficiently saving a multipaged document, you need only invoke the Save() method and pass 
in the file name or stream as well as an instance of ImageEncoder of the format in which you 
want to save.

3. Double-click the Save button.
4. Add the following code in the event handler:

private void tsbSave_Click(object sender, EventArgs e)
{ 
    if (saveFileDialog1.ShowDialog(this) == DialogResult.OK) 
    { 
        documentViewer1.Save(saveFileDialog1.FileName, new TiffEncoder()); 
    }
}

Capture documents from a scanner
In this lesson, you add the capability of capturing documents from a scanner to your application. 
The lesson uses DotTwain to scan documents directly into the DocumentViewer control.

1. Double-click the Acquisition control that you dropped onto the form in an earlier lesson. This 
creates the event handler for ImageAcquired. That event is fired for each image captured while 
the document is being scanned.

2. DotTwain stores images as .NET bitmaps. Therefore you must translate them to an AtalaImage 
using AtalaImage.FromBitmap. Images are added to the Document Viewer with the Add() 
method in the Source property. The Add() method accepts a filename, stream, or an in-memory 
AtalaImage object. Add the following code to the ImageAcquired event handler.

privatevoid acquisition1_ImageAcquired(object sender,
AcquireEventArgs e)
{
documentViewer1.Add(AtalaImage.FromBitmap(e.Image));
}

49



Atalasoft DotImage Developer's Guide

3. Now that the scan handling is in place, you must initiate the scan.

a. Double-click the Scan button in the ToolStrip.

b. Invoke the Acquire() method of the acquisition object as shown here. The code starts the 
scan using the default scanner and displays the scanner's default dialog box.

private void tsbScan_Click(object sender, EventArgs e)
{
acquisition1.Acquire();
}

Select a scanner
As many systems have more than one TWAIN device configured and the default device may not be 
the one the user needs to use for capture, you must populate the drop-down box previously added 
to the ToolStrip with all the TWAIN drivers configured on the current system.

This enables the user to select the device from which images are scanned.
1. Change the DropDownStyle property in the tsbChooseScanner control to DropDownList.
2. Add code to populate the drop-down menu with the names of all configured scanners.

public Form1()
{ 
    InitializeComponent(); 
     if (acquisition1.SystemHasTwain) 
    { 
        foreach (Device dev in acquisition1.Devices) 
        { 
            tsbChooseScanner.Items.Add(dev.Identity.ProductName); 
        } 
                if (acquisition1.Devices.Count > 0) 
                    tsbChooseScanner.SelectedItem = 
 acquisition1.Devices.Default.Identity.ProductName; 
                else 
                { 
                    tsbChooseScanner.Enabled = false; 
                    tsbScan.Enabled = false; 
                } 
    }
}

3. Change the acquisition code to use the selected device. Loop through the devices collection, in 
a manner similar to that used in the preceding code.

private void tsbScan_Click(object sender, EventArgs e)
{ 
    foreach (Device dev in acquisition1.Devices) 
    { 
        if (dev.Identity.ProductName == tsbChooseScanner.SelectedItem.ToString()) 
        { 
            dev.Acquire(); 
        } 
    }
}

You now have a full-featured capture application that can use any installed scanner, open any 
multipage document, and save the captured document as a TIFF.

50



Atalasoft DotImage Developer's Guide

To see the full solution for this lesson, go to Application Source Code.
You have now completed all of the lessons in part 1 of this tutorial. For suggestions on 
enhancing this application, see  Recommendations. To continue to the next part, go to Tutorial: 
Submit Captured documents to a central database repository.

Application source code
Developing a fully featured capture application such as this one is easy using Atalasoft DotImage 
Document Imaging. The easy to use API, and visual controls enable us to configure this application 
with minimal code.

The entire code for this application is as follows:

using System;  
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;  
using System.IO;
using Atalasoft.Imaging;
using Atalasoft.Imaging.Codec;
using Atalasoft.Twain; 
  
namespace CaptureClient
{ 
    public partial class Form1 : Form 
    { 
        public Form1() 
        { 
            InitializeComponent(); 
            if (acquisition1.SystemHasTwain) 
            { 
                foreach (Device dev in acquisition1.Devices) 
                { 
                    tsbChooseScanner.Items.Add(dev.Identity.ProductName); 
                } 
                if (acquisition1.Devices.Count > 0) 
                    tsbChooseScanner.SelectedItem = 
 acquisition1.Devices.Default.Identity.ProductName; 
                else 
                { 
                    tsbChooseScanner.Enabled = false; 
                    tsbScan.Enabled = false; 
                } 
           } 
        } 
  
        private void tsbOpen_Click(object sender, EventArgs e) 
        { 
            if (openFileDialog1.ShowDialog(this) == DialogResult.OK) 
            { 
                documentViewer1.Open(new FileSystemImageSource(new string[] 
 { openFileDialog1.FileName }, true)); 
            } 
        } 
  
        private void tsbSave_Click(object sender, EventArgs e) 

51



Atalasoft DotImage Developer's Guide

        { 
            if (saveFileDialog1.ShowDialog(this) == DialogResult.OK) 
            { 
                documentViewer1.Save(saveFileDialog1.FileName, new TiffEncoder()); 
            } 
        } 
  
        private void acquisition1_ImageAcquired(object sender, AcquireEventArgs e) 
        { 
            documentViewer1.Add(AtalaImage.FromBitmap(e.Image), "", ""); 
        } 
  
        private void tsbScan_Click(object sender, EventArgs e) 
        { 
            foreach (Device dev in acquisition1.Devices) 
            { 
                if (dev.Identity.ProductName == 
 tsbChooseScanner.SelectedItem.ToString()) 
                { 
                    dev.Acquire(); 
                } 
            } 
        } 
  
        private void tsbFitToWidth_Click(object sender, EventArgs e) 
        { 
            documentViewer1.ImageControl.AutoZoom = 
 Atalasoft.Imaging.WinControls.AutoZoomMode.FitToWidth; 
        } 
  
        private void tsbFullSize_Click(object sender, EventArgs e) 
        { 
            documentViewer1.ImageControl.AutoZoom = 
 Atalasoft.Imaging.WinControls.AutoZoomMode.None; 
            documentViewer1.ImageControl.Zoom = 1.0; 
        } 
  
    }
}

Recommendations
You can enhance this application simply by setting some properties or by writing just a small 
amount of code.

For example:
• Add AutoDeskew functionality as the image is scanned.
• Set the AutoDragDrop property of the ThumbnailControl to allow for the reordering of pages.
• Add additional navigation capabilities.
• Add mouse tools such as zoom and zoom to area.
• Generate searchable PDFs.

Submit captured documents to a central database repository
In the previous tutorial, you built a scanning client using Atalasoft DotImage that saves captured 
images to the local file system. In an enterprise capture application, however, documents need to 
be stored in a central database.

52



Atalasoft DotImage Developer's Guide

In the spirit of developing a true Enterprise 2.0 application with a Service Oriented Architecture, 
services should be the public interface to the database repository.

This tutorial demonstrates how to configure services to transmit images from a client application to 
a service and into a SQL database.

You must complete the steps in Lesson 1 before continuing with this lesson. This lesson uses very 
little Atalasoft DotImage code: refer to the MSDN documentation and Microsoft support for issues 
that do not directly involve Atalasoft DotImage code.

This tutorial consists of the following lessons:
• Create the SQL database
• Create the data abstraction layer
• Create the service
• Connect the capture client to the service
• Show progress while the document loads

Create the SQL database
Be sure that SQL Express is installed on your computer before beginning this lesson.

1. Add a new ASP.NET site to the solution.
2. Add a new item to the ASP.NET site. This creates the database that stores the multipaged 

document and associated metadata.
3. Select SQL Database, and name it ImageDatabase.mdf.
4. When prompted, select To add the database to the App Data folder in the site.
5. Create a table with the fields and field types shown in the table.

Column Name Data Type Allow Nulls

ImageID uniqueidentifier No

ImageData varbinary(MAX) Yes

PageCount int No

DateTimeCreated datetime No

Name nvarchar(50) Yes

6. Set the default value of DateTimeCreated to getdate().
7. Set the default value of PageCount to 0.
8. Select ImageID as the primary key.

Create the data abstraction layer
In this lesson, you submit captured documents to a central database repository. Begin by adding 
the ImageDatabaseTableAdapter command to your ImageDatabase.

1. Use Add New Item to add a new DataSet to your Web siteproject.
2. Name the newly added item "ImageDatabase".
3. If the TableAdapter Configuration Wizard appears, click Cancel.
4. Drag the ImageDatabase table from the Server Explorer to the ImageDatabase.xsd window.

53



Atalasoft DotImage Developer's Guide

5. Create two new queries by right-clicking the ImageDatabaseTableAdapter and selecting 
AddQuery.

6. Use the following SQL code to name the first query CreateRecord.

INSERT INTO ImageDatabase (ImageID, Name) VALUES (@ImageID,
@Name)

7. Use the following SQL code to name the second query UpdateImageData.

UPDATE ImageDatabase
SET ImageData = @ImageData, PageCount
WHERE (ImageID = @ImageID)

Create the service
In this lesson, you will submit captured documents to a central database repository.

1. Right-click the Atalasoft DotImage WebServer project.

2. Select Add New Item.

3. Choose Web Service and give your service the name ImageUpLoadService.

This creates a new service in the Web site, with the code in the App_Code folder. You will use the 
service to submit chunks of each page of the captured document located at the client. To do this, 
you need to create three methods:
• StartUpload
• AppendChunk
• FinishUpload

1. Add the following skeleton code to the service. Be sure to delete the Hello World default 
method.

WebMethod

public string StartUpload(string name)
{}

public void AppendChunk(string uid, byte[] buffer, long offset)
{}

public void FinishUpload(string uid, byte[] md5hash)
{}

2. Before you write the service code, add a reference to Atalasoft.dotImage, which is used to 
determine the number of pages that are in the submitted document.

3. Create an upload folder in the website's root to store the documents as they are uploaded.
4. Name the folder as Upload.

Ensure that the ASPNET user has modify privileges.
5. Add the following configuration setting to the configuration tag at the bottom of the

web.config file.

54



Atalasoft DotImage Developer's Guide

<appSettings> <add key = "UploadPath" value="Upload"/> </appSettings>

6. Begin by creating the required using statements as shown here.

using System.IO;
using Atalasoft.Imaging;
using Atalasoft.Imaging.Codec;
using System.Configuration;
using System.Security.Cryptography;
using ImageDatabaseTableAdapters;

7. Add a helper method to assist in error handling as shown here.

public Exception CustomSoapException(string message)
{
return new SoapException(message, new
System.Xml.XmlQualifiedName("ImageUploadService"));
}

8. In the webservice constructor, define the upload path and ensure that it exists. Throw off an 
error if it does not.

string _uploadPath;
public ImageUploadService()
{ 
    // check that the upload folder exists 
 string uploadConfigSetting = 
 ConfigurationManager.AppSettings["UploadPath"].ToString(); 
    if (Path.IsPathRooted(uploadConfigSetting)) 
        _uploadPath = uploadConfigSetting; 
    else 
        _uploadPath = Server.MapPath(uploadConfigSetting); 
    if (!Directory.Exists(_uploadPath)) 
        throw CustomSoapException("Upload Folder not found");
}

9. Create the StartUpload() method.
The StartUpload() method initiates the upload process. It creates a unique GUID stored as both 
the primary key in the database and as the temporary file name. This is also where the client 
defines the name of the document being uploaded. This information is stored as a database 
record which is later updated with the image data once uploading is complete.
StartUpload() returns the unique GUID string that will be used to identify each chunk.

public string StartUpload(string name)
{ 
    Guid guid = Guid.NewGuid(); 
    string uid = guid.ToString(); 
    using (Stream stream = File.Create(Path.Combine(_uploadPath, uid))) 
    { 
    } 
    using (ImageDatabaseTableAdapter ta = new ImageDatabaseTableAdapter()) 
    { 
        ta.CreateRecord(guid, name); 
    } 
    return uid;
}

10. Call AppendChunk() from the client until the entire document is uploaded.

55



Atalasoft DotImage Developer's Guide

public void AppendChunk(string uid, byte[] buffer, long offset)
{ 
    string filename = Path.Combine(_uploadPath, uid); 
    if (File.Exists(filename)) 
    { 
        // open a file stream and write the buffer.  Don't open with 
 FileMode.Append because the transfer may wish to start at a different point 
 using (FileStream fs = new FileStream(filename, FileMode.Open, 
 FileAccess.ReadWrite, FileShare.Read)) 
        { 
            fs.Seek(offset, SeekOrigin.Begin); 
            fs.Write(buffer, 0, buffer.Length); 
        } 
    } 
    else 
    { 
        throw CustomSoapException("Error Uploading File: cached file is missing"); 
    }
}

11. Implement the FinishUpload() method, which does the following:
• Verifies that the image data has not been corrupted during transfer by verifying a hash.
• Updates the image field in the database with image data.

Connect the capture client to the service
Before proceeding with this lesson, do the following:
• Save the ImageUploadService file.
• In the CaptureClient application completed in the previous part of this tutorial, add a reference to 

ImageUploadService just created. Name that connection DotImageWebServer.

1. Create a new button in the ToolStrip named tsbUpload, and double click it to create the event 
handler.

2. Create a private constant, _chunkSize, that defines the size of each chunk to be sent to the 
service:
const int _chunkSize = 16 * 1024; //in bytes (16 KB)

You need to provide a title for each image sent to the service. To do so, add a new Windows 
Form, InputForm. Use the button named listed here:
Cancel btnCancel
OK btnOK
textboxtxtTitle

3. Create the Title property for use in accessing the title text.

public string Title
{
get { return txtTitle.Text; }
}

56



Atalasoft DotImage Developer's Guide

Creating the upload code
You are now ready to create the upload code. The code is used at the point where the image 
is saved to a stream, and then uploaded, chunk by chunk, to the service. When the process is 
complete, a hash is calculated and sent to the service to ensure that the image data on the server is 
identical to the image data on the client.

This demo saves the document as a multipage TIFF. Use a temporary file stream to store the data as 
it is uploaded. In the handler for the upload button CaptureClient's Form1), you need to add code.

1. Begin by adding the using the statement shown here.
using System.Security.Cryptography;

2. Continue by adding the handler shown here.

private void tsbUpload_Click(object sender, EventArgs e)  
{ 
    InputForm dialog = new InputForm(); 
    if (dialog.ShowDialog(this) == DialogResult.OK) 
    { 
        string tempPath = System.IO.Path.GetTempPath(); 
        DotImageWebServer.ImageUploadService service = new 
 DotImageWebServer.ImageUploadService(); 
        service.Credentials = System.Net.CredentialCache.DefaultCredentials; 
        string guid = service.StartUpload(dialog.Title); 
        string filename = Path.Combine(tempPath, guid); 
        byte[] hash = null; 
        try 
        { 
            TiffEncoder encoder = new TiffEncoder(TiffCompression.Default); 
            using (Stream stream = File.Create(filename)) 
            { 
                documentViewer1.Save(stream, encoder); 
                stream.Seek(0, SeekOrigin.Begin); 
  
                //get hash 
                MD5CryptoServiceProvider md5 = new MD5CryptoServiceProvider(); 
                hash = md5.ComputeHash(stream); 
                stream.Seek(0, SeekOrigin.Begin); 
  
                //read stream 
 long streamLength = stream.Length; 
                byte[] buffer = new byte[_chunkSize]; 
                int currentOffset = 0; 
                int bytesRead = 0; 
                do 
                { 
                    bytesRead += stream.Read(buffer, 0, _chunkSize); 
                    service.AppendChunk(guid, buffer, currentOffset); 
                    currentOffset = bytesRead; 
                } while (bytesRead < streamLength); 
            } 
        } 
        finally 
        { 
            if (guid != null) 
            { 
                service.FinishUpload(guid, hash); 
                File.Delete(filename); //delete temp file 
            } 
        } 

57



Atalasoft DotImage Developer's Guide

    }
}

Running the capture application
You can now run the Capture application. Open or scan a document. The document is submitted to 
the service and then stored to the SQL Express database.

Show progress while the document loads
In "Connect the Capture Client to the Web Service", you may have noticed the lack of feedback when 
the document is uploading to the server. In this lesson, you enhance the Capture application to 
show progress while a document is loading. To do so you will:
• Add a progress bar.
• Add a background worker thread enabling the main user interface to continue to respond to 

events and to show progress as each chunk in the document is uploaded.

1. From the Toolbox, add a StatusStrip control to the main form.
2. From the StatusStrip pull-down menu, add a progress bar and a status label.
3. Set the status label text to Ready.

Add the background worker thread
1. Add a BackgroundWorker component from the toolbox to the form.
2. In the BackgroundWorker, create event handlers for DoWork and ProgressChanged.
3. Set the WorkerReportsProgress property to true in the Property Grid.

Modify the Upload code to use background worker and report progress
1. Cut and paste all the code with the if(dialog.ShowDialog ...) to the 

backgroundWorker1_ DoWork event handler.
2. Click Upload.

• Invoke the backgroundWorker1 RunAsyncMethod.
• Pass in the Title.

Your code should look similar to the following:

private void tsbUpload_Click(object sender, EventArgs e)
{ 
    InputForm dialog = new InputForm(); 
    if (dialog.ShowDialog(this) == DialogResult.OK) 
    { 
        backgroundWorker1.RunWorkerAsync(dialog.Title); 
    }
}

Update the event handler
1. In the backgroundWorker1_DoWork event handler, change the dialog.Title to (string) 

e.Argument.
2. Add code to report progress. Start by adding this code at the beginning of the DoWork event 

handler.

58



Atalasoft DotImage Developer's Guide

backgroundWorker1.ReportProgress(0, "Connecting to Web Service...");

3. Add the following code just before the documentViewer1.Save() method.
backgroundWorker1.ReportProgress(0, "Encoding...");

4. Add the following code after the hash calculation and immediately before the while loop (after 
the declarations for reading the stream).

backgroundWorker1.ReportProgress(0, "Uploading: 0 of " +
Convert.ToInt32((double)buffer.Length / 1024) + " KB");

5. Add the following code after service.AppendChunk is called in the while loop.

backgroundWorker1.ReportProgress(Convert.ToInt32((double)
bytesRead / streamLength * 100), "Uploading: " + Convert.ToInt32
(bytesRead / 1024) + " of " + Convert.ToInt32((double)
streamLength / 1024) + " KB");

6. Add the following code at the end of this method.
backgroundWorker1.ReportProgress(100, "Done");

7. Add the following code in the backgroundWorker1_ProgressChanged event handler to update 
the user interface with progress information.

private void backgroundWorker1_ProgressChanged(object sender, 
 ProgressChangedEventArgs e)
{ 
    toolStripProgressBar1.Value = e.ProgressPercentage; 
    if (e.UserState != null) 
        toolStripStatusLabel1.Text = e.UserState.ToString();
}

Test your work

 When testing the application, you should see the progress bar move while the document is 
uploading. The resulting document appears in the SQL Express Database.

View documents from a central database repository in a browser
In the previous tutorial, you built a capture client that submits documents to a centralized server 
via services. You built the database in SQL Express and created the data abstraction layer using the 
tools in Visual Studio.

In this tutorial, the capture application and associated service adds data to the database. You need 
to develop a viewing application to navigate and view the documents in the database.

In contrast to the capture application that will be distributed to only a handful of clients with 
desktop scanners, the viewing application will be used by the entire enterprise. Creating a zero 
footprint viewing application reduces the deployment and maintenance costs associated with 
installing and supporting a client application.

Be sure that you have completed the previous tutorials before proceeding with this one.

This tutorial consists of the following lessons:
• Configure a Web siteto use Atalasoft DotImage controls

59



Atalasoft DotImage Developer's Guide

• Add a webThumbnailViewer and WebAnnotationsViewer to the form
• Use a Data-Bound drop-down list to navigate documents stored in the database
• Load documents from database into the viewer
• Add No-Postback navigation controls to the viewer

Configure a Web siteto use Atalasoft DotImage controls
In this lesson, you configure a Web site to use Atalasoft DotImage controls. This requires adding the 
ASP.NET WebForm controls to the project and configuring the ImageCache.

1. Give the ASP.NET user modify access to the folder.
2. Add the following XML to the appSetting section of the web.config to define where the 

ImageCache exists and to determine how long to keep the images in the cache.

<add key="AtalasoftWebControls_Cache" value="ImageCache/"/>  
<add key="AtalasoftWebControls_CacheLifeTime" value="60"/>

Add a WebThumbnailViewer and WebAnnotationsViewer to the form
In this lesson, you add a WebThumbnailViewer and a WebAnnotationsViewer to the form.

Begin by dragging and dropping a WebThumbnailViewer and a WebAnnotationViewer from the 
Visual Studio Toolbox onto the Form.

Setting the ThumbnailViewer properties
1. Position the ThumbnailViewer to the left of the Annotation Viewer using tables.
2. Set the width of the Thumbnail Viewer to 150px and the width of the AnnotationViewer to 

100%. Set the height of both controls to 500px.
The controls should now be positioned and sized properly.

Connecting the viewer with the thumbnails
To connect the Viewer with the Thumbnails, type WebAnnotationViewer1 into the ViewerID property 
of the WebThumbnailViewer1. By setting that property, clicking a thumbnail automatically displays 
the associated image in the viewer.

The HTML code for the viewers should now look similar to the following.

< table > < tr > <td> <cc1:WebThumbnailViewer
ID="WebThumbnailViewer1" runat="server" Width="150px"
Height="500px" ViewerID="WebAnnotationViewer1" /> </td> <td
style="width:100%"> <cc2:WebAnnotationViewer
ID="WebAnnotationViewer1" runat="server" Height="500px"
Width="100%" /> </td> </ tr > </ table >

Use a Data-Bound drop-down to navigate documents stored in the 
database

1. Add a drop-down list to the page
2. Bind the list with all documents stored in the database.

60



Atalasoft DotImage Developer's Guide

3. In the drop-down list designer, configure the Data Source to use the SQL Database, 
the ImageDatabaseConnectionString, and an SQL statement that selects all from the 
ImageDatabase.
Here is the SQL statement: SELECT * FROM [ImageDatabase]

4. Set the display field to Name and the value field to ImageId.
5. Select EnableAutoPostback to get a new document whenever the drop-down value is changed. 

Your design should look similar to that shown below.
If you run the project, the document names are listed in the drop-down menu but no image is 
loaded into the viewer. That is the task of the next lesson, Load Documents from Database into 
the Web Viewer.

Load documents from database into the viewer
In this lesson, you load documents from a database into the viewer.

This lesson takes advantage of an Atalasoft DotImage feature that provides the ability to load 
images directly from a database using the DBImageSource class. This class requires a callback to 
handle the database access as efficiently as possible.

The requirements for database access include:
• A connection string callback
• Table name (from Clause)
• Image field
• Primary Key
• Optional order by clause
• Frame count (required for performance reasons)

1. The first step is to write a method that loads the image into the WebThumbnailViewer 
from DBImageSource, an ImageSource object you need to create. Add the following using 
statements at the beginning of the code followed by the Load() method.

using Atalasoft.Imaging.ImageSources;  
using Atalasoft.Imaging.ImageSources.Data;
using System.Data.SqlClient;
private void LoadImage(string guid)
{ 
    DbSqlImageAccessor accessor = new DbSqlImageAccessor(new 
 GetConnectionCallback(GetConn),  
    false, "ImageData", "ImageID", "ImageDatabase", "ImageID='" + guid + "'",  
    "DateTimeCreated", "PageCount"); 
    DbImageSource source = new DbImageSource(accessor); 
    this.WebThumbnailViewer1.Open(source);
}

2. Create the static callback method for getting the connection for the preceding method to work. 
The code for this method is shown here.

private static IDbConnection GetConn()
{ 
    return new SqlConnection(ConfigurationManager.ConnectionStrings 
    ["ImageDatabaseConnectionString"].ConnectionString);
} 

61



Atalasoft DotImage Developer's Guide

3. Call the LoadImage() method when the drop-down changes. The selected index is databound.

protected void DropDownList1_SelectedIndexChanged(object sender, EventArgs e)
{ 
    LoadImage(DropDownList1.SelectedValue.ToString()); 
    WebThumbnailViewer1.SelectedIndex = 0;
}
protected void DropDownList1_DataBound(object sender, EventArgs e)
{ 
    LoadImage(DropDownList1.SelectedValue.ToString()); 
    WebThumbnailViewer1.SelectedIndex = 0;
}

4. When the first page loads, the first document is shown in the viewer. You can use the drop-
down to load a different document into the viewer.

Add No-Postback navigation controls to the viewer
In this lesson, you add No-Postback navigation controls to the viewer.

In the Capture application, you added navigation buttons to fit image to width, and to view full size. 
In this lesson, you do the same thing with the Web Viewer.

One possible approach is to create server buttons that postback to the server and change the 
properties. A better approach is to create an HTML button and use the Viewer's Javascript API to 
change the settings without posting back. This lesson takes the latter approach.

Begin by adding two HTML buttons, btnFitToWidth and btnViewFullSize to your form. You can 
choose to represent the button as an image or as text. Double-clicking on a button adds its event 
handler in JavaScript. Interacting with the JavaScript is similar to working with server-side code, but 
all properties begin with set or get. Your JavaScript code should look like the following sample.

<script language="javascript" type="text/javascript">  
// <!CDATA[ 
 function btnFitToWidth_onclick() { 
   WebAnnotationViewer1.setAutoZoom(3);
} 
  
function btnViewFullSize_onclick() { 
   WebAnnotationViewer1.setAutoZoom(0); 
   WebAnnotationViewer1.setZoom(1.0);
} 
  
// &cd;>
</script>

Consult the Atalasoft DotImage documentation for the full JavaScript API reference.

Collaborate on documents using AJAX-enabled annotations
The previous three tutorials demonstrated how to create a client capture application that submits 
multipage document to a service interface to a database. An ASP.NET application navigates and 
views the documents from the SQL database repository.

62



Atalasoft DotImage Developer's Guide

This tutorial consists of the following lessons:
• Configure the controls to draw and view annotations
• Configure the application to draw annotations
• Configure the SQL database to store annotations
• Store and load annotations from the database

Configure the controls to draw and view annotations
As the viewer is already functioning at this point in the tutorial, adding annotations is 
straightforward.

1. Set the ShowAnnotations property of the WebThumbnailViewer1 to true.
2. Set the AutoLinkThumbnailViewer in WebAnnotationsViwer1 to true.
3. Add an HTML button, btnStickyNote, for sticky note annotations.
4. Add an HTML button, btnHighlighter, for a highlighter annotation.

Configure the application to draw annotations
In this lesson, configure the application that draws annotations.

1. Add these using statements to the default.aspx.cs file.

using Atalasoft.Annotate;
using Atalasoft.Annotate.Formatters;
using System.Drawing;
using ImageDatabaseTableAdapters;

2. In the Page_Load event handler, create default annotations for StickyNote and Highlighter as 
shown here.

protected void Page_Load(object sender, EventArgs e)
{ 
    //add default annotations 
    TextData stickynote = new TextData("Double Click to Edit"); 
    stickynote.Font.Size = 24; 
    stickynote.Fill = new AnnotationBrush (Color.Yellow); 
    stickynote.Name = "StickyNote"; 
    WebAnnotationViewer1.Annotations.DefaultAnnotations.Add(stickynote); 
  
    RectangleData highlighter = new RectangleData(); 
    highlighter.Translucent = true; 
    highlighter.Fill = new AnnotationBrush (Color.FromArgb(127, Color.Green)); 
    highlighter.Name = "Highlighter"; 
    WebAnnotationViewer1.Annotations.DefaultAnnotations.Add(highlighter);
}

3. In the JavaScript code:

a. Change the InteractMode to Author.

b. Create the annotations.

c. In the OnAnnotationCreated event, change the InteractMode back to Modify so that 
normal mouse operations once again function.
Here is a sample of these three functions.

63



Atalasoft DotImage Developer's Guide

function OnAnnotationCreated(e)  
{ 
    WebAnnotationViewer1.setInteractMode(AnnotationInteractMode.Modify); 
    WebAnnotationViewer1.AnnotationCreated = function(){};
} 
  
function btnStickyNote_onclick() { 
    WebAnnotationViewer1.setInteractMode(AnnotationInteractMode.Author); 
    var ann = WebAnnotationViewer1.CreateAnnotation('TextData', 'StickyNote'); 
    WebAnnotationViewer1.AnnotationCreated = OnAnnotationCreated;
} 
  
function btnHighlighter_onclick() { 
    WebAnnotationViewer1.setInteractMode(AnnotationInteractMode.Author); 
    var ann = WebAnnotationViewer1.CreateAnnotation('RectangleData', 
 'Highlighter'); 
    WebAnnotationViewer1.AnnotationCreated = OnAnnotationCreated;
}

After you add the preceding code, clicking on the StickyNote or Highlighter draws 
annotations onto the image. You now have annotations support, although the 
annotations lack persistence.

Configure the SQL database to store annotations
In this lesson you configure the SQL database to store annotations.

1. Add an annotations field to the database. This allows annotations to be stored separately form 
the image data as XML. To do so, add a field called Annotations with type varbinary(MAX).

2. Add a query to the ImageDatabaseTableAdapter called GetAnnotations using the following 
SQL:
SELECT Annotations FROM ImageDatabase WHERE ImageID = @ImageID

3. Add a query called UpdateAnnotations using the following SQL:
UPDATE ImageDatabase SET Annotations = @Annotations WHERE (ImageID = 
@Original_ImageID)

Store and load annotations from the database
In this lesson, you store and load annotations from the database.

Store the annotations
Use this procedure to store annotations in the database.

1. Open the toolbox and drag a button (which is called a server button)onto your form and name 
it btnSave.

2. Double-click the button to create the event handler.
3. Add the following code to the handler to save the annotations as XMP and store in the 

database using the query created in Configuring the SQL Database to Store Annotations.
protected void btnSave_Click(object sender, EventArgs e)  
{ 
    XmpFormatter formatter = new XmpFormatter(); 
    byte[] annots = WebAnnotationViewer1.Annotations.Save(formatter); 
  
    using (ImageDatabaseTableAdapter ta = new ImageDatabaseTableAdapter()) 
    { 

64



Atalasoft DotImage Developer's Guide

        ta.UpdateAnnotations(annots, new Guid(DropDownList1.SelectedValue)); 
    }
}

Load the annotations
Add code to load the annotations from the database. Do this after the image is loaded into the 
Viewer.

1. Clear the annotations from the previous image by invoking the ClearAnnotations() method of 
WebAnnotateViewer.

2. Get the annotations using the Query previously added.
private void LoadImage(string guid)
{ 
    DbSqlImageAccessor accessor = new DbSqlImageAccessor(new 
 GetConnectionCallback(GetConn), false, "ImageData", "ImageID", "ImageDatabase", 
 "ImageID='" + guid + "'", "DateTimeCreated", "PageCount"); 
    DbImageSource source = new DbImageSource(accessor); 
    this.WebAnnotationViewer1.ClearAnnotations(); 
    this.WebThumbnailViewer1.Open(source); 
    //get annotation data 
 byte[] annotations = null; 
    using (ImageDatabaseTableAdapter ta = new ImageDatabaseTableAdapter()) 
    { 
        annotations = (byte[])ta.GetAnnotations(new Guid(guid)); 
    } 
    if (annotations != null) 
    { 
        using (MemoryStream ms = new MemoryStream(annotations)) 
        { 
            WebAnnotationViewer1.LoadAnnotationData(ms); 
        } 
    }
}

Now the application loads the document with annotations that have persisted in the database. 
More annotations can be created and saved back to the database.

65



Chapter 3

Program with Atalasoft DotImage

Atalasoft DotImage brings a full-featured advanced imaging solution to your desktop or thin client 
application. With a collection of controls for ASP.NET and Windows, Atalasoft DotImage offers a light 
and powerful solution that matches your imaging requirements. Licensing is straightforward and 
runtime royalty free on the desktop. All Atalasoft DotImage and related assemblies are available as 
managed components and are natively built as .NET assemblies. You can choose from three distinct 
editions of Atalasoft DotImage as well as many add-on modules.

Getting started

Core Atalasoft DotImage editions
Atalasoft DotImage Photo
Basic color and grayscale image processing.

DotImage Photo Pro
Controls for viewing, editing, and printing images.
Color and grayscale image processing for the photographic and pre-press industry.
Support for EXIF/IPTC/XMP Metadata, Advanced Color Management, regional processing, automatic 
color adjustments, and RAW image support.
AJAX ASP.NET Server control for thin client image viewing and editing.

Atalasoft DotImage document imaging
Professional document imaging that includes all the features of Atalasoft DotImage Photo Pro plus:
• Fast scale to gray display
• TWAIN scanning
• Full-featured annotations SDK
• Auto-deskew
• Basic document clean-up
• Thresholding
• Multipage TIFF support
• Multipage PDF export
• Full features annotations support

AJAX ASP.NET image viewer, and thumbnail viewer for viewing documents on the without client 
postbacks.

66



Atalasoft DotImage Developer's Guide

Add-on modules
Atalasoft DotImage supports a number of add-on modules as detailed in the table that follows.

BarcodeReader
Read 1D and 2D bar codes from any image.

Barcode Writer
Write 1D and 2D bar codes into images.

PDF Reader
Read any PDF document as a raster image without Adobe Acrobat Reader.

JPEG2000 Codec
Read and Write JPEG2000 images. Used to add JPEG2000 support for PDF output.

JBIG2 Codec
Read and Write JPEG2000 images. Used to add JBIG2 support for PDF output

OCR module
Provides a standard interface for OCR engines and built-in translators to generate output files from 
the results of OCR.
Includes the open source Tesseract Engine.

GlyphReader OCR engine
Highly accurate lexicon-based OCR engine for European characters.

I.R.I.S. OCR
Interface to the I.R.I.S. iDRS multi-language ICR/OCR engine.

Searchable PDF module
Create searchable PDF files from any Atalasoft DotImage OCR engine.

Tesseract OCR engine
Interface to the open source Tesseract OCR engine.

Advanced document cleanup
Provides advanced document cleanup routines such as:
• Border removal
• Blob and hole punch removal
• Auto binarization
• Line removal
• Blank page detection
• Auto text inversion
• Auto negate
• Speck removal

67



Atalasoft DotImage Developer's Guide

Advanced photo effects
Advanced photo manipulation algorithms for automatically adjusting brightness and contrast of 
photos, and applying automatic effects to increase the overall quality of photos taken from both low 
resolution camera phones and high end professional cameras.

DICOM Codec
Read DICOM images and access image metadata.

DWG Codec
Read images from DWG and DXF CAD files.

Atalasoft DotImage ISIS
Capture images from ISIS-compatible scanners.

.NET assemblies
The following table lists the .NET assemblies provided with Atalasoft DotImage. These assemblies 
are compatible with .NET Framework and .NET 6 unless otherwise noted. For a list of .NET versions 
supported by Atalasoft DotImage, see the Atalasoft DotImage Technical Specifications.

Assembly DLL Notes

ASP.NET AJAX 
WebForm Controls

Atalasoft.dotImage.WebControls.dll This library contains the 
pre-built handlers for the 
WebDocumentViewer, 
WebAnnotationViewer and 
WebCapture.

Advanced 
Document Cleanup

Atalasoft.dotImage.AdvancedDocClean.dll Use AdvancedDocClean's 
filters and helper functions to 
perform advanced document 
cleanup. HolePunchRemoval, 
Despeckle, DynamicThreshold, 
and Deskew help clean any 
scanned paper document for 
any downstream recognition 
(barcode, ocr, omr, etc.).

Advanced Photo 
Effects

Atalasoft.dotImage.AdvancedPhotoEffects.dll AdvancedPhotoEffects contains 
many programmatic filters 
designed to edit photographic 
images. Similar to the 
filters in any modern photo 
manipulation application, the 
library contains filters such 
as GaussianBlurCommand, 
SharpenCommand, and 
commands to perform color 
correction.

Atalasoft DotImage 
Class Library

Atalasoft.dotImage.dll Start with this library in your 
applications that use images to 
save developer time and effort.

68



Atalasoft DotImage Developer's Guide

Assembly DLL Notes

Atalasoft DotImage 
ISIS

Atalasoft.dotImage.Isis.dll The ISIS library adds controls 
and support for interacting with 
ISIS device drivers allowing 
for automated and custom 
scanning applications.

Atalasoft dotImage 
Office decoder

Atalasoft.dotImage.Office.dll Atalasoft DotImage Office files 
decoder.

Atalasoft dotImage 
Common Decoders

Atalasoft.dotImage.CommonDecoders.dll Atalasoft DotImage decoders 
for several common file 
formats (.eml, .txt, .xml, .html, 
and .webp files).

Atalasoft dotImage 
Pdf Document 
Model

Atalasoft.PdfDoc.dll Atalasoft DotImage Pdf 
Document Model library.

Atalasoft dotImage 
PdfDoc Bridge

Atalasoft.dotImage.PdfDoc.Bridge.dll Atalasoft DotImage and DotPdf 
integration helper functions.

Atalasoft dotImage 
Tesseract 3 OCR 
support.

Atalasoft.dotImage.Ocr.Tesseract3.dll Atalasoft DotImage libraries for 
Google's Tesseract version 3 
engine.

Atalasoft dotImage 
Tesseract 5 OCR 
support.

Atalasoft.dotImage.Ocr.Tesseract5.dll Atalasoft DotImage libraries for 
Google's Tesseract version 5 
engine.

Barcode Reader Atalasoft.dotImage.Barcoding.Reading.dll Atalasoft DotImage's 
BarcodeEngine is contained 
within this package. It provides 
functions and settings to 
interact with and extract 
bar code data from scanned 
images.

Barcode Writer Atalasoft.dotImage.Barcoding.Writing.dll BarcodeWriter is a helper class 
that can overlay scanable bar 
codes onto digital documents.

DICOM Codec Atalasoft.dotImage.Dicom.dll Use this library to add 
the DicomDecoder to 
Atalasoft DotImage's 
RegisteredDecoders collection 
to add support for the Dicom 
medical device format.

DWG Codec Atalasoft.dotImage.Dwg.dll Use this library to add 
the DwgDecoder to 
Atalasoft DotImage's 
RegisteredDecoders collection 
to add support for AutoCAD's 
DWG CAD drawing files.

69



Atalasoft DotImage Developer's Guide

Assembly DLL Notes

DotTWAIN Atalasoft.DotTwain.dll Use this library to enable 
interaction with TWAIN drivers 
for scanners and cameras to 
capture images directly into 
custom applications.

Glyph Reader 
Engine

Atalasoft.dotImage.Ocr.GlyphReader.dll Use this library with the 
Atalasoft DotImage OCR library 
to add the GlyphReader engine 
to usable engines.

HEIF Codec Atalasoft.DotImage.Heif.dll Use this library to add 
the HeifDecoder to 
Atalasoft DotImage's 
RegisteredDecoders collection 
to add support for HEIF files.

Internal Atalasoft.dotImage.Lib.dll Lib contains a majority of the 
additional functionality for the 
Atalasoft DotImage toolkit.

JBIG2 Codec Atalasoft.dotImage.Jbig2.dll Use this library to add 
the JB2Decoder to 
Atalasoft DotImage's 
RegisteredDecoders collection 
to add support for Jbig2 
compressed files.

JPEG2000 Codec Atalasoft.dotImage.Jpeg2000.dll Use this library to add 
the Jpeg2000Decoder 
to Atalasoft DotImage's 
RegisteredDecoders collection 
to add support for Jpeg2000 
compressed files.

OCR Atalasoft.dotImage.Ocr.dll Use this library to add Optical 
Character Recognition (OCR) to 
convert scanned images into 
their contained text.

PDF Image Encoder Atalasoft.dotImage.Pdf.dll Atalasoft DotImage's 
DotPdf library helps create 
programmatic PDF and allows 
editing of existing PDF files.

PDF Reader Atalasoft.dotImage.PdfReader.dll Use this library to add 
the PdfDecoder to 
Atalasoft DotImage's 
RegisteredDecoders collection 
to add support for Adobe's PDF 
files.

Multiprocessing PDF 
Reader

Atalasoft.dotImage.PdfReader. 
Multiprocessing.dll

Use this library to add 
multiprocessing features for 
PDF processing.

70



Atalasoft DotImage Developer's Guide

Assembly DLL Notes

RAW Image Codec Atalasoft.dotImage.Raw.dll Use this library to add 
the RawDecoder to 
Atalasoft DotImage's 
RegisteredDecoders collection 
to add support for RAW camera 
files.

WPF Controls Atalasoft.dotImage.Wpf.dll Atalasoft DotImage viewers 
for Windows Presentation 
Foundation apps.

Windows Forms 
Controls

Atalasoft.dotImage.WinControls.dll Atalasoft DotImage viewers for 
WinForms. AnnotateViewer, 
DocumentViewer, and 
ImageViewer allow for 
displaying all of our image 
formats in a windows 
application.

Create images
Atalasoft DotImage has one class, AtalaImage, which is used for representing images. An 
AtalaImage is an in-memory representation of a raster (or pixel-based) image. An image is defined 
by several characteristics as listed in the table below.

Attribute Description

Width The width of the image is in pixels.

Height The height of the image is in pixels.

Resolution The number of pixels per unit of measure, e.g. pixels per inch.

Pixel Format (or Depth) The way the pixels represent color.

Create an image from scratch
You can create AtalaImages from the following:
• From scratch
• From other AtalaImages
• From streams

AtalaImages can represent black and white, gray, and color images in a number of different 
formats. They can be converted to and from any format.

Use the following code to create a new image from scratch:
AtalaImage image = new AtalaImage(width, height, PixelFormat.Pixel24bppBgr);

This code creates a new blank image of the given width and height in 24 bit per pixel color using the 
RGB color model. The image data is set to zeroes, which in this case creates a black image.

71



Atalasoft DotImage Developer's Guide

Copying an image
An image can be copied by using the Clone() method.
AtalaImage newImage = (AtalaImage)oldImage.Clone();

This code makes a new copy of the old image. Changes to newImage are not seen in oldImage.

Open images
There are several ways to open images in Atalasoft DotImage. For example, use a path to an image 
file as shown below.
AtalaImage image = new AtalaImage(pathToAnImage);

There is a lot that happens under the hood: first the path is opened into a Stream object, then 
Atalasoft DotImage checks to see if there is an ImageDecoder installed that supports this image file 
format. If there is, that ImageDecoder is chosen to turn the file contents into an AtalaImage. The 
path also can be an URL.

If there is no available decoder, this method fails and throws an ImageReadException. If you need 
to check to see if there is an installed decoder for a file you can do the following.

C#

public bool IsImageFormatSupported(string path)
{ 
            try { 
                        ImageInfo info = RegisteredDecoders.GetImageInfo(path); 
                        return true; 
            } 
            catch (ImageReadException) { 
                        return false; 
            }
}

RegisteredDecoders is initialized with a large suite of ImageDecoders, including ImagesDecoders 
for Windows Bitmap, JPEG, TIFF, and eleven other formats. You can add or remove items from this 
collection. If your installation of Atalasoft DotImage includes add-on modules with ImageDecoders 
(such as the PDF Reader module), you need to add the decoder to RegisteredDecoders yourself. See 
the Atalasoft DotImage Class Library.

C#
You can also work with an ImageDecoder directly. For example, if you were opening only TIFF files, 
you could use the TiffDecoder object yourself:

public AtalaImage OpenTiff(string path)
{ 
            using (FileStream stm = new FileStream(path, FileMode.Open, 
 FileAccess.Read, FileShare.Read)) { 
                        TiffDecoder decoder = new TiffDecoder(); 
                        if (!decoder.IsValidFormat(stm)) 
                                    throw new Exception("not a TIFF"); 
                        AtalaImage image = decoder.Read(stm, null); 
                        return image; 
            }

72



Atalasoft DotImage Developer's Guide

}

This opens a TIFF file and return an AtalaImage for the first page. ImageDecoder.Read() includes 
a second argument, ProgressEventHandler. If a non-null ProgressEventHandler is passed in, client 
code can receive information on progress in loading an image.
Several image formats include multiple pages in one file. In this case, the ImageDecoder includes 
methods that have a frame index argument. Passing in a zero based value returns an AtalaImage 
for that frame.

Save images
Saving images is not very different from reading images. Saving an image is done through an 
ImageEncoder object. Select an ImageEncoder for the file format that you would like, then use it to 
save the image. This can be done with the convenience method, AtalaImage.Save(), or through the 
ImageEncoder itself. For example, to save an image as a JPEG, you could do the following:

C#
AtalaImage image = GenerateImage(); // gets or creates an image
image.Save("mynewfile.jpg", new JpegEncoder(), null);

Use a ProgressEventHandler to monitor progress.
To use the ImageEncoder directly, you need to use a stream for the output first. The following 
method saves an image as a JPEG using the encoder directly:

C#
public void SaveAsJpeg(string path, AtalaImage image)
{ 
            JpegEncoder encoder = new JpegEncoder(); 
            AtalaImage saveImage = image; 
            if (!encoder.IsPixelFormatSupported(image.PixelFormat)) { 
                        saveImage = 
 image.GetChangedPixelFormat(encoder.SupportedPixelFormats[0]); // arbitrary choice 
            } 
            FileStream stm = null; 
            try { 
                        stm = new FileStream(path, FileMode.Create); 
                        encoder.Save(stm, image, null); 
            } 
            finally { 
                        if (stm != null) 
                                    stm.Close(); 
                        if (saveImage != image) 
                                    saveImage.Dispose(); 
            }
}

In addition to saving the image, this method checks the ImageEncoder to determine if it supports 
the PixelFormat of the image. If not, it creates a new image in a supported PixelFormat.
In addition to saving single images, many ImageEncoders include options for setting compression, 
adding metadata, or multiple pages. See the object reference for each ImageEncoder to see the 
specific features available.

73



Atalasoft DotImage Developer's Guide

Process and clean up images
Atalasoft DotImage features the ability to perform operations on the contents of images to 
create new image. The basis for this is the ImageCommand object. To process an image, you 
create an object derived from ImageCommand, modify its properties, if needed, and then 
call the ImageCommand’s Apply() method. For example, to invert an image, you can use the 
InvertCommand:

C#
  AtalaImage image = GenerateImage();  
  InvertCommand command = new InvertCommand(); 
  ImageResults results = command.Apply(image);

ImageResults contains the results of performing the command. This includes a property named 
Image which is the resulting image. It also includes a boolean, IsImageSourceImage, which 
indicates whether the ImageResults.Image property is the same as the original source image. 
If IsImageSourceImage is true, it indicates that the Image property of the ImageResults object 
is the same as the source image. If IsImageSourceImage is false, it indicates that the Image 
property of the ImageResults object is a new image. You can check this ahead of time by checking 
ImageCommand.InPlaceProcessing. If InPlaceProcessing is true, the command operates on the 
source image itself.
Several ImageCommands provide more information than is in an ImageResults object. These 
commands return a subclass of ImageResults to expose the extra information.

Dispose objects
Because images take up a great deal of memory, it’s a good idea to dispose AtalaImage objects 
after you are done with them. For example, if you creating a brand new image by processing and do 
not care about the old image anymore, you might want to follow this pattern:
C#
public AtalaImage Process(AtalaImage image, ImageCommand command)
{ 
            ImageResults results = command.Apply(image); 
            if (!results.IsImageSourceImage) 
                        image.Dispose(); 
            return results.Image;
}

Image commands may not operate on all image formats. You can call 
ImageCommand.IsPixelFormatSupported() to determine if a command operates natively on an 
particular PixelFormat. In addition, many commands can be induced to operate on any PixelFormat 
by setting the property ApplyToAnyPixelFormat to true. When ApplyToAnyPixelFormat is true, the 
source image is used to create a new image in an appropriate PixelFormat before performing the 
command. While all current Atalasoft DotImage ImageCommands allow this, it is possible for a 
command to reject this process by returning false in the property CanApplyToAnyPixelFormat.
You can get a list of all PixelFormats that an ImageCommand supports via the 
SupportedPixelFormats property.
Generally speaking, ImageCommands on their own are not thread-safe. That is, if you use the same 
ImageCommand object in two or more threads concurrently, the results are unpredictable. It is 
recommended instead that you use an ImageCommand for each thread. Generally speaking, it is 

74



Atalasoft DotImage Developer's Guide

very cheap to make ImageCommand objects. The constructors typically do very light weight work 
and the commands themselves consume very little memory.

ImageCommand objects
Atalasoft DotImage contains more than one hundred ImageCommand objects. They are broken 
down into functional groups as listed in the table that follows.

Object Description

Channels Commands that operate on images with multiple components, like color 
images

Document Commands that are geared for scanned documents

Effects Perform visual effects on images like mosaic or beveling

Filters Perform mathematical filtering like high or low pass filtering

Threading Commands that can make other commands operate in a multithreaded 
environment to improve performance

Transforms Perform coordinate transforms or depth transforms like rotate or ripple

Image controls for Windows Forms applications
Atalasoft DotImage includes controls and components to add imaging GUI functionality to Windows 
Forms applications in the Atalasoft.dotImage.WinControls assembly. The following components are 
included.

Image viewing
The following images are all displayed in a viewer.

Component Use

WorkspaceViewer Displaying, scrolling, and interacting with AtalaImage objects and applying 
commands

ImageViewer Displaying and scrolling AtalaImage objects

BitmapViewer Displaying .NET Bitmaps and Metafiles

Magnifier Displaying a magnified, zoomed view of a small section of the image below 
the mouse pointer

Thumbnail viewing

Component Use

ThumbnailView Display a list of thumbnail images in a single control.

FolderThumbnailView Display a list of thumbnail images from a folder on the file system in a 
single control.

75



Atalasoft DotImage Developer's Guide

RubberBanding

Component Use

RectangleRubberBand Drawing a rectangle rubber band (used for defining rectangular regions 
and drawing rectangles on an image)

EllipseRubberBand Drawing an elliptical rubber band (used for defining an elliptical region and 
drawing ellipses on an image)

LineRubberBand Drawing  lines on an image

RectangleSelection Implementing features such as resizing and animation (derives from 
RectangleRubberBand)

Printing

Component Use

ImagePrintDocument Printing single or multipage images directly to a printer

ImageCompositePrintDocument Printing multiple images as a photo composite at standard sizes and 
layouts.

Dialogs

Component Use

OpenImageFileDialog Loading an image from the file system, optionally showing a preview 
thumbnail

Image controls for web applications
Atalasoft DotImage provides AJAX-enabled imaging controls for ASP.NET that you can use in web 
applications. The controls can be used for image viewing and editing, thumbnails, and annotation. 
You can customize these controls to meet the requirements of your applications. Add the controls 
by dragging and dropping them on your WebForm.

For all versions of .NET, the Web Document Viewer (WDV) is recommended. The WDV is a JavaScript-
based image viewing control that communicates directly with a WebDocumentRequestHandler on 
the server side. You do not need to create a traditional WebServerControl back end.

The following legacy controls are available for .NET Framework. These are not supported by .NET 6, 
and you should use the WDV instead.

WebImageViewer
The AJAX enabled WebImageViewer is used to view and edit images in a browser. This control 
works by loading tiled sections of an image "On-Demand" when the relevant section of an image 
is panned or zoomed into view, converting each tile to a browser friendly format on the fly. It is 
especially optimized to view tiled and stripped TIFF's as it selectively decodes tiles from the source 
image as it streams them to the client. Perfect for viewing large TIFF images, such as mechanical 
CAD drawings, or documents scanned at a high resolution as the bandwidth requirements for the 
client are minimal. Also perfect for a universal document and image viewer when combined with 
the other supported codecs such as PDF, JPEG2000, and the other built-in formats.

76



Atalasoft DotImage Developer's Guide

This control is also useful for processing images interactively by tying a button to a server method. 
The result is that an image updates without a page postback. The rubberband selection feature can 
be used for cropping an image, or selecting an area of an image.
WebImageViewer provides the following features:
• Server-Side image viewing and processing with no client dependencies or installs
• Scale images with optional high-speed Scale-to-Gray display only available when used with 

Atalasoft DotImage Document Imaging
• On-demand loading of tiles as image is scrolled or panned
• A variety of mouse tools that zoom, pan, zoom to area, select, or center the image without 

posting back the entire page
• A rubberband for selecting an area of the image for navigation, cropping, or basic annotating
• Access to the full power of Atalasoft DotImage's Image Processing, Document Imaging, 

Metadata, Color Management, and other imaging functionality
• Choice of browser output format as JPEG, PNG, or GIF
• The ability to open images from HTTP, HTTPS, FTP, or from the local server
• The ability to print images by streaming as a PDF, or by using the JavaScript Print() method
• Support for viewing TIFF FAX images with different X and Y resolutions
• Very low bandwidth required to view very large images
• Access nearly all functionality through JavaScript with remote invoke methods, requiring no 

postback
• Very efficiently viewing of TIFF's that are saved as tiles or in strips
• Viewing of PDF's with the PDF Reader Module
• A "web" version of the Windows Form WorkspaceViewer Control
• Supports dragging and dropping controls onto an ASP.NET WebForm for design time

WebThumbnailViewer
The AJAX enabled WebThumbnailViewer is used to view multiple thumbnails from images stored 
in a multipage document such as a TIFF or PDF, or can be used to view thumbnail images from a 
folder. This control works by loading thumbnails "On-Demand" reducing bandwidth requirements 
and enabling the control to view thousands of thumbnails that are loaded only when scrolling in 
view. This control can be tied with the WebImageViewer for an advanced document image viewer.
WebThumbnail viewer provides the following features:
• On-demand loading of thumbnails as control is scrolled or panned
• Automatic synchronization of a WebImageViewer to show the selected thumb without any code
• The ability to place custom captions on each thumbnail with automatic placement of the page 

number and filename
• Select one or multiple Thumbs
• Requires very little bandwidth to view multipage images
• Access nearly all functionality through JavaScript and remote invoke methods, requiring no 

postback
• Supports the "web" version of the Windows Form's ThumbnailViewer Control
• Supports dragging and dropping controls onto an ASP.NET WebForm for design time support

77



Atalasoft DotImage Developer's Guide

WebAnnotationViewer
The AJAX enabled WebAnnotationViewer is used to annotate images in a browser. As 
WebAnnotationViewer is based on WebImageViewer, you get all of WebImageViewerfeatures 
(panning, zooming, tiling, and so forth), plus the ability to create, delete, view, and modify 
annotations without a postback.
WebAnnotationViewer uses the same rendering and data engine as Atalasoft DotImage 
Annotations. Therefore annotations can be created on the and viewed in a WinForms application 
and vice-versa. This control is useful for marking up images on the either in a collaborative 
environment or in an online image workflow application.
WebAnnotationViewer provides the following features:
• Access to the full power of Atalasoft DotImage's Annotations component for creating, loading, 

and saving annotations
• Users can create annotations with the mouse
• Users can move or resize annotations with the mouse
• User can edit Text Annotations in the browser
• Saved annotations are interoperable with the WinForms version of Atalasoft DotImage 

Annotations
• Access nearly all functionality through JavaScript and remote invoke methods, requiring no 

postback
• The "web" version of the Windows Form's AnnotationViewer Control
• Supports dragging and dropping controls onto an ASP.NET WebForm for design time support

Use WebAnnotationViewer to create:
• A thin client document viewer to view mechanical drawings from a database
• A based FAX image viewing and markup application
• A based QA application for manual review comparing original and new scanned images side-by-

side
• A browser based annotations application for marking up documents without affecting the 

underlying image data
• An online image editor for an digital photo gallery

TWAIN scanning
DotTwain is a Managed .NET Windows Form component with fast capturing of digital images from 
scanners, cameras, and other devices supporting TWAIN.

DotTwain:
• Utilizes the improvements of the TWAIN 2.4 specifications for ultra fast scanning.
• Works with a .NET Bitmap object and has no dependencies other then the .NET Framework.

Supported Features

DotTwain:
• Provides full context-sensitive help and documentation.
• Support object-oriented design as it is a TWAIN extension to the .NET Framework.

78



Atalasoft DotImage Developer's Guide

• Supports the creation of a custom interface to scan images, or the use of the default TWAIN 
interface.

• Supports automatic document feeders, with full control of the feeder operations.
• Supports duplex scanning.
• Provides file system support for navigating the internal device memory.
• Supports direct acquisition of images to file utilizing device-supported compression algorithms.
• Provides frame support, allowing you to select a region of the scanning bed to be acquired.
• Supports uploading a scanned image to a server with the built in HTTP Post class.
• Provides simplified automatic capture allowing a device to quickly capture multiple images for 

later acquisition.
• Provides Imprinter/Endorser methods allowing a text string ito be stamped onto the acquired 

image during the acquisition.
• Provides Barcode/Patchcode classes to access bar code and patch code recognition abilities of 

the device
• Provides a low-level class allowing very fine control over the scanning session for advanced users
• Is extensible allowing for custom driver capabilities access
• Supports image datasets enabling acquisition of specific images from a camera in a single 

operation
• Quickly determines the capabilities, compression modes, frame sizes, resolutions and more, that 

are supported by a device
• Provides more than 80 properties and 50 methods to give you total control over the image 

acquisition

DotTwain has been tested on many industry leading document scanners including those from 
Kodak, Fujitsu, Panasonic, Canon, Visioneer, Xerox, and Bell & Howell.

Imaging

Dithering
The DitherCommand gives even finer control over the dithering process. The command includes the 
Floyd Steinberg and Ordered Dithering methods and allows for the customization of each.

When converting an image from an RGB or RGBA format, with many millions of possible colors, to 
a colormapped format, such as 8-bit or 1-bit format where there are only 256 or 2 colors available, 
there is a loss of color information. As a result, there is likely to be a difference (or “error”) for every 
pixel color in the original image and the corresponding pixel color in the new image.

There are two ways to deal with this error:
• Ignore it
• Push a portion of the error onto each of the surrounding pixels

This latter method is called “dithering” or “error diffusion”.

79



Atalasoft DotImage Developer's Guide

By default, when converting to a colormapped format, Atalasoft DotImage uses the Floyd Steinberg 
dithering algorithm to spread out color errors as defined in the AtalaPixelFormatChanger. The result 
is preferable to ignoring the error totally.

Because of the way we perceive colors, as an error spreads over an area of pixels, that area tends 
to resemble the same area in the original image even though there may be significant color errors 
on each individual pixel. This effect works much like an ink jet printer--many dots of just a few colors 
when placed close to one another look like a completely different color to the eye.

 Dithering works best for photographic images.

You can control how much dithering takes place with the DitherErrorMax property. Values range 
from 0 to 127.

A value of 0 is equivalent to ignoring the color error completely. Images generated this way tend to 
have large areas of solid color and the transitions between these colors are harsh. The results can 
be dramatic, but it is not a good idea to make this your default.

As you increase the DitherErrorMax value, the amount of error that can be spread to other pixels 
increases and the resulting images pick up subtle shading and smoother color transitions.

Compression
In a raw state, images can occupy a rather large amount of memory both in RAM and in storage. 
Image compression reduces the storage space required by an image and the bandwidth needed 
when streaming that image across a network.

Types
• Lossless: When lossless data is decompressed, the resulting image is identical to the original
• Lossy: Lossy compression algorithms result in loss of data. The decompressed image is not the 

same as the original.

Methods
JPEG compression
JPEG compression is the format of choice for photographic color and grayscale images. 
JPEG uses a non-linear lossy compression that can achieve high compression ratios. It takes 
advantage of the fact that human vision is more sensitive to changes in brightness than in color.
JPEG compression performs well on smooth gradients with gradual changes in color. In images 
that contain sharp lines and text, JPEG compression performs less well and "artifacts" can 
appear that are visible to the human eye.
Saving a JPEG image always results in some loss in quality and/or image data. Repeatedly 
decompressing and recompressing an image with JPEG compression continually degrades the 
image.

 TIFF images can be saved with JPEG compression.

Deflate/PNG compression
Deflate compression is a lossless scheme used in standard ZIP files. In imaging, PNG 
compression is most commonly used in the PNG format (pronounced "Ping"). Deflate 

80



Atalasoft DotImage Developer's Guide

compression works well with blocks of consistent data, and not as well with gradients. As a 
result, PNG's are good choice whenever data preservation is critical. For example, it is a good 
choice when compressing data for archival purposes and when compressing logos, graphics, 
and images within blocks of text.
Atalasoft DotImage also supports the Deflate compression in TIFF images.

CCIT Group 4 / Group 3 compression
CCIT compression is lossless. It is most commonly used for compressing binary images as it was 
originally designed for FAX images. CCIT is good at compressing binary data in black and white 
images, and is the compression algorithm of choice for document images.
CCIT Group 3 is an older standard and very similar to Group 4.
CCIT compression is available in the TIFF image format.

LZW compression
LZW compression is similar to Deflate but was patented by Terry Welch and his patent was 
enforced by Unisys. Unisys's US patent on the LZW algorithm expired in 2003 and for some 
other countries in 2004. LZW compression has gained wide use in the GIF format developed 
by CompuServe. LZW is also common in TIFF images and like Deflate is always lossless. LZW is 
slightly faster than Deflate but generally does not produce the same degree of compression.

Huffman compression
Huffman is lossless compression that relies on identifying repetitive patterns in the data of a 
file. CCIT Huffman compression is 1-bit TIFF's support Huffman compression.

RLE compression
Run Length Encoding (RLE) is a simple lossless compression algorithm that works by 
representing a sequence of identical values with a counter and a value. RLE works well when 
horizontal lines in an image are consistent, but for some images RLE can increase the file size.
The 4-bit or 8-bit BMP, and CCIT RLE for 1-bit TIFF formats all support RLE compression

Wavelet / JPEG2000 compression
Wavelet compression is a newer compression technology that is most commonly used with the 
JPEG2000 format. Wavelet compression can yield compression ratios that are greater than JPEG 
at the expense of speed.
Wavelet compression is not as widely supported as JPEG and does not always yield a 
significantly better compression ratio then standard JPEG.
Wavelet compression is slower then JPEG compression.

Asynchronous image processing
Asynchronous image processing can be advantageous because of the large amount of processing 
power required to process, load, and save images. Programs that do not use asynchronous 
processing may be rendered unresponsive due to the processing power requirements of image 
processing.

For this reason, Atalasoft DotImage provides strong support for asynchronous image processing. 
Atalasoft DotImage can process images asynchronously using the Workspace object with no 
additional coding required.

81



Atalasoft DotImage Developer's Guide

By setting the Asynchronous property in the Workspace or WorkspaceViewer object to true, all 
image operations including opening, saving, and applying commands are performed in a separate 
thread.

Process queue
When an image is processed asynchronously, there are special considerations.
For example, a single AtalaImage object cannot perform two operations at once. Performing 
multiple operations at the same time yields unpredictable results. When opening, processing, or 
saving an image, the operation is entered into the ProcessQueue. This specialized collection ensures 
that the operations are performed in sequence. Each call to Open, ApplyCommand, or Save, adds 
the operation to the queue, and the operation does not start until all of the items ahead of the 
newly queued item are complete.
The queue can be accessed at any time to determine the current state of an operation, or to add or 
remove an item from the queue.
When working with a Workspace in Asynchronous mode, any queries to the current AtalaImage 
object yields the current state of the object. Suppose you need to check the number of colors 
using the AtalaImage.CountColors() method after loading an image. To do so, you must run 
synchronously, or else handle the ProcessComplete event and wait until that event is fired before 
obtaining information about the processed image.

ThumbnailView control
The ThumbnailView control utilizes asynchronous processing by default. It loads thumbnail images 
in a background thread pool. The number of concurrent worker threads can be controlled by the 
NumWorkerThreads property.

 This property defaults to 3.

Resampling
In signal processing, the act of resizing a stream of data is known as resampling. This means 
that you take measurements of the data source at specific intervals in such a way that you can 
reproduce the original signal with a different amount of data, within the constraints of your system.

In image processing, one tries to resize a two dimensional image in such a way that the resized 
image resembles the original as much as possible, given a limited amount of time and memory. 
More specifically,
• When reducing images, the goal is to preserve the character of the source data, but with fewer 

points.
• When enlarging images, the goal is to invent data to fill in the holes where there is no source 

data.

In the examples that follow, assume there are Ns samples in the source and there are Nd samples 
in the destination, in one dimension. Two dimensional resampling is a natural extension of the one 
dimensional process.

ShowNearest neighbor
The easiest way to resample anything is to pick every Floor(Ns/Nd)th sample out of the source. Ex. : 
if Ns = 10 and Nd = 5 (you want your output data to be 1/2 the size of the source), you will pick every 

82



Atalasoft DotImage Developer's Guide

2nd data point from the source. The math is simple and so, this is a very quick operation. As with 
many processes that are both quick and simple, the results are not ideal. This method ignores too 
much of the source data to accurately reproduce it.
Even worse, when enlarging, you end up picking the same data points again and again. If Ns = 5 
and Nd = 20, you end up using a new source pixel every four destination pixels. This leads to the 
dreaded "fat pixel" effect.
Strictly speaking, when enlarging with this method, you are in fact preserving the data in the 
original image exactly: every source point is used in the destination image and, you are not 
introducing any new data into the new image. However, the results are not visually pleasing.
More sophisticated techniques can get rid of the fat pixel effect by making educated guesses as to 
what the data points between source pixel N and N+1 would be.

ShowBi-Linear resampling
For every destination pixel, find the location of the ideal source pixel by using the Ns/Nd ratio, as 
above. But this time, don't use the Floor function, preserve the fractional information. Ex. if Ns = 
5 and Nd = 15 and we're trying to find the 2nd point in the destination, the ideal source point is at 
0.666 (2 * (5 / 15) = 0.666). Because we can't address data at fractional locations, we'll do a weighted 
average of the two data points closest to our ideal location: 0 and 1. Our destination pixel is then 
0.666 of the data at point 0 and (1.0 - 0.666) of the data at point 1.
This technique is called linear interpolation. If you were to graph the two data points used in the 
calculation above, with a line between them, the ideal data value will be somewhere on that line. 
Bi-linear means that you do it twice - once horizontally and once vertically. The math is the same in 
either direction.
Using this technique on image data gives results that are far better than the nearest neighbor 
technique. The images lose the fat pixel effect and you can almost believe that the resizing code has 
somehow recovered data that was missing from the source.

ShowBi-Cubic resampling
Cubic interpolation is similar to linear interpolation in that you use your existing data to come up 
with an equation to model that data so that you can make an educated guess at what other points 
in that data set will be. Linear interpolation uses two data points to generate a simple line, and 
you pick your destination data from that line; in cubic interpolation, you use four data points to 
generate a 3rd degree equation (of the form ax^3 + bx^2 + cx + d) and pick your destination data 
from the curve. This makes the math much more complicated.
In linear interpolation, you use two source data points to find one destination point. In cubic 
interpolation, you use four source points to find one destination point. So, each destination 
point is created from twice as many source points, and a cubic equation can model mathematical 
relationships in data much more accurately than a simple line can.
The images that result from bi-cubic interpolation (cubic interpolation performed in both X and Y 
directions) are often sharper than bi-linear interpolation because of the higher accuracy possible 
with 3rd degree equations and the higher number of source pixels used. The downside is that 
the math required to do this is complex and time consuming. You need to be sure the time spent 
generating the image is worth the slight visual improvement.

ShowArea averaging
This technique is much different from the resampling techniques described above. In those 
techniques, the number of source points per destination point was fixed by the requirements 
of the math: 2 for linear resampling, 4 for cubic resampling. The intent of this algorithm is also 
different. The resampling techniques are designed to reproduce or mimic the source data as closely 
as possible; area averaging is designed to find the average data value in a given range of data.

83



Atalasoft DotImage Developer's Guide

The way it works is simple: divide the source data into Nd regions. Each destination point is the 
average data value from the corresponding source region. This is a very intuitive way to reduce 
the size of a data stream. Every data point in the source contributes equally to the output: and a 
destination pixel is the average of all source pixels that it represents.
Unfortunately, this technique can only be used when reducing images. If Ns < Nd, the source 
regions end up being less than one pixel each and the technique degenerates into a nearest-
neighbor equivalent. Also, this technique isn't good when you are only slightly reducing an image: 
the regions become too small to do much more than echo single source data points. But, for large 
reductions, area-averaging can give results that are equal to or better than any of the resampling 
techniques described above.

ShowFilter resampling
The Filter resizing methods are handled by a single resizing "engine". For each pixel, the engine 
combines a number of neighboring pixels in a weighted average to form the output pixel. Each 
method uses a different number of neighbor pixels and the weighting for these pixel is determined 
by a filtering function; each method uses a different filtering function, ranging in complexity from 
trivial to elaborate.
The results from these methods vary dramatically. Some of the methods are suboptimal for most 
purposes, while some of the others give results that far exceed any other resizing method. But, as 
with all things, the better the results, the longer the calculation takes.
For most purposes, the simple resampling methods (NearestNeighbor, BiLinear, AreaAverage) 
give respectable results. If you can afford to wait, the filter resizing methods can give outstanding 
results, in particular the LanczosFilter.

Morphology
Morphology is the study of form and structure. In image processing, morphology encompasses a 
set of techniques that merge traditional image processing with mathematical set theory. In general, 
morphological operations are performed on binary (two-color, 1-bit) images, although we provide 
extensions that support grayscale images as well.

All of the morphological operations discussed here are implemented in the Atalasoft DotImage SDK.

Set theory
Morphology applies these set theory rules to images. Additional rules may also apply.
• The union of two sets, A and B, is the set of all the elements that belong to A or to B, or to both 

A and B. When processing two binary images, implement union by merging the images using 
logical OR.

• The intersection of two sets is the set of elements that belong to both A and B. None of the 
elements that belong to A only or B only are included. When processing two binary images, 
implement intersection by merging the images with logical AND.

• The difference of A and B (A – B) is the set of elements in A that are not in B. “A – B” is equivalent 
to the intersection of A with the complement of B.

• The complement of the set A is the set of elements that are not in A (written here as ~A). When 
processing binary images, implement complement by using logical NOT.

• Two sets, A and B, are disjoint if they have no common elements.

Binary processing

84



Atalasoft DotImage Developer's Guide

Binary processing supports the following operations:
• Dilation
• Erosion
• Opening and Closing
• Hit or Miss
• Boundary Extraction
• Thinning

Dilation
Dilation is one of the two fundamental morphological operations. It is defined as the set of all 
points where the intersection of the structuring element and the image are non-empty. A mask 
acting as the structuring element, passes over the image. For each source pixel, if any of the pixels 
in the mask are “1” and line up with a source pixel which is also “1”, the output pixel is “1”.

Example 1
The mask is 3x3 with its center at (1,1):
0 1 0
1 1 1
0 1 0
The source image, A, is 4x4 and looks like:
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0
At the first pixel (0,0), with the mask centered on (0,0) none of the mask pixels overlay any 
source pixels where both are 1.
In the Atalasoft DotImage implementation, when the mask is off the edge, the nearest edge 
pixels stand-in for the pixels off the edge.
With the mask centered at source pixel (1,0), there is a match (mask pixel (1, 2) matches image 
pixel (1,1)). Therefore the intersection of A and the mask when the mask is at (1,0) is non-empty. 
So, the output pixel at (1,0) is set to “1”.
After processing the entire image, the output is as shown:
0 1 1 0
1 1 1 1
1 1 1 1
0 1 1 0
The transformation has dilated or expanded the image. It is no accident that the output image 
in some ways resembles the mask.

Example 2
If the mask is changed to that shown below:
0 0 0
1 1 1
0 0 0

85



Atalasoft DotImage Developer's Guide

If the same operations performed in Example 1 are repeated, the output is:
0 0 0 0
1 1 1 1
1 1 1 1
0 0 0 0
In general, the shape of the pixels in the mask has a huge effect on the output image. With an 
image this small, the effect is exaggerated as a 3x3 mask only affects pixels on the edges of the 
input image. These examples illustrate the fact that dilation increases an object’s geometric 
area.

Erosion

Erosion is the second of the two basic morphological operations. It is defined as the set of all points 
z such that the mask, translated by z, is contained in the image, A. In other words, erosion outputs a 
zero if any of the input pixels under the "1" pixels in the mask are zero. Formally, erosion can also be 
defined as the complement of the dilation of the complement of A with mask, or : Erosion(A, mask) 
= ~(Dilation(~A, mask)).
In terms of image processing, erosion reduces an object’s geometric area.
Dilation, erosion, and logical and set theory operations make up the basis for morphological image 
processing.

Opening and closing
The opening operation is the dilation of the erosion of the image. It tends to smooth outward 
bumps, breaks narrow sections and eliminates thin protrusions. In other words, as the mask is 
passed over the image, the output pixel is 1 only if all non-zero elements in the mask match non-
zero elements in A: it is the set of all locations where the mask fits into the input image.
The closing operation is the erosion of the dilation of the image. It tends to eliminate small holes 
and remove inward bumps.
Imagine a square; then imagine a smaller circle inside the square. A common analogy for opening 
and closing is to imagine a ball rolling around a geometric shape or, in our case, the circle rolling 
around inside the square. The opening of the square is all the area the circle can cover inside the 
square. This is most of the square except for areas in the corners where the circle does not fit. It is a 
square with rounded corners.
Imagine a square inside a square. The circle is inside the inner square and performs the same filling 
that it did in the opening example. But, after the circle has filled the square, take the complement 
of the inner square and intersect that with the outer square. What you get is a square with rounded 
corners inside a larger square. This is the closing.

Hit or miss
The Hit or Miss translation is a basic tool for shape detection. Unlike the previous four operations, 
Hit or Miss requires two structure elements. One element defines the foreground features to detect 
while the other defines the background features to detect. Strictly speaking, one could be derived 
from the other (assuming foreground is always the opposite of the background), but Atalasoft 
DotImage allows you to specify both masks explicitly.
Hit or Miss is defined as the intersection of the erosion of A by the first structure element 
(SE) and the erosion of the compliment of A by the second structure element: HitOrMiss = 
Intersect(Erosion(A, SE1), Erosion(~A, SE2)). So, the output of a Hit or Miss transformation is the 
set of points which match the erosion of A by SE1 (the foreground) and those which match the 

86



Atalasoft DotImage Developer's Guide

erosion of the compliment of A with SE2 (the background). The result is the matching of certain 
edge features (exactly which features depends on the shapes within the two structure elements).
Because the SEs are looking at complimentary features, they should be compliments of each other: 
if you have a “1” in SE1, you need to have a “0” in the corresponding location in SE2.

Boundary Extraction
Boundary Extraction is defined as the difference between the image A and the erosion of A with SE: 
A – Erosion(A, SE). The SE is usually a solid square of 1’s. The size of the SE determines the thickness 
of the border.

Thinning
The morphological thinning operation is defined as the intersection of the image A and the 
compliment of the Hit or Miss of A with SE1 and SE2: Thinning = Intersect(A, ~(HitOrMiss(A, SE1, 
SE2)). In practice, thinning is applied using a sequence of SE’s (and their complements), where the 
definition above is applied iteratively, using each pair of SEs in the sequence.
In practice, the iteration over the sequence of SEs is generally iteratively applied itself (a loop within 
a loop) until one of two conditions are reached.
• The output has not changed from one iteration of the outer loop to the next, indicating that 

image will not change on the next iteration.
• The maximum number of iterations allowed have taken place.

Since this can be a lengthy operation, setting a maximum iteration count is often a good idea. 
The function in Atalasoft DotImage handles both inner and outer loops for you but, if you want to 
handle the outer loop yourself (to show the thinning in progress) you can call it repeatedly with a 
maximum iteration count of 1.

Grayscale processing
The set theory definitions above do not translate well to the grayscale world. But, as there are a 
number of basic operations that can be defined in slightly different ways we can do similar, though 
not identical, operations on grayscale images.
The grayscale processing operations are:
• Dilation
• Erosion
• Opening and Closing
• Smoothing
• Gradient

Dilation
In grayscale, dilation for a grayscale pixel is calculated for each input pixel by adding the value of a 
pixel in the SE to the corresponding image pixel beneath and then finding the maximum value of all 
the additions.
If all elements in the SE are equal, dilation becomes a simple maximum filter (output is the 
maximum pixel value under the filter), plus an offset.

Erosion
In grayscale, erosion for a grayscale pixel is calculated for each input pixel by subtracting the value 
of a pixel in the SE from the corresponding image pixel beneath; then finding the minimum value of 
all the subtractions.

87



Atalasoft DotImage Developer's Guide

If all elements in the SE are equal, dilation becomes a simple minimum filter (output is the minimum 
pixel value under the filter), minus an offset.

Opening and closing
As in the binary case, opening and closing are defined in terms of erosion and dilation. Opening 
tends to darken bright details while closing tends to brighten dark details.

Smoothing
A smoothing operation can be defined by performing an opening followed by a closing. Since 
opening reduces bright details and closing brightens dark details, the combination of the two yields 
an image where the extremes have been smoothed.

Gradient
The gradient is a way to highlight sharp gray level transitions (ie. edges) within an image. It is 
defined as the arithmetic difference between the dilation of the image and the erosion of the 
image. Because erosion reduces the geometric area and dilation increases the area, the difference 
between the two tend to accentuate the edges (where the shrinking and enlarging occurred).

Best practices

Memory management
Garbage collection
In managed code in the .NET framework, memory is allocated from the managed heap. This heap is 
controlled by the Garbage Collector.
Microsoft chose to use a Garbage Collector rather than more traditional deterministic finalization 
in order to eliminate a layer of memory management responsibility from the programmer.
The Garbage Collector has many benefits, but also some disadvantages. When dealing with normal 
classes, objects, and types, you do not need to worry about memory as it is entirely handled by the
Garbage Collector. However, when dealing with un-managed memory such as memory pointers 
and handles using GDI or GDI+, because that memory does not reside on the managed heap it 
needs to be explicitly disposed. For that reason, many objects in .NET have a dispose() method.
The reference to the object is controlled by the managed heap. When it is time for the Garbage 
Collector to collect the reference, it runs the finalization code. As a developer, you have no idea 
when this finalization might happen.
When working with large chunks of memory it is a good practice to free that memory as soon as it is 
no longer needed by invoking the dispose() method.

Memory allocation
Images can occupy just a few bytes of data or many megabytes. For performance reasons, Atalasoft 
DotImage does not use the managed heap to allocate image memory. Instead it by default uses 
GlobalAlloc, or System.Runtime.InteropServices.Marshal.AllocHGlobal in the .NET Framework.
Similarly, Atalasoft DotImage uses GlobalFree or 
System.Runtime.InteropServices.Marshal.FreeHGlobal to free memory when the object is disposed. 
This method of allocating memory chunks is very fast and efficient, as long as there is available 

88



Atalasoft DotImage Developer's Guide

memory. As soon as the system memory is about to run out, or the memory chunk is extremely 
large, the system begins to page to file and cause delays.

Load very large image files
Atalasoft DotImage can display very large TIFF images gigabytes in size using the IScaledDecoder 
interface which is applied to the TiffDecoder and JpegDecoder. This interface will load the image at 
a scaled size without requiring all the image data to be in memory at once. The IRegionReadable 
interface can be used to read a rectangular section of the image without reading the entire image 
into memory and is applied to the TiffDecoder.
TIFF Images that are saved as a single strip do not benefit from IScaledDecoder or IRegionReadable 
because the entire image must be loaded into memory. We recommend using the default strip size 
or saving TIFF images as tiles.

Pixel memory

Memory layout
The Atalasoft DotImage memory layout is described below.
• An image is broken into a series of scanlines.
• A scanline contains a number of bytes equal to the width of the image times the number of bits 

per pixel divided by eight. This number is rounded up to the next higher multiple of four. For 
example, an image that is 1 bit per pixel and 33 pixels wide needs 33 / 1 / 8 = 4.125 bytes - this 
then gets rounded up to 8 bytes.

Image type Memory layout

1 bit Highest order bit in a byte is the leftmost in display.  The lowest order bit is the 
rightmost.

4 bit High order nibble (or group of 4 bits) is the leftmost in display.  The low order 
nibble is the rightmost.

24 bit Consecutive bytes are blue, green, and red respectively

32 bit rgb Consecutive bytes are blue, green, red, and alpha.  If the pixel format doesn't 
have an alpha channel, the 4th byte is a placeholder.

32 bit cmyk Consecutive bytes are cyan, magenta, yellow, and black.

16 bit gray with alpha Consecutive bytes are gray and alpha.

16 bit gray Consecutive words are gray

48 bit Consecutive words are blue, green, and red.

 64 bit Consecutive words are blue, green, red, and alpha.  If the pixel format doesn't 
have an alpha channel, the 4th word is a placeholder.

To obtain the width of a row of an AtalaImage in bytes, you can use image.RowStride. To 
obtain the width of a row in bytes give a width in pixels and a PixelFormat, use the method 
PixelFormatUtilities.RowStride().

The number of bytes needed by an entire image is typically the height times the width in bytes. This 
varies with the image representation.

89



Atalasoft DotImage Developer's Guide

Pixel access
In a PixelMemory object, you can use a PixelAccessor to locate the individual pixels

A PixelAccessor can only be created by a PixelMemory object. Once created, a PixelAccessor is 
always tied to that PixelMemory object and therefore to the image that owns the PixelMemory.

A PixelAccessor provides you with the ability to read from and write to individual scanlines within an 
image without needing to know about the actual underlying memory implementation.

With a PixelAccessor, you acquire a scanline to work on and when you are done, you release it. 
PixelAccessor provides a number of shortcuts to make working with image memory easy and to 
make it difficult to inadvertently forget to release a scanline or forget to release the PixelAccessor 
itself.

Acquire a Scanline
To acquire a scanline, call AcquireScanline, AcquireNextScanline, or AcquirePrevious scanline. Each 
will return an array or bytes that represents the scanline data. Calling ReleaseScanline releases the 
last scanline acquired, if any.
As a service, if you call a flavor of AcquireScanline a second time without calling ReleaseScanline, 
PixelAccessor does an implicit ReleaseScanline for you. Therefore it is incorrect to do something like 
this:
byte[] top, bottom;
top = accesor.AcquireScanline(0); // get the top row
bottom = accessor.AcquireScanline(memory.Height-1); // get the bottom row
// at this point top will have been released and bottom is the active scanline

You should consider PixelAccessors to be cheap resources. Use multiple accessors instead of one 
when you need to access multiple scanlines at the same time.
byte[] top, bottom;
top = topAccessor.AcquireScanline(0); // get the top row
bottom = bottomAccessor.AcquireScanline(memory.Height-1); // get the bottom row

Be aware that when you acquire a scanline, you have a non-exclusive lock on that memory. This 
means that other PixelAccessors can access the unchanged scanline. When a PixelAccessor releases 
a scanline, either implicitly or explicitly, the data is written back into the image. It is up to the client 
to ensure that there are no conflicts, especially in a multithreaded environment.
AcquireNextScanline always acquires the scanline after the currently acquired scanline. If there has 
been no previous acquisition or the previously acquired scanline was released, AcquireNextScanline 
is equivalent to AcquireScanline(0). If there are no more scanlines to acquire, AcquireNextScanline 
returns null.
AcquirePreviousScanline always acquires the scanline before the currently acquired scanline. If 
there has been no previous acquisition or the previously acquired scanline has been released or 
there are no more scanlines to acquire, AcquirePreviousScanline returns null.
It is possible for the PixelMemory object which owns an accessor to be disposed, leaving accessor 
that can longer correctly access memory. When a PixelMemory object is disposed, it notifies all its 
PixelAccessors that it is going away. At this point all its PixelAccessors are marked as invalid and no 
longer function.
For example, doing the following throws an exception:

90



Atalasoft DotImage Developer's Guide

C#
PixelAccessor pa = pixelMemory.AcquirePixelAccessor();
pixelMemory.Dispose();
// throws - the owning PixelMemory is gone.
pa.AcquireScanline(0); 

This is considered to be a serious problem and if it occurs, it usually indicates an architectural 
problem in client code. It is possible to check the validity of a PixelAccessor using the Valid 
property, but you are encouraged to design your code so that you need never check. That is, 
you should always know when a PixelAccessor is good.
Since PixelAccessor objects can contain resources, they implement IDisposable. When you are 
done with a PixelAccessor, you should Dispose it. If you have not released your last scanline, 
PixelAccessor releases it for you when it is disposed.
In addition, PixelAccessor contains a method called Release(). Release() marks the PixelAccessor 
as invalid and releases it back to its owning PixelMemory without releasing the last acquired 
scanline. This is necessary since Release() may be called by the PixelMemory object itself at a 
point when it would be invalid to write back into the image.
In general, it is most convenient to use a PixelAccessor within a using block as shown in the 
example below.

Example
Using a PixelAccessor with a Using Block

C#
public void ClearImage(AtalaImage image)
{ 
    using (PixelAccessor pa = image.PixelMemory.AcquirePixelAccessor()) 
    { 
        byte[] row; 
        while ((row = pa.AcquireNextScanline()) != null) 
        { 
             for (int i=0; i < row.Length; i++) row[i] = 0; 
        } 
    }
}

Example
The PixelAccessor is disposed when control leaves the using block.

Direct memory access
Sometimes it is necessary to access the memory of an image as directly as possible and without 
the overhead of copying it into a buffer. The definition of PixelMemory and PixelAccessor are such 
that this is not always possible. It is very straight-forward to design a version of PixelMemory in 
which the memory is laid out in many strips or tiles instead of one single block. In most cases, 
however, the memory is in one contiguous block. If that is the case, then the PixelMemory object 
also implements an interface IDirectScanlineAccess, which provides the means to make this 
determination and to get at scanlines through pointers.

IDirectScanlineAccess includes the method GetScanlinePtr(int i), which returns an IntPtr which 
points to the first byte in the ith scanline. This gives the direct memory address of any scanline, 
regardless of the memory layout. In addition, there is the method IsContiguous, which returns true

91



Atalasoft DotImage Developer's Guide

if the image's memory is in one block and consecutive scanlines follow each other consecutively in 
memory.

If IsContiguous is true, then it is possible to treat GetScanlinePtr(0) as a pointer to the beginning of 
the image's memory, which every scanline after falling in intervals of the image's RowStride.

 Currently all Atalasoft DotImage built-in commands and codecs require that PixelMemory 
implement IDirectScanlineAccess and that IsContiguous returns true. This may not be the case in 
the future.

In order to test if it is possible to work directly with memory easily, the PixelMemory class provides 
several static utility methods listed in the table below.

Method Description

PixelMemory.PixelDataFromPixelMemory Returns a pointer to the first scanline in an image. 
  If the PixelMemory is not contiguous, this method 
returns null.

PixelMemory.ThrowOnNonContiguous Throws an exception if the supplied AtalaImage or 
PixelMemory is not a contiguous block of memory.

C#
protected override AtalaImage PerformActualCommand(AtalaImage source, AtalaImage dest, 
 Rectangle imageArea, ref ImageResults results)
{ 
    PixelMemory.ThrowOnNonContiguous(source.PixelMemory); 
    if (dest != null) 
    { 
        PixelMemory.ThrowOnNonContiguous(dest.PixelMemory); 
    } 
    SpecializedCode.PeformUnmanagedWork(PixelMemory.PixelDataFromPixelMemory(source), 
 imageArea, 
        source.RowStride, PixelMemory.PixelDataFromPixelMemory(dest), dest.RowStride), 
    return null;
}

PixelMemory types
Atalasoft DotImage provides two main PixelMemory types for public use:
• GlobalAllocPixelMemory
• BitmapPixelMemory

In GlobalAllocPixelMemory, memory is supplied by the Win32 routine GlobalAlloc and is 
subsequently disposed with GlobalFree. GlobalAllocPixelMemory allocates the memory itself, but is 
also configurable to work with any block of memory allocated by GlobalAlloc.

As most allocation in Windows code goes through GlobalAlloc, this class works under almost all 
circumstances. In most cases you only need to supply the total number of bytes for the memory, 
the height of the image and the number of bytes per scanline, rounded up to the next multiple of 
four bytes.

GlobalAllocPixelMemory can also work under circumstances where the first scanline does not start 
at the first byte of the block of allocated memory. Several versions of the constructor include a 

92



Atalasoft DotImage Developer's Guide

parameter called offsetToFirstScanline, which indicates how far from the first byte the first scanline 
should start. This offset should be a multiple of 4.

BitmapPixelMemory is a variant of PixelMemory that is constructed from a .NET Bitmap object. 
Once constructed, the BitmapPixelMemory object owns the Bitmap and will Dispose it when the 
PixelMemory is disposed.

Client code is not likely to construct PixelMemory objects directly. Instead, PixelMemory objects are 
typically constructed by ImageDecoder objects or by AtalaImage.

Access pixel data
You can access to the image data in an AtalaImage object directly. This data can be accessed in the 
following ways:
• GetPixel and SetPixel to modify the pixel values individually
• PixelMemory and PixelAccessors to manipulate the image data

Use GetPixel and SetPixel
Image pixels can be accessed with the GetPixelColor and SetPixelColor, or GetPixelIndex and 
SetPixelIndex: for colormapped images, to easily retreive or set color information in an image. 
However, these methods are slow when manipulating many pixels at once (as demonstrated in the 
example code below). When processing a 600 x 400 pixel 24-bit image these methods were 56 times 
slower then the methods in the next two sections.

Example
Set new pixel color

C#
Color clr;
//loop through the entire image
for (int y = 0; y < image.Height; y++)
{ 
    for (int x = 0; x < image.Width; x++) 
    { 
        //darken each channel in an image by a ratio 
        clr = image.GetPixelColor(x, y); 
        image.SetPixelColor(x, y, Color.FromArgb(clr.A / 2, clr.R / 2, clr.G / 2, 
 clr.B / 2)); 
    }
}

Atalasoft DotImage includes classes for addressing memory without resorting to unsafe code.
Every AtalaImage includes a property called PixelMemory which is an object that represents 
the memory for an image. The easiest way to manipulate the image data directly is to use a 
PixelAccessor object taken from the image's PixelMemory.
PixelMemory and PixelAccessors use an acquire/release model for accessing an image's data. When 
you want a PixelAccessor object, you must acquire it from a PixelMemory object. When you are all 
done with a PixelAccessor, you must call its Release() method.
To operate on a scanline of image data, you must acquire the scanline from a pixel accessor. When 
you are done with the scanline, you must release it.

C#
PixelMemory pm = image.PixelMemory;

93



Atalasoft DotImage Developer's Guide

using (PixelAccessor pa = pm.AcquirePixelAccessor())
{ 
    for (int y=0; y < image.Height; y++) 
    { 
        byte[] row = pa.AcquireScanline(y); 
        for (int i=0; i < row.Length; i++) 
        { 
            row[i] = (byte)row[i] / 2; // dim each byte value by 50%        } 
        pa.ReleaseScanline(); 
    }
}

Prior to Atalasoft DotImage 8.0, it was possible although discouraged to access image memory 
directly by using the ImageData property of AtalaImage. In addition to the PixelMemory 
abstraction, Atalasoft DotImage added the ability to get the address of a scan line direction. 
ImageData is no longer supported and direct scanline access needs to be modified. Atalasoft 
DotImage 8.0 introduces the notion of locking memory before accessing it and unlocking it 
afterwards. This abstraction allows the notion of memory that is either movable or purgeable 
from physical memory when not needed. If you access image memory via PixelAccessor objects 
then you do not need to change your code at all. Locking and unlocking happens automatically 
as needed. If you used the method PixelMemory.PixelDataFromPixelMemory or used the 
IDirectScanlineAccess interface, you need to make some minor changes to your code.
Before calling PixelMemory.PixelDataFromPixelMemory you must call the Lock method of 
PixelMemory. After you are done with the memory, you must call the Unlock method of 
PixelMemory. This can be done manually by using a try/finally block to ensure that memory 
is locked and unlocked properly or your can embed a PixelMemoryLocker object in a using 
statement. We strongly recommend the latter approach. Both approaches are illustrated here:

C#
try
{ 
    image.PixelMemory.Lock(); 
    PixelMemory.ThrowOnNonContiguous(image); 
    IntPtr p = PixelMemory.PixelDataFromPixelMemory(image); 
    PerformDirectAccess(p);
}
finally
{ 
    image.PixelMemory.Unlock();
}
using (PixelMemoryLocker locker = new PixelMemoryLocker(image))
{ 
    PixelMemory.ThrowOnNonContiguous(image); 
    IntPtr p = PixelMemory.PixelDataFromPixelMemory(image); 
    PerformDirectAccess(p);
}     

The PixelMemoryLocker object implements IDisposable such that on Dispose it unlocks the 
PixelMemory. Note that PixelMemoryLocker should never be used outside of a using block. 
Also note the check if the memory is contiguous. In the future, it may be the case the image 
memory will not consist of a single contiguous block. It is not safe to assume that an offset of 
AtalaImage.RowStride from the first scan line will be a pointer to the second scanline unless the 
PixelMemory implements IDirectScanlineAccess and IDirectScanlineAccess.IsContiguous return 
true.
Calling PixelMemory.PixelDataFromPixelMemory or IDirectScanlineAccess.GetScanLinePtr 
on PixelMemory that is not locked will throw an exception if that operation is undefined. 
ManagedPixelMemory will throw a PixelMemoryException if GetScanLinePtr is called on 

94



Atalasoft DotImage Developer's Guide

unlocked memory. ManagedPixelMemory used memory in the managed heap. When the 
PixelMemory is unlocked, the garbage collector is free to move that memory without warning, 
hence the restriction.

Create custom PixelMemory
In rare cases, it is necessary to create a custom PixelMemory implementation. There are two 
approaches to creating your own implementation of PixelMemory.
• The first is to subclass PixelMemory
• The second is to subclass ResidentPixelMemory

Subclass PixelMemory
1. Implement DisposeManagedResource, the method responsible for disposing any objects 

contained within your implementation of IDisposable.
2. Implement DisposeUnmanagedResources. The method responsible for disposing any objects 

from unmanaged code (such as blocks of memory allocated outside the GC heap).
3. Implement LLGetHeight. The method that returns the height of the image that this memory 

object represents.
4. Implement LLGetRowStride. The method that returns the width of the row in bytes, rounded 

up to the next multiple of 4.
5. Implement LLGetPixelAccessor. The method that returns a new PixelAccessor object suitable 

for accessing image data in your PixelMemory.
6. Implement LLClone. The method that performs a deep copy of the PixelMemory
7. Implement a suitable PixelAccessor for your PixelMemory.

Create a custom PixelAccessor
1. Implement LLAcquireScanline. The method that acquires a single scanline and returns an IntPtr 

to the first byte.
2. Implement LLReleaseScanline. The method that releases a previously acquired scanline.
3. Implement DisposeManagedResources. The method responsible for disposing any objects 

contained within your implementation that implement IDisposable.
4. Implement DisposeUnmanagedResources. The method is responsible for disposing any 

objects from unmanaged code (such as blocks of memory allocated outside the GC heap).

 When your subclass of PixelMemory either allocates or frees memory, it should call 
appropriate methods in PixelMemoryTracker.Memory to report changes in allocated memory.

Subclass ResidentPixelMemory
When subclassing ResidentPixelMemory, implement the following methods:

1. Implement LLAllocateMemory. The method allocates a block of memory, optionally clearing it.
2. Implement LLFreeMemory. The method frees a block of memory previously allocated by 

LLAllocateMemory.

95



Atalasoft DotImage Developer's Guide

3. Implement LLReallocateMemory - the method resizes a block of memory, either shrinking it or 
expanding it as needed.
There is no need to implement a PixelAccessor or track memory within a subclass of 
ResidentPixelMemory. That is managed for you.

Image Source
The ImageSource class makes it possible to work effectively with an arbitrary number of images 
without worrying about the details of where those images come from and how they are managed.

The ImageSource object allows you to work with a potentially unbounded number of AtalaImage 
objects without requiring that all those images be in memory simultaneously.

You can think of ImageSource as half of a source/sink pair. An ImageSource is a place from which 
images come. The sink is an application or an image consumer. Images are managed through an 
acquire/release model. The ImageSource object performs the following services:
• Acquire images in order
• Release images tin any order
• Track available image memory
• Automatically free released images using either lazy or aggressive mechanisms
• Allows limited reacquisition of released images
• Allows reloading mechanism to enable images to be cached

ImageSource does not dictate where or how images are loaded into memory. Instead, it 
manages the conditions under which images come and go. The ImageSource subclass 
FileSystemImageSource, is one of the subclasses responsible for the actual loading of images.

In this model, an image can be thought of as a resource. Rather than simply being read and used, 
an image is acquired from the ImageSource and released when processing is complete. Any 
number of consumers can acquire any given image, and it is released only when each Acquire has 
been balanced with a Release.

You can configure an ImageSource to aggressively unload images or you can configure the source 
to observe memory restrictions. Some ImageSource variants can reload previously unloaded 
images or cache images.

 While it appears that an ImageSource could implement IEnumerator or IEnumerable, those 
interfaces have facilities which are not guaranteed to function in ImageSource.

Inside the ImageSource class
An image can be thought of as a resource. Rather than simply being read and used, an image is 
acquired from the ImageSource and released when finished. Any number of consumers can acquire 
any given image and it is released only when each Acquire has been balanced with a Release.

In this way, an ImageSource can be used as follows:

C#
public void ProcessImages(ImageSource source)

96



Atalasoft DotImage Developer's Guide

{ 
      while (source.HasMoreImages()) { 
            AtalaImage image = source.AcquireNext(); 
            ProcessImage(image); 
            source.Release(image); 
      }
}

 

An image that has been acquired and is not yet released can be acquired any number of times. In 
the example above, all the images within the ImageSource are processed serially. You can make this 
a parallel process by creating worker threads to perform the processing and allow them to acquire 
and release the images as well. Structuring the code as follows makes that possible:

C#
public void ProcessImages(ImageSource source)
{ 
      while (source.HasMoreImages()) {
AtalaImage image = source.AcquireNext();  
            CreateImageWorker(source, image, ProcessImage); 
            source.Release(image); 
      }
} 
  
private void ProcessImage(ImageSource source, AtalaImage image)
{ 
      // do processing here 
      source.Release(image);
} 
  
public delegate void ProcessImageProc(ImageSource source,
AtalaImage image); 
  
public void CreateImageWorker(ImageSource source, 
                              AtalaImage image, ProcessImageProc proc)
{ 
      source.Acquire(image); // Acquire here 
      Thread t = CreateImageWorkerThread(source, image, proc); 
      t.Start();
} 
  
private Thread CreateImageWorkerThread(ImageSource source, 
                              AtalaImage image, ProcessImageProc proc)
{ 
      // threading details left out
}

In the above code, the main loop acquires each image, passes it to CreateImageWorker, then 
releases it. CreateImageWorker calls Acquire for a second time, then creates a worker thread to do 
the processing, starts it and returns. The worker thread calls ProcessImage which does the work 
before calling Release. In this way, the images are processed in parallel.

ImageSource categorizes images into three groups, Acquired, Released, and Culled. An image that 
is Acquired is in memory and available for use. An image that is Released is in memory, but should 
not be used until it has been reacquired. An image that is Culled is no longer in memory, but may 
have the facility to be reloaded.

97



Atalasoft DotImage Developer's Guide

Example:

C#
private void TryOne(ImageSource source
{ 
   source.Reset(); 
   AtalaImage image = source.AcquireNext(); 
   AtalaImage image1 = source.Acquire(0); // reacquire the 0th image 
 }

If image is non-null, image1 is always non-null and identical to image.

This code works in most cases:

C#
private void TryTwo(ImageSource source)
{ 
   source.Reset(); 
   AtalaImage image = source.AcquireNext(); 
   source.Release(image); 
   AtalaImage image1 = source.Acquire(0); // reacquire the 0th image
}

ImageSource marks image as Released and unless there are severe memory restrictions, the image 
can be reacquired. The resulting image, however, should be checked for null.

This code only reliably works if the particular ImageSource implements reloadable images:

C#
private void TryThree(ImageSource source)
{ 
   source.Reset(); 
   while (source.HasMoreImages()) 
   { 
      AtalaImage image = source.AcquireNext(); 
      source.Release(image); 
   } 
   AtalaImage image1 = source.Acquire(0); // reacquire the 0th image
}

The ability to reload an image is not defined within ImageSource, but is instead left to a class that 
descends from ImageSource.

On its own, ImageSource is geared perfectly for situations where an image can be accessed once 
and only once, such as a video source or a scanner with an automatic feeder.

Since not every ImageSource falls into this category, there is an abstract descendant of 
ImageSource called RandomAccessImageSource. For a RandomAccessImageSource, any image can 
be reliably acquired at any time and in any order. Again, images may be Acquired, Released, and 
Culled, but in this case Acquire should always succeed.

RandomAccessImageSource adds the array operator to the object and the Count property. In this 
way, it is possible to access the image source as shown below.

98



Atalasoft DotImage Developer's Guide

C#
public void ProcessImages(RandomAccessImageSource source)
{ 
      for (int i=0; i < source.Count; i++) { 
            AtalaImage image = source[i]; // this does the acquire 
            ProcessImage(image); 
            source.Release(image); 
      }
}

From here it is a short step to get to the main concrete ImageSource class, FileSystemImageSource. 
FileSystemImageSource allows a client to iterate over a set of image files as well as multiple frames 
within image files that support that. Since it is clearly a variety of ImageSource that can trivially 
reload images, it descends from RandomAccessImageSource. As designed, FileSystemImageSource 
can iterate over all image files within a folder, all files matching a pattern within a folder or through 
a list of files. Optionally, FileSystemImageSource also iterates across all frames.

For better or for worse, pattern matching is limited to that provided by .NET for files. This is not 
full regular expression matching. On one hand, it is consistent with the general Windows User 
Interface, but on the other hand it is somewhat limited.

To avoid that inherent limitation, yet maintain compatibility, FileSystemImageSource includes a file 
filter hook to allow a client to perform all filtration of image files. By setting the FileFilterDelegate 
property to a method of the form:

C#
bool MyFilter(string path, int frameIndex, int frameCount)
{
}

A client is able to allow or disallow any file based on its own criteria. By returning true from the 
FileFilterDelegate, a file or frame within a file is included. Return false and the file or frame is 
ignored.

To implement a custom ImageSource, create a class that inherits from either ImageSource or 
RandomAccessImageSource. A class that inherits from ImageSource asserts that it can provide a 
sequence of images in order. To do so, a class must implement the following abstract methods:
protected abstract ImageSourceNode LowLevelAcquireNextImage();

LowLevelAcquireNextImage gets the next available image in the sequence and returns it packaged 
in an ImageSourceNode. An ImageSourceNode is used to manage an image while it is in memory.

The main constructor for ImageSourceNode takes an AtalaImage as an argument and an object 
that implements the IImageReloader interface. An IImageReloader is a class that makes it 
possible to reload an image into memory. For a typical class inheriting from ImageSource, the 
LowLevelAcquireNextImage() returns a new ImageSourceNode with a valid image, but a null 
IImageReloader. This indicates that the image cannot be reloaded once it has been culled from 
memory. If it is not possible to acquire the next image, LowLevelAcquireNextImage returns null.
protected abstract bool LowLevelHasMoreImages();

LowLevelHasMoreImages returns a boolean indicating whether or not there are more images to be 
loaded.

99



Atalasoft DotImage Developer's Guide

protected abstract void LowLevelReset();

LowLevelReset returns an ImageSource to its starting state, if possible. For some ImageSources, 
this is not always possible. If it is not possible to Reset, this method does nothing.
protected abstract void LowLevelSkipNextImage();

LowLevelSkipNextImage is called when an image that had previously been loaded is still available. 
For example, if ImageSource needs to load an image, it calls LowLevelAcquireNext, but if it 
determines that it is not necessary to load an image, it does not call LowLevelAcquireNext. In this 
case it is necessary to allow your class to maintain its bookkeeping.
protected abstract void LowLevelDispose();

LowLevelDispose is called to allow a class to dispose of any non-reclaimable resources when then 
class is garbage collected. This might include closing files, releasing devices, closing network 
connections, and so forth.
protected abstract bool LowLevelFlushOnReset();

LowLevelFlushOnReset indicates whether or not ImageSource should dump all cached images upon 
Reset. For ImageSource varieties that will not return the same sequence of images every single 
time, this method should return true. Typically, most classes will return false to take full advantage 
of the cache.
protected abstract bool LowLevelTotalImagesKnown();

LowLevelTotalImagesKnown returns true if this ImageSource can know a priori how many images 
are available, false otherwise.
protected abstract int LowLevelTotalImages();

LowLevelTotalImages returns the total number of available images. If LowLevelTotalImagesKnown 
returns false, this will never be called.

A RandomAccessImageSource adds one new method to implement:
protected abstract ImageSourceNode LowLevelAcquire(int index);

LowLevelAcquire acts just like LowLevelAcquireNext except that it passes in an index. With this 
method, it’s convenient to implement LowLevelAcquireNext in terms of LowLevelAcquire.

 A class that inherits from RandomAccessImageSource must provide an IImageReloader when 
it is asked to load an image. Without this, it is impossible to guarantee robust operation of the 
ImageSource.

In addition RandomAccessImageSource implements LowLevelTotalImagesKnown, returning true.

Use an ImageSource
Typically, an image source loops over each element of the ImageSource, working with each image in 
turn. The following example illustrates how this might be done.

Loop to process images
You can loop process images using the following example.

100



Atalasoft DotImage Developer's Guide

C#
public void ProcessImages(ImageSource source)
{ 
    while (source.HasMoreImages()) { 
        AtalaImage image = source.AcquireNext(); 
        DoSomeWork(image); 
        source.Release(image);
}

Use an image source multiple times
You can use an ImageSource multiple times by employing the Reset method as shown below.

C#
public void ProcessingLoop(ImageSource source)  
{ 
    while (NotDone()) { 
        ProcessImages(source); 
        source.Reset(); 
    }
}

 The reset() method can produce unexpected results. Although reset() implies that you are 
starting over, some ImageSource objects lack that capability. For example, a live video feed or a 
document feeder cannot restart at the beginning since there is no clear beginning. Similarly, In 
the case of a live video feed, there is no clear end.

You must call Release for every call to AcquireNext or Acquire.

 When an image is acquired, it is held in memory as long as the ImageSource is in memory.

Create a custom ImageSource
Making a custom ImageSource is a straight-forward process. Management of image coming and 
going is taken care of in the base class. This leaves you with the task of bringing the image in and 
providing some simple management code.

To create a custom ImageSource, create a class which inherits from ImageSource and which 
overrides the following methods:
• protected abstract ImageSourceNode LowLevelAcquireNextImage();
• protected abstract bool LowLevelHasMoreImages();
• protected abstract void LowLevelReset();
• protected abstract bool LowLevelFlushOnReset();
• protected abstract void LowLevelSkipNextImage();
• protected abstract void LowLevelDispose();

LowLevelAcquireNextImage gets the next image in the current sequence. The result is returned as 
an ImageSourceNode, a simple class for holding images and tracking acquisition information.

101



Atalasoft DotImage Developer's Guide

If you are writing an image source that is reading from a peripheral device, you can implement 
LowLevelAcquireNextImage as shown below.

Examples
Acquire an image from a peripheral device

C#
protected override ImageSourceNode LowLevelAcquireNextImage()
{ 
    AtalaImage image = MyPeripheralGetNthImage(MyImageCount); 
    if (image != null) { 
        MyImageCount++; 
        return new ImageSourceNode(image, null); 
    } 
    return null;
}

Read additional images
LowLevelHasMoreImages is responsible for reporting whether or not there are additional images to 
be read. Returns true if there are, false otherwise:

C#
protected override bool LowLevelHasMoreImages()
{ 
     return MyImageCount < MyPeripheralTotalImageCount();
}

Reset image processing state
LowLevelReset provides a way to reset state in your object so that it is ready for reading from the 
beginning again. It is not strictly necessary for this method to do anything, as in some cases, it may 
not be possible to reset in a meaningful way.

C#
protected override void LowLevelReset()
{ 
    MyImageCount = 0; 
    MyPeripheralReset();
}

If an ImageSource has been Reset, it is possible to keep old images in the source. In some 
cases--file systems, for example-- keeping around old images that have not been unloaded after 
a reset results in a significant performance gain. In other cases, keeping old images around can 
produce unexpected results. Therefore an image source needs to indicate whether or not old 
images should be flushed on reset via the method LowLevelFlushOnReset. Return true, if old 
images should be flushed, false otherwise.
Indicating Whether Old Images Should Be Flushed

C#
protected override bool LowLevelFlushOnReset()
{ 
    return false;
}

102



Atalasoft DotImage Developer's Guide

Track skipped images
If you are returning true in LowLevelFlushOnReset, LowLevelAcquireNextImage is called each 
time AcquireNextImage is called. If you are returning false in LowLevelFlushOnReset, then 
LowLevelAcquireNextImage may not be called for every call to AcquireNextImage. In this case, 
you need to create code in the method LowLevelSkipNextImage() that maintains your own internal 
bookkeeping:

C#
protected override bool LowLevelSkipNextImage()
{ 
    MyImageCount++;
}

Call LowLevelDispose for a device
LowLevelDispose() allows your object an opportunity to release resources, such as open file 
handles, that may not be handled by normal garbage collection.
Call LowLevelDispose() only one time.

C#
protected override bool LowLevelDispose()
{ 
    MyPeripheralDeviceClose();
}

Unload an image
When all acquisitions of an image have been released, the ImageSource determines whether to 
unload the image from memory based on the setting of the property ImmediateUnload. By default, 
the property value is set to true to minimize memory use.

When unloading, ImageSource calls the image's Dispose() method and then drop its reference to 
the image. ImageSource does not specifically induce garbage collection. Rather, the decision as to 
when garbage collection is run is left to the application and to the CLR.

When ImmediateUnload is set to false, images are kept around. In this case, an image can be 
confidently reacquired using the two flavors of Acquire.

Setting ImmediateUnload to false without any other adjustments to the ImageSource is tantamount 
to using an ImageCollection which keeps all images in memory at all times. Alternatively, you can 
set memory usage limits through the MemoryLimit property. Setting this property to a value greater 
than 0 forces ImageSource to unload fully released images if memory usage is greater than the 
MemoryLimit. MemoryLimit is not a hard limit. Rather it is a suggestion to ImageSource to attempt 
to limit memory use to the specified amount. If client code is careful about releasing images it is 
done processing, the limit is more likely to be obeyed. If the client code never releases images, then 
ImageSource is not able to comply with the request to unload images.

Example code demonstrating the use of the MemoryLimit property is provided below.

103



Atalasoft DotImage Developer's Guide

Example
Set a memory limit

C#
private ArrayList imageStore; 
  
// process a set of images, keeping 5 around
public void ProcessImages(ImageSource source)
{ 
    source.ImmediateUnload = false; 
  
    // 8 megabyte limit 
    source.MemoryLimit = 1024 * 1024 * 8;  
    while (source.HasMoreImages()) { 
        AtalaImage image = source.AcquireNext(); 
        StoreAndProcessImage(source, image); 
    } 
    ReleaseAll(source);
} 
  
private void StoreAndProcess(ImageSource source, AtalaImage image)
{ 
    // only keep 5 images 
 if (imageStore.Count > 5) { 
        AtalaImage oldImage = (AtalaImage)imageStore[0]; 
        imageStore.RemoveAt(0); 
        source.Release(oldImage); 
    } 
    imageStore.Add(image); 
    Process(image);
} 
  
private void ReleaseAll(ImageSource source)
{ 
    for (int i = 0; i < imageStore.Count; i++) 
    { 
        source.Release((AtalaImage)(imageStore[i])); 
    } 
    imageStore.Clear();
}

It is possible to reaccess a previously unloaded image. Doing so requires that the ImageSource 
supply the image with an object that can reload the image as needed. If such an object is 
supplied, you can reload a previously released and unloaded image as needed.

Write an ImageSource cache
In many cases, an ImageSource loads images from a source that lacks the ability to retain old 
images. In such cases, you may want to cache these images so that they can be loaded and 
unloaded at will. The ImageSourceFileCache class makes that task easy.

ImageSourceFileCache is not an ImageSource. Rather, it is an object that can cache an image in 
a file and return an IImageReloader that can bring that image back into memory at a later date. 
ImageSourceFileCache also manages temporary files and their removal.

Use the following code to create an object of type ImageSourceFileCache in your custom 
ImageSource object.

104



Atalasoft DotImage Developer's Guide

Create an image source cache
This example creates an ImageSourceFileCache.

C#
public class MyCustomImageSource : ImageSource  
{ 
    private ImageSourceFileCache _cache; 
  
    public MyCustomImageSource() 
        : base() 
    { 
        _cache = new ImageSourceFileCache(null); 
    }
}

Acquire the next cached image
The cache is also needed to implement of LowLevelAcquireNext as shown below.

C#
public AtalaImage LowLevelAcquireNext()
{ 
    AtalaImage image = MyPeripheralGetNthImage(MyImageCount); 
    if (image != null) { 
        MyImageCount++; 
        IImageReloader reloader = _cache.Cache(image); 
        return new ImageSourceNode(image, reloader); 
    } 
    return null;
}

When _cache.Cache() is called, the image is written out to a temporary file on disk. By default, 
this image is written out as a TIFF file, a choice flexible enough to handle most image file 
formats. If this is not sufficient, by providing the ImageSourceFileCache with an Encoder object, 
you can specify a different file format.
By default, the ImageSourceFileCache stores temporary files in the windows temporary folder 
(typically C:\WINDOWS\Temp). You can make an alternate choice by passing a path to an 
existing writable folder to the constructor of ImageSourceFileCache.

Loop over images in a file system
The FileSystemImageSource object provides a flexible mechanism for looping over image files 
contained in a file system. A FileSystemImageSource can be constructed with a path to a directory, 
a path to a directory with a search pattern, or an array of paths to files. In addition, if a file contains 
multiple images, FileSystemImageSource can optionally look at all frames in a file.

For example, to create a FileSystemImageSource that loops over every file in the root folder of your 
C drive, construct it like this:

Loop over every file in the root folder
C#
FileSystemImageSource source = new FileSystemImageSource(@"C:\", true);

//To create a FileSystemImageSource that can loop over all images files presentedby 
 a digital camera,
//do something along these lines:

105



Atalasoft DotImage Developer's Guide

//FileSystemImageSource source = new FileSystemImageSource(@"E:\DCIM\", "DSC*.*", 
 true);

//To loop over these files, use code like this:
for (int i = 0; i < source.Count; i++) 
   { 
      AtalaImage image = source[i]; 
      // do something interesting with image 
      source.Release(image); 
   }

//The above code is exactly equivalent to the code that follows
while (source.HasMoreImages())             
   { 
      AtalaImage image = source.AcquireNext(); 
      // do something interesting with image 
      source.Release(image); 
   }

Filtering
All files in a directory that match the given search pattern or all paths passed in are considered to be 
candidates. Before these candidates are used, there are two levels of filtering that happen. First the 
candidate is tested to see if it is an image type recognized by Atalasoft DotImage. If that's the case, 
then the path is passed to a FileFilterDelegate. If the FileFilterDelegate accepts the path, then the 
image will be available for acquisition.
In addition, if the ImageSource was constructed with doAllFrames set to true then each frame 
within an image file will also be considered a candidate and handed to the FileFilterDelegate.
Since the pattern that can be passed in to the FileSystemConstructor is limited to the * and ? 
wildcard characters, it is convenient to be able to apply a more complicated pattern or to filter on 
things other than the filename.
For example, the following example shows how a simple filter will turn a regular 
FileSystemImageSource into a gray scale image finder:

C#
Use a simple filter to turn a FileSystemImage source into a gray scale image finder:
private bool IsGrayscale(string fileName, int frameIndex, int frameCount 
   { 
   ImageInfo info = RegisteredDecoders.GetImageInfo(fileName, frameIndex); 
   if (info != null) 
   { 
      return info.PixelFormat == PixelFormat.Pixel1bppIndexed || 
         info.PixelFormat == PixelFormat.Pixel8bppGrayscale || 
         info.PixelFormat == PixelFormat.Pixel16bppGrayscale; 
   } 
   return false;
}

public void MakeGrayscaleImageSource(FileSystemImageSource source)
{ 
   source.FileFilter = new FileSystemImageSource.FileFilterDelegate(IsGrayscale);
}

Filtering happens immediately before the very first image the FileSystemImageSource is 
used to acquire an image. The candidate files will also be filtered again after calling the 
FileSystemImageSource's Reset() method. Note that this exact behavior is described to help 
conceptualize the operation of the filtering. It may be subject to change in the future.

106



Atalasoft DotImage Developer's Guide

Events
In addition to the filter delegate, the FileSystemImageSource provides an event called 
ImageAcquired. This event is fired every time the ImageSource constructs an image in response to 
an Acquire. This sounds complicated, but it's fairly simple. The base class, ImageSource, contains 
all the logic for caching and holding onto images. FileSystemImageSource knows nothing about 
the caching, so it can only fire and event when it has been requested to retrieve an image. This is 
actually convenient in that this event is fired only once for every image. This makes it easy to add a 
pre-processing step into an image source or to track images as they go by.

Create an ImageSource to accesses Windows AVI files
The real power in ImageSource is the ability to create new sources that can be used generically. 
What follows is a complete example of an ImageSource that can access Windows AVI files.

In this class we want to be able to load every frame of an AVI file. Since AVI files can be read at any 
point, this is a good candidate for a RandomAccessImageSource as the base class, although a plain 
ImageSource would work.

This class contains a number of PInvoke definitions that link directly to the Win32 AVI calls. 
Discussion of the operation of these methods is beyond the scope of this document.

Most of the work is in opening the AVI file and loading a frame. All the rest of the abstract members 
of RandomAccessImageSource end up being one line methods. This is a very good thing as it leads 
to highly robust software.

C#
usingSystem;
usingSystem.Runtime.InteropServices;
usingAtalasoft.Imaging; 
  
namespaceAviSource
{ 
       public class AviImageSource : RandomAccessImageSource 
       { 
              string _fileName; 
              IntPtr _aviFileHandle = IntPtr.Zero; 
              int _currentFrame = 0; 
              int _firstFramePosition; 
              int _totalFrames = 0; 
              IntPtr _aviStream = IntPtr.Zero; 
              AVISTREAMINFO _streamInfo = new AVISTREAMINFO(); 
  
              static AviImageSource() 
              { 
                     AVIFileInit(); 
              } 
  
              public AviImageSource(string fileName) 
              { 
                     _fileName = fileName; 
                     // LowLevelReset will force the file to be loaded 
                     // and will fetch all the relevant information 
                     LowLevelReset(); 
              } 
       
              protected override void LowLevelReset() 

107



Atalasoft DotImage Developer's Guide

              { 
                     // attempt to load the file if we haven't 
 if (_aviFileHandle == IntPtr.Zero) 
                     { 
                           OpenAvi(); 
                           LoadAviInfo(); 
                     } 
                     // reset the frame counter 
                     _currentFrame = 0; 
              } 
  
              private void CloseAvi() 
              { 
                     // clear everything out 
                     _currentFrame = 0; 
                     _totalFrames = 0; 
  
                     // if the file handle is non-null, there may be a stream to close 
 if (_aviFileHandle != IntPtr.Zero) 
                     { 
                           // if the stream handle is non-null, close it 
 if (_aviStream != IntPtr.Zero) 
                           { 
                                  AVIStreamRelease(_aviStream); 
                                  _aviStream = IntPtr.Zero; 
                           } 
                           AVIFileRelease(_aviFileHandle); 
                           _aviFileHandle = IntPtr.Zero; 
                     } 
              } 
  
              private void OpenAvi() 
              { 
                     // open the file and get a stream interface 
 int result = AVIFileOpen(out _aviFileHandle, _fileName,
32 /*OF_SHARE_DENY_WRITE*/, 0); 
                     if (result != 0) 
                           throw new Exception("Unable to open avi file " + _fileName + 
 " (" + result + ")"); 
  
                     result = AVIFileGetStream(_aviFileHandle, out _aviStream, 
 0x73646976 /* 'vids' -> four char code */, 0); 
                     if (result != 0) 
                           throw new Exception("Unable to get video stream (" + result 
 + ")"); 
              } 
  
              private void LoadAviInfo() 
              { 
                     if (_aviStream == IntPtr.Zero) 
                           throw new Exception("LoadAviInfo(): Bad stream handle."); 
  
                     // get first frame 
                     _firstFramePosition = AVIStreamStart(_aviStream); 
                     if (_firstFramePosition < 0) 
                           throw new Exception("LoadAviInfo(): Unable to get stream 
 start position."); 
  
                     // get total frame count 
                     _totalFrames = AVIStreamLength(_aviStream); 
                     if (_totalFrames < 0) 
                           throw new Exception("LoadAviInfo(): Unable to get stream 
 length."); 
  

108



Atalasoft DotImage Developer's Guide

                     // pull in general information 
 int result = AVIStreamInfo(_aviStream, ref _streamInfo, 
                                                       Marshal.SizeOf(_streamInfo)); 
                     if (result != 0) 
                           throw new Exception("LoadAviInfo(): unable to get stream 
 info (" + result + ")"); 
              } 
  
              // this method retrieves a frame from the file. 
              // the class is internal because it will be used by 
              // the AviImageReloader class. 
 internal AtalaImage GetAviFrame(int frame) 
              { 
                     // set up a bitmap info header to make a frame request 
                     BITMAPINFOHEADER bih = new BITMAPINFOHEADER(); 
                     bih.biBitCount = 24; 
                     bih.biCompression = 0; //BI_RGB; 
                     bih.biHeight = _streamInfo.frameBottom; 
                     bih.biWidth = _streamInfo.frameRight; 
                     bih.biPlanes = 1; 
                     bih.biSize = (uint)Marshal.SizeOf(bih); 
  
                     // the getFrameObject is an accessor for retrieving a frame 
                     // from an AVI file.  We could make exactly one when the stream 
                     // is opened, but this works just fine. 
  
                     IntPtr frameAccessor = AVIStreamGetFrameOpen(_aviStream, ref bih); 
                     if (frameAccessor == IntPtr.Zero) 
                           throw new Exception("Unable to get frame decompressor."); 
  
                     IntPtr theFrame = AVIStreamGetFrame(frameAccessor, frame + 
 _firstFramePosition); 
  
                     if (theFrame == IntPtr.Zero) 
                     { 
                           AVIStreamGetFrameClose(frameAccessor); 
                           throw new Exception("Unable to get frame #" + frame); 
                     } 
  
                     // make a copy of this image 
                     AtalaImage image = AtalaImage.FromDib(theFrame, true); 
                     // closing the frame accessor drops the memory used by the frame 
 as well 
                     AVIStreamGetFrameClose(frameAccessor); 
  
                     return image; 
              } 
  
              protected override ImageSourceNode LowLevelAcquireNextImage() 
              { 
                     if (_currentFrame >= _totalFrames) 
                           return null; 
                     AtalaImage image = GetAviFrame(_currentFrame); 
                     if (image != null) 
                     { 
                           ImageSourceNode node = new ImageSourceNode(image, null); 
                           _currentFrame++; 
                           return node; 
                     } 
                     return null; 
              } 
  
              protected override ImageSourceNode LowLevelAcquire(int index) 
              { 

109



Atalasoft DotImage Developer's Guide

                     if (index < 0 || index >= _totalFrames) 
                           return null; 
                     AtalaImage image = GetAviFrame(index); 
                     if (image != null) 
                     { 
                           ImageSourceNode node = new ImageSourceNode(image, new 
 AviImageReloader(this, index)); 
                           _currentFrame++; 
                           return node; 
                     } 
                     return null; 
              } 
  
              protected override bool LowLevelTotalImagesKnown() 
              { 
                     return true; 
              } 
  
              protected override int LowLevelTotalImages() 
              { 
                     return _totalFrames; 
              } 
  
              protected override bool LowLevelHasMoreImages() 
              { 
                     return _currentFrame < _totalFrames; 
              } 
  
              protected override void LowLevelSkipNextImage() 
              { 
                     _currentFrame++; 
              } 
  
              protected override bool LowLevelFlushOnReset() 
              { 
                     return true; 
              } 
  
              protected override void LowLevelDispose() 
              { 
                     CloseAvi(); 
              } 
  
       
              #regionAviHooks 
              [DllImport("avifil32.dll")] 
              private static extern void AVIFileInit(); 
  
              [DllImport("avifil32.dll", PreserveSig=true)] 
              private static extern int AVIFileOpen( 
                     out IntPtr ppfile, 
                     String szFile, 
                     int uMode, 
                     int pclsidHandler); 
  
              [DllImport("avifil32.dll")] 
              private static extern int AVIFileGetStream( 
                     IntPtr pfile, 
                     out IntPtr ppavi,  
                     int fccType,       
                     int lParam); 
  
              [DllImport("avifil32.dll")] 
              private static extern int AVIStreamRelease(IntPtr aviStream); 

110



Atalasoft DotImage Developer's Guide

 
              [DllImport("avifil32.dll")] 
              private static extern int AVIFileRelease(IntPtr pfile); 
  
              [DllImport("avifil32.dll")] 
              private static extern void AVIFileExit(); 
  
              [DllImport("avifil32.dll", PreserveSig=true)] 
              private static extern int AVIStreamStart(IntPtr pAVIStream); 
  
              [DllImport("avifil32.dll", PreserveSig=true)] 
              private static extern int AVIStreamLength(IntPtr pAVIStream); 
  
              [DllImport("avifil32.dll")] 
              private static extern int AVIStreamInfo( 
                     IntPtr pAVIStream, 
                     ref AVISTREAMINFO psi, 
                     int lSize); 
  
              [DllImport("avifil32.dll")] 
              private static extern IntPtr AVIStreamGetFrameOpen( 
                     IntPtr pAVIStream, 
                     ref BITMAPINFOHEADER bih); 
  
              [DllImport("avifil32.dll")] 
              private static extern IntPtr AVIStreamGetFrame( 
                     IntPtr pGetFrameObj, 
                     int lPos); 
  
              [DllImport("avifil32.dll")] 
              private static extern int AVIStreamGetFrameClose(IntPtr pGetFrameObj);   
          
              #endregion 
       }
}

In addition to this class, it is necessary to have a class that implements IImageReloader. For this, we 
provide an AviReloader class which encapsulates enough information to reload a frame from a file. 
In this case, it is the frame index and the AviImageSource from which it came. AviImageSource has 
one internal method which extracts a frame and converts it to an AtalaImage. Rather than keep any 
more information than is needed, we can just use this method. This assumes that the AVI file and 
the associated stream will still be open when the image is reloaded, but since this is kept across the 
life of the AviImageSource object, this is a safe assumption to make.

C#
usingSystem;
usingAtalasoft.Imaging; 
  
namespaceAviSource
{ 
       public class AviImageReloader : IImageReloader 
       { 
              private int _frame; 
              private AviImageSource _source; 
              public AviImageReloader(AviImageSource source, int frame) 
              { 
                     _source = source; 
                     _frame = frame; 
              } 
  
              #regionIImageReloader Members 
  

111



Atalasoft DotImage Developer's Guide

              public AtalaImage Reload() 
              { 
                     return _source.GetAviFrame(_frame); 
              } 
  
              #endregion 
  
              #regionIDisposable Members 
  
              public void Dispose() 
              { 
              } 
  
              #endregion 
       }
}

Access images

Read and write images to a database
Images can be stored in a database with Atalasoft DotImage by using a MemoryStream, or the 
convenient ToByteArray() and FromByteArray() methods of the AtalaImage object.

When using a SQL database, the image should be stored in a binary Image field. In MS Access this 
would be an OLE field. The following code samples show how to read and write images with either 
SQL or Access databases using ADO.NET.

Example
Writing an Image Into a SQL Database
This example demonstrates writing an AtalaImage into a SQL database as a JPEG encoded image 
where image is an AtalaImage object. Be sure to declare the System.Data.SqlClient namespace 
directive.

C#
SqlConnection myConnection = null;
try
{ 
   //save image to byte array and allocate enough memory for the image 
 byte[] imagedata = image.ToByteArray(new Atalasoft.Imaging.Codec.JpegEncoder(75)); 

   //create the SQL statement to add the image data 
   myConnection = new SqlConnection(CONNECTION_STRING); 
   SqlCommand myCommand = new SqlCommand("INSERT INTO Atalasoft_Image_Database  
        (Caption, ImageData) VALUES ('" + txtCaption.Text + "', @Image)", 
 myConnection); 
   SqlParameter myParameter = new SqlParameter("@Image", SqlDbType.Image, 
 imagedata.Length); 
   myParameter.Value = imagedata; 
   myCommand.Parameters.Add(myParameter); 

   //open the connection and execture the statement 
   myConnection.Open(); 
   myCommand.ExecuteNonQuery();
}

112



Atalasoft DotImage Developer's Guide

finally
{ 
   myConnection.Close();
}

Example
Reading an Image From an Access/OLE Database
Similarly an image can be retrieved from an access database. Be sure to declare the 
System.Data.OleDb namespace directive.

C#
OleDbConnection myConnection = null;
try
{ 
   //establish connection and SELECT statement 
   myConnection = new OleDbConnection(CONNECTION_STRING); 
   OleDbCommand myCommand = new OleDbCommand("SELECT ImageData FROM 
 [Atalasoft_Image_Database]  
        WHERE Caption = '" + txtCaption.Text + "'", myConnection); 
   myConnection.Open(); 

   //get the image from the database 
 byte[] imagedata = (byte[])myCommand.ExecuteScalar(); 
   if (imagedata != null) 
   { 
      return AtalaImage.FromByteArray(imagedata); 
   } 
   else 
   { 
      MessageBox.Show("Image does not exist in database."); 
      return null; 
   }
}
finally
{ 
   myConnection.Close();
}

Access multipage images
For more information on working with multipage documents, see the following:
• Save an image to a multipage TIFF file
• Remove pages from a multipage TIFF
• Work with multipage TIFFs

Add support for RAW images
As some RAW images are recognized as TIFF images by the TIFF Decoder, the RAW Decoder must be 
inserted before the TIFF Decoder as shown in the example below.

1. Open the RegisteredDecoders collection.
2. Add the RawDecoder to the list.

113



Atalasoft DotImage Developer's Guide

 Because some RAW images are recognized as TIFF images by the TIFF Decoder, the RAW 
Decoder must be inserted before the TIFF Decoder

Support for RAW images is now enabled.
as shown in the example below.

Example
This example code shows how to add support for RAW images in your application by inserting 
the RAW Decoder as the first item in the Decoders collection.

C#
Atalasoft.Imaging.Codec.RegisteredDecoders.Decoders.Insert(0, 
    new Atalasoft.Imaging.Codec.RawDecoder());

Get image information
At a minimum, all decoders can retrieve an image's width, height, bitdepth, and PixelFormat using 
the GetImageInfo() method of the RegisteredDecoders class without loading the image data into 
memory. The information is returned as an ImageInfo object.

In some cases, an image format has extended information, and returns this information in an 
object derived from ImageInfo.

1. To retrieve the extended information from a PNG image, get the image information.
2. Confirm that the image type is PNG.
3. Cast to the specialized ImageInfo class.

Example
The following example demonstrates how to work with image format information.

C#
ImageInfo info = RegisteredDecoders.GetImageInfo("c:\\test.png");
if (info.ImageType == ImageType.Png)
{ 
    PngImageInfo pngInfo = (PngImageInfo)info; 
    Console.WriteLine("Png Interlaced = " + pngInfo.PngInterlaced);
}

View images

ASP.NET WebForm controls

Server-side image viewing with ASP.NET
DotImage Document Imaging can be used to display and edit images in ASP.NET WebForm 
applications.

114



Atalasoft DotImage Developer's Guide

The primary control is the WebImageViewer which is the version of the WinForm's 
WorkspaceViewer. It is an AJAX server-side image viewer with methods to open, save, and process 
images.

The WebImageViewer control is a server control that can display any image supported by 
DotImage. When an image is viewed, the control sections the original image into tiles and streams 
each tile to the browser as needed based on the scroll position of the control. The control is efficient 
at loading TIFF images as generally TIFF's are stored in strips or tiles. It only loads into memory the 
strips or tiles it needs to create the tile at the requested size.

Improving server performance
The WebImageViewer loads any image that's listed in the RegisteredDecoders.Decoders collection 
when invoking the Open() or OpenUrl() methods. However an image format that stores data in 
strips or tiles is more efficient than one that stores an image as a single block of data. That is the 
case with the TIFF format which we recommend for the best server performance.
Ideally the TIFF should be tiled as opposed to stripped with the tile size of the TIFF the same as the 
control, which defaults to 512 x 512 pixels.
The PreCacheTiles property caches tiles of the entire image prior to loading into the control. This 
causes a slight initial delay when loading the image and after making edits to the image, but overall 
performance is improved when scrolling the image. When loading large JPEG images, PreCacheTiles 
is considerably more efficient as at this point DotImage loads the entire JPEG image in server 
memory for each tile unless this property is true. TIFF's are much more efficient as DotImage has 
the ability to only load the surrounding image data required to save the tile.

Antialias display
The AntialiasDisplay property when set to the default of none uses Javascript resizing. For higher 
quality scaling, set AntialiasDisplay to ReductionOnly. When set to a value other than None, 
JavaScript initially resizes the tiles, but then requests a higher quality resized image from the server. 
The server can efficiently generate a scaled high quality version of the tile which uses Scale to Gray 
scaling when the source image is 1-bit.

Browser format
The friendly image format which is streamed to the browser can be set with the BrowserFormat 
property of the WebImageViewer control. It can be set to JPEG, PNG, GIF, or Auto (default). JPEG 
is best for photographic color and grayscale images. PNG or GIF are best for documents. Auto 
automatically selects JPEG for 24-bit and higher images, and PNG for 1-bit and grayscale images.

Scrolling behavior
WebImageViewer progressively loads tiles from the source image and streams them to the client as 
a PNG, JPEG, or GIF. When using ImageDisplayOrder.OnDemand, only the tiles that are needed for 
the current view of the image are loaded. Once the tiles are loaded, they remain in the control so 
scrolling back to a tile previously loaded does not cause the tile to be reloaded. This behavior results 
in a very efficient and presentable image viewer.
Previous versions of DotImage WebImageViewer had multiple ScrollBarStyles. The ScrollBarStyle 
property no longer exists and the only scrolling method is the On-Demand tiled loading.

MouseTools
The WebImageViewer provides tools that interact with the image for Zooming In, Zooming Out, 
Zoom to Area, Centering, Panning, and rubberband selections for the left and right mouse buttons. 
See the MouseTool property in the WebImageViewer.

115



Atalasoft DotImage Developer's Guide

AutoZoom

The image zoom can be set to automatically zoom the image based on the image size, or to fit the 
control to the image size. Set the AutoZoom property of the WebImageViewer to None, BestFit, 
BestFitShrinkOnly, FitToWidth, FitToHeight, or FitToImage.

Rubberbanding in ASP.NET
To draw with the Rubberband using post back:

1. Set the AutoPostBack property of the WebImageViewer's Selection, to true.

2. Create a new event handler for the WebImageViewer's SelectionChanged event, similar to the 
method shown in the example below.

The following example demonstrates how to draw a rectangle using the RubberBand Selection 
MouseTool.

C#
Canvas myCanvas = new Canvas(this.WebImageViewer1.Image);
Rectangle mySelection = this.WebImageViewer1.Selection.Rectangle;

// Draws a black rectangle, with a semi-transparent orange fill
myCanvas.DrawRectangle(mySelection, new AtalaPen(Color.Black),  
new SolidFill(Color.FromArgb(128, Color.DarkOrange)));  
// Resets the Selection so it's no longer there
this.WebImageViewer1.Selection.Reset();  
// Notifies the control that the Image was modified
this.WebImageViewer1.Update(); 

Image cache
The WebImageViewer creates temporary cache images in the folder specified in the Web.Config
configuration setting, AtalasoftWebControls_Cache.

This folder must be set with Modify and Write permissions for the control to work properly.

How the cache works
The WebImageViewer saves the current Image to the cache if any of the following are true:

1. The image was created from a stream or assigned directly to the Image object.

2. The image was opened from a mapped path (ie, c:\myImage.jpg).

3. The image has been modified by using ApplyCommand.

4. The Update() method has been called.

When scrolling the image, the Image is streamed directly to the browser.

Due to the nature of session state and components, it is difficult to notify ASP.NET when the 
browser closes, or when the session expires within a component.

To delete the old files, the control checks the cache for old files the first time it is loaded in a 
new session. If the control is never run again, the files are never deleted. Additionally, they 
are not deleted within a current SessionID. However if the browser is open for longer than the 

116



Atalasoft DotImage Developer's Guide

CacheLifeTime, and another session is created while the browser is not active, the cached images 
are deleted.

The control checks the .stamp (date time stamp) file's time created stamp, and if the present time is 
past the the file's time stamp + CacheLifeTime, it deletes all files that begin with that new SessionID. 
You may take advantage of this cache for custom purposes by prepending an image file with 
SessionID and saving it to the cache.

Server performance
Often a deployment requires multiple servers for a high-traffic applications. In this case, dedicate 
one server for the image cache. Configure each server with a virtual directory that points to this one 
cache server.

Web.config parameters
Setting Description Note

AtalasoftWebControls_Cache Location of the cache relative to 
the root of the application

AtalasoftWebControls_CacheFilesOnly Only set to true if files should be 
put in the cache.
Set to false if it is OK to create 
directories. 
Default is true.

Setting this value to false 
while using .NET can cause the 
application to recompile while files 
are deleted from the cache. Use the 
default setting for .NET.

AtalasoftWebControls_CacheLifeTime Number of minutes a file can live 
in the cache without being used. 
Default is 20. 

Set value to the length of time that 
a session is allowed to stay alive 
before it times out.

AtalasoftWebControls_DisableCache Set to true to disable the image 
cache.  The default is "false". 

Use this option only if you are 
never going to need to modify 
images, load them from a direct 
file path, or you are saving them 
yourself.  This turns off warnings 
for the Cache, and may render the 
control unusable.  Use at your own 
risk.

AtalasoftWebControls_ErrorLogging Set to true to enable the error 
log. 
The default is false.

Log files will be placed in the Cache 
alongside images and time stamps 
for the same session. These files 
are automatically cleaned up 
when the session is cleaned up.

AtalasoftWebControls_ResourcePath Set the location of Javascript and 
Image resources required by the 
control. 

Before version 4.0, this was a 
property of the control. You must 
now set in the web.config. 
If it is not set, resources are 
requested from the control 
assembly, which is slower.

117



Atalasoft DotImage Developer's Guide

Setting Description Note

AtalasoftWebControls_ShowClientErrorsSet to true to show JavaScript 
errors in the browser. 
Otherwise, set to false.
The default is true.

Example

<appSettings>  
 <add key="AtalasoftWebControls_Cache" value="ImageCache/" />  
 <add key="AtalasoftWebControls_CacheLifeTime" value="60" /> 
 <add key="AtalasoftWebControls_ResourcePath" value="Resources/" />  
</appSettings>

Annotations in ASP.NET
DotImage allows you to view and edit annotations on the web. The control, WebAnnotationViewer, 
is the ASP.NET equivalent of the AnnotateViewer

Using the new WebAnnotationViewer and the classes in DotImage Annotations, you can:
• Read annotations in WANG or XMP format from a file and show them in a browser
• Allow the user to edit those annotations
• Allow the user to add and delete annotations
• Allow the user to edit text in a text annotation use a double-click

Add the control to a page
1. Open an ASP.NET page in Design view.
2. Drag a WebAnnotationViewer from the Toolbox to the page.

Set up annotation defaults
This procedure sets up the defaults that should be used when the built-in annotations are created 
by the user.

1. Create a method called InitializeDefaultAnnotations().
2. Create AnnotationData objects that you want to use as defaults.
3. Set the name property on each default AnnotationData object, and give them each a unique 

name such as RedEllipse or BlackRect.
4. Add each AnnotationData object created above to the DefaultAnnotations property.
5. In the Page's Onlnit event handler, and before the base.OnInit call, add a call to 

InitializeDefaultAnnotations.

Load annotations from a file
Do one of the following:

1. On the server, call WebAnnotationViewer.LoadAnnotations(String).
or

2. On the client, call the name of the file containing the annotations.

118



Atalasoft DotImage Developer's Guide

Allow the user to put a new annotation on the viewer
1. From JavaScript call WebImageViewer.CreateAnnotation(String) with the name of the 

AnnotationData class you want to allow the user to create, such as "TextData".
2. Use WebImageViewer.setInteractMode() to set the interaction mode to Author (3).
3. If you want a chance to alter the data before it is used, handle the 

WebAnnotationViewer.AnnotationCreated event on the server. The event args passed in will 
have a property called AnnotationData that can be altered.
The user can draw this annotation until the interaction mode is set to 0 (None) or 2 (Modify).

Example
JavaScript
// This client side code is used with C# examples
WebAnnotationViewer1.setInteractMode(atalaAnnotationInteractionMode.Author);
WebAnnotationViewer1.CreateAnnotation('RubberStampData', 'myStampRed');

C#
protected Atalasoft.Imaging.WebControls.Annotations.WebAnnotationViewer 
 WebAnnotationViewer1; 

   override protected void OnInit(EventArgs e) 
   { 
      // 
      // CODEGEN: This call is required by the ASP.NET Web Form Designer. 
      // 
      InitializeComponent(); 
      InitializeDefaultAnnotations(); 
      base.OnInit(e); 
   } 

   private void InitializeDefaultAnnotations() 
   { 
      RubberStampData myRubberStamp = new RubberStampData("Red Stamp!"); 
      myRubberStamp.Name = "myStampRed"; 
      myRubberStamp.FontBrush.Color = Color.Red; 
      WebAnnotationViewer1.Annotations.DefaultAnnotations.Add(myRubberStamp); 
   }

Example 2
JavaScript
// This client side code is used with C# examples
WebAnnotationViewer1.setInteractMode(atalaAnnotationInteractionMode.Author);
WebAnnotationViewer1.CreateAnnotation('EllipseData');

C#
protected Atalasoft.Imaging.WebControls.Annotations.WebAnnotationViewer 
 WebAnnotationViewer1; 
  
   private void WebAnnotationViewer1_AnnotationCreated(object sender, 
 AnnotationCreatedEventArgs e) 
   { 
      AnnotationData newData = e.AnnotationData; 
      EllipseData ellipse = newData as EllipseData; 
      if(ellipse != null) 
      { 
         ellipse.Outline = new AnnotationPen(Color.Black, 3); 
         ellipse.Fill = new AnnotationBrush(Color.Red); 

119



Atalasoft DotImage Developer's Guide

      } 
   }

For more information see Server-side image viewing with ASP.NET, Client-side scripting in 
ASP.NET, and How to draw shapes.

Thumbnails in ASP.NET
For efficient viewing of thumbnail images, use DotImage on the server side, or the 
WebThumbnailViewer control. The WebImageViewer control is not intended to be used for viewing 
thumbnails.

Create DotImage Server-side thumbnails
1. Create an ASP.NET WebForm that creates the thumbnail from a full size image or a file cached 

thumbnail. (You can use the Image Cache for this). Include an Image Control tag (<img .../>) 
in your WebForm page with a src attribute pointing to the thumbnail ASPX page specifying 
arguments in the query string as needed.

 Typically, these are file name, width, and height.

2. Create a hyperlink tag (<a href="..."></a>) around this Image Control tag, that points to the 
page that has the WebImageViewer control on it, and passes the file path in the query string to 
load the corresponding image that the thumbnail was created from.
The thumbnail can also be linked to the WebImageViewer control when clicked. Create an 
ASP.NET WebForm that takes the given file path from the query string and loads it into the 
WebImageViewer control in the Page_Load event.

Client-side thumbnails using WebThumbnailViewer and WebImageViewer
Introduced in DotImage 4.0, the WebThumbnailViewer control creates thumbnails on demand from 
either a multipage image, or a directory file path. It uses a rich AJAX JavaScript user interface that 
updates dynamically as the image or WebForm changes.

1. Drag and drop a WebThumbnailViewer control and a WebImageViewer control from the 
toolbox onto your WebForm. (If you do not have this control in the toolbox, see Document 
Imaging in ASP.NET ).

2. Size the controls either by dragging the grips in DesignTime, or by setting the Width and 
Height properties directly.

3. Decide which Property Grid Layout options you need for the WebThumbnailViewer. Your 
choices are Horizontal or Vertical with Vertical being the default).

4. Open the CodeBehind and use either the Open() or OpenUrl() methods to open your content.
The following example creates thumbnails of all JPEG and TIFF files in the given directory, and 
uses a WebImageViewer to display them.

Example
Create and display thumbnails
C#
protected Atalasoft.Imaging.WebControls.WebThumbnailViewer WebThumbnailViewer1;
protected Atalasoft.Imaging.WebControls.WebImageViewer WebImageViewer1; 
  

120



Atalasoft DotImage Developer's Guide

   private void Page_Load(object sender, System.EventArgs e) 
   { 
      if (!Page.IsPostBack) 
      { 
         string[] seachPatterns = new string[]{"*.tif", "*.tiff", "*.jpg", 
 "*.jpeg"} 
          
         this.WebThumbnailViewer1.Layout = Layout.Vertical; 
         this.WebThumbnailViewer1.ViewerID = this.WebImageViewer1.ClientID; 
         this.WebThumbnailViewer1.OpenUrl("/TestImages/", searchPatterns); 
      } 
   }

ASP.NET
Work with remote events
The WebImageViewer control provides the ability for an ASP.NET Page object to receive an event 
when a client side script requests a remote invocation. When JavaScript performs a RemoteInvoke, 
an http POST is performed to send parameters back to the server side. To get similar capabilities 
without the complexity of events, see the section about remotely invoking Page() methods.

Remote invoke event arguments
A handler for a Remote Invoke Event receives an object of type RemoteInvokeEventArgs. This object 
contains three properties: Page, Parameters, and ReturnValue.

Property Description

Page Object of type System.Web.UI.Page that contains the WebImageViewer that 
received the event

Parameters Object of type System.Collection.Specialized.NameValueCollection which 
contains all parameters provided by the POST.

ReturnValue ArrayList which is used by event handlers to pass information back. Typically 
the return value is a one element array list containing a string that represents 
the return value of the method which has been remotely invoked

Parameters
In addition to other keys provided to the WebImageViewer, there is a key with the name atala_rm. 
This key is associated with the name of the method requested to be invoked. To retrieve the method 
name from the Parameters property, do the following:
In addition to other keys provided to the WebImageViewer, there is a key with the name 
 atala_rm. This key is associated with the name of the method requested to be invoked.  
 To retrieve the method name from the Parameters property, do the following:

For each parameter passed in there is a key with a name that follows this pattern:
For each parameter passed in there is a key with a name that follows this pattern:

<type> is s (string), b (bool), or n (number)
<parameter number> is an integer starting from 0 that corresponds to the position of the 
parameter in the array passed into the JavaScript RemoteInvoke().
Parameters can be retrieved with code like this:

C#
int i = 0;

121



Atalasoft DotImage Developer's Guide

ArrayList params = new ArrayList();
ArrayList types = new ArrayList();
while (true)
{ 
   string val; 
   val = eventArgs.Parameters.Get("atala_ras" + i); 
   if (val != null) { 
      types.Add(typeof(string)); 
      params.Add(val); 
      i++; 
      continue; 
   } 
   val = eventArgs.Parameters.Get("atala_ran" + i); 
   if (val != null) { 
      types.Add(typeof(double)); 
      params.Add(Convert.ChangeType(val, typeof(double))); 
      i++; 
      continue; 
   } 
   val = eventArgs.Parameters.Get("atala_rab" + i); 
   if (val != null) { 
      types.Add(typeof(bool)); 
      params.Add(Convert.ChangeType(val, typeof(bool))); 
      i++; 
      continue; 
   } 
   break;
}
source.FileFilter = new FileSystemImageSource.FileFilterDelegate(IsGrayscale);
}

Writing an event handler
To write a RemoteInvoke event handler, first create the method which will receive the event. This 
method must take an object and a RemoteInvokeEventArgs and have no return type. Such an event 
handler might look like the example shown below.

Example
RemoteInvoke event handler
C#
private void HandleRemoteInvoke(object sender, RemoteInvokeEventArgs args)
{ 
   // your event handling code goes here
}

To install the event handler, tell the WebImageViewer to add your event handler into its chain as 
shown in the example below.
C#
webImageViewer1.RemoteInvoke += new RemoteInvokeHandler(this.HandleRemoteInvoke);

Invoke ASP.NET page methods remotely
The WebImageViewer control provides the ability to call methods in the owning ASP.NET Page 
object via client side JavaScript. In addition to being able to send typed information to the Page 
object, the return value for the remote method is sent back to the calling JavaScript code.

122



Atalasoft DotImage Developer's Guide

Terminology

Term Definition

Server side Code or objects that are invoked on an ASP server

Client side Code or objects that are invoked in a user's browser

Parameter Value that is passed from one function or method to another

Signature Combination of parameter types and the return type of a function or 
method

Preparing a server side method for remote invocation
To invoke a method remotely, it must meet the following criteria:
• The method must be a member of a Page object that contains a WebImageViewer
• The method must be public
• The method must be marked with the RemoteInvokable attribute
• Parameters of the method must be one of the following types:

• int
• double
• bool
• string

• The method must return a type that can be converted to a string. Null or no return value are also 
acceptable.

Example
C#
[Atalasoft.Imaging.WebControls.RemoteInvokable]

public bool WaterMark(int x, int y, string message) { ... } 

Calling a method from JavaScript
To invoke a method within a server side Page object from JavaScript, the client side code must call 
the RemoteInvoke() method of the JavaScript object atalaWebImageViewer. The first argument is a 
string representing the name of the method to invoke. The second argument is an array of values 
that is passed to the remote method.

Example
JavaScript
WebImageViewer1.RemoteInvoke("WaterMark", new Array(100, 100, "Preview Only"));

Getting the return value from a RemoteInvoke
RemoteInvokable() methods can have a return value, as long as they return a type that can be 
converted to a string. Because the return value is populated asynchronously, the JavaScript 
WebImageViewer.RemoteInvoked event needs to be handled. An example is shown below.
JavaScript
WebImageViewer1.RemoteInvoked = OnRemoteInvoked;
function OnRemoteInvoked(){ 
   var success = WebImageViewer1.getReturnValue(); 
   if (success == true){ 

123



Atalasoft DotImage Developer's Guide

      alert('WaterMark Succeeded.'); 
   } 
   else { 
      alert('WaterMark Failed.') 
   }
}

Parameter type conversion
JavaScript has a limited number of built-in data types that can be readily identified within a 
client side script. These are number, bool, and string. The JavaScript method RemoteInvoke() 
bundles up each parameter with information about its data type so that it can be correctly used 
on the server side. Server side code makes further effort to automatically distinguish between 
the JavaScript notion of a generic number and the .NET notion of an integer or a floating point 
number. If a JavaScript number arrives on the server which contains a decimal or an exponent, it will 
automatically be promoted to a floating-point number. Otherwise, the number is assumed to be an 
integer.
No attempt is made to interpret the contents of a string.

Method identification
.NET languages can define functions or methods with the same name but different signatures. 
These are called overloaded methods. Server side code attempts to find the version of a method 
that best matches the parameters passed from JavaScript. The match happens in two stages. Server 
side code first tries to find an exact match where each client-passed parameter type matches the 
server side parameter type exactly. If there are no matches, server side code then tries to find a 
method for which numeric parameters can be converted without loss of information.

Example
If the client side includes this remote invocation:
JavaScript
WebImageViewer1.RemoteInvoke("Overload", new Array(1, 2));

The server side has the following methods defined:
C#
[Atalasoft.Imaging.WebControls.RemoteInvokable]
public string Overload(int a, int b) { ... }
[Atalasoft.Imaging.WebControls.RemoteInvokable]
public string Overload(double a, double b) { ... }

The RemovtInvoke no longer takes two integers as parameters and matches the first method.
JavaScript
WebImageViewer1.RemoteInvoke("Overload", new Array(1.0, 2));

In this example, the RemoteInvoke matches the second method, although it is not a perfect 
match.

Open images from browser
This example code shows how to load a file from the browser, save it in the file cache, and load it 
into the control.

Example
Load file, save to cache, and load into control
C#

124



Atalasoft DotImage Developer's Guide

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;
namespace DotImageWebControlsDemo 
 { 
    /// <summary> 
    /// Summary description for WebForm1. 
    /// </summary> 
    public class WebForm1 : System.Web.UI.Page 
    { 
        protected Atalasoft.Imaging.WebControls.WebImageViewer WebImageViewer1; 
        protected System.Web.UI.WebControls.Button Button1; 
        protected System.Web.UI.WebControls.Label Label1; 
        protected System.Web.UI.HtmlControls.HtmlInputFile File1; 
     
        private void Page_Load(object sender, System.EventArgs e) 
        { 
            // Put user code to initialize the page here 
        } 
        #region Web Form Designer generated code 
        override protected void OnInit(EventArgs e) 
        { 
            // 
            // codeGEN: This call is required by the ASP.NET Web Form Designer. 
            // 
            InitializeComponent(); 
            base.OnInit(e); 
        } 
         
        /// <summary> 
        /// Required method for Designer support - do not modify 
        /// the contents of this method with the code editor. 
        /// </summary> 
        private void InitializeComponent() 
        {     
            this.Button1.Click += new System.EventHandler(this.Button1_Click); 
            this.Load += new System.EventHandler(this.Page_Load); 
        } 
        #endregion 
        private void Button1_Click(object sender, System.EventArgs e) 
        { 
            string cachePath = System.Configuration.ConfigurationSettings. 
                AppSettings["AtalasoftWebControls_Cache"]; 
            string fullPath = Page.MapPath(cachePath); 
            string fileName; 
            if (File1.PostedFile.FileName.Length != 0) 
            { 
                fileName = System.IO.Path.GetFileName(File1.PostedFile.FileName); 
                try 
                { 
                    // Save uploaded file to server 
                    File1.PostedFile.SaveAs(fullPath + fileName); 
                } 
                catch (Exception exc) 

125



Atalasoft DotImage Developer's Guide

                { 
                    Label1.Text = "Error saving file <b>" + cachePath + fileName + 
                         "</b><br>" + exc.Message; 
                } 
                try 
                { 
                    // Set main viewer to the users image 
                    WebImageViewer1.OpenUrl(cachePath + fileName); 
                } 
                catch (Exception exc) 
                { 
                    Label1.Text = "Error opening file <b>" + cachePath + fileName + 
                    "</b><br>" + exc.Message; 
                } 
            } 
            else 
                Label1.Text = "Error: You must specify a file name."; 
        } 
    } 
 } 
  

{

HTML to run the above code
HTML
<form id="WebForm1" method="post" runat="server" encType="multipart/form-data"> 
     
<table id=Table1 cellspacing=0 cellpadding=0 width=300 align=center border=0> 
  <tr> 
    <td> 
      <p align=center> 
      <cc1:WebImageViewer id=WebImageViewer1 runat="server"></
cc1:WebImageViewer><br> 
      <input id=File1 type=file name=File1 runat="server"><br> 
      <asp:Button id=Button1 runat="server" Text="Submit"></asp:Button></p> 
      <p align=center>&nbsp;</p> 
      <p style="FONT-WEIGHT: bold; COLOR: red" align=center><asp:Label id=Label1 
         runat="server"></asp:Label></p> 
    </td> 
  </tr> 
 </table> 
 </form>

Importing namespaces
DotImage separates functionality into logical namespaces. To avoid typing the entire namespace 
when referencing a DotImage class, you may use the following Imports (or using in C#) statements.

C#
using Atalasoft.Imaging;
using Atalasoft.Imaging.codec;
using Atalasoft.Imaging.ColorManagement;
using Atalasoft.Imaging.Drawing;
using Atalasoft.Imaging.ImageProcessing;
using Atalasoft.Imaging.ImageProcessing.Channels;
using Atalasoft.Imaging.ImageProcessing.Document;
using Atalasoft.Imaging.ImageProcessing.Effects;
using Atalasoft.Imaging.ImageProcessing.Fft;
using Atalasoft.Imaging.ImageProcessing.Filters;
using Atalasoft.Imaging.ImageProcessing.Transforms;
using Atalasoft.Imaging.Metadata;

126



Atalasoft DotImage Developer's Guide

using Atalasoft.Imaging.WebControls;

Display image in the current output stream
The following sections explain how to use DotImage to display an image in the current output 
stream.

Use the class library
Example
C#
workspace.Open(Server.MapPath("myimage.tiff")); 
 Response.ContentType = "image/jpeg"; 
 workspace.Save(Response.OutputStream, new JpegEncoder(90));   

Use WebControls
When using DotImage to display images in an ASP.NET Web application, We recommend that you 
use the WebImageViewer control. The namespace Atalasoft.Imaging.WebControls contains the user 
interface classes and controls that can be used in a WebForm application.

Add the DotImage WebControls to the toolbox

1. In the Tools menu, select Customize Toolbox on the Visual Studio .NET.

2. Make sure the .NET Framework Components tab is selected, and find the 
Atalasoft.DotImage.WebControls and Atalasoft.DotImage.WebControls.Annotations 
namespaces.

3. Select the checkboxes that correspond to the WebImageViewer, WebThumbnailViewer, and 
WebAnnotationViewer controls.

4. Click OK.

WebImageViewer, WebThumbnailViewer, and WebAnnotationViewer are included in your toolbox 
and you can drag and drop these controls onto your form.

File cache
The WebImageViewer, WebThumbnailViewer, and WebAnnotationViewer controls require a writable 
folder for caching images and other data. This folder needs to be mappable from your application 
directory.

1. Create a directory for the image cache within your wwwroot directory ex: "/ImageCache/".

 When using ASP.NET, you can only put the cache folder inside the application folder if 
the AtalasoftWebControls_CacheFilesOnly Web.config key is set to true. This is the default 
behavior in DotImage 4.0 and up. If the AtalasoftWebControls_CacheFilesOnly Web.config
key is set to false, ASP.NET will recompile and end all sessions for the application every time 
images are deleted from the cache.

2. Make sure this directory is writable by applications, you can do this using the IIS control panel. 
You may also need to grant the MACHINE\ASPNET user account Modify permissions over this 
folder in Windows Explorer.

127



Atalasoft DotImage Developer's Guide

 When using impersonation, you will need to make sure that every user account that is 
being impersonated, has Modify permissions over this folder. Using the ASPNET user account 
is not enough, and can cause intermittent problems.

3. Modify your Web.config file by adding these lines inside the <appSettings> tags:
<add key="AtalasoftWebControls_Cache" value="/ImageCache/" /> 
 <add key="AtalasoftWebControls_CacheLifeTime" value="60" />

These two lines control where the cache files are saved, and how many minutes they stay in 
there. The control will not work at all if it cannot write the images to this location.

Control the WebImageViewer behavior
After you drop the WebImageViewer control onto your form, you can modify the behavior of the 
WebImageViewer by changing the properties in the development environment (IDE). Many of the 
properties will look familiar to you because the WebImageViewer control inherits from Control. The 
following properties are specific to the imaging aspects of this control and can be modified in the 
IDE:
• Image
• AntialiasDisplay
• Centered
• Zoom
• AutoZoom

Use JavaScript with DotImage WebControls
All DotImageWebControls offer a JavaScript API so that a rich client interface can be created in the 
browser. Many of the properties and events available in code-behind are available in the JavaScript 
API under the same name.

Use the WebAnnotationViewer
The WebAnnotationViewer control inherits from the WebImageViewer control, and can be used to 
overlay interactive annotations over an image.
Images and resources
There are several files used in the control, that are stored within the compiled WebControls dll.
You can put these files can in a location accessible from your application to speed up the loading 
of the control. By default, they are installed into the C:\Program Files (x86)\Atalasoft
\DotImage 11.5\bin\WebResources directory.
To link to these files, do the following:

1. Create a directory for the resources within your wwwroot directory ex: /files/.

2. Copy all files that are in the C:\Program Files (x86)\Atalasoft\DotImage 11.5\bin
\WebResources directory to the new one you made.

3. Set the PathToResources web.config AtalasoftWebControls_ResourcePath appSetting to 
the relative or virtual path to your /files/ directory. If you have set up the path correctly, the 
JavaScript and images used load from the Resources directory instead of through the assembly 
and startup is faster.

128



Atalasoft DotImage Developer's Guide

For example, you can modify your Web.config file by adding this lines inside the
<appSettings> tags:
<add key="AtalasoftWebControls_ResourcePath" value="/files/" />

 Previous versions of DotImageWebImageViewer had images for drawing the scrollbar. 
Scrollbars are now drawn by the browser and you cannot override the look and feel with images in 
the resource directory.

Print images in ASP.NET
Because the WebImageViewer control is server side, the entire image must be streamed to the 
client to print. There are two suggested methods to print an image from the server using DotImage. 
A third method that could be used, which is not covered here, is to use a WinForms application 
deployed on an ASP.NET WebForm in the browser.

JavaScript printing

The Print() method in the WebImageViewer control requires JavaScript and uses the browser's Print 
functionality.

This method launches a new browser window including just the image to print, then calls client side 
JavaScript code to invoke the self.Print() method. This causes the browser to open the print dialog. 
When the print dialog closes, the newly created browser window attempts to close.

Security settings and pop-up blocking software may cause the browser to ask the user if they want 
to allow the window to be created or closed.

PDF printing

A PDF image can be created with DotImage using the PdfEncoder and streamed to the browser to 
print single or multiple images from within Adobe Acrobat. This will then download the entire image 
to the client into the free Adobe Acrobat reader which then can control the printing process.

The following example demonstrates how to use the response stream on a postback to export the 
image in PDF format.

Example
Use response stream to export PDF image
C#
Response.Clear();
Response.ContentType = "application/pdf";  
  
// Create a new PdfImageCollection and add your images.
PdfImageCollection col = new PdfImageCollection();  
  
// Add all pages from a multipage TIFF.
col.Add(new PdfImage(this.WebImageViewer.Image, PdfCompressionType.Auto));  
  
// Create the PDF.
PdfEncoder pdf = new PdfEncoder();  
  
// Set any properties.
pdf.JpegQuality = 85;

129



Atalasoft DotImage Developer's Guide

pdf.Metadata = new PdfMetadata("Test PDF", "Atalasoft", "Testing PdfEncoder", "", 
 "",  
"DotImage", DateTime.Now, DateTime.Now);  
  
// Make each image fit into an 8.5 x 11 inch page (612 x 792 @ 72 DPI).
pdf.SizeMode = PdfPageSizeMode.FitToPage;
pdf.PageSize = new Size(612, 792);  
Stream pdfStream = new MemoryStream();
pdf.Save(pdfStream, col, null);
pdfStream.Seek(0, SeekOrigin.Begin); byte[] pdfBytes = new byte[pdfStream.Length];
pdfStream.Read(pdfBytes, 0 , (int)(pdfStream.Length));  
Response.BinaryWrite(pdfBytes);
Response.Flush();
Response.End();

Stream directly to a browser
Most image processing Web applications are server side. That is the reading and manipulating of 
images is done using the server processor and memory. To display an image, it is streamed to the 
browser and is displayed in a standard HTML <IMG> tag.

When you use DotImage server side, your Web application is platform and browser independent. 
The client does not have to download any dependencies to use the application.

 It is possible to deploy a WinForm application in an ASP.NET Web page, but that is beyond the 
scope of this section.

The primary object used in ASP.NET applications is the Workspace, as you can easily manipulate the 
image and access extended functionality. To start using DotImage in an ASP.NET application, add a 
reference to Atalasoft.DotImage

 You do not need to add Atalasoft.DotImage.Wincontrols because we are not using WinForms

Client-side scripting in ASP.NET
The DotImage WebImageViewer, WebThumbnailViewer, and WebAnnotationViewer ServerControls 
support client side scripting for manipulation without post backs. You can access nearly all 
properties and methods of the control via client side JavaScript.

Basic syntax
To make the transition from a server oriented control to a client oriented control easier, the client 
side versions of the WebImageViewer, WebThumbnailViewer, and WebAnnotationViewer controls 
use almost identical syntax to the server side code that you would need to accomplish similar tasks 
on the server side.

Public functions
All public constructors and global variables that are included within WebImageViewer.js, 
WebThumbnailViewer.js, WebAnnotationViewer.js, ClientTools.js, and Enums.js are prefixed with the 
word atala. This makes it unlikely that any another components used on the same page will have a 
similar function names.

130



Atalasoft DotImage Developer's Guide

Note: This is provided as general information, and does not mean that every function in the API 
reference requires the atala prefix, the syntax provided in the API reference should be used exactly 
as shown.

OnPageLoad and using AtalaInitClientScript
The WebImageViewer, WebThumbnailViewer, and WebAnnotationViewer use the window.onload 
event to initialize the client side components of the control. This is necessary because as the page 
loads, elements can move depending on how long images or objects take to load, and whether or 
not the size attributes of those objects are defined.

You can use atalaInitClientScript to run code in the OnLoad event. This function queues up each 
string sent to it and tries to execute it as JavaScript code. This allows you to execute multiple 
scripts OnLoad. This function is located in ClientTools.js, and is required by all of the DotImage 
WebControls.

Example
Here is a general example that pops up an alert when the page is done loading.
<!-- You will need a reference to ClientTools.js before this snippet. 
  -- This reference is automatically added to the page inline with the WebControls, 
  -- so placing this snippet below one of these controls will be sufficient. --> 
 <script language="javascript" type="text/javascript">
atalaInitClientScript("OnPageLoad()");
function OnPageLoad()
{ 
  alert("Page is finished loading.");
}
</script>

Objects
Every WebImageViewer, WebThumbnailViewer, and WebAnnotationViewer control on the page is 
accessed by the ClientID generated by ASP.NET. Therefore WebImageViewer1 on your WebForm can 
be accessed in JavaScript using the same name.

 Placing the WebImageViewer, WebThumbnailViewer, and WebAnnotationViewer controls 
inside a container control such as a ContentPlaceHolder or a UserControl, changes the ClientID. 
You may need to take this into account when accessing methods on the client side.

The example below shows how you can get the ClientID inline on an aspx page.

Example

<asp:content ID="Content1" contentplaceholderid="_mainContent" runat="server"> 
    <cc1:WebImageViewer ID="WebImageViewer1" runat="server" Width="500px" 
 Height="460px" /> 
    <script type="text/javascript"> 
        var myViewer; 
        atalaInitClientScript("OnPageLoad()"); 
        function OnPageLoad() { 
            myViewer = <%=WebImageViewer1.ClientID %>; 
            myViewer.RemoteInvoked = Invalidate; 
        } 
        // This function forces the WebImageViewer to update all visible tiles, as  
        // it may not know that the image has changed on the server side.  

131



Atalasoft DotImage Developer's Guide

        function Invalidate() { 
            myViewer.Update(); 
        } 
        // This function calls a RemoteInvokable function on the server side, and  
        // passes in an integer indicating which page to open.  
        function GoToPage(n) { 
            var vals = new Array(); 
            vals.push(n); 
            myViewer.RemoteInvoke('GoToPage', vals); 
        } 
    </script>
</asp:content>

Properties
All properties for a given object are named the same as they are in the server code (unless 
otherwise noted on the table below). They are prefixed with the words get and set, and require 
parentheses to get the return values.

The following example sets mySize to an atalaSize object representing the size of 
WebImageViewer1's selection and sets the width of WebImageViewer2.

Example
var mySize = WebImageViewer1.getSelection().getSize();
WebImageViewer2.setWidth('400px');

Events
All the event handlers for the WebControls can be used by creating your own function and setting 
the event to that function, or by using atalaEventAdd. These examples pop up an alert box every 
time the ScrollPosition is changed. All of the methods shown below are valid.

 The ZoomChanged event handler on the WebAnnotationViewer cannot be set to without 
breaking the automatic annotation zooming. Method 3 is the only method that works in this 
situation.

Method 1
// First Method
atalaInitClientScript("OnPageLoad()");
function OnPageLoad()
{ 
  WebImageViewer1.ScrollPositionChanged = myPositionChanged;
}
function myPositionChanged()
{ 
  alert("ScrollPosition Changed!");
}

Method 2
// Second Method
atalaInitClientScript("OnPageLoad()");
function OnPageLoad()
{ 
  WebImageViewer1.ScrollPositionChanged = function(){ alert("ScrollPosition 
 Changed!"); };

132



Atalasoft DotImage Developer's Guide

}

Method 3
// Third Method
// This method allows you to add multiple handlers to the same event
atalaInitClientScript("OnPageLoad()");
function OnPageLoad()
{ 
  atalaEventAdd(this, WebImageViewer1, 'ScrollPositionChanged', myPositionChanged); 
  atalaEventAdd(this, WebImageViewer1, 'ScrollPositionChanged', myUpdate);
}
function myPositionChanged()
{ 
  alert("ScrollPosition Changed!");
}
function myUpdate()
{ 
  alert("myUpdate!");
}

WebImageViewer
AtalaWebImageViewer

Although this function is public, it is not intended for users to create WebImageViewers on the 
client side directly. The server side generated HTML is needed for this function to initialize.

Properties

Server Name JavaScript Syntax : Return Value Description

ClientID ID() : string Gets the server control identifier 
generated by ASP.NET.

N/A Form() : object Gets the form object that the Web 
server control is on.

AntialiasDisplay getAntialiasDisplay() : int
setAntialiasDisplay(value : int)

Gets or sets the quality of the 
scaled image.
Expected input: 
AntialiasDisplayMode or int 
from 0-3, 0:None 1:ScaleToGray 
2:ReductionOnly 3:Full

AutoZoom getAutoZoom() : int
setAutoZoom(value : int)

Gets or sets a value indicating how 
the image should be zoomed as 
the control is resized or the image 
size changes.  This will override 
setZoom.  For a one time zoom, 
see setZoomMode.
Expected input: AutoZoomMode 
or int from 0-5, 0:None 1:BestFit 
2:BestFitShrinkOnly 3:FitToWidth 
4:FitToHeight 5:FitToImage

133



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax : Return Value Description

BackColor getBackColor() : string
setBackColor(value : string)

Gets or sets the background color 
of the Web server control.
Expected input: string representing 
a hex value or exact color name: 
'#ACFF00'

BorderColor getBorderColor() : string
setBorderColor(value : string)

Gets or sets the border color of the 
Web server control.
Expected input: string representing 
a hex value or exact color name: 
'#ACFF00'

BorderStyle getBorderStyle() : string
setBorderStyle(value : string)

Gets or sets the border style used 
for this Web server control.
Expected input: string representing 
Style: '1px solid #FF9900'

BorderWidth getBorderWidth() : int
setBorderWidth(value : int)

Gets or sets the border width of 
the Web server control in pixels.

BrowserFormat getBrowserFormat() : int Gets the format of the images 
created for browser output.
Returns an int: 0:Jpeg 1:Png 2:Gif 
3:Auto

CachePath getCachePath() : string Gets the file path used for the 
file cache as specified in the
Web.config file.

Caption getCaption() : string
setCaption(value : string)

Gets or sets a string used for 
creating a caption under the Web 
server control.  HTML syntax is 
allowed.

 This property is tied to a 
hidden input tag, so changing 
this value to HTML in JavaScript 
could cause problems if the 
page needs to PostBack.

Centered getCentered() : bool
setCentered(value : bool)

Gets or sets a value indicating if 
the image is centered when the 
image is smaller than the Web 
server control.

N/A getDisplayImageUrl() : string Gets a url that will return the 
current viewable portion of the 
image.  Often used for printing the 
current area of the image.

134



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax : Return Value Description

Font getFont() : string
setFont(value : string)

Gets or sets the font name 
associated with the Web server 
control.
Expected input: string representing 
font name: 'Verdana'

ForeColor getForeColor() : string
setForeColor(value : string)

Gets or sets the foreground color 
(typically the color of the text) of 
the Web server control.
Expected input: string representing 
a hex value or exact color name: 
'#ACFF00'

N/A getFrameIndex() : int Gets the index value used to open 
the current image.

 If the image has been 
modified with a server side 
ApplyCommand, or has been 
opened from a method other 
than OpenUrl or a linked 
WebThumbnailViewer, this will 
always return 0.

Height getHeight() : string
setHeight(value : string)

Gets or sets the CSS height style 
property of the server control.
Expected input: string representing 
style height: '320px'

ImageDisplayOrder getImageDisplayOrder() : int Gets the order that tiles are loaded.
Returns an int: 0:Sequential 
1:VisibleFirst 2:OnDemand

Image.Size getImageSize() : atalaSize Gets the size, in pixels, of the 
current image.

N/A getImageUrl() : string Gets the currently loaded image 
url.

MouseTool getMouseToolLeft() : int
getMouseToolRight() : int
setMouseTool(left: int, right: int)

Gets or sets the behavior of the 
mouse when interacting with the 
viewable area.
Expected input: MouseToolType or 
int from 0-7, 0:None 1:Center 
2:Selection 3:ZoomIn 4:ZoomOut 
5:ZoomArea 6:Pan 7:PassThrough

135



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax : Return Value Description

MouseTool.Cursor getMouseToolCursor() : int
setMouseToolCursor(value : int)

Gets or sets the cursor used with 
the mouse tool.
Expected input: MouseToolCursor 
or int from 0-8, 0:Auto 1:Arrow 
2:Crosshair 3:Grab 4:Hand 5:Move 
6:ZoomIn 7:ZoomOut 8:Custom

 Currently, Grab is a CSS 
Extension supported by 
Mozilla based browsers only.

MouseTool.CustomCursor getMouseToolCustomCursor() : 
string
setMouseToolCustomCursor(value : 
string)

Gets or sets a value that represents 
the custom CSS style used for the 
MouseTool.
Expected input: string representing 
Style: 'wait' or 'url(MyCursor.cur)'

 Url based CSS cursor styles 
may not work in all browsers.

PathToResources getPathToResources() : string Gets the virtual path to where the 
image, script, and cursor files are 
located. 

N/A getReturnValue() : var Gets the return value populated by 
the last successful RemoteInvoke.

ImagePosition getScrollPosition() : atalaPoint
setScrollPosition(value : atalaPoint)

Gets or sets the upper left image 
position in relation to the upper 
left corner of the Web server 
control. Negative values are 
expected.
Expected input: atalaPoint

ScrollBarVisibility getScrollBarVisibility() : int Gets the visibility of the scrollbars.
Returns an int: 0:Dynamic 1:None 
2:Always

Selection getSelection() : Selection Gets the Selection object of this 
Web server control.

TileSize getTileSize() : atalaSize Gets the height and width of the 
tiles in pixels.

136



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax : Return Value Description

TitleBar getTitleBar() : string
setTitleBar(value : string)

Gets or sets a string used for a 
creating a title bar above the Web 
server control.  HTML syntax is 
allowed.

 This property is tied to a 
hidden input tag, so changing 
this value to HTML in JavaScript 
could cause problems if the 
page needs to PostBack.

ViewPortSize getViewPortSize() : atalaSize Gets the size of the viewable area, 
excluding scroll bars.

Visibility getVisibility() : string
setVisibility(value : string)

Gets or sets a value that indicates 
whether the Web server control is 
hidden or visible on the page.
Expected input: string that is either 
'hidden', 'visible', or 'inherit'.

 'inherit' will return 
VisibilityStyle.Visible on the 
server side.

Width getWidth() : string
setWidth(value : string)

Gets or sets the CSS width style 
property of the server control.
Expected input: string representing 
style width: '200px'

Zoom getZoom() : float
setZoom(value : float)

Gets or sets the zoom level of the 
image in this Web server control.

ZoomInOutPercentage getZoomInOutPercentage() : int
setZoomInOutPercentage(value : 
int)

Gets or sets the percentage used 
to increase or decrease the zoom 
level when the zoom MouseTools 
are used.

Events

Server Name JavaScript Syntax Description

N/A AntialiasDisplayChanged = function() Fires when the AntialiasDisplay 
property has changed.

N/A AutoZoomChanged = function() Fires when the AutoZoom property 
has changed.

N/A BackColorChanged  = function() Fires when the BackColor property 
has changed.

N/A BorderColorChanged = function() Fires when the BorderColor 
property has changed.

137



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax Description

N/A BorderStyleChanged  = function() Fires when the BorderStyle 
property has changed.

N/A BorderWidthChanged = function() Fires when the BorderWidth 
property has changed.

N/A CaptionChanged = function() Fires when the Caption property 
has changed.

CenteredChanged CenteredChanged = function() Fires when the Centered property 
has changed.

N/A FontChanged = function() Fires when the Font property has 
changed.

N/A ForeColorChanged = function() Fires when the ForeColor property 
has changed.

ImageChanged ImageChanged = function() Fires when the Image has changed.

N/A ImageSizeChanged = function() Fires when the Image changes size.

N/A MouseToolChanged  = function() Fires when the MouseTool property 
has changed.

RemoteInvoked RemoteInvoked = function() Fires when the RemoteInvoke 
function is called.

ImagePositionChanged ScrollPositionChanged = function() Fires when the ScrollPosition has 
changed

SelectionChanged SelectionChanged = function() Fires when the Selection has 
changed.

N/A SizeChanged = function() Fires when the Size property has 
changed.

N/A TitleBarChanged = function() Fires when the TitleBar property 
has changed.

N/A VisibilityChanged = function() Fires when the Visibility property 
has changed.

N/A ZoomChanged = function() Fires when the Zoom property has 
changed.

N/A ZoomInOutPercentageChanged = 
function()

Fires when the 
ZoomInOutPercentage property 
has changed.

Mouse Events
 All of these events pertain to the underlying image only, and attempt 
to pass a ImageMouseEvent object to the function. 

N/A Clicked = function(e) Fires when the image is clicked. 
Passes an ImageMouseEvent 
object.

138



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax Description

N/A DoubleClicked = function(e) Fires when the image is 
double clicked. Passes 
an ImageMouseEvent object.

N/A MouseDown = function(e) Fires when a mouse button is 
pressed down on the image. 
Passes an ImageMouseEvent 
object.

N/A MouseDownLeft = function(e) Fires when the when the left 
mouse button is pressed down. 
Passes an ImageMouseEvent 
object.

N/A MouseDownRight = function(e) Fires when the when the right 
mouse button is pressed down. 
Passes an ImageMouseEvent 
object.

N/A MouseMove = function(e) Fires when the mouse cursor 
moves over the image. Passes 
an ImageMouseEvent object.

N/A MouseOut = function(e) Fires when the mouse cursor 
leaves the image area. Passes 
an ImageMouseEvent object.

N/A MouseOver = function(e) Fires when the mouse cursor 
enters the image area. Passes 
an ImageMouseEvent object.

N/A MouseUp = function(e) Fires when a mouse button is 
released on the image. Passes 
an ImageMouseEvent object.

N/A RightClicked = function(e) Fires when the image is 
right clicked. Passes 
an ImageMouseEvent object.

Key Events
 The control must have focus for these events to fire.  You can 
programmatically set focus to this control by calling Focus(). These events 
also attempt to pass a ImageKeyEvent object to the function.

N/A KeyDown = function(e) Fires when a key is pressed 
down, if the control has focus. 
Passes an ImageKeyEvent object.

N/A KeyUp = function(e) Fires when a key is released, if 
the control has focus. Passes an 
ImageKeyEvent object.

N/A KeyPress = function(e) Fires when a key is pressed 
down, and then released, if the 
control has focus. Passes an 
ImageKeyEvent object.

139



Atalasoft DotImage Developer's Guide

Methods

Server Name JavaScript Syntax Description

N/A ClearImage() Clears the image from client side 
only, used to return to a blank 
state.

N/A Focus() Puts focus on the 
WebImageViewer, used to enable 
key events.

N/A Invalidate() Forces the WebImageViewer to re-
position child objects.

OpenUrl OpenUrl(url: string)
OpenUrl(url: string, index: int)

Opens an image into the 
WebImageViewer control from 
a URL or virtual path, and frame 
index.

 This function is 
asynchronous.  If any code 
needs to be executed after this 
call, it should be placed in the 
ImageChanged event handler.

N/A PauseRefresh() Pauses UI updates for this 
control until ResumeRefresh is 
called.  Pauses and Refreshes are 
nestable.  The update happens 
when an equal number of 
ResumeRefresh and PauseRefresh 
calls are made.

Print Print() Prints the current image using 
javascript client code.

Redo Redo() Re-does an undo.

Invoke RemoteInvoke(mthd : string)
RemoteInvoke(mthd : string, args : 
Array)

Remotely invokes a server 
side method with the array of 
arguments.

 This function is 
asynchronous.  If any code 
needs to be executed after this 
call, it should be placed in the 
RemoteInvoked event handler.

N/A ResumeRefresh() Resumes paused UI updates for 
this control.  Pauses and Refreshes 
are nestable.  The update happens 
when an equal number of 
ResumeRefresh and PauseRefresh 
calls are made.

140



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax Description

N/A ScrollBy(dx : int, dy : int) Scrolls the viewer by the given 
values.

N/A ScrollTo(x: int, y: int) Scrolls the viewer to the given 
coordinates.

N/A setZoomMode(value : int) Zoom the image once, according to 
the given AutoZoomMode.
Expected input: AutoZoomMode 
or int from 0-5, 0:None 1:BestFit 
2:BestFitShrinkOnly 3:FitToWidth 
4:FitToHeight 5:FitToImage

Undo Undo() Reverts the image back to the 
previously cached image.

 This function is limited 
to Image changes only.  
The number of available 
undos relies on the server side 
CacheLevels property of the 
control.

Update Update() Forces the current image to be 
cached and updates the viewable 
area.

ImageMouseEvent
This object is based on the browser's mouse event object. The following properties are in addition 
to the properties that are specified by each individual browser.

Usage
JavaScript
/* You will need a WebImageViewer and a reference to ClientTools.js before this 
 snippet. 
 * This reference is automatically added to the page inline with the WebControls, 
 * so placing this snippet below the WebImageViewer control will be sufficient. 
 */
Atalasoft.Utils.InitClientScript(BindImageMouseEvents);
function BindImageMouseEvents(){ 
   WebImageViewer1.DoubleClicked = ImageMouseEventExample; 
   WebImageViewer1.RightClicked = ImageMouseEventExample;
}

// This simple example alerts the user when the image is double or right clicked.
function ImageMouseEventExample(e){ 
   var mousePos = Atalasoft.Utils.getMousePosition(e); 
   alert(e.name + ' event fired on the image at ' + mousePos.X + 'x' + mousePos.Y);
}

141



Atalasoft DotImage Developer's Guide

Properties

Server Name JavaScript Syntax : Return value Description

N/A name : string The name of the event that is 
being fired.

N/A type : string The browser's mouse event type 
that this event is based on.  Ex: 
'mouseover'.

ImageKeyEvent
This object is based on the browser's key event object. The following properties are in addition to 
the properties that are specified by each individual browser (unless otherwise specified).

Usage
JavaScript
/* You will need a WebImageViewer and a reference to ClientTools.js before this 
 snippet. 
 * This reference is automatically added to the page inline with the WebControls, 
 * so placing this snippet below the WebImageViewer control will be sufficient. 
 */
Atalasoft.Utils.InitClientScript(BindImageKeyEvents);
function BindImageKeyEvents(){ 
   WebImageViewer1.KeyDown = ImageKeyEventExample; 
   WebImageViewer1.Focus();
}

// This simple example alerts the user when a key is pressed down while thw 
 WebImageViewer has focus.
function ImageKeyEventExample(e){ 
   alert('KeyCode: ' + e.keyCode + ' pressed down.');
}

Properties

Server Name JavaScript Syntax : Return value Description

N/A altKey : bool Returns true if the alt key is 
pressed in combination with this 
key event, false otherwise.

N/A ctrlKey : bool Returns true if the ctrl key is 
pressed in combination with this 
key event, false otherwise.

N/A keyCode : int The browser's specific key 
code for keyup or keydown 
typed events, returns ASCII code 
on keypress typed events.

 This property is 
populated by the browser, 
and may not be the same 
value across all browsers.

142



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax : Return value Description

N/A shiftKey : bool Returns true if the shift key is 
pressed in combination with this 
key event, false otherwise.

N/A name : string The name of the event that is 
being fired.

N/A type : string The browser's key event type 
that this event is based on.  Ex: 
'keyup'.

Selection
The Selection object is internal to the atalaWebImageViewer object.

Server Name JavaScript Syntax : Return value Description

Animated getAnimated() : bool
setAnimated(value : bool)

Gets or sets a value that indicates 
whether the selection will animate 
or not.

AutoPostBack getAutoPostBack() : bool
setAutoPostBack(value : bool)

Gets or sets a value that indicates 
whether the selection will 
automatically post back when it 
has changed on the client side.

BackColor getBackColor() : string
setBackColor(value : string)

Gets or sets a string that 
represents the color behind the 
dashed line.

ForeColor getForeColor() : string
setForeColor(value : string)

Gets or sets a string that 
represents the color of the dashed 
line.

Height getHeight() : int
setHeight(value : int)

Gets or sets the height of the 
selection.

Movable getMovable() : bool
setMovable(value : bool)

Gets or sets a value that indicates 
whether the selection can be 
moved after it is drawn.

MultiColor getMultiColor() : bool
setMultiColor(value : bool)

Gets or sets a value indicating if 
the selection is a solid or dashed 
line.

Position getPosition() : atalaPoint
setPosition(value : atalaPoint)

Gets or sets the position of the 
selection.

Resizable getResizable() : bool
setResizable(value : bool)

Gets or sets a value that indicating 
whether the selection can resize 
after it is drawn.

ShowGrips getShowGrips() : bool
setShowGrips(value : bool)

Gets or sets a value that indicating 
whether the grips of the selection 
are visible.

ShowTooltip getShowTooltip() : bool
setShowTooltip(value : bool)

Gets or sets a value that indicating 
whether the tooltip is drawn while 
the selection is drawn.

143



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax : Return value Description

Size getSize() : atalaSize
setSize(value : atalaSize)

Gets or sets the size of the 
selection.

Visibility getVisibility() : bool
setVisibility(value : string)

Gets or sets a value indicating if 
the selection is hidden or visible.

Width getWidth() : int
setWidth(value : int)

Gets or sets the width of the 
selection.

Events

Server Name JavaScript Syntax Description

N/A Changing = function Fires while the selection is 
being modified through mouse 
movement.

RubberBandChanged Changed = function Fires when the selection has 
finished being modified.

Web ThumbnailViewer
atalaWeb ThumbnailViewer

Although this function is public, it is not intended for users to create WebThumbnailViewers on the 
client side directly. The server side generated HTML is needed for this function to initialize.

Properties

Server Name JavaScript Syntax : Return value Description

ClientID ID() : string Gets the server control identifier 
generated by ASP.NET.

N/A Form() : object Gets the form object that the Web 
server control is on.

AllowMultiSelect getAllowMultiSelect() : bool Gets a value that allows multiple 
thumbs to be selected using the 
shift or ctrl keys.

AllowDragDrop getAllowDragDrop() : bool Gets a value that allows thumbnails 
to be dragged and dropped inside 
the bounds of the control.

AutoDragDrop getAutoDragDrop() : bool Gets a value that determines 
whether thumbnail reordering will 
be automatically handled on the 
client-side.

BackColor getBackColor() : string
setBackColor(value: string)

Gets or sets the background color 
of the Web server control.
Expected input: string representing 
a hex value or exact color name: 
'#ACFF00'

144



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax : Return value Description

BorderColor getBorderColor() : string
setBorderColor(value: string)

Gets or sets the inner border color 
of the Web server control.
Expected input: string representing 
a hex value or exact color name: 
'#ACFF00'

BorderStyle getBorderStyle() : string
setBorderStyle(value: string)

Gets or sets the outer border style 
used for this Web server control.
Expected input: string representing 
CSS Style: '1px solid #FF9900'

BorderWidth getBorderWidth() : int
setBorderWidth(value: int)

Gets or sets the inner border width 
of the Web server control.
Expected input: int representing 
the number of pixels wide.

BrowserFormat getBrowserFormat : int Gets the format of the images 
created for browser output.
Returns an int: 0:Jpeg 1:Png 2:Gif 
3:Auto

CachePath getCachePath() : string Gets the file path used for the 
file cache as specified in the
Web.config file.

Caption getCaption() : string
setCaption(value: string)

Gets or sets a string used for 
creating a caption under the Web 
server control.  HTML syntax is 
allowed.

 This property is tied to a 
hidden input tag, so changing 
this value to HTML in JavaScript 
could cause problems if the 
page needs to PostBack.

Centered getCentered() : bool
setCentered(value: bool)

Gets or sets a value indicating if 
the image is centered when the 
image is smaller than the Web 
server control.

Columns getColumns() : int
setColumns(value: int)

Gets or sets the number of 
columns (0 means auto)

Count getCount() : int Gets the number of thumbnails.

FlowDirection getFlowDirection() : int Gets the FlowDirection 
enumeration for how the 
thumbnails are laid out.

Font getFont() : string
setFont(value: string)

Gets or sets the font name 
associated with the Web server 
control.
Expected input: string representing 
font name: 'verdana'

145



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax : Return value Description

ForeColor getForeColor() : string
setForeColor(value: string)

Gets or sets the foreground color 
(typically the color of the text) of 
the Web server control.
Expected input: string representing 
a hex value or exact color name: 
'#ACFF00'

Height getHeight() : int
setHeight(value: int)

Gets or sets the height of the Web 
server control in pixels.

ImageDisplayOrder getImageDisplayOrder() : int Gets the order that thumbs are 
loaded.

Layout getLayout() : int Gets the Layout set on the server.

MouseTool getMouseToolLeft() : int
getMouseToolRight() : int
setMouseTool(left: int, right: int)

Gets or sets the behavior of the 
mouse when interacting with the 
viewable area.
Expected input: MouseToolType or 
int from 0-7, 0:None 1:Center 
2:Selection 3:ZoomIn 4:ZoomOut 
5:ZoomArea 6:Pan 7:PassThrough

MouseTool.Cursor getMouseToolCursor() : int
setMouseToolCursor(value : int)

Gets or sets the cursor used with 
the mouse tool.
Expected input: MouseToolCursor 
or int from 0-8, 0:Auto 1:Arrow 
2:Crosshair 3:Grab 4:Hand 5:Move 
6:ZoomIn 7:ZoomOut 8:Custom

 Currently, Grab is a CSS 
Extension supported by 
Mozilla based browsers only.

MouseTool.CustomCursor getMouseToolCustomCursor() : 
string
setMouseToolCustomCursor(value : 
string)

Gets or sets a value that represents 
the custom CSS style used for the 
MouseTool.
Expected input: string representing 
Style: 'wait' or 'url(MyCursor.cur)'

 Url based CSS cursor styles 
may not work in all browsers.

PathToResources getPathToResources() : string Gets the virtual path to where the 
image, script, and cursor files are 
located. 

Rows getRows() : int
setRows(value: int)

Gets or sets the number of rows (0 
means auto)

146



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax : Return value Description

ScrollBarVisibility getScrollBarVisibility() : int
setScrollBarVisibility(value : int)

Gets or sets the visibility of the 
scrollbars.
Expected input: 
ScrollBarVisibility or int: 0:Dynamic 
1:None 2:Always

ScrollPosition getScrollPosition() : atalaPoint
setScrollPosition(value : atalaPoint)

Gets or sets the upper left image 
position in relation to the upper 
left corner of the Web server 
control.
Expected input: atalaPoint

SearchPattern getSearchPattern() : string
setSearchPattern(value: string)

Gets or sets a semi-colon 
separated list of file search 
patterns for loading images from 
a directory.

SelectedIndex getSelectedIndex() : int Gets the index of the selected 
thumbnail.  If AllowMultiSelect is 
true, it has the index of the most 
recently selected thumb.

SelectedIndexes getSelectedIndexes(): Array Gets an array of integers 
which are the indexes selected 
in the thumbnail control.  If 
AllowMultiSelect is false, this 
array will have an length of 1, 
and contain the same index as 
SeletedIndex.  If AllowMultiSelect 
is true, it will have a list of all of the 
selected thumbs in the order they 
were selected.

N/A getThumbCaption(value: int) : 
string

Gets the caption for the thumbnail 
at the specified index.

ThumbCaptionFormat getThumbCaptionFormat() : string Gets the caption format specified 
on the server side.

N/A getThumbOrder() : Array Gets an array of integers which 
correspond to the thumbnails 
in the thumbnail control. As 
DragDrop events occur, this array 
will reorder itself to correspond to 
the positions of the thumbnails in 
the control.

 This function is only 
meant to be called when 
AutoDragDrop is enabled. 
If the value is set to false, 
this function will throw an 
exception.

147



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax : Return value Description

ThumbPadding getThumbPadding() : int Gets the number of pixels around 
each thumbnail.

ThumbSize getThumbSize() : atalaSize Gets the size of each thumbnail.

ThumbSpacing getThumbSpacing() : int Gets the number of pixels between 
thumbs.

TitleBar getTitleBar() : string
setTitleBar(value: string)

Gets or sets a string used for a 
creating a title bar above the Web 
server control.  HTML syntax is 
allowed.

 This property is tied to a 
hidden input tag, so changing 
this value to HTML in JavaScript 
could cause problems if the 
page needs to PostBack.

Url getUrl() : string Gets the URL representing the 
current image.

ViewerID getViewerID() : string Gets the ID of the 
WebImageViewer associated with 
this control.

ViewPortSize getViewPortSize() : atalaSize Gets the size of the viewable area, 
excluding scroll bars.

Visibility getVisibility() : string
setVisibility(value: string)

Gets or sets a value that indicates 
whether the Web server control is 
hidden or visible on the page.
Expected input: string that is either 
'hidden', 'visible', or 'inherit'.

 'inherit' will return 
VisibilityStyle.Visible on the 
server side.

Width getWidth() : int
setWidth(value: int)

Gets or sets the CSS width style 
property of the server control.
Expected input: string representing 
style width: '200px'

Zoom getZoom() : float
setZoom(value : float)

Gets or sets the zoom level of the 
thumbnails in relation to their 
original size, for this Web server 
control.

148



Atalasoft DotImage Developer's Guide

Events

Server Name JavaScript Syntax Description

N/A BackColorChanged = function() Fired when the BackColor property 
changes.

N/A BorderColorChanged = function() Fired when the BorderColor 
property changes.

N/A BorderStyleChanged = function() Fired when the BorderStyle 
property changes.

N/A BorderWidthChanged = function() Fired when the BorderWidth 
property changes.

N/A CaptionChanged = function() Fired when the Centered property 
changes.

CenteredChanged CenteredChanged = function() Fired when the Caption property 
changes.

N/A CountChanged = function() Fired when the number 
of thumbnails changes.

N/A FontChanged = function() Fired when the Font property 
changes.

N/A ForeColorChanged = function() Fired when the ForeColor property 
changes.

N/A MouseToolChanged = function() Fired when the MouseTool 
property has changed.

N/A ScrollPositionChanged = function() Fired when the scroll position 
changes.

N/A SelectedIndexChanged = function() Fired when the selected thumbnail 
changes.

N/A SizeChanged = function() Fired when the size changes.

N/A TitleBarChanged = function() Fired when the title bar changes.

N/A UrlChanged = function() Fired when the URL changes.

N/A VisibilityChanged = function() Fired when the Visibility property 
changes.

N/A ZoomChanged = function() Fired when the Zoom property has 
changed.

Thumbnail Events
 These events pertain to all thumbnails, and attempt to pass 
a ThumbnailEvent or ThumbnailDropEvent object to the function. 

N/A ThumbnailClicked = function(e) Fires when the thumb is clicked. 
Passes a ThumbnailEvent object.

N/A ThumbnailDoubleClicked = 
function(e)

Fires when the thumb is double 
clicked. Passes a ThumbnailEvent 
object.

149



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax Description

N/A ThumbnailMouseDown = 
function(e)

Fires when a mouse button is 
pressed down on the thumb. 
Passes a ThumbnailEvent object.

N/A ThumbnailMouseDownLeft = 
function(e)

Fires when the when the left 
mouse button is pressed 
down on the thumb. Passes a 
ThumbnailEvent object.

N/A ThumbnailMouseDownRight = 
function(e)

Fires when the when the right 
mouse button is pressed 
down on the thumb. Passes a 
ThumbnailEvent object.

N/A ThumbnailMouseMove = 
function(e)

Fires when the mouse cursor 
moves over the thumb. Passes a 
ThumbnailEvent object.

N/A ThumbnailMouseOut = function(e) Fires when the mouse cursor 
leaves the thumb bounding box. 
Passes a ThumbnailEvent object.

N/A ThumbnailMouseOver = function(e) Fires when the mouse cursor 
enters the thumb bounding box. 
Passes a ThumbnailEvent object.

N/A ThumbnailMouseUp = function(e) Fires when a mouse button is 
released on the thumb. Passes a 
ThumbnailEvent object.

N/A ThumbnailRightClicked = 
function(e)

Fires when the thumb is right 
clicked. Passes a ThumbnailEvent 
object.

N/A ThumbnailLoaded = function(e) Fires when the image part of the 
thumbnail has finished loading. 
Passes a ThumbnailEvent object.

N/A ThumbnailDrop = function(e) Fires when a thumbnail has 
been dragged and dropped 
to a new location. Passes a 
ThumbnailDropEvent object.

N/A ThumbnailDropServer = function(e) Fires after the server has has been 
notified of a drag-drop operation. 
Passes a ThumbnailDropEvent 
object.

Key Events
 The control must have focus for these events to fire.  You can 
programmatically set focus to this control by calling Focus(). These 
events also attempt to pass a ThumbnailKeyEvent object to the 
function.

150



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax Description

N/A KeyDown = function(e) Fires when a key is pressed 
down, if the control has focus. 
Passes a ThumbnailKeyEvent 
object.

N/A KeyUp = function(e) Fires when a key is released, if 
the control has focus. Passes a 
ThumbnailKeyEvent object.

N/A KeyPress = function(e) Fires when a key is pressed 
down, and then released, if 
the control has focus. Passes a 
ThumbnailKeyEvent object.

Methods

Server Name JavaScript Syntax Description

N/A Focus() Puts focus on the 
WebThumbnailViewer, used to 
enable key events.

N/A Invalidate() Forces the WebThumbnailViewer to 
re-position child objects.

OpenUrl OpenUrl(url: string)
OpenUrl(dir: string, searchPattern: 
string)

Opens a URL.  If the URL is an 
image, searchPattern should not 
be passed.  If the URL is a directory, 
pass a searchPattern to use to 
match files (Use "*.*" to match all 
files).
searchPattern expected input: 
string with semi-colon delimited 
search patterns (ex: "*.*", 
"*.tif;*.jpg". "*.gif")

N/A PauseRefresh() Pauses UI updates for this 
control until ResumeRefresh is 
called.  Pauses and Refreshes are 
nestable.  The update happens 
when an equal number of 
ResumeRefresh and PauseRefresh 
calls are made.

N/A ResumeRefresh() Resumes paused UI updates for 
this control.  Pauses and Refreshes 
are nestable.  The update happens 
when an equal number of 
ResumeRefresh and PauseRefresh 
calls are made.

SelectedIndex SelectThumb(index: int) Selects the thumbnail at the 
corresponding index (starting at 0)

N/A Update() Forces the control to update 
thumbnails.

151



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax Description

N/A UpdateThumb(index: int) Forces the control to update the 
thumbnail at the corresponding 
index (starting at 0)

ThumbnailEvent

This object is based on the browser's mouse event object, where applicable. The following 
properties are in addition to the properties that are specified by each individual browser.

Usage
JavaScript
/* You will need a WebThumbnailViewer and a reference to ClientTools.js before this 
 snippet. 
 * This reference is automatically added to the page inline with the WebControls, 
 * so placing this snippet below the WebThumbnailViewer control will be sufficient. 
 */
Atalasoft.Utils.InitClientScript(BindThumbnailMouseEvents);
function BindThumbnailMouseEvents(){ 
   WebThumbnailViewer1.ThumbnailDoubleClicked = ThumbnailMouseEventExample; 
   WebThumbnailViewer1.ThumbnailRightClicked = ThumbnailMouseEventExample;
}

// This simple example alerts the user when a thumbnail is double or right clicked.
function ThumbnailMouseEventExample(e){ 
   alert(e.name + ' event fired on thumbnail at index ' + e.index);
}

Properties

Server Name JavaScript Syntax : Return value Description

N/A index : int The zero based index of the 
thumbnail that this event is firing 
on.

N/A name : string The name of the event that is being 
fired.

N/A type : string The browser's event type that 
this event is based on, if any.  Ex: 
'mouseover'.

ThumbnailDropEvent

This object is based on the browser's mouse event object. The following properties are in addition 
to the properties that are specified by each individual browser.

Usage
JavaScript
/* You will need a WebThumbnailViewer and a reference to ClientTools.js before this 
 snippet. 
 * This reference is automatically added to the page inline with the WebControls, 
 * so placing this snippet below the WebThumbnailViewer control will be sufficient. 
 */

152



Atalasoft DotImage Developer's Guide

Atalasoft.Utils.InitClientScript(BindDropEvent);
function BindDropEvent(){ 
   WebThumbnailViewer1.ThumbnailDrop = ThumbnailDropped;
}

// This simple example alerts the user when a thumbnail is dragged and dropped.
function ThumbnailDropped(e){ 
   alert('Thumbnail dragged from index: ' + e.dragIndex + ' was dropped to index: ' + 
 e.dropIndex);
}

Server Name JavaScript Syntax : Return value Description

N/A dragIndex : int The zero based index of the 
thumbnail, in relation to where it 
was dragged from.

N/A dropIndex : int The zero based index of the 
thumbnail, in relation to where it 
was dropped.

N/A name : string The name of the event that is being 
fired.

ThumbnailKeyEvent

This object is based on the browser's key event object. The following properties are in addition to 
the properties that are specified by each individual browser (unless otherwise specified).

Usage
JavaScript
/* You will need a WebThumbnailViewer and a reference to ClientTools.js before this 
 snippet. 
 * This reference is automatically added to the page inline with the WebControls, 
 * so placing this snippet below the WebThumbnailViewer control will be sufficient. 
 */
Atalasoft.Utils.InitClientScript(BindThumbnailKeyEvents);
function BindThumbnailKeyEvents(){ 
   WebThumbnailViewer1.KeyDown = ThumbnailKeyEventExample; 
   WebThumbnailViewer1.Focus();
}

// Binds the up and down arrow keys to select previous and next thumbnails
// NOTE: the keyCodes used in this example were tested in Internet Explorer, FireFox,
//       Safari, and Chrome. The keyCodes for other browsers may be different.
function ThumbnailKeyEventExample(e){ 
   // Get the keyCode for the key that was pressed 
 var myKeyCode = e.keyCode; 
   var n = WebThumbnailViewer1.getSelectedIndex(); 
   var c = WebThumbnailViewer1.getCount(); 

   if (myKeyCode == 38){ 
      // up arrow was pressed, subtract one from SelectedIndex, and check lower bounds 
      n = (n - 1 >= 0) ? n - 1 : 0; 

      // select the previous thumbnail 
      WebThumbnailViewer1.SelectThumb(n); 

      // stop the default KeyUp action of scrolling, by returning false 

153



Atalasoft DotImage Developer's Guide

 return false; 
   } 
   else if (myKeyCode == 40){ 
      // down arrow was pressed, add one to SelectedIndex, and check upper bounds 
      n = (n + 1 < c) ? n + 1 : c - 1; 

      // select the next thumbnail 
      WebThumbnailViewer1.SelectThumb(n); 

      // stop the default KeyUp action of scrolling, by returning false 
 return false; 
   }
}

Properties

Server Name JavaScript Syntax : Return value Description

N/A altKey : bool Returns true if the alt key is 
pressed in combination with this 
key event, false otherwise.

N/A ctrlKey : bool Returns true if the ctrl key is 
pressed in combination with this 
key event, false otherwise.

N/A keyCode : int The browser's specific key 
code for keyup or keydown 
typed events, returns ASCII code 
on keypress typed events.

 This property is populated 
by the browser, and may not 
be the same value across all 
browsers.

N/A shiftKey : bool Returns true if the shift key is 
pressed in combination with this 
key event, false otherwise.

N/A name : string The name of the event that is being 
fired.

N/A type : string The browser's key event type that 
this event is based on.  Ex: 'keyup'.

WebAnnotationViewer
atalaWebAnnotationViewer

Although this function is public, it is not intended for users to create WebAnnotationViewers on the 
client side directly. The server side generated HTML is needed for this function to initialize.

154



Atalasoft DotImage Developer's Guide

Properties

Server Name JavaScript Syntax : Return value Description

Annotations[index] getAnnotation(index : int): 
atalaAnnotation
getAnnotation(layerindex : int, 
index : int) : atalaAnnotation

Gets the atalaAnnotation object at 
the given layer and item indexes, 
respectively.

Annotations getAnnotations() : Array Returns an array of 
atalaAnnotation objects that are on 
every layer in this control.

N/A getAnnotationDataUrl() : string Returns the url used to store the 
cached data file.

AuthorMode getAuthorMode() : int Gets a value that indicates how 
many annotations can be created 
with the mouse.
Returns an int: 0:Unlimited 1:Single

AutoLinkThumbnailViewer getAutoLinkThumbnailViewer() : 
bool

Gets a value that indicates 
whether this control should 
automatically link events with 
the WebThumbnailViewer that is 
associated with this control

CurrentLayer getCurrentLayer() : atalaLayer Gets or sets the current active layer 
in the control. This is primarily 
used to indicate which layer mouse 
events are handled on.

CurrentUserName setCurrentLayer(value: atalaLayer)
setCurrentLayer(value: int)
getCurrentUserName() : string

Returns a string that represents 
the current user name associated 
with this session.

 This is not automatically 
populated, and as such, the 
CurrentUserName property 
must be set on the server side.

InteractMode getInteractMode(): int
setInteractMode(value : int)

Expected input: int from 0-2, 
0:None 1:View 2:Edit

Annotations.Layers getLayers() : Array Returns an array of atalaLayer 
objects contained in this control.

N/A getSelectedAnnotations() : Array Returns an array of 
atalaAnnotation objects that have 
the Selected property set to true.

Properties inherited from atalaWebImageViewer

Server Name JavaScript Syntax : Return value Description

ClientID ID() : string Gets the server control identifier 
generated by ASP.NET.

155



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax : Return value Description

N/A Form() : object Gets the form object that the Web 
server control is on.

AntialiasDisplay getAntialiasDisplay() : int
setAntialiasDisplay(value : int)

Gets or sets the quality of the 
scaled image.
Expected input: 
AntialiasDisplayMode or int 
from 0-3, 0:None 1:ScaleToGray 
2:ReductionOnly 3:Full

AutoZoom getAutoZoom() : int
setAutoZoom(value : int)

Gets or sets a value indicating how 
the image should be zoomed as 
the control is resized or the image 
size changes.  This will override 
setZoom.  For a one time zoom, 
see setZoomMode.
Expected input: AutoZoomMode 
or int from 0-5, 0:None 1:BestFit 
2:BestFitShrinkOnly 3:FitToWidth 
4:FitToHeight 5:FitToImage

BackColor getBackColor() : string
setBackColor(value : string)

Gets or sets the background color 
of the Web server control.
Expected input: string representing 
a hex value or exact color name: 
'#ACFF00'

BorderColor getBorderColor() : string
setBorderColor(value : string)

Gets or sets the border color of the 
Web server control.
Expected input: string representing 
a hex value or exact color name: 
'#ACFF00'

BorderStyle getBorderStyle() : string
setBorderStyle(value : string)

Gets or sets the border style used 
for this Web server control.
Expected input: string representing 
Style: '1px solid #FF9900'

BorderWidth getBorderWidth() : int
setBorderWidth(value : int)

Gets or sets the border width of 
the Web server control in pixels.

BrowserFormat getBrowserFormat() : int Gets the format of the images 
created for browser output.
Returns an int: 0:Jpeg 1:Png 2:Gif 
3:Auto

CachePath getCachePath() : string Gets the file path used for the 
file cache as specified in the
Web.config file.

156



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax : Return value Description

Caption getCaption() : string
setCaption(value : string)

Gets or sets a string used for 
creating a caption under the Web 
server control.  HTML syntax is 
allowed.

 This property is tied to a 
hidden input tag, so changing 
this value to HTML in JavaScript 
could cause problems if the 
page needs to PostBack.

Centered getCentered() : bool
setCentered(value : bool)

Gets or sets a value indicating if 
the image is centered when the 
image is smaller than the Web 
server control.

N/A getDisplayImageUrl() : string Gets a url that will return the 
current viewable portion of the 
image.  Often used for printing the 
current area of the image.

Font getFont() : string
setFont(value : string)

Gets or sets the font name 
associated with the Web server 
control.
Expected input: string representing 
font name: 'Verdana'

ForeColor getForeColor() : string
setForeColor(value : string)

Gets or sets the foreground color 
(typically the color of the text) of 
the Web server control.
Expected input: string representing 
a hex value or exact color name: 
'#ACFF00'

N/A getFrameIndex() : int Gets the index value used to open 
the current image.

 If the image has been 
modified with a server side 
ApplyCommand, or has been 
opened from a method other 
than OpenUrl or a linked 
WebThumbnailViewer, this will 
always return 0.

Height getHeight() : string
setHeight(value : string)

Gets or sets the CSS height style 
property of the server control.
Expected input: string representing 
style height: '320px'

ImageDisplayOrder getImageDisplayOrder() : int Gets the order that tiles are loaded.
Returns an int: 0:Sequential 
1:VisibleFirst 2:OnDemand

157



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax : Return value Description

Image.Size getImageSize() : atalaSize Gets the size, in pixels, of the 
current image.

N/A getImageUrl() : string Gets the currently loaded image 
url.

MouseTool getMouseToolLeft() : int
getMouseToolRight() : int
setMouseTool(left: int, right: int)

Gets or sets the behavior of the 
mouse when interacting with the 
viewable area.
Expected input: MouseToolType or 
int from 0-7, 0:None 1:Center 
2:Selection 3:ZoomIn 4:ZoomOut 
5:ZoomArea 6:Pan 7:PassThrough

MouseTool.Cursor getMouseToolCursor() : int
setMouseToolCursor(value : int)

Gets or sets the cursor used with 
the mouse tool.
Expected input: MouseToolCursor 
or int from 0-8, 0:Auto 1:Arrow 
2:Crosshair 3:Grab 4:Hand 5:Move 
6:ZoomIn 7:ZoomOut 8:Custom

 Currently, Grab is a CSS 
Extension supported by 
Mozilla based browsers only.

MouseTool.CustomCursor getMouseToolCustomCursor() : 
string
setMouseToolCustomCursor(value : 
string)

Gets or sets a value that represents 
the custom CSS style used for the 
MouseTool.
Expected input: string representing 
Style: 'wait' or 'url(MyCursor.cur)'

 Url based CSS cursor styles 
may not work in all browsers.

PathToResources getPathToResources() : string Gets the virtual path to where the 
image, script, and cursor files are 
located. 

N/A getReturnValue() : var Gets the return value populated by 
the last successful RemoteInvoke.

ImagePosition getScrollPosition() : atalaPoint
setScrollPosition(value : atalaPoint)

Gets or sets the upper left image 
position in relation to the upper 
left corner of the Web server 
control. Negative values are 
expected.
Expected input: atalaPoint

ScrollBarVisibility getScrollBarVisibility() : int Gets the visibility of the scrollbars.
Returns an int: 0:Dynamic 1:None 
2:Always

158



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax : Return value Description

Selection getSelection() : Selection Gets the Selection object of this 
Web server control.

TileSize getTileSize() : atalaSize Gets the height and width of the 
tiles in pixels.

TitleBar getTitleBar() : string
setTitleBar(value : string)

Gets or sets a string used for a 
creating a title bar above the Web 
server control.  HTML syntax is 
allowed.

 This property is tied to a 
hidden input tag, so changing 
this value to HTML in JavaScript 
could cause problems if the 
page needs to PostBack.

ViewPortSize getViewPortSize() : atalaSize Gets the size of the viewable area, 
excluding scroll bars.

Visibility getVisibility() : string
setVisibility(value : string)

Gets or sets a value that indicates 
whether the Web server control is 
hidden or visible on the page.
Expected input: string that is either 
'hidden', 'visible', or 'inherit'.

 'inherit' will return 
VisibilityStyle.Visible on the 
server side.

Width getWidth() : string
setWidth(value : string)

Gets or sets the CSS width style 
property of the server control.
Expected input: string representing 
style width: '200px'

Zoom getZoom() : float
setZoom(value : float)

Gets or sets the zoom level of the 
image in this Web server control.

ZoomInOutPercentage getViewPortSize() : atalaSize
getZoomInOutPercentage() : int
setZoomInOutPercentage(value : 
int)

Gets or sets the percentage used 
to increase or decrease the zoom 
level when the zoom MouseTools 
are used.

Events

Server Name JavaScript Syntax Description

Annotation Events
 These events only pertain to the underlying atalaAnnotation 
object.

159



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax Description

N/A AnnotationChanged = function(e) Fires when an atalaAnnotation 
has changed. Passes 
an AnnotationEvent object.

N/A AnnotationChanging = function(e) Fires while an atalaAnnotation 
is changing. Passes 
an AnnotationEvent object.

N/A AnnotationClicked = function(e) Fires when an atalaAnnotation is 
clicked with the left mouse button. 
Passes an AnnotationEvent object.

N/A AnnotationCreated = function(e) Fires when an atalaAnnotation is 
created with the mouse. Passes 
an AnnotationEvent object.

N/A AnnotationDoubleClicked = 
function(e)

Fires when an atalaAnnotation is 
double-clicked with the left mouse 
button. Passes an AnnotationEvent 
object.

N/A AnnotationMouseDown = 
function(e)

Fires when a mouse button 
is pressed down on an 
atalaAnnotation. Passes 
an AnnotationEvent object.

N/A AnnotationMouseDownLeft = 
function(e)

Fires when the left mouse 
button is pressed down on 
an atalaAnnotation. Passes 
an AnnotationEvent object.

N/A AnnotationMouseDownRight = 
function(e)

Fires when the right mouse 
button is pressed down on 
an atalaAnnotation. Passes 
an AnnotationEvent object.

N/A AnnotationMouseMove = 
function(e)

Fires when the mouse cursor 
moves over an atalaAnnotation. 
Passes an AnnotationEvent object.

N/A AnnotationMouseOut = function(e) Fires when the mouse cursor 
leaves an atalaAnnotation's area. 
Passes an AnnotationEvent object.

N/A AnnotationMouseOver = 
function(e)

Fires when the mouse cursor 
enters an atalaAnnotation's area. 
Passes an AnnotationEvent object.

N/A AnnotationMouseUp = function(e) Fires when a mouse button is 
released on an atalaAnnotation. 
Passes an AnnotationEvent object.

N/A AnnotationRightClicked = 
function(e)

Fires when an atalaAnnotation 
is right clicked. Passes 
an AnnotationEvent object.

N/A AnnotationsChanged = function(e) Fires when the z-order of 
atalaAnnotations has changed. 
Passes an AnnotationEvent object.

160



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax Description

Layer Events
 These events only pertain to the underlying atalaLayer objects.

N/A CurrentLayerChanged = function(e) Fires when the current atalaLayer 
object has been changed to 
a different atalaLayer. Passes 
an AnnotationEvent object.

N/A LayerChanged = function(e) Fires when an atalaLayer 
has changed. Passes 
an AnnotationEvent object.

N/A LayersChanged = function (e) Fires when the z-order of 
atalaLayers has changed. Passes 
an AnnotationEvent object.

Events inherited from atalaWebImageViewer

Server Name JavaScript Syntax Description

N/A AntialiasDisplayChanged = 
function()

Fires when the AntialiasDisplay 
property has changed.

N/A AutoZoomChanged = function() Fires when the AutoZoom property 
has changed.

N/A BackColorChanged  = function() Fires when the BackColor property 
has changed.

N/A BorderColorChanged = function() Fires when the BorderColor 
property has changed.

N/A BorderStyleChanged  = function() Fires when the BorderStyle 
property has changed.

N/A BorderWidthChanged = function() Fires when the BorderWidth 
property has changed.

N/A CaptionChanged = function() Fires when the Caption property 
has changed.

CenteredChanged CenteredChanged = function() Fires when the Centered property 
has changed.

N/A FontChanged = function() Fires when the Font property has 
changed.

N/A ForeColorChanged = function() Fires when the ForeColor property 
has changed.

ImageChanged ImageChanged = function() Fires when the Image has changed.

N/A ImageSizeChanged = function() Fires when the Image changes size.

N/A MouseToolChanged  = function() Fires when the MouseTool property 
has changed.

RemoteInvoked RemoteInvoked = function() Fires when the RemoteInvoke 
function is called.

161



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax Description

ImagePositionChanged ScrollPositionChanged = function() Fires when the ScrollPosition has 
changed

SelectionChanged SelectionChanged = function() Fires when the Selection has 
changed.

N/A SizeChanged = function() Fires when the Size property has 
changed.

N/A TitleBarChanged = function() Fires when the TitleBar property 
has changed.

N/A VisibilityChanged = function() Fires when the Visibility property 
has changed.

N/A ZoomChanged = function() Fires when the Zoom property has 
changed.

N/A ZoomInOutPercentageChanged = 
function()

Fires when the 
ZoomInOutPercentage property 
has changed.

Mouse Events
 All of these events pertain to the underlying image only, and 
attempt to pass an ImageMouseEvent object to the function. 

N/A Clicked = function(e) Fires when the image is clicked. 
Passes an ImageMouseEvent 
object.

N/A DoubleClicked = function(e) Fires when the image is 
double clicked. Passes 
an ImageMouseEvent object.

N/A MouseDown = function(e) Fires when a mouse button is 
pressed down on the image. 
Passes an ImageMouseEvent 
object.

N/A MouseDownLeft = function(e) Fires when the when the left 
mouse button is pressed down. 
Passes an ImageMouseEvent 
object.

N/A MouseDownRight = function(e) Fires when the when the right 
mouse button is pressed down. 
Passes an ImageMouseEvent 
object.

N/A MouseMove = function(e) Fires when the mouse cursor 
moves over the image. Passes 
an ImageMouseEvent object.

N/A MouseOut = function(e) Fires when the mouse cursor 
leaves the image area. Passes 
an ImageMouseEvent object.

162



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax Description

N/A MouseOver = function(e) Fires when the mouse cursor 
enters the image area. Passes 
an ImageMouseEvent object.

N/A MouseUp = function(e) Fires when a mouse button is 
released on the image. Passes 
an ImageMouseEvent object.

N/A RightClicked = function(e) Fires when the image is 
right clicked. Passes 
an ImageMouseEvent object.

Key Events
 The control must have focus for these events to fire.  You can 
programmatically set focus to this control by calling Focus(). These 
events also attempt to pass a ImageKeyEvent object to the function.

N/A KeyDown = function(e) Fires when a key is pressed 
down, if the control has focus. 
Passes an ImageKeyEvent object.

N/A KeyUp = function(e) Fires when a key is released, if 
the control has focus. Passes an 
ImageKeyEvent object.

N/A KeyPress = function(e) Fires when a key is pressed 
down, and then released, if the 
control has focus. Passes an 
ImageKeyEvent object.

Methods

Server Name JavaScript Syntax : Return value Description

Annotations.Layers.Add AddLayer(layer: atalaLayer) : bool Adds the given atalaLayer to this 
control. Returns true on success, 
false otherwise.

N/A Clear() Clears all annotations, all layers, 
and the image contained in this 
control.

Annotations.Layers.Clear ClearAnnotations() Clears all annotations and all layers 
contained in this control.

N/A CountAnnotations() : int Returns an int of the total count of 
all annotations on all layers in this 
control.

Annotations.Layers.Count CountLayers() : int Returns an int of the count of all 
layers in this control.

163



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax : Return value Description

N/A CreateAnnotation(type: string) : 
atalaAnnotation
CreateAnnotation(type: string, 
name: string) : atalaAnnotation

Creates and returns an 
atalaAnnotation from the 
object type string specified.  
The string must represent an 
object type that inherits from 
Atalasoft.Annotate.AnnotationData 
on the server side.
Expected input: string representing 
AnnotationData: 'EllipseData' 
or 'RectangleData', string 
representing the name of a 
DefaultAnnotation created on the 
server side.

 The atalaAnnotation 
returned must be added 
to an atalaLayer by using 
InsertAnnotation or it will 
be created by drawing 
it with the mouse (if the 
current AnnotationInteractMode 
allows)

N/A CancelCreateAnnotation() Aborts the creation of an 
annotation without leaving a 
partial annotation on the existing 
page.

N/A CreateLayer() : atalaLayer Creates and returns an atalaLayer 
object.

 The atalaLayer returned 
must be added using 
AddLayer or it (including child 
annotations) will not be visible.

N/A DeleteAnnotation(zindex: int) : bool Deletes the atalaAnnotation 
at the given z-index from the 
CurrentLayer. Returns true on 
success, false otherwise.

N/A DeleteAnnotations(anns: Array) : 
bool

Deletes an Array of 
atalaAnnotations from their parent 
atalaLayers. Returns true on 
success, false otherwise.

N/A DeselectAll() Sets the Selected property of all 
atalaAnnotations on all atalaLayers 
to false, and hides their grips.

164



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax : Return value Description

Annotations.CurrentLayer.Insert InsertAnnotation(ann: 
atalaAnnotation, zindex: int) : bool

Inserts the given atalaAnnotation 
into the CurrentLayer, at the given 
z-index, and automatically removes 
it from it's previous parent object 
(if any). Returns true on success, 
false otherwise.

LoadAnnotationDataUrl LoadAnnotations(url: string) Loads annotation data from a URL 
or virtual path.

N/A SelectAll() Sets the Selected property of all 
atalaAnnotations on all atalaLayers 
to true, and shows their grips.

Methods inherited from atalaWebImageViewer

Server Name JavaScript Syntax Description

N/A ClearImage() Clears the image from client side 
only, used to return to a blank 
state.

N/A Focus() Puts focus on the 
WebImageViewer, used to enable 
key events.

N/A Invalidate() Forces the WebImageViewer to re-
position child objects.

OpenUrl OpenUrl(url: string)
OpenUrl(url: string, index: int)

Opens an image into the 
WebImageViewer control from 
a URL or virtual path, and frame 
index.

 This function is 
asynchronous.  If any code 
needs to be executed after this 
call, it should be placed in the 
ImageChanged event handler.

N/A PauseRefresh() Pauses UI updates for this 
control until ResumeRefresh is 
called.  Pauses and Refreshes are 
nestable.  The update happens 
when an equal number of 
ResumeRefresh and PauseRefresh 
calls are made.

Print Print() Prints the current image using 
javascript client code.

Redo Redo() Re-does an undo.

165



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax Description

Invoke RemoteInvoke(mthd : string)
RemoteInvoke(mthd : string, args : 
Array)

Remotely invokes a server 
side method with the array of 
arguments.

 This function is 
asynchronous.  If any code 
needs to be executed after this 
call, it should be placed in the 
RemoteInvoked event handler.

N/A ResumeRefresh() Resumes paused UI updates for 
this control.  Pauses and Refreshes 
are nestable.  The update happens 
when an equal number of 
ResumeRefresh and PauseRefresh 
calls are made.

N/A ScrollBy(dx : int, dy : int) Scrolls the viewer by the given 
values.

N/A ScrollTo(x: int, y: int) Scrolls the viewer to the given 
coordinates.

N/A setZoomMode(value : int) Zoom the image once, according to 
the given AutoZoomMode.
Expected input: AutoZoomMode 
or int from 0-5, 0:None 1:BestFit 
2:BestFitShrinkOnly 3:FitToWidth 
4:FitToHeight 5:FitToImage

Undo Undo() Reverts the image back to the 
previously cached image.

 This function is limited 
to Image changes only.  
The number of available 
undos relies on the server side 
CacheLevels property of the 
control.

Update Update() Forces the current image to be 
cached and updates the viewable 
area.

AnnotationEvent

This object is based on the browser's mouse event object, if it pertains to a mouse event. The 
following properties are in addition to the properties that are specified by each individual browser.

JavaScript
/* You will need a WebAnnotationViewer and a reference to ClientTools.js before this 
 snippet. 

166



Atalasoft DotImage Developer's Guide

 * This reference is automatically added to the page inline with the WebControls, 
 * so placing this snippet below the WebAnnotationViewer control will be sufficient. 
 */
Atalasoft.Utils.InitClientScript(BindAnnotationEvents);
function BindAnnotationEvents(){ 
   WebAnnotationViewer1.AnnotationDoubleClicked = AnnotationEventExample; 
   WebAnnotationViewer1.AnnotationRightClicked = AnnotationEventExample;
}

// This simple example alerts the user when an annotation is double or right clicked.
function AnnotationEventExample(e){ 
   var pos = Atalasoft.Utils.getMousePosition(e); 
   alert('Event fired on annotation at position: ' + pos.X + 'x' + pos.Y);
}

Properties

Server Name JavaScript Syntax : Return value Description

N/A annotation : atalaAnnotation The atalaAnnotation object that 
this event was fired from, if any.

N/A layer : atalaLayer Returns null if this event was fired 
from a layer.

AtalaLayer

This object represents the client side JavaScript version of an Atalasoft.Annotations.LayerAnnotation 
object.

Properties

Server Name JavaScript Syntax : Return value Description

LayerAnnotation.Items getAnnotations() : Array Returns an array of annotations 
that are contained in this layer.

N/A getLayerIndex() : int Returns an integer that 
corresponds with the array index 
of this layer.

LayerAnnotation.Visible getVisibility() : string
setVisibility(value : string)

Gets or sets a value that indicates 
whether the layer and child 
elements are hidden or visible in 
the control.
Expected input: string that is either 
"hidden" or "visible"

Methods

Server Name JavaScript Syntax : Return value Description

LayerAnnotation.Items.Add Add() : bool Adds the given atalaAnnotation 
to the annotation array at the top 
most z-order. Returns true if the 
add succeeded, false otherwise.

167



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax : Return value Description

N/A Delete() : bool Deletes the atalaAnnotation at the 
given index, and disposes of DOM 
objects. Returns true on success, 
false on failure.

LayerAnnotation.Items.Insert Insert() : bool Inserts the given atalaAnnotation 
into the annotation array at the 
given index. Returns true if the 
insert succeeded, false otherwise.

Events

Server Name JavaScript Syntax Description

N/A Changed = function(e) Fires when the layer has changed.

N/A ItemsChanged = function(e) Fires when child annotations have 
changed z-order.

AtalaAnnotation

This object represents the client side JavaScript version of an Atalasoft.Annotations.AnnotationUI 
object.

Properties

Server Name JavaScript Syntax : Return value Description

AnnotationUI.AspectRatio getAspectRatio() : float
setAspectRatio(value : float)

Gets or sets a value that indicates 
the aspect ratio of this annotation. 
  A value of zero will not maintain 
any aspect ratio.

N/A setEditorHtml(value : string) Sets the innerHTML of the DOM 
object that is used to edit the 
annotation.

N/A getEditorObject() : object Gets the DOM object that is used to 
edit the annotation.

AnnotationUI.Height getHeight() : int
setHeight(value : int)

Gets or sets the height of the 
annotation.

AnnotationUI.Movable getMovable() : bool
setMovable(value : bool)

Gets or sets a value that indicates 
whether the annotation can be 
moved with the mouse.

getParent() : atalaLayer Gets the parent object of this 
annotation.

AnnotationUI.Position getPosition() : atalaPoint
setPosition(value : atalaPoint)

Gets or sets the position of the 
annotation.

getRectangle() : atalaRectangle
setRectangle(value : 
atalaRectangle)

Gets or sets the size and position 
of this annotation.

168



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax : Return value Description

AnnotationUI.Resizable getResizable() : bool
setResizable(value : bool)

Gets or sets a value that indicates 
whether the annotation can be 
resized with the mouse.

getSize() : atalaSize
setSize(value : atalaSize)

Gets or sets the size of this 
annotation.

AnnotationUI.Selected getSelected() : bool
setSelected(value : bool)

Gets or sets a value that indicates 
whether the annotation is selected.

AnnotationUI.Tooltip getToolTip() : string
setToolTip(value : string)

Gets or sets the tooltip that is 
displayed when the mouse is 
moved over this annotation. 

getType() : string Gets the AnnotationData type for 
this annotation.

AnnotationUI.Visible getVisibility() : string
setVisibility(value : string)

Gets or sets a value that indicates 
whether the annotation is hidden 
or visible.
Expected input: string that is either 
"hidden" or "visible"

AnnotationUI.Width getWidth() : int
setWidth(value : int)

Gets or sets the width of the 
annotation.

N/A getZIndex() : int Gets the z-index of this annotation.

Methods

Server Name JavaScript Syntax Description

N/A HideEditor() Hides the editor for this 
annotation, if there is one.

N/A ShowEditor() Shows the editor for this 
annotation, if there is one.

N/A Synchronize() Synchronizes the annotation 
bounds with underlying data.  This 
should only be used if the data 
object is being changed directly.

N/A Update() Synchronizes the client-side 
annotation data with the server-
side annotation data, and requests 
a new image from the server.

N/A Repaint() Sends a request to the server for a 
new annotation image.

Events

Server Name JavaScript Syntax Description

N/A Changed = function(e) Fires when the annotation has 
finished being modified.

169



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax Description

N/A Changing = function(e) Fires while the annotation is 
being modified through mouse 
movement.

N/A Clicked = function(e) Fires when the annotation is 
clicked.

N/A DoubleClicked = function(e) Fires when the annotation is 
double clicked.

N/A MouseDown = function(e) Fires when a mouse button is 
pressed down on the annotation.

N/A MouseDownLeft = function(e) Fires when the left mouse button is 
pressed down on the annotation.

N/A MouseDownRight = function(e) Fires when the right mouse button 
is pressed down on the annotation.

N/A MouseMove = function(e) Fires when the mouse cursor 
moves over the annotation.

N/A MouseOut = function(e) Fires when the mouse cursor 
leaves the annotation area.

N/A MouseOver = function(e) Fires when the mouse cursor 
enters the annotation area.

N/A MouseUp = function(e) Fires when a mouse button is 
released on the annotation.

N/A RightClicked = function(e) Fires when the annotation is right 
clicked.

N/A Selected = function(e) Fires when the annotation is 
selected.

ClientTools
ClientTools objects

The objects shown below are used to represent the System.Drawing structs that are used within the 
server side portion of the DotImage WebControls.

Usage
JavaScript
/* You will need a reference to ClientTools.js before this snippet.
* This reference is automatically added to the page, inline with the DotImage 
 WebControls,
* so placing this snippet below one of these controls will be sufficient. 
 /
function ClientToolsObjectsExample(){ 
   // Create a new atalaPoint 
   var myPoint = new atalaPoint(20, 100); 
   // Change the point's values 
   myPoint.X = 40; 
   myPoint.Y = 80; 
   // Create a new atalaSize 

170



Atalasoft DotImage Developer's Guide

   var mySize = new atalaSize(320, 200); 
   // Change the size's values 
   mySize.Width = 40; 
   mySize.Height = 80; 
   // Create a new atalaRectangle 
   var myRect = new atalaRectangle(50, 50, 320, 200); 
   // Change the rectangle's values 
   myRect.X = 100; 
   myRect.Y = 100; 
   myRect.Width = 800; 
   myRect.Height = 600;
}

atalaPoint
This object mimics the System.Drawing.Point in syntax, for use on the client side.

Constructor

Server Name JavaScript Syntax Description

N/A atalaPoint(x : int, y : int) Creates a new atalaPoint 
given the coordinates.

Properties

Server Name JavaScript Syntax Description

N/A X = int Gets or sets the X coordinate 
for this atalaPoint.

N/A Y = int Gets or sets the Y coordinate 
for this atalaPoint.

atalaSize
This object mimics the System.Drawing.Point in syntax, for use on the client side.

Constructor

Server Name JavaScript Syntax Description

N/A atalaSize(width: int, height : int) Creates a new atalaSize given 
the height and width.

Properties

Server Name JavaScript Syntax Description

N/A Height = int Gets or sets the height of this atalaSize.

N/A Width = int Gets or sets the width of this atalaSize.

atalaRectangle
This object mimics the System.Drawing.Point in syntax, for use on the client side.

171



Atalasoft DotImage Developer's Guide

Constructor

Server Name JavaScript Syntax Description

N/A atalaRectangle(x : int, y : int, width : 
int, height : int)

Creates a new atalaRectangle given the 
height, width, and coordinates.

Properties

Server Name JavaScript Syntax Description

N/A X = int Gets or sets the X coordinate for this 
atalaRectangle.

N/A Y = int Gets or sets the Y coordinate for this 
atalaRectangle.

N/A Height = int Gets or sets the height of this 
atalaRectangle.

N/A Width = int Gets or sets the width of this 
atalaRectangle.

ClientTools methods

Usage
JavaScript
/* You will need a reference to ClientTools.js before this snippet.
* This reference is automatically added to the page inline with the WebControls, 
 * so placing this snippet below one of these controls will be sufficient. 
 * This example also requires a WebImageViewer to demonstrate the usage of 
 atalaEventAdd. 
 */ // execute this function on page load
atalaInitClientScript(ClientToolsMethodsExample);

function ClientToolsMethodsExample(){ 
   // Add some event handlers to ZoomChanged, although it's possible to call 
 myOtherZoomEvent 
 // from myZoomEvent to achieve the same outcome, this demonstrates how multiple 
 functions 
 // can be added to any event on WebControls. 
 // Current context is usually the keyword 'this' 
   Atalasoft.Event.Attach(this, WebImageViewer1, 'ZoomChanged', myZoomEvent); 
   Atalasoft.Event.Attach(this, WebImageViewer1, 'ZoomChanged', myOtherZoomEvent); 
   // Run offsets example 
   ClientToolsOffsetExample(); 
   // Bind document's mouse click event to get mouse position on click 
   document.onclick = myClickEvent;
}
function myZoomEvent(){ 
   // do something zoom related 
   alert('myZoomEvent: Zoom changed to ' + WebImageViewer1.getZoom());
}
function myOtherZoomEvent(){ 
   // do another thing zoom related 
   alert('myOtherZoomEvent: Zoom changed to ' + WebImageViewer1.getZoom());
}
function myClickEvent(e){ 
   // Most browsers pass in an event object (in this case 'e') 
   // If the given object is null, then it's probably using 'event' 

172



Atalasoft DotImage Developer's Guide

   if (!e){ 
      e = event; 
   } 
   // Gets the page based mouse position, taking scroll position into account 
   var mp = Atalasoft.Utils.getMousePosition(e); 
   alert('Mouse click detected at x:' + mp.X + ' y:' + mp.Y);
}
function ClientToolsOffsetExample(){ 
   // Even though an object of the name WebImageViewer1 already exists, it is not a DOM 
   // element, it is an object of type atalaWebImageViewer. To get the actual container 
   // DOM object, we use getElementById. 
   var viewerDomObject = document.getElementById('WebImageViewer1'); 
   // Get the offset from the left side of the page. 
   var x = Atalasoft.DOM.getOffsetLeft(viewerDomObject); 
   // Get the offset from the top of the page. 
   var y = Atalasoft.DOM.getOffsetTop(viewerDomObject); 
   // Alert the current position of the WebImageViewer1 DOM element 
   alert('The WebImageViewer1 DOM element is ' + x + ' pixels from the left, and ' + y 
 + ' pixels from the top.');
}

Server Name JavaScript Syntax : Return value Description

N/A Atalasoft.Event.Attach(context : object, 
target : object, name : string, event : 
function)
atalaEventAdd(context : object, target : 
object, name : string, event : function)

Appends a given function to be 
executed on the target object when 
the event name fires within the 
current context.
Please see above example for 
syntax.

N/A Atalasoft.Utils.getMousePosition(event : 
object) : atalaPoint
atalaGetMousePosition(event : object) : 
atalaPoint

Attempts to get the mouse position 
from the event object passed 
in. Actual mouse position is added 
to the current scroll position 
(if any), to get true page based 
position.  CSS1 comparability mode 
is also supported.
Expected input: browser created 
mouse event object.

 This method does not 
sanity check the input object 
for performance reasons.

N/A Atalasoft.DOM.getOffsetLeft(domElement : 
object) : int
atalaGetOffsetLeft(domElement : object) : int

Gets the number of pixels on the 
X-axis from the given object to the 
top of the DOM tree recursively.

N/A Atalasoft.DOM.getOffsetTop(domElement : 
object) : int
atalaGetOffsetTop(domElement : object) : int

Gets the number of pixels on the 
Y-axis from the given object to the 
top of the DOM tree recursively.

N/A Atalasoft.Utils.InitClientScript(function : 
string)
atalaInitClientScript(function : string)

Adds a function or script to be 
executed when the page has 
finished loading.
Expected input: function or string 
of JavaScript.

173



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax : Return value Description

N/A Atalasoft.Utils.UrlDecode(value : string) : 
string
atalaUrlDecode(value : string) : string

Returns a decoded string that was 
url encoded with atalaUrlEncode.

N/A Atalasoft.Utils.UrlEncode(value : string) : 
string
atalaUrlEncode(value : string) : string

Returns an encoded string, so that 
it can be used in a url.

Enums
Enumeration objects

The objects shown below are used to represent the enumerations that are used within the server 
side portion of the DotImage WebControls. These objects do not need to be instantiated.

Usage
Javascript
/* You will need a reference to Enums.js before this snippet. 
 * This reference is automatically added to the page, inline with the WebControls, 
 * so placing this snippet below one of these controls will be sufficient. 
 */ function EnumsExample(){ 
  // Best fit the image to the size of the WebImageViewer 
  WebImageViewer1.setAutoZoom(AutoZoomMode.BestFit); 

  // Scale 1-bit images to 8-bit grayscale for zoom levels less than 1 
  WebImageViewer1.setAntialiasDisplay(AntialiasDisplayMode.ScaleToGray); 

  // Sets the mouse tool to zoom in on a left click, and zoom out on a right click 
  WebImageViewer1.setMouseTool(MouseToolType.ZoomIn, MouseToolType.ZoomOut); 

  // Sets the interact mode to modify for annotation editing 
  WebAnnotationViewer1.setInteractMode(AnnotationInteractMode.Modify); 

  // Sets the mouse cursor to a cross hair 
  WebImageViewer1.setMouseToolCursor(MouseToolCursor.Crosshair);
}

AutoZoomMode
This object mimics the Atalasoft.Imaging.WebControls.AutoZoomMode enumeration, for use on the 
client side. Specifies the automatic zoom setting of the image displayed in the control.

Properties

Server Name JavaScript Syntax Value Description

None None 0 Does not change the zoom of the 
image based on image size.

BestFit BestFit 1 Fits the image by sizing the width or 
height to best fit the control.

BestFitShrinkOnly BestFitShrinkOnly 2 Fits the image by sizing the width or 
height to best fit the control.

FitToWidth FitToWidth 3 Fits the image by sizing the width to 
fit the control.

174



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax Value Description

FitToHeight FitToHeight 4 Fits the image by sizing the height to 
fit the control.

FitToImage FitToImage 5 Fits the image by sizing the control to 
the size of the image.

AntialiasDisplayMode
This object mimics the Atalasoft.Imaging.WebControls.AntialiasDisplayMode enumeration, for use 
on the client side. Specifies the antialias display mode that can be set to the control.

Properties

Server Name JavaScript Syntax Value Description

None None 0 Do not antialias (fastest performance)

ScaleToGray ScaleToGray 1 Only antialias 1-bit document images 
for zoom levels less then 1.

ReductionOnly ReductionOnly 2 Antialias all pixel formats when zoom 
level is less then 1.

Full Full 3 Antialias all images for all zoom levels.

MouseToolType
This object mimics the Atalasoft.Imaging.WebControls.MouseToolType enumeration, for use on the 
client side. Specifies the behavior of the mouse.

Properties

Server Name JavaScript Syntax Value Description

None None 0 Specify no special mouse behavior.

Center Center 1 Clicking the mouse will center the 
area clicked.

Selection Selection 2 Mouse will be set to crosshairs and 
can be used to drag and modify a 
selection rectangle on the image.

ZoomIn ZoomIn 3 Clicking will zoom in.

ZoomOut ZoomOut 4 Clicking will zoom out.

ZoomArea ZoomArea 5 Zoom in on a specified area defined 
by dragging a rectangle onto the 
image.

Pan Pan 6 Clicking and dragging the mouse will 
scroll the image.

PassThrough PassThrough 7 Clicking on the image will postback 
the page, used for custom 
MouseTools.

175



Atalasoft DotImage Developer's Guide

ScrollBarVisibility
This object mimics the Atalasoft.Imaging.WebControls.ScrollBarVisibility enumeration, for use on 
the client side. Specifies the scroll bar visibility.

Properties

Server Name JavaScript Syntax Value Description

Dynamic Dynamic 0 Automatically show or hide the 
horizontal and vertical scrollbars as 
the control or image resizes.

None None 1 Never show scroll bars.

Always Always 2 Always show scroll bars.

AnnotationInteractMode
This object mimics the Atalasoft.Imaging.WebControls.AnnotationInteractMode enumeration, for 
use on the client side. Specifies the annotation viewer interaction mode (with the mouse)

Properties

Server Name JavaScript Syntax Value Description

None None 0 Do not allow interaction with an 
annotation -- pass through to viewer

Modify Modify 1 Annotations can be selected, moved 
and resized using the mouse.

Author Author 2 Annotations can be created, selected, 
moved and resized using the mouse.

Annotation tool
This object mimics the Atalasoft.Imaging.WebControls.AnnotationInteractMode enumeration, for 
use on the client side. Specifies the annotation viewer interaction mode (with the mouse)

Properties

Server Name JavaScript Syntax Value Description

N/A None 0 No annotations are created

N/A Line 1 Line annotations are created by 
pressing the left mouse button down, 
dragging, and releasing the button

N/A Lines 2 Multi-line annotations are created by 
left-clicking the mouse for each point, 
right clicking stops editing

N/A Freehand 3 Freehand annotations are created by 
pressing the left mouse button down, 
dragging, and releasing the button

N/A Polygon 4 Multi-side polygon annotations are 
created by left-clicking the mouse for 
each point, right clicking stops editing

176



Atalasoft DotImage Developer's Guide

Server Name JavaScript Syntax Value Description

N/A Ellipse 5 Ellipse annotations are created by 
pressing the left mouse button down, 
dragging, and releasing the button

N/A Rectangle 6 Rectangle annotations are created by 
pressing the left mouse button down, 
dragging, and releasing the button

MouseToolCursor

Properties

Server Name JavaScript Syntax Value Description

Auto Auto 0 Mouse cursor is automatically 
set based on the MouseTool and 
AnnotationTool

Arrow Arrow 1 Mouse cursor is an arrow

Crosshair Crosshair 2 Mouse cursor is a crosshair

Grab Grab 3 Mouse cursor is a grabbing hand

Hand Hand 4 Mouse cursor is a hand with the index 
finger pointing up

Move Move 5 Mouse cursor is a cross with arrows in 
all four directions

ZoomIn ZoomIn 6 Mouse cursor is a magnifying glass 
with a plus

ZoomOut ZoomOut 7 Mouse cursor is a magnifying glass 
with a minus

Custom Custom 8 Mouse cursor is defined by the 
MouseToolCustomCursor value

Windows form control

Rubberbands and Selection
The Rubberband component in the Atalasoft.Imaging.WinControls namespace can be used to 
select a region of an image. The Rubberband class is an abstract class (Must Inherit in Visual Basic). 
DotImage contains several default implementations of this class.

These Rubberband components are available in the toolbox when you add a reference to the 
DotImage WinControls to your project.

Component Description

LineRubberband Draw lines on an image

RectangleRubberband Draw rectangles and rounded rectangles

177



Atalasoft DotImage Developer's Guide

Component Description

EllipseRubberband Draw and select ellipses

RectangleSelection Select a rectangular area or resize an existing 
selection (animated by default)

Use a Rubberband
Any object that is derived from Rubberband requires that you specify a Viewport as the Parent. 
Because the Rubberband is a component located in the toolbox, you can do this interactively on 
your WinForm by dropping a Rubberband onto a form that contains a Viewport (WorkspaceViewer, 
ImageViewer, or BitmapViewer). Then, choose the the appropriate Viewport as the Parent in the 
property browser.
By default, the Rubberband will not be active. An active Rubberband responds to mouse events 
and can be actively created and resized. An inactive Rubberband will remain displayed if visible, 
but cannot be removed, moved or created interactively. Only one Rubberband per Viewport can 
be active at one time. If two Rubberbands are set in a Viewport, activating one automatically 
deactivates the other.

Viewport Selection
You can set the Selection property of the Viewport control to any Rubberband. In the Form designer, 
you can set this property to any Rubberband that is on the form. When the MouseTool property 
is set to Selection, the selection Rubberband is used. If Selection is set to null (Nothing in Visual 
Basic), a default RectangleSelection is used. The RectangleSelection extends the Rubberband and 
includes cosmetic features such as animation, animation speed, and the ability to resize an existing 
selection.

Obtain a region
While the Rubberband has a Rectangle property that returns the rectangular coordinates of the 
selection, there is also a GetRegion() method that returns the region occupied by the Rubberband. 
This region may not always be rectangular. For example, the EllipseSelection always returns a 
region in the shape of an ellipse. You can then apply this region to any ImageRegionCommand.

Rubberband pen
Set the Pen property of the Rubberband to change color, width, or style.
Set the Inverted property to true to draw an XOR style Rubberband. An XOR Rubberband inverts the 
colors when it draws, creating an always-visible, and very efficient Rubberband.
A solid color Rubberband must invalidate the rectangular region while it is being drawn, which is 
not as efficient as XOR.

Aspect ratio
If the entity you are drawing or selecting needs to maintain a particular aspect ratio (the width / 
height of the image, for example), you can set the AspectRatio property to a value greater than 0. 
This forces the entity to be drawn at the desired aspect ratio closest to the actual mouse position.

Other uses of the Rubberband
You can use the Rubberband for more than just a selection. such as drawing primitives onto an 
image.
You can use the Rubberband to define the size and position of the primitive, and then draw the 
primitive onto the image.

178



Atalasoft DotImage Developer's Guide

 In some cases, the DotImage Annotations SDK might be more appropriate for this task.

Print images
Atalasoft DotImage offers two printing components for advanced image printing.
• ImagePrintDocument

prints a single or a collection of AtalaImage objects. It provides options to center the image or 
resize the image to fit the page, and handles all of the calculations for differences between the 
image and printer resolutions.

• ImageCompositePrintDocument
is designed to print a photo composite of multiple images. It supports common photo layouts 
such as full page prints, 8 x 10 prints, 4 x 6 prints (3 per page), wallets, and contact sheets. Metric 
sizes are also available.

Use ImagePrintDocument
ImagePrintDocument is a component that can be added to the Visual Studio toolbox and dropped 
onto a form. There are two ways to interact with the ImagePrintDocument.

1. Set the Image, or Images property, and those image/images will be printed when calling the 
Print() method.

2. Handle the GetImage event (or override the OnGetImage() method) and set the image in the 
PrintImageEventArgs. This eliminates the requirement for all images to be in memory before 
printing.
The following example demonstrates how to print a single image using the 
ImagePrintDocument by setting the Image Property.

Example
C#
ImagePrintDocument myPrintDocument = new ImagePrintDocument();
myPrintDocument.Image = myImage;
myPrintDocument.Center = true;
myPrintDocument.Print();

Use the PrintDialog component to display a dialog allowing printer properties to be adjusted 
prior to printing. To do so, set the ImagePrintDocument object to the PrintDialog.Document 
property. Show the dialog prior to calling the PrintImageDocument.Print() method. This stores 
any print options set by the user into the ImagePrintDocument object. An example is shown 
below.

Example
C#
PrintDialog myPrintDialog = new PrintDialog();
myPrintDialog.Document = imagePrintDocument1;
if (myPrintDialog.ShowDialog(this) == DialogResult.OK)
{ 
     imagePrintDocument1.Print();
}

179



Atalasoft DotImage Developer's Guide

Print multiple images
To print several images at one time, any of the following options can be chosen:
• Set the Images property to an array of AtalaImage objects.
• Pass an ImageCollection containing the images to the constructor.
• Pass any number of AtataImage objects to the constructor.
• Do not set the Image or Images property. Onstead, handle the GetImage event, setting the 

HasMorePages property of the PrintImageEventArgs to true until all images are printed.

Calling the Print() method invokes the printing process. See the ImagePrintDocument object 
reference for more information and examples.

Use ImageCompositePrintDocument
ImageCompositePrintDocument differs from the ImagePrintDocument in that it is used to print 
image composites, or multiple images that laid out on a single or multiple pages. The Layout 
property controls the type of composite to print. The available sizes are listed in the table that 
follows.

English Sizes Metric Sizes Images Per Page

FullPage FullPage 1

8" x 10" 20cm x 35cm 1

5" x 7" 13cm x 18cm 2

4" x 6" 10cm x 15cm 2

4" x 6" Best Fit 10cm x 15cm Best Fit 3

3.5" x 5" 9cm x 13cm 4

Wallet Wallet 9

Contact Sheet Contact Sheet 35

To use this component, the PrintImage event must be handled, and the Image property of the 
PrintCompositeEventArgs must be set to the AtalaImage to print. To indicate that there are more 
images, set the HasMorePages property to true. To give each image a caption, set the Caption 
property in the PrintImage event.

See the ImageCompositePrintDocument object reference for more information and examples.

Customize printing
The ImagePrintDocument can be extended in order to customize a print job. For example, to add 
a text watermark to every page, handle the AfterPrintPage event, then draw the appropriate text 
string onto the Graphics object. To control the properties of each page on a "page by page" basis, 
handle the PrintPage event and change the properties appropriately (for example, portrait to 
landscape).

180



Atalasoft DotImage Developer's Guide

Use DotImage in Winform applications
This section provide examples of how to use DotImage in WinForms applications developed with 
Microsoft .NET.

Although sample code is provided only for C#, DotImage works with any CLS compliant language.

When using DotImage to display images in a Windows Forms .NET application, %company% 
recommends using the WorkspaceViewer control. The namespace Atalasoft.Imaging.WinControls 
contains the user interface classes and controls that can be used in a WinForm application. For 
displaying a list of thumbnails, see the ThumbnailView or the FolderThumbnailView.

Add WorkspaceViewer control to the toolbox
1. On the Visual Studio .NET menu, select Tools > Customize Toolbox.
2. Make sure the .NET Framework Components tab is selected, and find the 

Atalasoft.Imaging.WinControls namespace.
3. Select the WorkspaceViewer control check box.
4. Click OK.

Control the WorkspaceViewer behavior
After dropping the WorkspaceViewer control onto a form, the behavior of the WorkspaceViewer is 
modified by changing the properties in the development environment (IDE). Many of the properties 
will look familiar as the WorkspaceViewer control inherits from System.Windows.Forms.Control. One 
especially useful property that is inherited from Control is Anchor. The top, right, bottom, and left 
sides of the control can be anchored to the form so that the WorkspaceViewer is resized with the 
form.

The following properties are specific to the imaging aspects of this control and can be modified in 
the IDE:
• Image
• Selection
• AntialiasDisplay
• Centered:Atalasoft.DotImage.WinControls
• Zoom
• AutoUpdate
• AutoZoom
• Asynchronous
• UndoLevels

These properties are documented in the object reference.

Open and save images
The following sample code opens an image and saves it as a JPEG with a quality of 90.

181



Atalasoft DotImage Developer's Guide

C#
using Atalasoft.Imaging.codec;
...
workspaceViewer1.Open("c:\\myimage.tiff");
workspaceViewer1.Save("c:\\myimage.jpg", new JpegEncoder(90)); 

Add image processing
To extend upon the previous example, this sample code blurs the image by passing a 
BlurGuassianCommand into the Workspace.ApplyCommand method.

C#
using Atalasoft.Imaging.codec;
...
workspaceViewer1.Open("c:\\myimage.tiff");
workspaceViewer1.ApplyCommand(new BlurGaussianCommand(20));
workspaceViewer1.Save("c:\\myimage.jpg", newJpegEncoder(90)); 

Import namespaces
DotImage separates functionality into logical namespaces. To avoid typing the entire namespace 
when referencing a DotImage class, you may use the following Imports (or using in C#) statements.

C#
[C#]
using Atalasoft.Imaging;
using Atalasoft.Imaging.Codec;
using Atalasoft.Imaging.ColorManagement;
using Atalasoft.Imaging.Drawing;
using Atalasoft.Imaging.ImageProcessing;
using Atalasoft.Imaging.ImageProcessing.Channels;
using Atalasoft.Imaging.ImageProcessing.Document;
using Atalasoft.Imaging.ImageProcessing.Effects;
using Atalasoft.Imaging.ImageProcessing.Fft;
using Atalasoft.Imaging.ImageProcessing.Filters;
using Atalasoft.Imaging.ImageProcessing.Transforms;
using Atalasoft.Imaging.Metadata;
using Atalasoft.Imaging.WinControls;

Display thumbnails
DotImage can be used to view thumbnail images using the ThumbnailView or FolderThumbnailView 
controls. These controls are available in DotImage Photo Pro and DotImage Document Imaging.

The ThumbnailView control displays a list of thumbnail images from a set of files, or in-memory 
AtalaImage objects. The FolderThumbnailView displays thumbnail images of images in a particular 
folder path.

The following ThumbnailView features are supported:
• Load an image from a file or AtalaImage with the Add() method.
• Bind the items in the ThumbnailView to a data source.
• Load thumbnails in a background thread pool by setting the Asynchronous property to true.

182



Atalasoft DotImage Developer's Guide

• Sort thumbnails on one of the ThumbViewAttribute's such as FileName, DateModified, Size, Type, 
and DisplayName controlled by the SortBy property.

• Control the caption displayed for each thumbnail with the DisplayText property.
• Include a background image for each thumbnail by setting the ThumbnailBackground property.
• Control the layout to display the thumbnails in a vertical or horizontal manner with the 

ThumbnailLayout property.
• Set the spacing between the thumbnails with the Spacing property.
• Control the margin area to provide space around all of the thumbnails by setting the Margins 

property.
• Enumerate through each Thumbnail in the ThumbnailView control with the Items property.
• Control the size of the thumbnails with the ThumbnailSize property.
• Set the number of lines allocated for the caption with the CaptionLines property.

Possible uses for the ThumbnailView include:
• Showing each page of a multipage TIFF, or
• Displaying thumbnails from a non-file database

The FolderThumbnailView extends the ThumbnailView and is intended for showing thumbnails of 
each image in a directory. It includes all features of the ThumbnailView plus those listed here:
• The ability to view thumbnails from any folder by setting the ImageFolder property.
• The ability to specify an extension filter determine which file extensions to attempt to load as a 

thumbnail with the ExtensionFilter property.
• The FolderThumbnailView watches for changes in the file system and automatically add 

or update thumbnails if files are added, removed, renamed, or modified from the current 
ImageFolder.

• Count the number of valid images in a specified folder with the GetFolderImageCount() method.
• Show progress information as each thumbnail is loaded with the FolderLoadProgress event which 

is fired for each thumbnail that is loaded from a folder.

Work with WPF images
The following instructions show how to use DotImage AtalaImageViewer in a Windows Presentation 
Foundation (WPF) application.

The example code that follows is written in C#; however any CLS compliant language can be used.

Add the AtalaImageViewer control to a WPF windows application
There are several possible ways to creating a WPF application. The following example uses Visual 
Studio and its XAML source editor to create the project.

1. Open Visual Studio and start a new WPF Windows Application project.
2. Add the following references:

• Atalasoft.dotImage
• Atalasoft.dotImage.Lib
• Atalasoft.dotImage.Wpf
• Atalasoft.Shared

183



Atalasoft DotImage Developer's Guide

3. To launch the editor, click Window1.xaml.
4. Use the form designer to set the window size, title and other common options
5. Switch to XAML source view.
6. Add the following XML namespace to the Window tag:

xmlns:atala="clr-namespace:Atalasoft.Imaging.Wpf;assembly=Atalasoft.dotImage.Wpf"

7. Inside the Grid tag, add the following code:
<Grid.ColumnDefinitions> <ColumnDefinition/> </Grid.ColumnDefinitions> 
 <Grid.RowDefinitions> <RowDefinitionHeight="22"/> <RowDefinition/
> </Grid.RowDefinitions> <MenuGrid.Column="0"Grid.Row="0"> 
 <MenuItemHeader="_File"> <MenuItemHeader="_Open"Click="OnOpenFile"/
> <MenuItemHeader="_Save"Click="OnSaveFile"/> <Separator/> 
 <MenuItemHeader="E_xit"Click="OnExit"/> </MenuItem> </Menu> 
 <atala:AtalaImageViewer Name="Viewer"Grid.Column="0"Grid.Row="1"/>

8. Open the Window1.xaml.cs file and add the following file menu event handlers:
9. Build and run the application.

Use MouseTools
AtalaImageViewer has a MouseTool property which takes any class deriving from the MouseTool 
class. This allows you to create custom mouse tools for the viewer. The DotImage WPF component 
provides several commonly used tools including selection, panning, magnifier and zoom.

The following code tells the viewer to use the panning tool:
this.Viewer.MouseTool = new PanningMouseTool(); 

All The viewer mouse tools have common default values making it easy to switch between the tools. 
You may want to modify the look or behavior of a tool to better fit your application or preference. 
For instance, the PanningMouseTool can have two cursors; one for the normal cursor and another 
for a mouse down (grab) cursor.

Use ASP.NET WebForm controls

Work with remote events
The WebImageViewer control provides the ability for an ASP.NET Page object to receive an event 
when a client side script requests a remote invocation. When JavaScript performs a RemoteInvoke, 
an http POST is performed to send parameters back to the server side. To get similar capabilities 
without the complexity of events, see the section about remotely invoking Page() methods.

Remote Invoke Event Arguments
A handler for a Remote Invoke Event receives an object of type RemoteInvokeEventArgs. This object 
contains three properties: Page, Parameters, and ReturnValue.

Property Description

Page Object of type System.Web.UI.Page that contains the WebImageViewer that 
received the event.

184



Atalasoft DotImage Developer's Guide

Parameters Object of type System.Collection.Specialized.NameValueCollection which 
contains all parameters provided by the POST.

ReturnValue ArrayList which is used by event handlers to pass information back. Typically the 
return value is a one element array list containing a string that represents the 
return value of the method which has been remotely invoked.

Parameters
In addition to other keys provided to the WebImageViewer, there is a key with the name atala_rm. 
This key is associated with the name of the method requested to be invoked. To retrieve the method 
name from the Parameters property, do the following.
string methodName = eventArgs.Parameters.Get("atala_rm");

For each parameter passed in has a key with a name that follows this pattern:
atala_ra<type><parameter number>

<type> is s, b, or n, depending on whether this parameter is a string, a bool, or a number, 
respectively. The table that follows summarizes this relationship.

s string

b bool

n number

<parameter number> is an integer starting from 0 that corresponds to the position of the 
parameter in the array passed into the JavaScript RemoteInvoke().

Parameters can be retrieved with code:
int i = 0;
ArrayList params = new ArrayList();
ArrayList types = new ArrayList();
while (true)
{ 
   string val; 
   val = eventArgs.Parameters.Get("atala_ras" + i); 
   if (val != null) { 
      types.Add(typeof(string)); 
      params.Add(val); 
      i++; 
      continue; 
   } 
   val = eventArgs.Parameters.Get("atala_ran" + i); 
   if (val != null) { 
      types.Add(typeof(double)); 
      params.Add(Convert.ChangeType(val, typeof(double))); 
      i++; 
      continue; 
   } 
   val = eventArgs.Parameters.Get("atala_rab" + i); 
   if (val != null) { 
      types.Add(typeof(bool)); 
      params.Add(Convert.ChangeType(val, typeof(bool))); 
      i++; 
      continue; 
   } 
   break;

185



Atalasoft DotImage Developer's Guide

Write an event handler
To write a RemoteInvoke event handler, first create the method which will receive the event. This 
method must take an object and a RemoteInvokeEventArgs and have no return type. Such an event 
handler might look like the example shown below.

RemoteInvoke Event Handler
private void HandleRemoteInvoke(object sender, RemoteInvokeEventArgs args)
{ 
   // your event handling code goes here
}

To install the event handler, tell the WebImageViewer to add your event handler into its chain as 
shown in the following example.
webImageViewer1.RemoteInvoke += new RemoteInvokeHandler(this.HandleRemoteInvoke);

Remotely invoke ASP.NET page methods
The WebImageViewer control provides the ability to call methods in the owning ASP.NET Page 
object via client side JavaScript. In addition to being able to send typed information to the Page 
object, the return value for the remote method is sent back to the calling JavaScript code.

Terminology
The terms listed here are used in the documentation.

Term Definition

Server side Code or objects that are invoked on an ASP server

Client side Code or objects that are invoked in a user's browser

Parameter Value that is passed from one function or method to another

Signature Combination of parameter types and the return type of a function or method

Prepare a server side method for remote invocation
To invoke a method remotely, it must meet the following criteria:

• The method must be a member of a Page object that contains a WebImageViewer
• The method must be public
• The method must be marked with the RemoteInvokable attribute
• Parameters of the method must be one of the following types:

• int
• double
• bool
• string

• The method must return a type that can be converted to a string. Null or no return value are also 
acceptable.

186



Atalasoft DotImage Developer's Guide

An example of a possible method is shown below.
[Atalasoft.Imaging.WebControls.RemoteInvokable]

public bool WaterMark(int x, int y, string message) { ... } 

Call a method from JavaScript
To invoke a method within a server side Page object from JavaScript, the client side code must call 
the RemoteInvoke() method of the JavaScript object atalaWebImageViewer. The first argument is a 
string representing the name of the method to invoke. The second argument is an array of values 
that is passed to the remote method.

An example of a client side remote invocation is provided below.
WebImageViewer1.RemoteInvoke("WaterMark", new Array(100, 100, "Preview Only"));

Get the return value from a RemoteInvoke
RemoteInvokable() methods can have a return value, as long as they return a type that can be 
converted to a string. Because the return value is populated asynchronously, the JavaScript 
WebImageViewer.RemoteInvoked event needs to be handled. An example is shown below.

Parameter type conversion
JavaScript has a limited number of built-in data types that can be readily identified within a 
client side script. These are number, bool, and string. The JavaScript method RemoteInvoke() 
bundles up each parameter with information about its data type so that it can be correctly used 
on the server side. Server side code makes further effort to automatically distinguish between 
the JavaScript notion of a generic number and the .NET notion of an integer or a floating point 
number. If a JavaScript number arrives on the server which contains a decimal or an exponent, it will 
automatically be promoted to a floating-point number. Otherwise, the number is assumed to be an 
integer.

No attempt is made to interpret the contents of a string.

Method identification
.NET languages can define functions or methods with the same name but different signatures. 
These are called overloaded methods. Server side code attempts to find the version of a method 
that best matches the parameters passed from JavaScript. The match happens in two stages. Server 
side code first tries to find an exact match where each client-passed parameter type matches the 
server side parameter type exactly. If there are no matches, server side code then tries to find a 
method for which numeric parameters can be converted without loss of information.

Example
If the client side includes this remote invocation:
WebImageViewer1.RemoteInvoke("Overload", new Array(1, 2));

and the server side has the following methods defined:
[Atalasoft.Imaging.WebControls.RemoteInvokable]
public string Overload(int a, int b) { ... }
[Atalasoft.Imaging.WebControls.RemoteInvokable]
public string Overload(double a, double b) { ... }

187



Atalasoft DotImage Developer's Guide

then the RemoteInvoke matches the first method, since it takes two integers as parameters.

If, instead, the client side had the following remote invocation:
WebImageViewer1.RemoteInvoke("Overload", new Array(1.0, 2));

Then the RemoteInvoke matches the second method although it is not a perfect match.

Open images from a browser
This example code shows how to load a file from the browser, save it in the file cache, and load it 
into the control.

Load File. Save to Cache, and Load into Control
C#
using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Web;
using System.Web.SessionState;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;
namespace DotImageWebControlsDemo 
 { 
    /// <summary> 
    /// Summary description for WebForm1. 
    /// </summary> 
    public class WebForm1 : System.Web.UI.Page 
    { 
        protected Atalasoft.Imaging.WebControls.WebImageViewer WebImageViewer1; 
        protected System.Web.UI.WebControls.Button Button1; 
        protected System.Web.UI.WebControls.Label Label1; 
        protected System.Web.UI.HtmlControls.HtmlInputFile File1; 
     
        private void Page_Load(object sender, System.EventArgs e) 
        { 
            // Put user code to initialize the page here 
        } 
        #region Web Form Designer generated code 
        override protected void OnInit(EventArgs e) 
        { 
            // 
            // codeGEN: This call is required by the ASP.NET Web Form Designer. 
            // 
            InitializeComponent(); 
            base.OnInit(e); 
        } 
         
        /// <summary> 
        /// Required method for Designer support - do not modify 
        /// the contents of this method with the code editor. 
        /// </summary> 
        private void InitializeComponent() 
        {     
            this.Button1.Click += new System.EventHandler(this.Button1_Click); 
            this.Load += new System.EventHandler(this.Page_Load); 
        } 

188



Atalasoft DotImage Developer's Guide

        #endregion 
        private void Button1_Click(object sender, System.EventArgs e) 
        { 
            string cachePath = System.Configuration.ConfigurationSettings. 
                AppSettings["AtalasoftWebControls_Cache"]; 
            string fullPath = Page.MapPath(cachePath); 
            string fileName; 
            if (File1.PostedFile.FileName.Length != 0) 
            { 
                fileName = System.IO.Path.GetFileName(File1.PostedFile.FileName); 
                try 
                { 
                    // Save uploaded file to server 
                    File1.PostedFile.SaveAs(fullPath + fileName); 
                } 
                catch (Exception exc) 
                { 
                    Label1.Text = "Error saving file <b>" + cachePath + fileName + 
                         "</b><br>" + exc.Message; 
                } 
                try 
                { 
                    // Set main viewer to the users image 
                    WebImageViewer1.OpenUrl(cachePath + fileName); 
                } 
                catch (Exception exc) 
                { 
                    Label1.Text = "Error opening file <b>" + cachePath + fileName + 
                    "</b><br>" + exc.Message; 
                } 
            } 
            else 
                Label1.Text = "Error: You must specify a file name."; 
        } 
    } 
 } 
  

{

HTML to run the preceding code
<form id="WebForm1" method="post" runat="server" encType="multipart/form-data"> 
     
<table id=Table1 cellspacing=0 cellpadding=0 width=300 align=center border=0> 
  <tr> 
    <td> 
      <p align=center> 
      <cc1:WebImageViewer id=WebImageViewer1 runat="server"></cc1:WebImageViewer><br> 
      <input id=File1 type=file name=File1 runat="server"><br> 
      <asp:Button id=Button1 runat="server" Text="Submit"></asp:Button></p> 
      <p align=center>&nbsp;</p> 
      <p style="FONT-WEIGHT: bold; COLOR: red" align=center><asp:Label id=Label1 
         runat="server"></asp:Label></p> 
    </td> 
  </tr> 
 </table> 
 </form>

189



Atalasoft DotImage Developer's Guide

Import namespaces

Atalasoft DotImage separates functionality into logical namespaces. To avoid typing the entire 
namespace when referencing a Atalasoft DotImage class, you may use the following Imports (or 
using in C#) statements.

C#
using Atalasoft.Imaging;
using Atalasoft.Imaging.codec;
using Atalasoft.Imaging.ColorManagement;
using Atalasoft.Imaging.Drawing;
using Atalasoft.Imaging.ImageProcessing;
using Atalasoft.Imaging.ImageProcessing.Channels;
using Atalasoft.Imaging.ImageProcessing.Document;
using Atalasoft.Imaging.ImageProcessing.Effects;
using Atalasoft.Imaging.ImageProcessing.Fft;
using Atalasoft.Imaging.ImageProcessing.Filters;
using Atalasoft.Imaging.ImageProcessing.Transforms;
using Atalasoft.Imaging.Metadata;
using Atalasoft.Imaging.WebControls;

Display image in the current output stream
You can use Atalasoft DotImage to display an image in the current output stream.

Use the class library
C#
workspace.Open(Server.MapPath("myimage.tiff")); 
 Response.ContentType = "image/jpeg"; 
 workspace.Save(Response.OutputStream, new JpegEncoder(90));   

WebControls

When using Atalasoft DotImage to display images in an ASP.NET Web application, we recommend 
that you use the WebImageViewer control. The namespace Atalasoft.Imaging.WebControls contains 
the user interface classes and controls that can be used in a WebForm application.

To add the Atalasoft DotImage WebControls to the toolbox:

1. Click Tools | Customize Toolbox on the Visual Studio .NET menu.

2. Make sure the .NET Framework Components tab is selected, and find the 
Atalasoft.DotImage.WebControls and Atalasoft.DotImage.WebControls.Annotations 
namespaces.

3. Select the checkboxes that correspond to the WebImageViewer, WebThumbnailViewer, and 
WebAnnotationViewer controls.

4. Click OK.

WebImageViewer, WebThumbnailViewer, and WebAnnotationViewer are included in your toolbox 
and you can drag and drop these controls onto your form.

190



Atalasoft DotImage Developer's Guide

File Cache

The WebImageViewer, WebThumbnailViewer, and WebAnnotationViewer controls require a writable 
folder for caching images and other data. This folder needs to be mappable from your application 
directory.

1. Create a directory for the image cache within your wwwroot directory ex: /ImageCache/.

 When using ASP.NET, you can only put the cache folder inside the application folder if 
the AtalasoftWebControls_CacheFilesOnly Web.config key is set to true. This is the 
default behavior in Atalasoft DotImage 4.0 and up. If the
AtalasoftWebControls_CacheFilesOnly Web.config

key is set to false, ASP.NET will recompile and end all sessions for the application every time 
images are deleted from the cache.

2. Make sure this directory is writable by applications, you can do this using the IIS control panel. 
You may also need to grant the MACHINE\ASPNET user account Modify permissions over this 
folder in Windows Explorer.
When using impersonation, you will need to make sure that every user account that is being 
impersonated, has Modify permissions over this folder. Using the ASPNET user account is not 
enough, and can cause intermittent problems.

3. Modify your Web.config file by adding these lines inside the <appSettings> tags:
<add key="AtalasoftWebControls_Cache" value="/ImageCache/" /> 
 <add key="AtalasoftWebControls_CacheLifeTime" value="60" />

These two lines control where the cache files are saved, and how many minutes they stay in 
there. The control will not work at all if it cannot write the images to this location.

Control the WebImageViewer behavior

After you drop the WebImageViewer control onto your form, change the development environment 
(IDE) properties to modify WebImageViewer behavior. Many of the properties will look familiar to 
you because the WebImageViewer control inherits from Control.

The following properties are specific to the imaging aspects of this control and can be modified in 
the IDE:

• Image
• AntialiasDisplay
• Centered
• Zoom
• AutoZoom

JavaScript with Atalasoft DotImage WebControls

All Atalasoft DotImageWebControls offer a JavaScript API so that a rich client interface can be 
created in the browser. Many of the properties and events available in code-behind are available in 
the JavaScript API under the same name.

191



Atalasoft DotImage Developer's Guide

WebAnnotationViewer

There are several files used in the control, that are stored within the compiled WebControls dll.

You can put these files can in a location accessible from your application to speed up the loading 
of the control. By default, they are installed into the C:\Program Files (x86)\Atalasoft
\DotImage 11.5\bin\WebResources directory.

To link to these files, do the following:

1. Create a directory for the resources within your wwwroot directory ex: /files/.

2. Copy all files that are in the C:\Program Files (x86)\Atalasoft\DotImage 11.5\bin
\WebResources directory to the new one you made.

3. Set the PathToResources web.config AtalasoftWebControls_ResourcePath appSetting to the 
relative or virtual path to your /files/ directory. If you have set up the path correctly, the 
JavaScript and images used load from the Resources directory instead of through the assembly 
and startup is faster.
e.g. Modify your Web.config file by adding this lines inside the <appSettings> tags:
<add key="AtalasoftWebControls_ResourcePath" value="/files/" />

 Previous versions of DotImageWebImageViewer had images for drawing the scrollbar. 
Scrollbars are now drawn by the browser and you cannot override the look and feel with 
images in the resource directory.

Image Capture

Web scanning
Web Capture Service includes a set of integrated components that can be used to easily capture-
enable a website. It uses Javascript, supported by a local scanning service on the client which could 
be deployed either as a Windows service or a regular Windows application.

Also, Web Capture Service supports scanning in multiuser environments: MS Terminal Server and 
Citrix. In these environments, multiple users can work with Web Capture Service at the same time, 
from different Windows logon sessions with the same user experience as on a single-user machine.

The Web Capture Service SDK includes a demo Web application that can scan, upload and import 
documents into Kofax Capture.

See our Web Capture Service Guide for a step-by step tutorial of setting up a scanning a new 
scanning application and deploying it to an IIS server.

The Web Capture Service online documentation is available at https://atalasoft.github.io/web-
capture-service. The offline verison can be downloaded from the public GitHub repository at https://
github.com/Atalasoft/web-capture-service/tree/master/docs.

192

https://atalasoft.github.io/web-capture-service
https://atalasoft.github.io/web-capture-service
https://github.com/Atalasoft/web-capture-service/tree/master/docs
https://github.com/Atalasoft/web-capture-service/tree/master/docs


Atalasoft DotImage Developer's Guide

TWAIN scanning
Acquire Images

Acquisition
The Acquisition object is the primary class in DotTwain. You can drop this component onto a 
form after adding it to the toolbox, or you can instantiate it directly. This is the only class you 
need to add standard image acquisition capabilities to an application.
For greater control over the acquire process, this class contains a collection of Device objects 
that controls numerous properties used for the image acquisition.

TwainController
The TwainController object is a low-level TWAIN class used by the Device and Acquisition 
objects. By using this class you gain more direct access to TWAIN and you can use custom driver 
capabilities.
This class can be created as a standalone object or can be accessed through the 
Device.Controller property.

 Only advanced users with knowledge of the TWAIN specification should use this class.

Device
The Device object provides full access to a TWAIN compatible source on the system. Use it to 
open a connection to the device, to get and set properties, and then to acquire one or more 
images. Because this class represents a system device resource, you cannot create an instance 
of it. You can obtain an instance to a Device object by calling ShowSelectSource, or from the 
Devices collection in the Acquisition object.

DeviceCollection
The DeviceCollection holds a read-only collection of Device objects which represent all of 
the TWAIN compatible system resources. You can obtain the system default device from this 
collection. A suitable device also can be found by enumerating through the collection. Should 
system conditions change, such as a device being unplugged, the ScanForChanges() method 
can be used to recreate this collection.

Document feeder control
DocumentFeeder
Many scanners have an automatic document feeder (ADF) allowing multiple images to be 
scanned in a single process. The DocumentFeeder class gives full control over the feeder, and 
can enable or disable its use.

Navigate files in a camera
FileSystem
The FileSystem object can be used to walk through the file system structure in a TWAIN 
compatible camera's internal storage. It also can be used to create, delete, copy and rename 
files and directories directly in the camera. Images are acquired from the camera by using the 
SetImageDataset() method in the Device object, then calling the Acquire() method of the same 
Device object.

193



Atalasoft DotImage Developer's Guide

Getting started with DotTwain
This section explains how to get started using DotTwain in your applications.

Add DotTwain to the toolbox
1. ON the Visual Studio .NET menu, select Tools > Customize Toolbox
2. Make sure the .NET Framework Components tab is selected, and find the Atalasoft.Twain

namespace.
3. Select the checkbox that corresponds to the Acquisition component.
4. Click OK.

Acquisition is now included in your toolbox. You can double-click the control to add it to your 
form.

Set application information
After you add the Acquisition control to your form, you should set the ApplicationIdentity properties 
which will be used by the TWAIN driver.

 If you do not set the ApplicationIdentity properties, default values are used.

Setting the following properties is optional but recommended:
• Country
• Info
• Language
• Manufacturer
• ProductFamily
• ProductName
• VersionMajor
• VersionMinor

There is also a Parent property which is used by TWAIN when displaying dialogs and acquiring 
images. You must set the Parent property to the parent form or control in order to acquire images.

Modal acquisition
By default, the Acquire() method is asynchronous and returns before scanning is complete. This 
method can be made to work in a synchronous manner by using the Device object and setting its 
ModalAcquire property to true. The example below illustrates this technique.

C#
this.device = this.acquisition.Devices.Default;
this.device.ModalAcquire = true;
this.device.Acquire();

194



Atalasoft DotImage Developer's Guide

Set up events
You need to use events when acquiring images. When an image is acquired, the ImageAcquired 
event fires, providing an AcquireEventArgs object containing the image. At least, the ImageAcquired 
event must be handled, but it is recommended that the AcquireCanceled and AcquireFinished 
events also be handled.

Show the Select Source dialog
Your application should allow users to select which TWAIN device they want to use. This is 
accomplished by displaying the "Select Source" dialog using the ShowSelectSource() method. The 
code below assumes the Acquisition component is named acquisition.

C#
Device device = this.acquisition.ShowSelectSource();

Get and set properties
To get or set a device property, you must open a connection to the device using the Open() 
method. Whenever the Open() method is invoked, the Close() method must be invoked to close 
the connection. Closing a connection resets all of the device properties to their default values and 
therefore a device should be closed after the image or all desired properties have been acquired.

 Open() and Close() only need to be used when getting or setting properties on the device.

The code below opens a connection to the device in order to retrieve the default Resolution and 
BitDepth values of the device, then closes the connection. This technique can be useful if you are 
looking for a device in the DeviceCollection with specific default properties or capabilities. See 
QueryCapability for more information.

Acquire an image
You can acquire an image through the Acquisition object or from a Device object. If you do not need 
to get or set any properties, the easiest to use the Acquire() method from the Acquisition object. 
This method uses the system default device. It is shown below.

C#
this.acquisition.Acquire();

You can choose to hide the device interface and/or ask that the device save the acquired image 
directly to file.

Once the image has been acquired, the ImageAcquired event fires and provides an 
AcquireEventArgs object containing the image. If you invoked the Open() method in order to set 
properties before the acquire, invoke the Close() method in the AcquireFinished event to close the 
device.

195



Atalasoft DotImage Developer's Guide

Acquire images with TWAIN
Unless your documents are already stored digitally, the first step in any document imaging 
application is to acquire the images via a scanner. The DotTwain Add-On to DotImage, included in 
some editions of DotImage or available separately, offers advanced TWAIN acquisition features. 
Once the document is in digital form, the image can be cleaned-up, displayed, compressed, 
archived, and recognized using other third party systems.

DotTwain returns System.Drawing.Bitmap images that can easily be converted to DotImage 
AtalaImage objects.

Acquire a selection region of the device
Some scanners allow you to select a rectangular region of the scanning bed to be acquired. If you 
know that you only need a specific area or page size, this can greatly increase your scanning speed.

This region is represented by the Frame property of the Device object. Alternatively you can use the 
ImageLayout property for the same purpose. In some cases a driver only supports one of these two 
approaches.

As Frame values are in Units, you need to know the value of the Units property before setting the 
Frame size.

The code example below assumes you have already opened a connection to the device by calling 
the Open() method. This example shows how to acquire a specific size while the second shows how 
to acquire any size and position.

Acquire a specific size
If you only need to specify a standard region size, you can use the FrameSize property as shown in 
the example below:

C#
// Make sure the FrameSize property is supported by the device.
if (this.device.QueryCapability(DeviceCapability.FrameSize, true)
{ 
    // Get a list of supported frames and choose the one that fits your needs. 
    StaticFrameType[] frames = this.device.GetSupportedFrameSizes(); 
    foreach (StaticFrameType frame in frames) { 
        if (frame == StaticFrameType.LetterUS) 
        { 
            this.device.FrameSize = frame; 
            break; 
        } 
    }
}

Acquire any size and position
If you need a more control over the size and position, or if the device does not support the 
FrameSize property, you can attempt to set the acquisition area using the Frame property.

C#
C# 

  

196



Atalasoft DotImage Developer's Guide

// Try to use Inches.
this.device.Units = UnitType.Inches;

if (this.device.Units != UnitType.Inches) return;
this.device.Frame = new System.Drawing.RectangleF(0, 0, 8.5, 11);
 

Acquire directly to a file
Some devices allow to you acquire an image and save it directly to a file, instead of returning the 
image data. While the overall process is simple, there are some steps you must take:

1. Check for device capabilities

2. Set filenames

3. Close the connection

Checking for device capabilities
Begin by testing the device to make sure it can save a file. If so, you then need to negotiate the type 
of file to save.

C#
// Open a connection to the device.
this.device.Open();
this.device.TransferMethod = TwainTransferMethod.TWSX_NATIVE;

// See if the device supports file transfer.
TwainTransferMethod[] methods = this.device.GetSupportedTransferMethods();
foreach (TwainTransferMethod method in methods)
{
if (method == TwainTransferMethod.TWSX_FILE2)
{
// Use TWSX_FILE2 when possible.
this.device.TransferMethod = method;
break;
}

if (method == TwainTransferMethod.TWSX_FILE)
this.device.TransferMethod = method;
}

// If it's not supported tell stop.
if (this.device.TransferMethod == TwainTransferMethod.TWSX_NATIVE)
{     
// Close the connection.     
this.device.Close();         
MessageBox.Show("The current device does not support saving directly to a file.");
return;
}  

// Find out which file types the device can save to.     
SourceImageFormat[] formats = this.device.GetSupportedImageFormats();         

// We want to save the image as a TIFF.     
foreach (SourceImageFormat format in formats)  
{         
if (format == SourceImageFormat.Tiff)         
{             

197



Atalasoft DotImage Developer's Guide

// TIFF is supported, so set the FileFormat.             
this.device.FileFormat = format;                         

// Now lets try to use Group4 or Group3 compression.             
// We could use GetSupportedCompressionModes, but we             
// will simply try setting the Compression property instead.             
this.device.Compression = CompressionMode.Group4;             
if (this.device.Compression != CompressionMode.Group4)                 
this.device.Compression = CompressionMode.Group3;  

break;
}     
}         

// Start the acquire process, using the device's interface.     
this.device.Acquire();   

Set filenames
During the acquire process, the FileTransfer event is raised just before each file is acquired. You 
need to set the FileName property of the FileTransferEventArgs object passed into the event. This 
tells the device where the file should be saved.

C#

private void OnFileTransfer(object sender, FileTransferEventArgs e)
{ 
    e.FileName = @"C:\TwainImages\whatever.tif";
}

Close the connection
When all of the images have been acquired, the AcquireFinished event is raised. Close the 
connection here.

private void OnAcquireFinished(object sender, System.EventArgs e)
{ 
    this.device.Close();
}

Detect a camera device
There are times when you only want to use a camera device. Unfortunately, TWAIN does not provide 
a direct way of knowing what type of device is being used. You can, however, do a little investigating 
to pick out a camera from a scanner.

Using the QueryCapability() method, you can find out if a device supports certain features that are 
normally only supported by camera devices. A list of capabilities you can check is provided here:
• Flash
• Flash2
• ExposureTime
• BatteryMinutes
• BatteryPercentage
• CameraPreviewInterface
• PowerSupply

198



Atalasoft DotImage Developer's Guide

• ZoomFactor

Upload an image to a server
There may be times when you want to send an image to a server. The HttpPost class was written for 
this specific purpose.

Upload the image
The following example sends a single image, along with a user name and password to identify the 
sender, to a server.

Example

C#

private void UploadImage(Atalasoft.Imaging.AtalaImage image)
{
// Create an instance of HttpPost and use the default image encoder.
Atalasoft.Imaging.HttpPost post = new Atalasoft.Imaging.HttpPost();

// Add the image to the form data collection.
post.FormData.Add("image1", image, "filename.png");

// Add data to identify the user posting the image.
post.FormData.Add("username", user);
post.FormData.Add("password", password);

// Post the form data to the server and retrieve a return value.
string ret = post.PostData("http://www.website.com/postImage.aspx");
}

The first part of the code creates an instance of HttpPost and uses the default image format, which 
is PNG. The image format determines the file type of the image when saved on the server.

Then the image is added to FormDataCollection, which includes the field name, image and filename 
for the image. It is best to think of HttpPost as an HTML FORM object. The FormData represents the 
FORM elements; in this case a FILE input box. You can update multiple images by adding them to 
the collection; just be sure each has a unique field name.

Next, add the username and password of the person sending this image. In many cases, additional 
information needs to be sent with the image in order to perform a specific action on the server. In 
terms of an HTML FORM, this would be a TEXTBOX field.

Finally, the FormData is sent to the server using the PostData() method. The return value of 
PostData is a string that is sent back from the server. Normally this is used to confirm the success of 
the call.

Saving the image
Once the image has been sent, save it to the server using ASP.NET. If necessary, you can modify this 
code to store the image in a database instead.

199



Atalasoft DotImage Developer's Guide

Example

C#

private void Page_Load(object sender, System.EventArgs e)
{
if (Request.Files.Count == 0) return;

// Save the file to the server.
string fileName = System.IO.Path.GetFileName(Request.Files[0].FileName);
Request.Files[0].SaveAs(GetNewFileName(fileName));

// Return the path to this file.
Response.Clear();
Response.Write("success");
Response.End();
}

private string GetNewFileName(string fileName)
{
// Create a unique filename.
string path = Server.MapPath("./images") + "\\" + Session.SessionID + fileName;
return path;
} 

In the code above, the SaveAs() method saves the image to the server. Notice that the FileName 
property gets the name of the posted file. This is the same value that was passed to the 
FormData.Add() method when you added the image.

The data written to the Response object is returned by the PostData() method. It is a good idea to 
use the Response.Clear() method before adding your return value. This example simply returns 
success

Deploy DotTwain
To distribute DotTwain along with your .NET application, you need to include
Atalasoft.DotTwain.dll and Atalasoft.Shared.dll in the same folder as the assembly that 
references it.

Be sure that the .dll versions you provide match that used to compile the assembly.

Web-based deployment is not available.

ISIS scanning
DotImage ISIS is a .NET component for capturing images from scanners that use an ISIS 
driver. It takes advantage of the speed and stability of ISIS drivers available from most scanner 
manufacturers.

Supported Features
• Direct in-memory scanning
• Scanning directly to a variety of file formats (provided through ISIS drivers)
• Access to dozens of scanner property values

200



Atalasoft DotImage Developer's Guide

• Automatic Document Feeder support
• Supports custom interface creation or, use the default driver interface
• Support for saving and restoring scanner settings to a file or stream
• Barcode detection (when supported by the scanner)
• In-memory images can be returned as a .NET Bitmap or an AtalaImage
• Use the IsisController for more direct lower-level scanner control

DotImage ISIS classes
This introduces the basic classes you need to know about to gain a general understanding of 
DotImage ISIS.

Acquiring images
IsisAcquisition
The IsisAcquisition object is the primary class in DotImage ISIS. This component can be dropped 
onto a form after adding it to the toolbox, or it can be instantiated directly. To add standard 
image acquisition capabilities to an application, this is the only class you need. For additional 
control over the acquire process, this class contains a collection of IsisDevice objects that 
controls numerous properties that allow you to fine tune for image acquisition.

IsisController
The IsisController object is a low-level ISIS class used by the IsisDevice and IsisAcquisition 
objects. Using this class provides more direct access to the ISIS driver. This class can be created 
as a standalone object or can be accessed through the IsisDevice.Controller property.

IsisDevice
The IsisDevice object provides full access to the system's ISIS driver. Use it to connect to the 
device, get and set properties and acquire one or more images. You cannot create an instance 
of this class as it represents a system device resource. An instance to an IsisDevice object can be 
obtained from the IsisDeviceCollection in the IsisAcquisition object.

IsisDeviceCollection
The IsisDeviceCollection holds a read-only collection of IsisDevice objects representing all of 
the ISIS scanner drivers found on the system. You can obtain the system default device from 
this collection, or locate a suitable device by enumerating through the collection. If system 
conditions change, such as a device being added, use the RefreshList()method to recreate this 
collection.

IsisCodecManager
The IsisCodecManager class searches through ISIS file and compression drivers on the system 
accumulating a collection of IsisCodec objects. This is useful as many scanners will report that 
they do not support any file formats. DotImage ISIS can dynamically load ISIS plug-in drivers for 
use with the AcquireToFile() method.

Add ISIS to the toolbox
1. On the Visual Studio .NET menu, select Tools > Customize Toolbox.

201



Atalasoft DotImage Developer's Guide

2. Make sure the .NET Framework Components tab is selected, and find the
Atalasoft.dotImage.Isis namespace.

3. Check the IsisAcquisition component checkbox.
4. Click OK.

IsisAcquisition is now included in your toolbox.
5. Double-click the control to add it to your form.

Set up events
You use events to acquire images. When an image is acquired, the ImageAcquired event is raised, 
providing an IsisImageAcquiredEventArgs object containing the image.

You must handle the ImageAcquired event, but it is recommended that the AcquireCanceled and 
AcquireFinsihed events also be handled.

The following code demonstrates how the ImageAcquired event is handled:

Handling the image acquired event
C#
private void _acquisition_ImageAcquired(object sender, IsisImageAcquiredEventArgs e
{ 
   // This event is raised for each page during an acquisition. 
   if (this.picImage.Image != null) this.picImage.Image.Dispose(); 

   // Set the AcquiredImageType property on the IsisAcquisition or IsisController 
   // to specify whether you receive an AtalaImage or a .NET Bitmap. 
   if (e.Image != null) 
   { 
      this.picImage.Image = e.Image.ToBitmap(); 
      e.Image.Dispose(); 
   } 
   else if (e.Bitmap != null) 
   { 
      this.picImage.Image = e.Bitmap; 
   } 

   if (e.JobSeparator) System.Diagnostics.Debug.WriteLine("Job Separator");
}

Show the Select Source
Your application should allow users to select which ISIS device they want to use. Accomplish this by 
displaying the Select Source dialog using the ShowSelectSource() method. The sample code below 
assumes the IsisAcquisition component is named acquisition.

Allow users to select an ISIS device
C#
IsisDevice dev = null;
if (this.acquisition.ShowSelectSource(this)) dev = 
 this.acquisition.Devices.Default;

202



Atalasoft DotImage Developer's Guide

Get and set properties
To get or set a device property, use the Open() method to open a connection to the device. 
Whenever the Open() method is invoked, the Close() method also must be invoked to close the 
connection. Open() and Close() only need to be used when getting or setting device properties.

Open a device connection to set properties
C#
if (device.Open())
{ 
    device.Settings.Resolution = new Rational(200, 200); 
    device.PixelFormat = IsisPixelFormat.Binary; 
    device.Acquire(); 
    device.Close();
}

Acquire an image
Acquire an image through the IsisAcquisition object or from an IsisDevice object. If you do not need 
to get or set any properties, use the Acquire() method from the IsisAcquisition object. The images 
acquired are provided in the ImageAcquired event, which is raised once for each page scanned.

Acquire directly to file
If the ISIS drivers are available on the system, you can have the driver acquire directly to 
file instead of in memory. Do this with the IsisAcquisition or IsisDevice objects using the 
AcquireToFile() method. The FileAcquisition event must be handled to provide the filename for 
each page.

C#
If (device.Open())
{ 
    device.PixelFormat = IsisPixelFormat.Binary; 
    device.AcquireToFile(IsisFileType.Tiff, IsisCompression.Group4); 
    device.Close();
}
…
private void _acquisition_FileAcquisition(object sender, 
 IsisFileAcquisitionEventArgs e)
{ 
                // This event is raised for each page during a file acquisition. 
 if (this.chkSaveMultipage.Checked && (e.FileType == IsisFileType.Tiff || 
 e.FileType == IsisFileType.Pdf || e.FileType == IsisFileType.Dcx))
e.Append = true; // This can be true for the first page as well. 
                
                e.FileName = myFileName;
}

Use the IsisDevice.Settings.GetSupportedFileTypes to determine which file types are supported 
by the scanner. If this method does not return the file type you want, take a look at the 
IsisCodecManager object, which can be retrieved from the IsisAcqusition and IsisController classes.
You also can perform an in-memory acquire and use the DotImage codecs for saving the image.

203



Atalasoft DotImage Developer's Guide

Image processing and cleanup
Atalasoft DotImage Advanced Document Cleanup (ADC) is an add-on module to Atalasoft DotImage 
Document Imaging providing document cleanup algorithms that can be applied to scanned 
documents to clean them up for better compression and archival, increased readability, and for 
improved OCR accuracy.

Atalasoft DotImage ADC uses proprietary algorithms developed by the Atalasoft research and 
development team. These are designed to automatically select the best parameters for fast and 
accurate processing.

The commands included in ADC extend the command interfaces already in Atalasoft DotImage.They 
can easily be applied to an existing Atalasoft DotImage application. See the online Advanced 
Document Cleanup Demo that demonstrates ADC with our AJAX-enabled Web Image Viewer.

For more information, see Advanced Document Cleanup and ADC features.

Manipulate colors with Lookup Tables
Using Lookup Tables (LUTs) is a convenient way to replace a specific color value in each pixel of an 
image with a different color value. A LUT consists of a 256 element array that defines a new value 
for each possible value of an 8-bit quantity.

A color image contains pixels consisting of three 8-bit samples (or channels), so three LUTs are 
needed, one for each color channel. A grayscale image requires one LUT.

You can apply a LUT to any continuous image with the ApplyLutCommand

Invert the Alpha in an RGBA Image
Suppose you have an image with some solid text on a transparent background, and you want to 
make the text transparent and the background solid. You can achieve this goal by inverting the 
alpha channel of the image.

You could split the image channels, apply the InverseCommand to the alpha channel, and then 
combine the channels again. However, this approach is slow. A LUT provides a simple and efficient 
method for invert the alpha in an RGBA image.

As was stated above, an Atalasoft DotImage LUT consists of a 256 element byte array. A LUT that 
does nothing to an image contains values from 0 to 255: LUT[0]=0, LUT[1]=1, and so on. A LUT that 
inverts values is just reversed: LUT[0]=255, LUT[1]=254, ... LUT[254]=1, LUT[255]=0. The following 
code shows how to reverse a channel. It assumes that you begin with an RGBA image.

Example
This example shows how to reverse an image using a look up table.

C#

byte[] lut = new Byte[256];
for (int i = 0; i < 256; i++) 

204



Atalasoft DotImage Developer's Guide

    lut[i] = (byte)(255 - i);
myWorkspace.ApplyCommand(new ApplyLutCommand(null, null, null, lut));

 You can apply this same method to all channels to invert (negate) the colors of the entire 
image.

Creating a psychedelic effect
The example in the previous section only changed one channel in the image. With the 
ApplyLutCommand, you can manipulate each channel in an image to create some interesting 
effects.

The following example creates a strange effect by twisting the colors around. It inverts the dark half 
of the color range, but leaves the bright colors alone.

Example
The following code uses a LUT to manipulate an image's colors.
Twisting colors

C#

byte[] lut = new Byte[256];
for (int i = 0; i < 127; i++)
lut[i] = (byte)(255 - i);
for (int i = 127; i < 256; i++)
lut[i] = (byte)i;
myWorkspace.ApplyCommand(new ApplyLutCommand(lut, lut, lut));

Resize images
Atalasoft DotImage has the ability to resize (or resample) an image using a number of different 
algorithms. These resampling algorithms can result in a high quality resized image at the cost of 
speed, or a high performance algorithm at the expense of quality. Some algorithms do a good job 
at both speed and quality depending on the image type.

Atalasoft DotImage includes a Thumbnail class which can be used to generate fast high quality 
thumbnail images from files. The sections below provide more flexibility than the simple Thumbnail 
class.

Simple Resizing and Thumbnails
Most imaging applications resize an image in some way. For display purposes, Atalasoft DotImage 
takes care of this with the WinForm and WebForm controls where the AutoZoom property is set 
to BestFit, and the image is quickly resized to fit the control. What if you wanted to work with this 
resized image? Using the ResampleCommand , an image can be resampled to any resulting size. 
The following code snippet shows how to create a thumbnail in the Workspace with a maximum 
width or height of 100 pixels while maintaining the aspect ratio.

205



Atalasoft DotImage Developer's Guide

Example
This example shows how to create a thumbnail with maximum height while maintaining aspect 
ratio.

C#

myWorkspace.ApplyCommand(new ResampleCommand(100);

The default resampling method for reductions is AreaAverage and for enlargements is Bi-Linear. 
This results in fast, high quality resampling. For very high quality thumbnails, we recommend the 
LanczosFilter() method, however this algorithm is quite a bit slower.

Resizing Continuous Tone Images
For resizing continuous tone images the ResampleCommand provides 18 different resampling 
algorithms, details of which can be found in the enumeration reference for ResampleMethod. As 
shown above, specifying one Integer in the constructor will resize the image to that maximum 
width or height while keeping the aspect ratio. A Size structure can also be passed which allows the 
width or height be explicitly defined. The following example demonstrates doubling the image size 
using the LanczosFilter ResampleMethod.

Example
This example shows how to double image size.

C#

myWorkspace.ApplyCommand(new ResampleCommand(new Size(myWorkspace.Image.Width * 2,  
myWorkspace.Image.Height * 2), ResampleMethod.LanczosFilter);

The default resampling method for reductions is AreaAverage and for enlargements is Bi-Linear. 
This results in fast, high quality resampling. For very high quality thumbnails, we recommend the 
LanczosFilter() method, however this algorithm is quite a bit slower. The resample algorithms 
available include those listed in the table below.

NearestNeighbor TriangleFilter Cubic1Filter HermiteFilter

BiLinear HammingFilter Cubic2Filter HanningFilter

BiCubic GaussianFilter LanczosFilter CatromFilter

AreaAverage BellFilter MitchellFilter

BoxFilter BsplineFilter SincFilter

Resizing Palette Images
The ResampleCommand can also be used to resample colormapped images. If the image pixel 
format is Pixel8bppIndexed then the Default and Simple ResampleMethod() resizes the image 
while maintaining the integrity of the palette and colormapped status. Choosing any of the other 
resampling methods will raise the ChangePixelFormat static event in the AtalaImage object and 
cause the image to be resized to a continuous format before resampling.

206



Atalasoft DotImage Developer's Guide

For the most efficient resampling of colormapped images to continuous tone images, use the 
ResampleColormappedToRgbCommand. This is what is used when the WorkspaceViewer control 
contains a colormapped images and is scaled with Antialiasing on. It performs faster than first 
converting the image to continuous tone, then resampling with ResampleCommand.

Resizing Binary Images
Atalasoft DotImage Document Imaging contains the ResampleDocumentCommand that is designed 
for document imaging. This command has three methods: Nearest Neighbor, Scale to Gray, and 
Area Average. This can be used for simple and fast 1-bit resizing, an efficient Scale to Gray resizing, 
or Favor Black / Favor White resizing. When Antialiasing is turned on in the WorkspaceViewer, this 
command is used for scaling binary images to gray and yields high quality, fast viewing of scaled 
down binary images.

The three basic document resampling methods are listed in the table below.

Resampling Method Description

NearestNeighbor Simple and fast 1-bit resizing.

ScaleToGray High quality scaling of 1-bit images that automatically 
converts the images to grayscale.

AreaAverage Fast 1-bit reductions that output black or white pixels 
depending on the source image data and weight 
factor. Used for Favor Black / Favor White.

 The ScaleToGray method can be applied to all ResampleMethods specified with the 
ScaleToGrayMethod property with the exception of NearestNeighbor and Bi-Cubic.

Process an image using a Workspace object
To process an image when using the Workspace object:

1. Create a new instance of a command.

2. Pass the command into the ApplyCommand() method of the Workspace object.

Example
This example demonstrates how to apply a Gaussian blur filter to an image with a sigma value of 
2.0.

C#

myWorkspace.ApplyCommand( new BlurGaussianCommand(2.0));

Example
This example demonstrates how to apply a Gaussian blur to multiple images. The same command 
can be applied to multiple images as shown below.

207



Atalasoft DotImage Developer's Guide

C#

BlurGaussianCommand blur = new BlurGaussianCommand(2.0);
foreach (AtalaImage image in myWorkspace.Images)
{ 
  myWorkspace.Image = image; 
  myWorkspace.ApplyCommand(blur);
}

Process an image using the Apply method
If it is not desirable to use the Workspace, the Apply() method of the ImageCommand offers an 
alternative method for processing an AtalaImage object.

Example
The following example demonstrates how to apply a sharpen filter directly to an AtalaImage object.

C#

SharpenCommand sharpen = new SharpenCommand(0.5, 3);
AtalaImage newImage = sharpen.Apply(newImage).Image;

The Apply() method returns an object of type ImageResults . Unlike the ApplyToImage() 
method, Apply() never returns null. TheImageResultsobjects contains a property 
calledImagewhich always is set to a non-null value. In some cases, theImageproperty returned 
in the results is the same as that in the original image. You can verify this by looking at 
theImageResultspropertyIsImageSourceImage.

 For backward compatibility, ImageCommand still provides the older ApplyToImage() method, 
but it is now deprecated.

Process a Bitmap image
To process a Bitmap image directly, convert the Bitmap to a temporary AtalaImage object and then 
process the effect. For more information, see Working with GDI+ Images.

Extend ImageCommands
The ImageCommand is an abstract base class that must be inherited by all image processing 
functions that modify the current image. The child class must override the several methods, 
allowing the Workspace object to manipulate the current image. By inheriting the ImageCommand 
base class, it is easy to create new effects and image processing functions.

If you plan to create your own custom commands, we recommend that you use C# rather than 
Visual Basic to code your application. C# is the recommended language because of its support for 
unsafe programming. Unsafe programming allows you manipulate an image directly. This is much 
faster than the GetPixel() and SetPixel() methods when changing image data.

208



Atalasoft DotImage Developer's Guide

You can access image data with the PixelMemory property in the AtalaImage object. For more 
information about accessing pixel data directly, see Access pixel data.

The naming convention in Atalasoft DotImage is such that all objects of type ImageCommand end 
with Command. The exception to this convention is a special type of ImageCommand object called a 
Transform that ends with Transform.

Atalasoft DotImage has a formal process for creating ImageCommands which reduces the amount 
of work needed by the command writer. The process has the following steps:

1. Allocate an object for holding image results.

2. Verify the integrity of the source image.

3. Verify command properties (if possible).

4. Change the pixel format of the source image, if necessary.

5. If the command supports region processing, crop the image to the region of interest.

6. If the command needs a destination image, construct it.

7. Perform the command.

8. Perform any recomposition of the processed image, if necessary.

9. Dispose any intermediate images.

10. Copy over the final image results.

In most cases, it is not necessary to worry about this process. The overall design handles nearly all 
the special cases that arise in processing images.

In the nearly all cases, you will only need to implement three abstract members. Each will be 
discussed in detail:

Member Description

SupportedPixelFormats Returns an array of all pixel formats that are natively 
supported by your command

VerifyProperties Checks that all input properties are correct for this 
command. If not, this method should throw an 
exception

PerformActualCommand Does the actual work needed to implement your new 
command

As much as possible, the underlying implementation of Apply adheres strongly to the contract that 
it should never pass protected members invalid arguments. In other words, all parameters passed 
into one of your methods will be valid for the context of the command.

SupportedPixelFormats
This property returns an array of pixel formats that your command operates on in an optimal 
fashion. Avoid returning all pixel formats and doing conversion within your command. This is 
managed for you by the CanApplyToAnyPixelFormat and ApplyToAnyPixelFormat properties.

A typical implementation of this property might look like the example shown below.

209



Atalasoft DotImage Developer's Guide

Example
The following example demonstrates how to apply a sharpen filter directly to an AtalaImage object.

C#

static PixelFormat[] _supportedPixelFormats = newPixelFormat[] { 
    PixelFormat.Pixel1bppIndexed
};
public override PixelFormat[] SupportedPixelFormats { get  
{ return _supportedPixelFormats; } }

VerifyProperties
VerifyProperties(AtalaImage sourceImage) is used to ensure that everything is suitable in the 
command to apply to the given image. If something is incorrect (properties or parameters that 
clash), this method will throw a suitable exception. The supplied sourceImage will always be a valid 
image and will always be the image provided to Apply. There is no need to check the PixelFormat of 
sourceImage as it will be verified later for you.

PerformActualCommand
PerformActualCommand(AtalaImage source, AtalaImage dest, Rectangle imageArea, ref 
ImageResults results) is the method that implements the actual command.

Source is the source image. It may not be the same image as supplied by the command, 
but it will always be non-null and will always be in a pixel format in the array returned by 
SupportedPixelFormats.

Dest is an AtalaImage that represents the destination image for this command. If the command 
returns true in the property InPlaceProcessing, then dest will always be null. If the command 
indicates that it allocates the destination image itself, dest is always null (see below).

If the image command is a subclass of ImageRegionCommand, imageArea will be set to the 
rectangular bounds of the region of interest. If there is no region of interest or the command is not 
an ImageRegionCommand, imageArea will be set to {0, 0, source.Width, source.Height}.

Results is a reference to the ImageResults object allocated for this command. You can set properties 
of the results or replace it with a completely new object if you choose. Most commands ignore the 
results.

PerformActualCommand will return null in most cases. If, for some reason, the command needs to 
allocate a destination image itself at the very last moment, it should return this image.

Atalasoft DotImage has the ability to manipulate image data without using unsafe code. Using 
an image's ImageData pointer directly is supported, but is considered obsolete. Instead, use the 
PixelMemory and PixelAccessor classes.

SimpleInversionCommand
The following is a complete example of a new ImageCommands that inverts 1 bit per pixel images.

210



Atalasoft DotImage Developer's Guide

C#

public class SimpleInversionCommand : ImageCommand
{ 
    public SimpleInversionCommand() { } 
    // operate on the source image 
 public override bool InPlaceProcessing { get { return true; } } 
    // only natively support 1 bit images 
 private static PixelFormat[] _supportedFormats = newPixelFormat[1]  
{ PixelFormat.Pixel1bppIndexed }; 
    public override PixelFormat[] SupportedPixelFormats { get  
{ return_supportedFormats; } } 
    protected override void VerifyProperties(AtalaImage image) 
    { 
        // nothing needed 
    } 
  
    protected override AtalaImage PerformActualCommand(AtalaImage source,  
AtalaImage dest, System.Drawing.Rectangle imageArea, refImageResults results) 
    { 
        // get the PixelMemory object 
 int height = source.Height; 
        PixelMemory pm = source.PixelMemory; 
        using (PixelAccessor pa = pm.AcquirePixelAccessor()) 
        { 
            byte[] row; 
            while ((row = pa.AcquireNextScanline()) != null) 
            { 
                for (int i=0; i < row.Length; i++) 
                { 
                    row[i] = (byte)~row[i]; 
                } 
            } 
            pa.Release(); 
        } 
        return null; 
    }
}

Writing complex commands
To prepare yourself for writing a new ImageCommand, ask the following questions:

1. Will the command only operate on the source image or does it need a destination image as 
well?

2. Will the command operate on a region of the image or operate only on the entire image?

3. If the command requires a destination image, will it be the same PixelFormat and size as the 
source image?

4. Do I need to return more information about what happened in the command?

5. If my command supports multiple pixel formats and ApplyToAnyPixelFormat is set to true, 
which PixelFormat is the best to use?

If your command will only operate on the source image, you must override the property 
InPlaceProcessing (see above example) so that it returns true. In this case, your implementation of 
PerformActualCommand will only be passed a valid source image and should return null.

211



Atalasoft DotImage Developer's Guide

If your command will operate on a region of the image, your class should descend from 
ImageRegionCommand. When PerformActualCommand is called, imageArea will be set to the 
smallest rectangle that contains the region of interest. In addition, the dest image, if you have not 
indicated that you will allocate it yourself, will be set to a size that matches that rectangle.

If your command needs the destination image in a different pixel format or size than the source 
image, you should override the protected method ConstructFinalImage(AtalaImage image). In 
this method you should allocate a new image that matches the size of the provided image in a 
PixelFormat that you would prefer. This image is passed back to you in PerformActualCommand. If 
you have no way of knowing how big or what pixel format the final image should be, this method 
should return null.

This is the only circumstance in which this method returns null. If you attempt to construct an 
AtalaImage and fail, throw an appropriate exception.

If you need or want to provide more information about a command than the standard 
ImageResults object provides, you should create a subclass of ImageResults to implement 
the functionality that you need. You can either then override the protected factory method 
ConstructImageResults() or you can set the reference parameter results in your implementation of 
PerformActualCommand() to your custom type.

Atalasoft DotImage takes several steps in choosing the pixel format that your command will use. 
By default, if your command supports the source image's PixelFormat, then your command will be 
handed the source image, unchanged. If your command is set to operate on any pixel format (via 
the ApplyToAnyPixelFormat property) and the source image's pixel format is not natively supported, 
then Atalasoft DotImage will construct a new image using the pixel format of the 0th entry in the 
array returned by SupportedPixelFormats.

If neither of these approaches are sufficient, you can override this behavior.

The protected method SelectPreferredPixelFormat(AtalaImage image, PixelFormat sourceFormat, 
PixelFormat[] supportedFormats) is called to choose a pixel format for the source image passed to 
PerformActualCommand. By default, this method returns sourceFormat. You can make this method 
return any PixelFormat at all. For example, some commands can operate on many pixel formats, 
but certain ones may perform optimally. You could conditionally return the optimal PixelFormat 
- or maybe the optimal format is different based on your command's properties. If you return a 
PixelFormat that is not in your array of supported PixelFormats, Atalasoft DotImage throws an 
IncompatiblePixelException if ApplyToAnyPixelFormat is false.

If you wish to change the way that the best PixelFormat is selected by Atalasoft DotImage 
when it is necessary to change the image's PixelFormat, override the protected method 
SelectBestAlternatePixelFormat(AtalaImage image, PixelFormat sourceFormat, PixelFormat[] 
supportedFormats). For example, you might want to return 8-bit gray if the source image is 1 bit, 
but 24 bit color when the source image is 4 or 8 bit.

If these rules do not work in your command, you can override the protected method 
ConstructChangedSourceImage(AtalaImage image). In this method, if you do not need to change 
the source image's PixelFormat, you should return null. Otherwise you should construct a new 
AtalaImage the same size as the supplied image and return it. Like ConstructFinalImage, this 
method should never return null as an error. It should instead throw an exception.

212



Atalasoft DotImage Developer's Guide

Finally, you can override the public method Apply() to implement your command, but you will lose 
all current and future benefits of the Atalasoft DotImage implementation. Therefore, it is only 
recommended that you override this method when there is no other way to do this.

ColorizeBlackCommand
This example takes a 1 bit per pixel image and turns every black pixel into a specified color. It 
overrides ConstructFinalImage to perform the work.

C#

public class ColorizeBlackCommand : ImageCommand
{ 
    private Color _blackColor = Color.Black; 
    public ColorizeBlackCommand() 
    { 
    } 
    public ColorizeBlackCommand(Color replacementColor) 
    { 
        _blackColor = replacementColor; 
    } 
    // only natively support 1 bit images 
 private static PixelFormat[] _supportedFormats = new PixelFormat[1]  
{ PixelFormat.Pixel1bppIndexed }; 
    public override PixelFormat[] SupportedPixelFormats { get  
{ return _supportedFormats; } } 
    // return a final image in 24 bit color 
 protected override AtalaImage ConstructFinalImage(AtalaImage image) 
    { 
        AtalaImage finalImage = new AtalaImage(image.Width, image.Height,  
PixelFormat.Pixel24bppBgr); 
        if (finalImage == null) // always throw on a null image 
 throw new OutOfMemoryException("Out of memory in ColorizeBlackCommand"); 
        return finalImage; 
    } 
    protected override void VerifyProperties(AtalaImage image) 
    { 
        // nothing needed 
    } 
    protected override AtalaImage PerformActualCommand(AtalaImage source,  
AtalaImage dest, Rectangle imageArea, ref ImageResults results) 
    { 
        // get the source width and height 
 int height = source.Height; 
        int width = source.Width; 
        // find out if a 1 bit is black or white 
 bool oneIsBlack = IsColorBlack(source.Palette.GetEntry(1)); 
        // get the color that should be used to change to black 
 byte red = (byte)_blackColor.R; 
        byte green = (byte)_blackColor.G; 
        byte blue = (byte)_blackColor.B; 
        PixelMemory sourcePM = source.PixelMemory; 
        PixelMemory destPM = dest.PixelMemory; 
        using (PixelAccessor sourcePA = sourcePM.AcquirePixelAccessor(),  
destPA = destPM.AcquirePixelAccessor()) 
        { 
            for (int y=0; y < height; y++) 
            { 
                    byte[] sourceRow = sourcePA.AcquireScanline(y); 
                    byte[] destRow = destPA.AcquireScanline(y); 
                    for (int x=0; x < width; x++) 

213



Atalasoft DotImage Developer's Guide

                    { 
                        if (IsBitSet(sourceRow, x, oneIsBlack)) 
                        { 
                            destRow[x * 3] = blue; 
                            destRow[x * 3 + 1] = green; 
                            destRow[x * 3 + 2] = red; 
                         } 
                         else 
                         { 
                            destRow[x * 3] = 255; 
                            destRow[x * 3 + 1] = 255; 
                            destRow[x * 3 + 2] = 255;                               
                         } 
                    } 
            } 
            sourcePA.ReleaseScanline(); 
            destPA.ReleaseScanline(); 
        } 
        return null; 
    } 
    // is the supplied color black 
 private bool IsColorBlack(Color c) 
    { 
        return c.R == 255 && c.G == 255 && c.B == 255; 
    } 
    // is a bit set at the give x coordinate in the row 
 private unsafe bool IsBitSet(byte[] row, int x, bool oneIsBlack) 
    { 
        byte theByte = row[x >> 3]; 
        int theBitIndex = 7 - (x & 0x7); 
        bool bitSet = (theByte & (1 << theBitIndex)) != 0; 
        return oneIsBlack ? !bitSet : bitSet; 
    } 
    public Color ReplacementColor { get { return _blackColor; } set  
{ _blackColor = value; } }
}

Upload an image to a server
There may be times when you want to send an image to a server. The HttpPost class was written for 
this specific purpose.

Upload the image
The following example sends a single image, along with a user name and password to identify the 
sender, to a server.

Example
C#

private void UploadImage(Atalasoft.Imaging.AtalaImage image)
{
// Create an instance of HttpPost and use the default image encoder.
Atalasoft.Imaging.HttpPost post = new Atalasoft.Imaging.HttpPost();

// Add the image to the form data collection.
post.FormData.Add("image1", image, "filename.png");

214



Atalasoft DotImage Developer's Guide

// Add data to identify the user posting the image.
post.FormData.Add("username", user);
post.FormData.Add("password", password);

// Post the form data to the server and retrieve a return value.
string ret = post.PostData("http://www.website.com/postImage.aspx");
}

The first part of the code creates an instance of HttpPost and uses the default image format, which 
is PNG. The image format determines the file type of the image when saved on the server.

Then the image is added to FormDataCollection, which includes the field name, image and filename 
for the image. It is best to think of HttpPost as an HTML FORM object. The FormData represents the 
FORM elements; in this case a FILE input box. You can update multiple images by adding them to 
the collection; just be sure each has a unique field name.

Next, add the username and password of the person sending this image. In many cases, additional 
information needs to be sent with the image in order to perform a specific action on the server. In 
terms of an HTML FORM, this would be a TEXTBOX field.

Finally, the FormData is sent to the server using the PostData() method. The return value of 
PostData is a string that is sent back from the server. Normally this is used to confirm the success of 
the call.

Saving the image
Once the image has been sent, save it to the server using ASP.NET. If necessary, you can modify this 
code to store the image in a database instead.

Example
C#

private void Page_Load(object sender, System.EventArgs e)
{
if (Request.Files.Count == 0) return;

// Save the file to the server.
string fileName = System.IO.Path.GetFileName(Request.Files[0].FileName);
Request.Files[0].SaveAs(GetNewFileName(fileName));

// Return the path to this file.
Response.Clear();
Response.Write("success");
Response.End();
}

private string GetNewFileName(string fileName)
{
// Create a unique filename.
string path = Server.MapPath("./images") + "\\" + Session.SessionID + fileName;
return path;
} 

215



Atalasoft DotImage Developer's Guide

In the code above, the SaveAs() method saves the image to the server. Notice that the FileName 
property gets the name of the posted file. This is the same value that was passed to the 
FormData.Add() method when you added the image.

The data written to the Response object is returned by the PostData() method. It is a good idea to 
use the Response.Clear() method before adding your return value. This example simply returns 
success

Annotations
The following sections cover various aspects of annotations.

Annotations
Atalasoft DotImage contains powerful annotation capabilities that can be used to markup, draw, 
and visualize objects on an image or document. These objects include primitive shapes, text, 
freehand, sticky notes, images and hot spots. Atalasoft DotImage includes an extensible interface 
that allows you to add your own custom annotation objects.

Annotations can be independently resized, moved, rotated, placed on different layers or groups, or 
saved to a separate file. The annotations can be embedded within an image* using the standard 
WANG format or our published format based on Adobe's XMP standard.

Features
Atalasoft DotImage annotations have the following features:
• Add an arbitrary number of annotation objects to an image.
• Annotation objects can be moved, resized, and rotated independently of the image.
• Annotations can be placed on layers.
• Annotations can be grouped. Once grouped they are resized and moved as one object.
• Annotations or layers can be locked/unlocked or visible/invisible.
• A fast and smooth display. Objects can be repainted while being resized.
• Uses GDI+ graphics allowing any object to be rendered at variable transparency.
• Extensible object model allows you easily to create your own custom drawn annotation objects 

with very little code.
• Save or load annotations as a separate XML file using Adobe's standard XMP format.
• Save or load WANG compatible annotations to or from a separate file.
• A custom cursor can be display the cursor hovers over an annotation.
• Annotations can be rotated along with the image in 90 degree increments.
• Respond to varied mouse clicks and events with flexible hyperlinking or other custom actions.
• Annotations can be defined in any unit system, including your own unit system.
• Annotations can be placed on any control using the IAnnotate interface.
• Individual points from annotations supporting multiple points (Freehand, Polygon, etc.) can be 

repositioned to change the shape of the object.

216



Atalasoft DotImage Developer's Guide

• Grips can be customized to display different shapes, custom mouse-over effects and more.
• Built-in AnnotateViewer (Atalasoft.dotImage.WinControls.dll) supports the IAnnotate interface 

and all viewing features of Atalasoft DotImage WinForms including scale to gray display, mouse 
tools, magnifier, etc.

• Save or load WANG compatible annotations to/from a TIFF image*.
• Save or load annotations embedded in a TIFF, JPEG, or PDF image in XML using Adobe's standard 

XMP format.
• Annotations can be burned onto the image with a single method.
• Annotations can be printed with the base image using the AnnotatePrintDocument class.
• Supports proper viewing of FAX images with differing X and Y resolutions.

Supported Annotations

The following is a list of supported Atalasoft DotImage annotation types.

 Some of the annotations below use the same annotation object with different property 
settings. See the object reference for detailed information and examples.

• Rectangle
• Highlighter
• Ellipse
• Line
• Freehand
• Text
• Note
• Rectangular HotSpot
• Freehand HotSpot
• Freehand Highlighter
• Embedded Image / Stamps
• Referenced Image
• Polygon
• Lines
• RubberStamp
• CalloutAnnotation

Import and export annotations
Starting with Atalasoft DotImage 7.0, Atalasoft DotImage Annotations contain a more formalized 
way for importing and exporting annotations. Both importing and exporting are represented by 
abstract objects that contain partial implementations that do most of the work for you.

Importing means to read the contents of a stream that contains an external representation of 
annotations and translates them into equivalent Atalasoft DotImage Annotation objects.

217



Atalasoft DotImage Developer's Guide

Exporting means to translate Atalasoft DotImage Annotation objects into some other equivalent 
data format and write to another location. In addition, exporting includes the notion of exporting 
annotations over an existing set within a file without disturbing the rest of the file. In most 
cases, this means simply writing annotations to a stream. In other cases it means being able to 
understand the format of an existing file to adjust it to compensate for new annotation data.

Both AnnotationDataImporter and AnnotationDataExporter may need to understand different 
annotation coordinate systems and scaling.

Unlike ImageDecoder and ImageEncoder objects which are stateless and can be used for many 
different streams, a unique AnnotationDataImporter or AnnotationDataExporter object is used per 
stream. This is done to allow caching and other performance optimizations.

Dual use objects
AnnotationDataImporter and AnnotationDataExporter objects are considered dual-use objects. 
They can serve as either a factory or as an importer/exporter of annotations.

As a factory, an AnnotationDataImporter can identify if a stream contains correct data, 
and can construct a new AnnotationDataImporter for a given stream. As an importer, an 
AnnotationDataImporter can provide information about the number of pages of annotations in a 
stream, the number of annotations per page, and it can translate the data into Atalasoft DotImage 
Annotation objects.

As a factory, an AnnotationDataExporter can identify if a stream contains correct data, and can 
construct new AnnotationDataExporter objects. As an exporter, an AnnotationDataExporter can 
indicate whether or not it can export annotations directly, whether or not it can export annotations 
over an existing document, and it can translate Atalasoft DotImage Annotation objects into its own 
format.

Import annotations
To import annotations, client code needs to be able to identify the correct AnnotationDataImporter 
to use for a given stream and then to construct a new AnnotationDataImporter object to use for the 
actual importing.

Example
C#
List<AnnotationDataImporter> _myImporters;

protected virtual AnnotationDataImporter GetImporter(Stream stream)
{ 
    foreach (AnnotationDataImporter importer in _myImporters)  
    { 
       if (importer.IsValidFormat(stream)) 
          return importer.FromStream(stream); 
    } 
    return null;
}

public AnnotationDataCollection ImportAllAnnotations(Stream stream)
{ 
   AnnotationDataImporter importer = GetImporter(stream); 
   try 

218



Atalasoft DotImage Developer's Guide

   { 
      if (importer != null) 
      { 
         return importer.Import(); 
      } 
   } 
   catch (Exception err) 
   { 
      MessageBox.Show("Unable to load annotations: " + err.Message); 
   } 
  
   return new AnnotationDataCollection();
}

In addition, it is possible to suppress errors encountered during importing by setting the 
ThrowOnError property of the AnnotationDataImporter to false. After calling import, all 
the Message properties from every exception thrown will be appended to the LastErrors 
property of the AnnotationDataImporter. LastErrors is automatically cleared by the 
AnnotationDataImporter before importing or loading annotations.
Even if ThrowOnError is set to false, there is no guarantee that any particular 
AnnotationDataImporter will recover from an error. Most AnnotationDataImporters will halt at 
the first error on a page. For importing multiple pages, this means that one or more pages may 
have incomplete annotations.

Write a custom AnnotationDataImporter
In order to create a custom AnnotationDataImporter, a client object must inherit from 
AnnotationDataImporter and at a minimum, implement the following abstract methods:

public abstract bool IsValidFormat(Stream stm);

IsValidFormat returns true if the stream is in the correct format for this AnnotationDataImporter. 
It is vital that the stream is left in the same state as when IsValidFormat was entered.

public abstract AnnotationDataImporter FromStream(Stream stm);

FromStream constructs a new AnnotationDataImporter attached to the given stream object.

protected abstract void LLLoad();

LLLoad is the low-level implementation of Load. LLLoad should do any pre-flight or caching 
of annotation data. For example, some AnnotationDataImporters do all their work in LLLoad
and simply access constructed data in other methods. LLLoad will only be called once per 
AnnotationDataImporter object.

protected abstract int LLGetPageCount();

Returns the total number of pages in the given stream. LLGetPageCount is only called after a call 
to Load().

protected abstract int LLGetAnnotationCount(int page);

Returns the total number of annotations on a given page. LLGetAnnotationCount is only called 
after a call to Load(). Page is always greater than or equal to zero and less than LLGetPageCount.

219



Atalasoft DotImage Developer's Guide

protected abstract AnnotationData LLImport(int page, int annotIndex);

Returns an imported annotation by index from a given page. Page is always greater than or equal 
to zero and less than LLGetPageCount(). annotIndex is always greater than or equal to zero 
and less than to LLGetAnnotationCount(page).

In addition, there is an implementation of LLImport which is not abstract:

protectedvirtual LayerData LLImport(int page) { /* … */ }

Some client code will be much more efficient if they can import all the annotations on a given page 
rather than doing it piecemeal. The default implementation gets the number of annotations on 
the given page, makes a new LayerData, fires the OnAnnotationPageImporting event, then called
LLImport(page, index) for every annotation on the page, firing the OnAnnotationImported 
event, then adding the item to the layer.

 LLImport(page) does NOT fire the OnAnnotationPageImported event. That event is fired by 
the high level Import() method.

Handle unknown annotation types
Some data formats for annotations are living standards that are expected to grow in the future. 
As such, there needs to be the ability to handle unknown annotation types during importation. In 
the AnnotationDataImporter, there is a property called FailsafeAnnotationFactory. This property, if 
non-null, is a delegate to a method that can be used to construct an Atalasoft DotImage Annotation 
if the AnnotationDataImporter can't. This delegate gets passed the AnnotationDataImporter that 
attempted to import the annotation, a RectangleF representing the bounds of the annotation in the 
coordinate system of the destination, and an object representing the data for the annotation. This 
object is constructed by the specific AnnotationDataImporter and its class and contents are up to 
the author of the AnnotationDataImporter.

Coordinate systems
Annotation data formats may or may not have their own coordinate system. In general, an 
AnnotationDataImporter is expected to understand the coordinate system of the source 
annotations and be able to convert it to Atalasoft DotImage coordinates. In Atalasoft DotImage, 
the coordinate system is similar to most imaging. It starts with (0, 0) in the upper left corner with X 
increasing to the right and Y increasing downward. The units of the coordinate system may depend 
image on top of which the Atalasoft DotImage annotation will be displayed. For example, the 
XmpAnnotationDataImporter requires an AnnotationController in order to determine units and size. 
The PdfAnnotationDataImporter uses PDF coordinates for everything.

If client code implements this delegate, it is expected to return either a new object of type 
AnnotationData or null. Returning null means that the annotation will be ignored.

The PdfAnnotationDataImporter
New to Atalasoft DotImage 7.0 was a special AnnotationDataImporter for PDF documents. At 
present, it reads all flavors of PDF except for encrypted PDF and PDF with binary cross-reference 
tables (an option in PDF 1.5 and above). It will import the following PDF annotation types: Caret, 
Circle, Highlight, Line, Polygon, Polyline, Square, Squiggly line, Strikeout, and Underline. Other 

220



Atalasoft DotImage Developer's Guide

standard PDF Annotation types will be represented by a TextAnnotation object with text that starts 
"Unknown annotation of type …"

When the PdfAnnotationDataImporter encounters a PDF Annotation that is outside of the PDF spec, 
it will call the FailsafeAnnotationFactory. The object passed in to the factory will be a .NET Hashtable 
object. It will contain a set of key/value pairs that represent data inside the PDF annotation. The 
keys are all strings and correspond to the names of dictionary entries within the annotation 
according to the Adobe PDF Specification. We do not yet specify what the values will be under all 
circumstances and their data type and contents are subject to change. In general, however, the 
values will be the closest corresponding .NET data type (ie, PDF strings will be .NET strings, PDF 
numbers will be doubles or integers, PDF arrays will be ArrayList, etc.).

New to Atalasoft DotImage 8.0 was the ability for PDF annotations to contain embedded data. 
Atalasoft DotImage can interpret this data as a serialized AnnotationData object that can be 
deserialized into the original object. A PDF annotation that contains embedded data is acting as a 
proxy. If that proxy has been moved/sized/edited by a user in the PDF, DotImage Annotations have 
a mechanism for merging changes in the proxy annotation into the embedded annotation. Most 
of this is handled automatically, by copying over the most commonly used editable properties, but 
through the use of collection of "mergers" it is possible to customize how proxy annotations are 
merged into the embedded annotations.

The XmpAnnotationDataImporter
Atalasoft DotImage Annotations also include the XmpAnnotationDataImporter. Given an annotation 
controller, the XmpAnnotationDataImporter can read XMP data from either TIFF or JPEG streams 
and convert them into Atalasoft DotImage Annotations.

Export annotations
In addition to being able to serialize Atalasoft DotImage Annotations, it is possible to export them 
to other formats. Exporting is different from serializing. In many cases, simple serialization is 
exactly what is needed for a task. Serialization produces one chunk of data that fully encompasses 
all elements of a set of Atalasoft DotImage Annotations. Exporting involves taking the annotation 
data and possible changing it from Atalasoft DotImage Annotations into some other data type 
and inserting it into or appending it onto some other file. The final file may not have an exact 
representation of the original annotations. Exporting is done through an AnnotationDataExporter 
object. Like AnnotationDataImporter, it serves two purposes. It acts as a factory that can make new 
AnnotationDataExporter objects and it can act as a writer.

Exporting annotations can happen in two ways. The first is simple exporting. The annotation is 
given a source stream from which represents an existing file and a destination stream for writing 
the annotations. In general, the source stream will be copied to the destination stream then 
the annotations will be added on. Some exporters will read sections of the source stream and 
intersperse annotations into the output stream. Some exporters will ignore the source stream 
entirely.

The second way that annotations can be exported is by exporting over an existing file. This means 
writing annotations into an existing file in such a way that it supersedes existing content. For 
example, PDF is defined in such a way that exporting over is an existing file is a natural operations. 
It is straightforward to modify a document to include new annotations without affecting the 
existing document otherwise.

221



Atalasoft DotImage Developer's Guide

AnnotationDataExporter reports which methods are best handled via the properties CanExport and 
CanExportOver. An AnnotationDataExporter needs to return true for at least one of these.

In spite of the restrictive appearance of Export and ExportOver, these methods are actually 
implemented in terms of each other. If an AnnotationDataExporter reports that it is unable 
to do ExportOver, the source stream will be copied to a temporary file and then Export will 
be called with the temporary file as the source and the original file as the destination. If an 
AnnotationDataExporter reports that it is unable to do Export, Export will copy the source stream to 
the destination stream and then call ExportOver.

In general, client code should not care whether or not an AnnotationDataExporter supports one 
or the other means of exporting except in the case of efficiency or resource management. The 
properties CanExport and CanExportOver are meant to reflect what an AnnotationDataExporter can 
do best, thereby allowing the client to choose the most efficient mode of operation.

Exporting is somewhat more complicated than importing in that it is necessary to know the 
coordinate system of every page before exporting. To translate coordinate systems correctly, an 
AnnotationDataExporter needs to know the size of each page in source page units, the resolution of 
the source page and the units of all pages.

Write a custom AnnotationDataExporter
In order to create a custom AnnotationDataExporter, client code must inherit from 
AnnotationDataExporter and at a minimum implement the following abstract methods:

public abstract bool CanExportOver { get; }

Indicates that the AnnotationDataExporter can export over an existing stream.

public abstract bool CanExport { get; }

Indicates that an AnnotationDataExporter can export from a source stream to a destination stream.

public abstract bool IsValidFormat(Stream stm);

Returns true if the stream is the correct format for this Exporter.

public abstract AnnotationDataExporter Construct();

Constructs a new AnnotationDataExporter.

protected abstract void LLExport(Stream sourceStream, Stream destStream, 
SizeF pageSize, AnnotationUnit units, Dpi resolution, LayerData layer, int 
frameIndex);

Exports a single page of annotations from a source stream to a destination stream. If CanExport
returns false, this method is never called.

protected abstract void LLExport(Stream sourceStream, Stream 
destStream, SizeF[] pageSizes, AnnotationUnit units, Dpi[] resolution, 
AnnotationDataCollection layers);

Exports an entire set of annotations from a source stream to a destination stream. If CanExport
returns false, this method is never called.

222



Atalasoft DotImage Developer's Guide

protected abstract void LLExportOver(Stream sourceStream, SizeF pageSize, 
AnnotationUnit units, Dpi resolution, LayerData layer, int frameIndex);

Exports a page of annotations over an existing stream. If CanExportOver returns false, this routine 
is never called.

protected abstract void LLExportOver(Stream sourceStream, SizeF[] pageSizes, 
AnnotationUnit units, Dpi[] resolution, AnnotationDataCollection layers);

Exports an entire set of annotations from a source stream to a destination stream. If
CanExportOver returns false, this routine is never called.

The PdfAnnotationDataExporter
The PdfAnnotationDataExporter can export annotations to a PDF document, translating them 
into annotations. The PdfAnnotationDataExporter translates the following Atalasoft DotImage 
annotation types into PDF annotations:
• Rectangle
• Ellipse
• Text
• Freehand
• Polygon
• Lines
• Line
• PdfMarkup
• PdfLine

There are properties of AnnotationData that does not have equivalent properties in the PDF 
annotations. Here is the list of those properties:
• Rotation from all AnnotationData objects.
• Shadow from RectangleData, EllipseData and TextData.
• LineType from FreehandData and PolygonData.
• Fill from FreehandData.
• Alignment from TextData.
• FormatFlags from TextData.

These properties are ignored when converting.

The PdfAnnotationDataExporter can handle exporting annotations that do not necessarily make 
sense in PDF. For example, if you have created an annotation in Atalasoft DotImage that includes 
hooks into a database, it does not work in Acrobat or other PDF viewers without a custom plug-in. 
Atalasoft DotImage annotations are, by default, embed a serialized version of the annotation inside 
a PDF Rectangle annotation. The Rectangle annotation in turn will be given a custom appearance 
take from the custom annotation itself. Although the PDF annotation will not have the same 
behavior as in Atalasoft DotImage annotations, the embedded data can be deserialized into the 
original object.

223



Atalasoft DotImage Developer's Guide

In addition, users can customize the annotation appearance in PDF via policies set within the 
PdfAnnotationDataExporter. PdfAnnotationExportPolicy can be used to instruct the library on how 
to handle AnnotationData and how it will appear within the PDF.

The PdfAnnotationDataConverter
The PdfAnnotationDataConverter can convert annotations to PDF annotations. The 
converted annotations can be added to the PdfGeneratedDocument or PdfDocumentSigner. 
The PdfAnnotationDataConverter has the same capabilities and limitations as the 
PdfAnnotationDataExporter. (See The PdfAnnotationDataExporter for more information.)

Examples of using the PdfAnnotationDataConverter for converting annotations can be found in the 
API Reference.

Create an annotation enabled control
The annotation component is designed to be very easy to implement and use. This section 
describes how to quickly create an annotation enabled control.

Integrate with Atalasoft DotImage
When integrating with Atalasoft DotImage, an AnnotateViewer can be added to a Windows 
Form or user control. This control is located in the Atalasoft.DotImage.Annotate assembly and 
references the Atalasoft.DotImage and Atalasoft.DotImage.WinControls assemblies, part of 
Atalasoft DotImage. The AnnotateViewer control derives from the WorkspaceViewer control with 
added Annotation functionality. The AnnotationController is accessed through the Annotations 
property. The AnnotateViewer also has a Burn() method which, as its name suggests, burns the 
annotation onto the image.

Printing Annotations with the AnnotatePrintDocument makes printing annotations on top of 
the image very easy. It derives from the ImagePrintDocument available in Atalasoft DotImage 
WinControls. This control is also available only when integrating with Atalasoft DotImage.

Interactively create an annotation
To interactively create an annotation, an Annotation instance needs to be passed to the 
CreateAnnotation() method. Once this method is called, a mouse down action adds the annotation 
to the current layer and it is resized until the mouse is depressed. The resulting annotation can 
then be edited (resized and repositioned) if the InteractMode in the AnotationController is set to 
Author. If InteractMode is set to View, then the resulting annotation is locked and cannot be edited. 
Setting InteractMode to None tells the AnnotationController to ignore mouse messages, allowing 
the viewer to handle any mouse tools that may be used. All annotation types, and even custom 
annotation types can be created in this manner.

The following code is shows how to set up code to create a "sticky note" annotation.

Example
C#
Creating a Sticky Note Annotation

224



Atalasoft DotImage Developer's Guide

TextAnnotation myAnnotation = new TextAnnotation();
myAnnotation.Text = "Annotations are cool";
myAnnotation.Fill = new AnnotationBrush(Color.Yellow);
myAnnotation.Shadow = new AnnotationBrush(Color.Gray);
myAnnotation.ShadowOffset = new PointF(4, 4);
annotationController1.CreateAnnotation(myAnnotation);

See Create a Template Annotation to see how to allow the user repeatedly to create the same 
annotation.

Create an annotation programmatically
To create an annotation programmatically and add it to an image, one needs to simply add the 
annotation object to the a LayerAnnotation in the Layers collection. The position of the annotation 
in the collection defines the Z-order or order it's painted. The Add() method in the CurrentLayer 
adds the annotation to the end of the collection, and is painted on top of all other annotations in 
that layer.

The following code shows how to add annotations programmatically.

Example
C#
Adding Annotations Programmatically

TextAnnotation myAnnotation = new TextAnnotation();
myAnnotation.Text = "Annotations are cool";
myAnnotation.Fill = new AnnotationBrush(Color.Yellow);
myAnnotation.Shadow = new AnnotationBrush(Color.Gray);
myAnnotation.ShadowOffset = new PointF(4, 4);
myAnnotation.Location = new PointF(100, 100);
myAnnotation.Size = new SizeF(100, 200);
annotationController1.CurrentLayer.Items.Add(myAnnotation);

Annotation assemblies
The following DotImage assembly is available for work with Annotations.

Assembly Description

Atalasoft.DotImage.WinControls.dll Contains a control called AnnotateViewer 
derived from our Atalasoft DotImage 
toolkit's WorkspaceViewer control and an 
AnnotatePrintDocument to print an image with 
annotations

The AnnotationController component contains all the annotations in a viewer whether built in 
or custom. It has a collection of LayerAnnotations, each with a collection of annotations. The 
AnnotationController contains properties that affect how the user interacts with the view port. 
The InteractMode property can be set to View, Author, or None. When in Author mode, individual 
annotations can be interactively moved, resized and rotated. View mode is for image display, 
without the ability to interactively edit annotations and make hot spot annotations active.

225



Atalasoft DotImage Developer's Guide

The AnnotationUI object is an abstract base class that all annotations derive from. New annotations 
can be added to a document by creating an instance of any one of the annotation objects 
derived from the AnnotationUI class and passing it into the CreateAnnotation() method in the 
AnnotationController. This allows the user to interactively place an annotation onto the IAnnotate 
view port or AnnotateViewer.

LayerAnnotations can be used to define a set of related objects that have specific permissions 
or attributes. They can also be used when annotating multipage documents. The Layers 
property contains a collection of LayerAnnotations loaded in the AnnotationController and each 
LayerAnnotation can contain additional LayerAnnotation objects.

A group is a set of related annotations that act as one object. It is represented by a LayerAnnotation 
with its GroupAnnotation property set to true. Groups can be created manually by setting the 
GroupAnnotation property or by using the Group() method of the AnnotationController. Top level 
LayerAnnotations in the Layers collection cannot be used as groups.

Create a template annotation
To allow a user repeatedly to create an annotation with the same properties, you can setup a 
template and clone it after the earlier annotation is added to the control.

To do so, handle the AnnotationCreated event in the AnnotationController or AnnotateViewer and 
clone the template annotation stored as a field. The user is then able to add multiple instances of 
the same annotation onto a document.

Example

The following code demonstrates how to do this.

C#

public MainForm()
{ 
    InitializeComponent(); 

    // create template annotation (allow users to modify these properties if required) 
    _template = new RectangleAnnotation(); 
    // start creating annotations interactively 
    annotationViewer.Annotations.CreateAnnotation(_template.Clone());
}

public void annotationViewer_AnnotationCreated(object sender, AnnotationEventArgs e)
{ 
    annotationViewer.Annotations.CreateAnnotation(_template.Clone());
}

Print annotations
Atalasoft.DotImage.WinControls.dll includes the AnnotatePrintDocument component in the 
Atalasoft.DotImage.Annotate assembly. This component derives from ImagePrintDocument which 
derives from the .NET PrintDocument class. The .NET components that accept PrintDocument also 
accept AnnotatePrintDocument which gives the application the ability to change printer settings, 
page settings, and show a print preview.

226



Atalasoft DotImage Developer's Guide

Example
This example demonstrates how to show a print setup dialog, then print all images with 
annotations.

C#

PrintDialog myPrintDialog = new PrintDialog();
AnnotatePrintDocument myAnnotatePrintDocument = new AnnotatePrintDocument();
myPrintDialog.Document = myAnnotatePrintDocument;
if (myPrintDialog.ShowDialog(this) == DialogResult.OK)
{ 
    myAnnotatePrintDocument.Image = this.Viewer.Image; 
    myAnnotatePrintDocument.Annotations = this.Viewer.Annotations; 
    myAnnotatePrintDocument.Print();
}

Using IAnnotate
A few approaches are available for printing annotations.

1. Paint the annotations onto the image with the RenderAnnotations() method in 
AnnotationController, then print the image using the PrintDocument class.

2. Using the PrintDocument class, handle the PrintPage event and draw the document, then draw 
each annotation using its associated IAnnotationRenderer.

3. Derive from PrintDocument yourself and create your own annotation print document.

In each case, you must determine the scaling and offset required depending on the document size 
and the page size and depending on how you wish the image to be printed.

Serialize to XMP And WANG data
DotImage Annotations support saving and reading XMP and WANG annotation data. Data can be 
saved into a separate file or stored in an image usable with Atalasoft DotImage.

WANG annotations
This data format allows basic annotations to be stored into TIFF images. Many image viewers 
are able to read WANG data, making it a good choice if the images are viewed in other products. 
However, because only basic shapes and colors can be used, some annotation data will not be 
reproduced by other products.

When integrating with Atalasoft DotImage, WANG data is saved into TIFF images using TAG ID 
32932.

To retrieve WANG data from an image, use the GetTiffTag() method of the TiffDecoder.

To save WANG data into an image, create a new TiffTagCollection, adding a TiffTag with the ID of 
32932, and set the Data object to the WANG data created with the WangFormatter class.

227



Atalasoft DotImage Developer's Guide

Saving annotations
This was developed by Adobe so applications can share metadata information using a standard 
format. The data can be saved as a separate XML file or stored into TIFF, JPEG or PDF files.

In order to include annotation data, an annotation schema was developed to extend XMP. By 
following this schema, other applications will be able to read and write the annotation data.

When integrating with Atalasoft DotImage, WANG data can be stored into JPEG, TIFF, and PDF 
images, and retrieved from JPEG and TIFF images. To retrieve XMP data from an image, use the
BytesFromImage() method of the XmpParser class, and pass the returned byte array into the 
Load() method of AnnotationController. To save XMP data including DotImage Annotations, use the 
Save(Formatter) method of the AnnotationController,passing in an XmpFormatter and set the Xmp 
property of the TiffEncoder, JpegEncoder, or PdfEncoder to the byte array returned from the Save() 
method.

Custom annotations
If you have developed a custom annotation, the annotation data and UI classes should implement 
the ISerializable interface. This serialization is used by the WANG and XMP formatters when saving 
and loading annotations. An example appears below.

Example
C#

public TriangleData(SerializationInfo info, StreamingContext context) :  
base(info, context)
{ 
    this._fill = (AnnotationBrush)SerializationInfoHelper.GetValue(info, "Fill",  
new AnnotationBrush(Color.Blue)); 
    base.SetBrushEvents(this._fill);
}  
[SecurityPermissionAttribute(SecurityAction.Demand, SerializationFormatter=true)]
public override void GetObjectData(SerializationInfo info, StreamingContext context)
{ 
    base.GetObjectData(info, context); 
    info.AddValue("Fill", this._fill);
}

Work with unit systems
DotImage Annotations are designed to work in any unit system. You can set the unit system using 
the Resolution property in IAnnotate . When this value is set to 1.0, the annotation objects are sized 
to pixel coordinates. Adjusting this value scales the coordinate system relative to pixels.

Example
To position and size objects in inches on a 96 dpi display, set the Resolution value to 96.

228



Atalasoft DotImage Developer's Guide

Units in the AnnotateViewer control
The AnnotateViewer control has a Units property. This automatically sets the Resolution to the 
appropriate value based on the resolution of the image in the control. Any value other than Custom 
overrides the Resolution to a value based on the image's resolution scaled to the appropriate unit.
This is convenient when viewing images such as maps in units such as kilometers. When the X and 
Y resolutions in the image differ, the control adjusts the aspect ratio and extends the height of the 
image. Annotation objects can be precisely positioned in familiar coordinates without the need to 
convert or track units in your own code.

Units in a custom IAnnotate control
Setting the Resolution property to a value (pixels per unit) allows you to specify the location and 
size of all annotation objects using any unit you wish. The effect is the same as setting the Units 
property in the AnnotateViewer to Custom and specifying a custom Resolution.

Render custom grips
With the DotImage Annotations polymorphic event-based model, many aspects of the user 
interface can be customized including the grips.

By default, grips are represented by 10-pixel solid white squares with a black border. They can be 
customized to any shape or size. You can also code special behaviors depending on the mouse 
status (hovering, mouse down, and so forth).

There are a two ways to enable custom grip drawing:

• If you have a custom annotation rendering engine that derives from AnnotationRenderingEngine, 
override the protected RenderGrips() method.

• Create a new class that implements the IAnnotationGripRenderer interface.

Overriding the RenderGrips method
Overriding the RenderGrips() method of AnnotationRenderingEngine is the easiest way to 
provide custom rendering because the matrix manipulation is handled, leaving you with the 
simple task of drawing the grips. To provide a greater understanding of how to deal with matrices 
when drawing grips, the example that follows takes the challenging route of implementing 
IAnnotationGripRenderer.

Example
Create a class that implements IAnnotationGripRenderer.

C#

public class MyCustomGripRenderer : Atalasoft.Annotate.Renderer.IAnnotationGripRenderer

Implement the RenderGrips() method by breaking this into section.

C#

229



Atalasoft DotImage Developer's Guide

public void RenderGrips(IAnnotationGrips grips, AnnotationData annotation,  
Atalasoft.Annotate.Renderer.RenderEnvironment e)
{ 
    if (annotation == null || grips == null || e == null) return; 
  
   // Section: Where will have to get the scaling being applied to the viewer matrix 
 (vm)  
   //and undo this change because a grips size should not scale.            
   // Multiple the annotation transform to the viewer matrix. 
   System.Drawing.Drawing2D.Matrix vm = null; 
   if (e.Transform != null) 
     vm = e.Transform.Clone(); 
   else if (e.Graphics.Transform != null) 
     vm = e.Graphics.Transform.Clone(); 
   float scaleX = vm.Elements[0]; 
   float scaleY = vm.Elements[3]; 
   // The annotation transform. 
   System.Drawing.Drawing2D.Matrix m = annotation.GetRenderTransform(); 
   if (vm != null) 
   { 
     vm.Multiply(m); 
     m.Dispose(); 
   } 
   else 
    vm = m; 
  
   // This will undo the scaling the transformation 
   // matrix wants to perform, since grips don't scale. 
   vm.Scale(1f / scaleX, 1f / scaleY); 
   System.Drawing.Drawing2D.GraphicsState state = e.Graphics.Save(); 
   e.Graphics.Transform = vm;  
  // Section: Now we will create our drawing objects 
  // and perform the actual drawing. 
  // This is the code you would write if overriding 
  // the RenderGrips method in a rendering engine. 
 // Create the brush and pen objects.  
  Brush brush = 
 Atalasoft.Annotate.Renderer.AnnotationRenderingEngine.CreateBrush(grips.Fill);  
  Pen pen = 
 Atalasoft.Annotate.Renderer.AnnotationRenderingEngine.CreatePen(grips.Outline);  
  Brush rotateBrush = (grips.RotationFill == null ? brush :  
Atalasoft.Annotate.Renderer.AnnotationRenderingEngine.CreateBrush(grips.RotationFill));  
  Pen rotatePen = (grips.RotationOutline == null ? pen :  
Atalasoft.Annotate.Renderer.AnnotationRenderingEngine.CreatePen(grips.RotationOutline)); 
  SizeF size = grips.Size; 
  float w2 = size.Width / 2f; 
  float h2 = size.Height / 2f;  
  foreach (AnnotationGrip grip in grips) 
  { 
    // Ignore grips that should not be drawn. 
 if (!grip.Visible) continue; 
    if (grip.Action == AnnotationGripAction.Rotating && !annotation.CanRotate) 
 continue;  
    // While the grip size does not scale, the position of the grip does. 
    RectangleF rc = new RectangleF(Convert.ToInt32(grip.Position.X * scaleX - w2),  
    Convert.ToInt32(grip.Position.Y * scaleY - h2), size.Width, size.Height);  
    if (grip.Action == AnnotationGripAction.Rotating && rotateBrush != null) 
       e.Graphics.FillRectangle(rotateBrush, rc); 
    else if (brush != null) 
       e.Graphics.FillEllipse(brush, rc);  
    if (grip.Action == AnnotationGripAction.Rotating && rotatePen != null) 
       e.Graphics.DrawRectangle(rotatePen, rc.X, rc.Y, rc.Width, rc.Height); 
    else if (pen != null) 
       e.Graphics.DrawEllipse(pen, rc); 

230



Atalasoft DotImage Developer's Guide

    }  
    // Clean up 
 if (rotateBrush != null && rotateBrush != brush) 
      rotateBrush.Dispose(); 
    if (rotatePen != null && rotatePen != pen) 
      rotatePen.Dispose(); 
    if (brush != null) 
      brush.Dispose();  
    if (pen != null) 
      pen.Dispose();  
    // Section: Now we need to restore the Graphics 
    // state so any additional rendering will 
    // not be affected by our change.  
    e.Graphics.Restore(state); 
    vm.Dispose();
} 

Respond to events
Clicking, double clicking, hovering over, resizing, moving, or activating an annotation results in an 
event firing. That fact allows for easy customization and user interaction. AnnotationController 
events can be fired for all annotations, or for a specific annotation object. The ActiveAnnotation is 
always the annotation being interacted with.

HotSpot annotations allow end users to click an area of a document so that the application can 
respond.

 Individual Annotation objects can respond to actions as events. Most events in the 
AnnotationController have the same event in the annotation object itself.

This example below shows a message box with the name of the HotSpotAnnotation the user 
clicked.

Example
Triggering a Message Box from a HotSpot AnnotationHotSpot.

C#

annotationViewer1.AnnotationClicked += 
 AnnotationEventHandler(annotation_AnnotationClicked);
...
private void annotation_AnnotationClicked(object sender, AnnotationEventArgs e)
{ 
    if (e.Annotation is HotSpotAnnotation) 
    { 
        MessageBox.Show(this, "The hotspot named " + e.Annotation.Name +  
          " was clicked!", "Hot Spot Notification"); 
    }
}

231



Atalasoft DotImage Developer's Guide

Add a context menu to an annotation
The ContextMenu property of the Annotation class allows a pop-up menu to be displayed when any 
Annotation object is right clicked. This is a nice way to allow the user to edit and change properties 
of the active annotation.

The Annotation object in focus is set to the ActiveAnnotation property in the AnnotationController 
component. When using the AnnotateViewer, the active annotation property is accessed as 
annotateViewer1.Annotations.ActiveAnnotation. In the context menu item clicked event, you can 
change the properties of the active annotation, then refresh the controller.

Example
The following example demonstrates changing the background color of the annotation by:

1. Showing a color dialog

2. Checking for a Fill property and then

3. Adjusting the color.

Changing the Background Color

C#

private void menuBackColor_Click(object sender, System.EventArgs e){  
// Display the pick color dialog.  
ColorDialog dlg = new ColorDialog();  
if (dlg.ShowDialog() == DialogResult.OK) { 
    AnnotationBrush brush = new AnnotationBrush(dlg.Color); 
    AnnotationUI annotation = annotateViewer1.Annotations.ActiveAnnotation; 
    SetProperty(annotation.GetType(), "Fill", annotation, typeof(AnnotationBrush), 
 brush);  
}
dlg.Dispose();
}  
private void SetProperty(Type annType, string propertyName, AnnotationUI annotation, 
 Type valueType, object value)
{ 
    PropertyInfo info = annType.GetProperty(propertyName); 
    if (info != null && info.CanWrite) 
    { 
        if (info.PropertyType == valueType) 
            info.SetValue(annotation, value, null); 
    }
}

Highlight a document
To highlight an area of a document, use any annotation that implements the IHighlighter interface 
and set the Translucent property to true.

232



Atalasoft DotImage Developer's Guide

Bright colors in the base image are replaced with the color of the annotation object. Dark colors will 
show through. The results are very similar to those you would get using a highlighter on a paper 
document.

The following annotations currently implement IHighlighter:

• EllipseAnnotation
• FreehandAnnotation
• LinesAnnotation
• PolygonAnnotation
• RectangleAnnotation

Work with layers and groups
This section discusses how to work with layers and groups.

Layers
LayerAnnotations are container objects that can hold an arbitrary number of annotations, including 
other LayerAnnotation objects. Layers can be used to differentiate pages in a multipage document. 
Typically, a layer holds annotations from each document page.

When the Visible property of a LayerAnnotation is set to false, none of its child annotations are 
rendered. This provides a convenient way to show or hide a collection of annotations.

Groups
A Group is a LayerAnnotation with its GroupAnnotation property set to true. When a layer works 
as a group, the grips are shown around the layer instead of the annotations it contains. Moving or 
resizing a group moves or resizes all of its annotations.

To create a group, begin by creating a new LayerAnnotation, adding annotations into the layer, 
and set its GroupAnnotation property to true. The AnnotationController has Group() and Ungroup() 
methods to simplify this process.

 Top level layers, i.e. those in the Layers property of AnnotationController, cannot be used as a 
group. Only LayerAnnotations contained in other layers can act as a group.

Create a custom annotation
DotImage Annotations, like all of Atalasoft DotImage, are designed to be extensible. Should you 
encounter a case where the built-in annotation objects do not suffice, the polymorphic design of 
DotImage Annotations allows you to create arbitrary objects defined by any number of points.

The AnnotationData and AnnotationUI classes are the base of all annotations. The PointBaseData 
and PointsBaseAnnotation classes can be derived from to define an object as a series of points that 
can be interactively edited either by redefining the overall rectangle, or by repositioning any point 
represented as a grip.

233



Atalasoft DotImage Developer's Guide

In addition to the data and UI classes, each annotation has a renderer associated with the data 
class. The renderer implements IAnnotationRenderer and handles rendering the annotation and its 
grips.

The example that follows demonstrates on how to create a custom annotation, in this case, a 
triangle-shaped annotation.

Example
Step 1: Create the TriangleData class derives from AnnotationData.

Create the TriangleData class derives from AnnotationData. It implements ISerializable and 
IConeable.

C#
public class TriangleData : Atalasoft.Annotate.AnnotationData, ISerializable, 
 ICloneable

Step 2: Add a Fill Property to the Annotation

Add a Fill Property to the Annotation.

The code below demonstrates raising the PropertyChanging event when a property value is being 
modified as well as adding an entry in the AnnotationUndoManager for this change.

C#
public AnnotationBrush Fill
{ 
 get { return _fill; } 
 set 
 { 
     // If there is no change just ignore it. 
     if (Equals(value, _fill)) 
         return; 

     // Raise the PropertyChanging event so any derived classes are notified. 
     var e = new AnnotationPropertyChangingEventArgs(this, "Fill", _fill, value); 

     // If IgnoreDataChanges is true, we should not raise events. This can 
     // happen when making internal changes that we don't want propagated. 
     if (!IgnoreDataChanges) 
     { 
         OnPropertyChanging(e); 
         if (e.Cancel) return; 
     } 

     // If we want this property to work with the UndoManager, we must 
     // pass in an AnnotationUndo object for this change. 
     var undo = new AnnotationUndo(this, "Fill", _fill, "Fill Change"); 
     var newValue = (AnnotationBrush)e.NewValue; 

     // If dynamic changes are required for brush properties, 
     // the SetBrushEvents and RemoveBrushEvents methods should 
     // be used. These allow the brush properties to notify 
     // the AnnotationController that a change was made. 
     RemoveBrushEvents(_fill); 
     _fill = newValue; 
     SetBrushEvents(_fill); 

234



Atalasoft DotImage Developer's Guide

     // Finally, pass the undo object to the AnnotationController. 
     if (!IgnoreDataChanges) 
     { 
         OnAnnotationControllerNotification( 
             new AnnotationControllerNotificationEventArgs( 
                 Atalasoft.Annotate.AnnotationControllerNotification.Invalidate, 
 undo)); 
     } 

     var eChanged = new AnnotationPropertyChangedEventArgs("Fill", _fill, newValue); 
        OnPropertyChanged(eChanged); 
 }
}

Step 3: Override the Clone() MethodClone()

You must override the Clone() method when deriving from AnnotationData.

C#
public override object Clone()
{ 
    TriangleData data = new TriangleData(); 
    base.CloneBaseData(data); 
    data._fill = (this._fill == null ? null : this._fill.Clone()); 
    return data;
}

Step 4: Add serialization code

Add serialization code so this annotation can be serialized to XMP or WANG.

C#
public TriangleData(SerializationInfo info, StreamingContext context) : base(info, 
 context)
{ 
     this._fill = (AnnotationBrush)SerializationInfoHelper.GetValue(info, "Fill", new 
 AnnotationBrush(Color.Blue)); 
     base.SetBrushEvents(this._fill);
}  
[SecurityPermissionAttribute(SecurityAction.Demand, SerializationFormatter=true)]
public override void GetObjectData(SerializationInfo info, StreamingContext context)
{ 
     base.GetObjectData(info, context); 
     info.AddValue("Fill", this._fill);
}

Step 5: Add serialization code

Add a method to return the points of the annotation in annotation space.

C#
public PointF[] GetTrianglePoints()
{ 
    PointF[] points = new PointF[3]; 
    points[0] = new PointF(0, this.Size.Height); 
    points[1] = new PointF(this.Size.Width, this.Size.Height); 
    points[2] = new PointF(this.Size.Width / 2f, 0); 

235



Atalasoft DotImage Developer's Guide

    return points;
}

Step 6: Create a TriangleAnnotation class that derives from AnnotationUI and implements 
ISerializable

Add a method to return the points of the annotation in annotation space.

C#
public class TriangleAnnotation : Atalasoft.Annotate.UI.AnnotationUI, ISerializable

Step 7:Add the default and serialization constructor.

Add the default and serialization constructor as shown below.

C#
private TriangleData _data;  
public TriangleAnnotation() : base(new TriangleData())
{ 
     this._data = this.Data as TriangleData; 
     base.SetGrips(new RectangleGrips());
}
public TriangleAnnotation(SerializationInfo info, StreamingContext context) : 
 base(info, context)
{ 
     this._data = this.Data as TriangleData; 
     base.SetGrips(new RectangleGrips());
}

Step 8: Override the GetRegion() method

Override the GetRegion() method.

C#
public override AnnotationRegion GetRegion(AnnotateSpace space)
{ 
    AnnotationRegion region = new AnnotationRegion(); 
    SizeF size = this.Data.Size; 
    // Specify the points in annotation space. 
    PointF[] points = this._data.GetTrianglePoints(); 
    // Convert to the requested space if required. 
    if (space == AnnotateSpace.Document) 
 AnnotateSpaceConverter.AnnotationSpaceToDocumentSpace(this.Data, points); 
    else if (space == AnnotateSpace.View) 
    AnnotateSpaceConverter.AnnotationSpaceToViewSpace(this.Controller.Parent,this.Data, 
 points); 
    region.Path.AddPolygon(points); 
    // Be sure to add the grips to the region. 
    base.AddGripsToRegion(region); 
    return region;
}

Step 9: Create a TriangleRenderingEngine class that will be used to render the annotation

Create a TriangleRenderingEngine class that will be used to render the annotation.

236



Atalasoft DotImage Developer's Guide

C#
public class TriangleRenderingEngine : 
 Atalasoft.Annotate.Renderer.AnnotationRenderingEngine

Step 10: Override the RenderAnnotation() method

Override the RenderAnnotation() method and draw the triangle.

C#
public override void RenderAnnotation(AnnotationData data, RenderEnvironment e)
{ 
     // Perform a basic check. 
     TriangleData data = annotation as TriangleData; 
     if (data == null) return;  
     if (data.Fill == null) return; 
  
     // SetGraphicsTransform handles combining multiple 
     // transformation matrix objects so you can render normally. 
     base.SetGraphicsTransform(annotation, e); 
     Brush b = base.CreateBrush(data.Fill); 
     if (b != null) 
     { 
        PointF[] points = data.GetTrianglePoints(); 
        e.Graphics.FillPolygon(b, points); 
        b.Dispose(); 
     } 
  
     // If you call SetGraphicsTransform you must also 
     // call RestoreGraphicsTransform when finished. 
     base.RestoreGraphicsTransform(e);
}

Step 11: Add Annotation's Engine to AnnotationRenderers Collection

Before the annotation can be rendered, its rendering engine must be added to the 
AnnotationRenderers collection. A convenient way of doing this is with a static (Shared in VB) 
constructor in the data class.

C#
static TriangleData()
{ 
     Atalasoft.Annotate.Renderer.AnnotationRenderers.Add(typeof(TriangleData), new 
 TriangleRenderingEngine());
}

Password-based authentication
A locked annotation object can have an associated password. Individuals with knowledge of that 
password are able to unlock and remove the object. Password based authentication is the simplest 
method for creating redactions.

The Lock () method in each annotation has an optional password that is encrypted in the object 
and in the serialized data.

237



Atalasoft DotImage Developer's Guide

The Unlock () method can then be invoked with the associated password to allow editing of the 
annotation.

Typically, the RectangleAnnotation with a solid alpha channel is used for redactions.

NT user authentication
If the application that uses redaction annotations needs NT user or role based authentication, 
use the Microsoft .NET Framework by creating a custom security class which implements the 
IAnnotationLock interface. See MSDN documentation for more details.

Burning annotations
The most secure way to prevent a user from viewing a section of a document is to permanently 
remove that section. You can do this interactively by placing an annotation over the protected 
area and burning it. If you are integrating with Atalasoft DotImage and using the AnnotateViewer 
component, see the Burn() method. Otherwise use the RenderAnnotations() method in the 
AnnotationController.

Example
Locking an Annotation.

C#
RectangleAnnotation myAnnotation = new RectangleAnnotation(new RectangleData(new 
 RectangleF(2.0f, 2.5f, 4.2f, 6.0f), new AnnotationBrush(Color.Black)));
myAnnotation.Fill = new AnnotationBrush(Color.Black);
myAnnotation.Data.Security = new AnnotationLock();
annotationViewer1.Annotations.CurrentLayer.Items.Add(myAnnotation);
myAnnotation.Data.Security.Lock(password);
//add code here to interact with the image
//to unlock the annotation, simply call the unlock method.
//This allows the annotation to be edited interactively
if (myAnnotation.Data.Security.Unlock(password)) 
   MessageBox.Show(this, "Annotation Unlocked Successfully");
else 
   MessageBox.Show(this, "Incorrect Password");

Create a sticky note
A sticky note is a TextAnnotation that appears within a shadowed rectangle with a yellow 
background and black text. To prevent the note from rotating with the image, a common preference 
with sticky notes, set the CanRotate property to false.

Example
Create a Sticky Note

C#

TextAnnotation myAnnotation = new TextAnnotation();
myAnnotation.Text = "This is a sticky note";
myAnnotation.Fill = new AnnotationBrush(Color.Yellow);
myAnnotation.Shadow = new AnnotationBrush(Color.Gray);
myAnnotation.ShadowOffset = new PointF(4, 4);
myAnnotation.Data.CanRotate = false;

238



Atalasoft DotImage Developer's Guide

annotationViewer1.Annotations.CreateAnnotation(myAnnotation);

Work with unit systems
DotImage Annotations are designed to work in any unit system. You can set the unit system using 
the Resolution property in IAnnotate . When this value is set to 1.0, the annotation objects are sized 
to pixel coordinates. Adjusting this value scales the coordinate system relative to pixels.

Example
To position and size objects in inches on a 96 dpi display, set the Resolution value to 96.

Units in the AnnotateViewer control
The AnnotateViewer control has a Units property. This automatically sets the Resolution to the 
appropriate value based on the resolution of the image in the control. Any value other than Custom 
overrides the Resolution to a value based on the image's resolution scaled to the appropriate unit.
This is convenient when viewing images such as maps in units such as kilometers. When the X and 
Y resolutions in the image differ, the control adjusts the aspect ratio and extends the height of the 
image. Annotation objects can be precisely positioned in familiar coordinates without the need to 
convert or track units in your own code.

Units in a custom IAnnotate control
Setting the Resolution property to a value (pixels per unit) allows you to specify the location and 
size of all annotation objects using any unit you wish. The effect is the same as setting the Units 
property in the AnnotateViewer to Custom and specifying a custom Resolution.

Annotate multipage documents
DotImage Annotations have built-in support for annotating multipage documents such as 
multipage TIFF images. Each page of the TIFF has its own annotations that are displayed when the 
page changes. When working with multipage images, Layers are used to separate annotations into 
each page.

Handling multipage images using AnnotateViewer
In the AnnotateViewer, annotating multipage images is very straightforward. If you set the
MultipageAnnotateMode property to true, whenever a specific image in the ImageCollection is 
set to current, the annotations associated with that page are displayed and annotations associated 
with other pages are hidden. A layer is created for each page in the multipage document. The index 
of each layer in the AnnotationController is associated with the same index of each image in the 
ImageCollection in the same order.

When inserting, removing, or reordering images from the ImageCollection, you must manually 
insert, remove, or reorder layers to their respective positions.

239



Atalasoft DotImage Developer's Guide

Handling multipage images using a custom viewer
The best way to handle multipage images is by using a separate layer for each page in the image. If 
you do so, you need only set the Visible property for each layer to control which annotations are 
visible for a specific page. This approach is similar to that used in the AnnotateViewer.

Example
C#

this.annViewer.Annotations.Layers[page].Visible = true;

WANG annotations
When WANG data is read from a multipage TIFF, the data is stored separately for each page of the 
image. As a result, you must pull the annotation data from each TIFF page and add it to a separate 
layer.

The TiffDecoder can be used to read WANG data from each page. This is done by specifying which 
frame (page) index to read from when calling the GetImageInfo() method.

If the WANG data is being saved to a separate file instead of embedded into a TIFF, DotImage 
Annotations save each layer in such a way that it can be retrieved later, while still maintaining 
WANG compliance.

Metadata
Metadata is data that describes other data. Atalasoft DotImage Photo Pro and Document Imaging 
allow viewing and manipulation of metadata stored in an image.

The Atalasoft.DotImage.Metadata namespace contains classes that handle image metadata.

Metadata is a convenient way to store textual information in an image. Atalasoft DotImage allows 
this information to be accessed and manipulated. For example, it is possible to store the metadata 
information in a database, build a metadata viewer application , and to add your own metadata in 
the form of EXIF, IPTC, XMP, or COM markers.

See the Metadata Demo installed with Atalasoft DotImage for an example of metadata use.

Supported metadata types
Atalasoft DotImage supports the following metadata types:

• Digital camera EXIF tags
• IPTC tags
• COM Text markers
• Adobe XMP data
• TIFF Tags

240



Atalasoft DotImage Developer's Guide

• Photoshop Resources

In JPEG images, metadata is stored in "APPn markers". EXIF information is stored in an "APP1 
marker", and IPTC and Photoshop Resource information is stored in an "APP13" marker. These 
markers are created automatically when a JPEG image is encoded. Alternatively, you can use a 
method to copy metadata without re-compressing JPEG images.

Image formats supporting metadata
The following Image Formats support Metadata:

Image Format Operations Metadata Types

JPEG read/write EXIF, IPTC, COM Text Markers, 
JpegMarkers, XMP, Photoshop 
Resources

PNG read/write COM Text Markers

TIFF read/write EXIF, IPTC, standard TIFF Tags, XMP, 
Photoshop Resources

PDF write XMP

PSD read/write Photoshop Resources, IPTC

RAW read EXIF

See the TiffFile class for lower level access to TIFF files. This allows you to read or write non-standard 
TIFF and EXIF Tags.

IPTC metadata
Together, the Newspaper Association of America (NAA) and the International Press 
Telecommunications Council (IPTC) have designed a model to store multiple types of data 
(metadata) in an image. This metadata is commonly known as IPTC. Adobe Photoshop, along with 
many members of the newspaper and press industry, uses IPTC to store information in images.

Atalasoft DotImage can read and write IPTC information in both JPEG and TIFF images.

Read IPTC data
Similar to EXIF metadata, you can read IPTC metadata from an image by using the IptcParser class 
which returns an IptcCollection. To read the metadata, pass the image filename or stream into the 
ParseFromImage() method of the IptcParser. The IptcCollection is populated with each IPTC tag it 
finds in the image. Then, you can modify, add, or remove IPTC tags as necessary.

The IptcTag object contains the IPTC information such as Section, ID, Index and Data. The Section is 
usually "2", the ID is the unique identification of the type of tag, the Index is the tag number (there 
can be multiple tags of the same ID), and Data is the actual value of the tag.

241



Atalasoft DotImage Developer's Guide

Modify and saving IPTC data
You can add, remove, or modify IPTC tags in the IptcCollection by using the appropriate collection 
Add, Insert, and Remove methods. Your changes to the tags are saved with the image by setting the 
IptcTags property of the JpegEncoder or TiffEncoder class.

Lossless modification of IPTC data
When you modify or add IPTC tags to an existing JPEG image, you should consider saving this 
information losslessly in order to avoid re-compressing the JPEG image.

The following example demonstrates how to load IPTC metadata, add and modify tags, and then 
save it back to the image losslessly.

Example
Losslessly Modifying IPTC Metadata

C#

string sourceFile = @"c:\C79A2086.jpg";
//First get metadata from an image without reading the entire image
IptcParser iptcParse = new IptcParser();
IptcCollection iptcData = iptcParse.ParseFromImage(sourceFile);

//Determine  if there is IPTC info   
//Modify the caption if it exists, or add a caption if it does not
//An ID of 5 is the caption
if (iptcData == null)
iptcData = new IptcCollection();

if (iptcData != null && iptcData.LookupTag(5, 0) != null)
{ 
  //Get the index of this tag 
  IptcTag tag = iptcData.LookupTag(5, 0); 
  int index = iptcData.IndexOf(tag); 
  iptcData[index].Data = "Atalasoft DotImage Created This";
}
else
{ 
  //Add the caption tag 
  iptcData.Add(new IptcTag(2, 5, 0, "Atalasoft DotImage Created This"));
}

//Get a temporary filename
string tempFile = System.IO.Path.GetTempFileName();

//Save the metadata changes back to the image losslessly
JpegEncoder jpeg = new JpegEncoder();
jpeg.AppMarkers = new JpegMarkerCollection(sourceFile);
jpeg.IptcTags = iptcData;
jpeg.CopyJpegWithNewMarkers(sourceFile, tempFile);

//Delete the source file
System.IO.File.Delete(sourceFile);

//Move the temp file to the source file location

242



Atalasoft DotImage Developer's Guide

System.IO.File.Move(tempFile, sourceFile);

EXIF metadata
EXIF (Exchangeable Image File Format) is a standard for storing interchange information in image 
files, particularly JPEG images.

EXIF metadata is commonly used in digital camera images to store information specific to digital 
photography such as shutter speed, date taken, aperture, GPS information, and information specific 
to the make of the camera.

Atalasoft DotImage parses the EXIF metadata information from a JPEG, TIFF, and RAW images using 
the ExifParser class and loads each tag in the ExifCollection class.

An EXIF Tag is a special type of TIFF Tag, included in it's own SubIFD. Each EXIF tag is specified with 
an ID, an IFD (Image File Directory), and TIFF Tag Type. The IFD indicates a section of the EXIF data 
that holds a specific type of data.

The following table lists the available IFDs.

IFD Description

Main Primary image data information

Exif EXIF camera information

Interoperability Tags that store the information to ensure interoperability

Thumbnail Thumbnail stored with the image

GPS GPS satellite information

MakerNoteUnknown Information specific to the make of an unknown camera

MakerNoteFujiFilm Information specific to the make of a FujiFilm camera

MakerNoteOlympus Information specific to the make of an Olympus camera

MakerNoteNikonType1 Information specific to the make of a Nikon Type 1 camera

MakerNoteNikonType3 Information specific to the make of a Nikon Type 2 or 3 camera

MakerNoteCasio Information specific to the make of a Casio camera

MakerNoteCanon Information specific to the make of a Canon camera

Maker notes
Atalasoft DotImage supports maker notes in some cameras. Because there is very little conformity 
between camera manufacturer's maker notes, support is limited. The camera manufacturer is free 
to change their own specification. We do our best to respond to the changes.

Atalasoft DotImage currently supports parsing of the following maker notes:

• FujiFilm
• Olympus
• Nikon

243



Atalasoft DotImage Developer's Guide

• Casio
• Canon

For maker note data that Atalasoft DotImage does not support, the data can still be persisted and 
manually parsed as in this case Atalasoft DotImage stores the entire chunk of data as a byte array in 
a single tag with an ID of 0xFFFF and the IFD set to ExifTagIfd.MakerNoteUnknown.

The EXIF Parser reads unknown EXIF Tags, that is tags whose format is not known to Atalasoft 
DotImage. This is particularly an issue with Maker Note data as manufacturers tend to add new tags 
in newer camera models. These tags are returned with their ID, and a byte array of data. It is up to 
the developer to parse these unknown tags. The byte array could represent a single integer value, a 
string, or a series of additional sub-tags.

Each unknown tag is identified as a separate tag unlike the case when the entire Maker Note chunk 
is unrecognized.

For more information about EXIF, please visit http://www.exif.org/.

COM text
PNG and JPEG images support a type of metadata called COM Text. COM text is simple textual 
information that you can store into an image. With Atalasoft DotImage, you can read and write this 
information to an image.

Read COM text
Similar to EXIF and IPTC metadata, COM text data can be read invoking the ParseFromImage ()
method in the ComTextParser class to return a ComTextCollection of all tags in a PNG or JPEG 
image.

PNGs support a key/value pair, while JPEGs support only a value. In other words, the COMTextTag 
has both a key and text. The key is ignored when saving COM text into a JPEG image.

Modify and saving COM text
You can add, remove, or modify COM Text tags in the ComTextCollection by using the appropriate 
add, remove, and insert methods. To save changes to a JPEG or PNG image, set the ComText 
property in the JpegEncoder or PngEncoder classes.

TIFF tags
There are two interfaces for working with TIFF Tags. Both of the methods listed below can be used 
to retrieve and store standard TIFF tags.
• TiffDecoder's GetTiffTag() method
• TiffEncoder's TiffTags properties

The TiffFile class provides far more flexibility, and low level access to TIFF structure including 
retrieving and editing arbitrary TIFF Tags.

244



Atalasoft DotImage Developer's Guide

TIFF tag structure
Every TIFF image has a set of TIFF Tags containing descriptive information about the image data 
such as width, height, compression, color depth, strip size, and so forth.

TIFF Tags can also contain custom metadata such as image description, date, and custom binary 
data. A TIFF Tag is defined by
• a uniqueID,
• a Type (i.e ushort, long, rational, byte, ascii),
• the object Data associated with the tag.

The Data can be a single value, or an array of values. Test the the myTag.Data.GetType().IsArray 
value to determine if the data is an array of values.

Some tag values are actually 32-bit pointers to the actual tag data. When this is the case, the 
IsReference property is true. To access the actual data, invoke the LoadReferenceTagData in the 
TiffDirectory class.

TIFF tag ID's
The following TIFF Tag ID's are tags that are supported using GetTiffTag and when saving Tiff Tags 
using the TiffEncoder. The TiffFile class is not limited to these TIFF Tags. In that case, use the below 
as a quick reference.

 See the official TIFF specification for a full list of TIFF Tags.

 Tag name                ID      TIFF DataType 
   TIFFTAG_ORIENTATION        274      VT_UI2 
      Values: 
         image orientation 
         ORIENTATION_TOPLEFT     1    row 0 top, col 0 lhs 
         ORIENTATION_TOPRIGHT    2    row 0 top, col 0 rhs 
         ORIENTATION_BOTRIGHT    3    row 0 bottom, col 0 rhs 
         ORIENTATION_BOTLEFT     4    row 0 bottom, col 0 lhs 
         ORIENTATION_LEFTTOP     5    row 0 lhs, col 0 top 
         ORIENTATION_RIGHTTOP    6    row 0 rhs, col 0 top 
         ORIENTATION_RIGHTBOT    7    row 0 rhs, col 0 bottom 
         ORIENTATION_LEFTBOT     8    row 0 lhs, col 0 bottom 

   TIFFTAG_IMAGEWIDTH         256         VT_UI4 
   TIFFTAG_IMAGELENGTH        257         VT_UI4 
   TIFFTAG_BITSPERSAMPLE      258         VT_UI2 

   TIFFTAG_COMPRESSION        259         VT_UI2 
      Values: 
         COMPRESSION_NONE        1       dump mode 
         COMPRESSION_CCITTRLE    2       CCITT modified Huffman RLE 
         COMPRESSION_CCITTFAX3   3       CCITT Group 3 fax encoding 
         COMPRESSION_CCITTFAX4   4       CCITT Group 4 fax encoding 
         COMPRESSION_LZW         5       Lempel-Ziv  & Welch 
         COMPRESSION_OJPEG       6       6.0 JPEG 
         COMPRESSION_JPEG        7       JPEG DCT compression 
         COMPRESSION_NEXT        32766   NeXT 2-bit RLE 
         COMPRESSION_CCITTRLEW   32771   #1 w/ word alignment 
         COMPRESSION_PACKBITS    32773   Macintosh RLE 

245



Atalasoft DotImage Developer's Guide

         COMPRESSION_THUNDERSCAN 32809   ThunderScan RLE 
      
         codes 32895-32898 are reserved for 
         ANSI IT8 TIFF/IT <dkelly@etsinc.com) 
         COMPRESSION_IT8CTPAD    32895   IT8 CT w/padding 
         COMPRESSION_IT8LW       32896   IT8 Linework RLE 
         COMPRESSION_IT8MP       32897   IT8 Monochrome picture 
         COMPRESSION_IT8BL       32898   IT8 Binary line art 
      
         compression codes 32908-32911 are reserved for Pixar 
         COMPRESSION_PIXARFILM   32908   Pixar companded 10bit LZW 
         COMPRESSION_PIXARLOG    32909   Pixar companded 11bit ZIP 
         COMPRESSION_DEFLATE     32946   Deflate compression 
         COMPRESSION_ADOBE_DEFLATE   8   Deflate compression, 
                                         as recognized by Adobe 
      
         compression code 32947 is reserved for 
         Oceana Matrix <dev@oceana.com> 
         COMPRESSION_DCS         32947   Kodak DCS encoding 
      
         COMPRESSION_JBIG        34661   IS3O JBIG 
         COMPRESSION_SGILOG      34676   SGI Log Luminance RLE 
         COMPRESSION_SGILOG24    34677   SGI Log 24-bit packed 

   TIFFTAG_PHOTOMETRIC     262         VT_UI2 
      Values: 
         PHOTOMETRIC_MINISWHITE  0    min value is white 
         PHOTOMETRIC_MINISBLACK  1    min value is black 
         PHOTOMETRIC_RGB         2    RGB color model 
         PHOTOMETRIC_PALETTE     3    color map indexed 
         PHOTOMETRIC_MASK        4    holdout mask 
         PHOTOMETRIC_SEPARATED   5    color separations 
         PHOTOMETRIC_YCBCR       6    CCIR 601 
         PHOTOMETRIC_CIELAB      8    1976 CIE L*a*b* 
         PHOTOMETRIC_LOGL        32844    CIE Log2(L) 
         PHOTOMETRIC_LOGLUV      32845    CIE Log2(L) (u',v') 

   TIFFTAG_RESOLUTIONUNIT  296         VT_UI2 
      Values: 
         RESUNIT_NONE            1   no meaningful units 
         RESUNIT_INCH            2   english 
         RESUNIT_CENTIMETER      3   metric 

   TIFFTAG_XRESOLUTION        282         VT_R4 
   TIFFTAG_YRESOLUTION        283         VT_R4 
   TIFFTAG_NUMBEROFINKS       334         VT_UI2 
   TIFFTAG_DOCUMENTNAME       269         VT_BSTR 
   TIFFTAG_IMAGEDESCRIPTION   270        VT_BSTR 
   TIFFTAG_MAKE               271         VT_BSTR 
   TIFFTAG_MODEL              272         VT_BSTR 
   TIFFTAG_PAGENAME           285         VT_BSTR 
   TIFFTAG_SOFTWARE           305         VT_BSTR 
   TIFFTAG_DATETIME           306         VT_BSTR 
   TIFFTAG_ARTIST             315         VT_BSTR 
   TIFFTAG_HOSTCOMPUTER       316         VT_BSTR 
   TIFFTAG_INKNAMES           333         VT_BSTR 
   TIFFTAG_TARGETPRINTER      337         VT_BSTR 
   TIFFTAG_TILEWIDTH          322         VT_UI4 
   TIFFTAG_TILELENGTH         323         VT_UI4 

   TIFFTAG_INKSET             332         VT_UI4 
      Values: 
      INKSET_CMYK                1  CMYK image 

246



Atalasoft DotImage Developer's Guide

   TIFFTAG_DOTRANGE           336         Binary 

   TIFFTAG_EXTRASAMPLES       338         1-D SAFEARRAY or VT_UI2 
      One value per 'extra' channel in the image. 
      Values: 
      EXTRASAMPLE_UNSPECIFIED 0    unspecified 
      EXTRASAMPLE_ASSOCALPHA 1    associated alpha (pre-multiplied) 
      EXTRASAMPLE_UNASSALPHA 2    unassociated alpha 

   TIFFTAG_EXTRASAMPLES       338               Binary 
       Purpose of any extra channels in the TIFF image. 
   TIFFTAG_XMP_DATA           700          Binary 
      Adobe XMP data 
   TIFFTAG_ANNOTATIONS        32932        Binary 
      Wang annotations data 
   TIFFTAG_RICHTIFFIPTC       33723        Binary 
      IPTC Data from the RichTIFF specification 
   TIFFTAG_PHOTOSHOP          34377        Binary 
      Private tag registered to Adobe for PhotoShop (IPTC data) 
   TIFFTAG_ICCPROFILE         34675        Binary 
      ICC profile block

XMP
Adobe's XMP Metadata is an effort to standardize on a well documented, easy to use metadata 
format, replacing the existing metadata formats such as EXIF and IPTC. Based on ASCII XML data, 
it's simple to parse and easily extensible.

Example
C#

XmpParser xmpParser = new XmpParser();
IXPathNavigable doc = xmpParser.ParseFromImage( file );

Example
Saving XMP Data
JPEG, TIFF, and PDF images can contain XMP data. To save an image with XMP, set the Xmp property 
in the JpegEncoder, TiffEncoder, or PdfEncoder classes.

Save metadata with an image
To save an image with metadata, the metadata specific properties must be set in the Image 
Encoder. For example, the IptcTags in the JpegEncoder and TiffEncoder, the Xmp property in the 
JpegEncoder, TiffEncoder, or PdfEncoder, and the AppMarkers property in the JpegEncoder. Saving 
EXIF Metadata in TIFF Files, requires use of the TiffFile object, in which case ExifTags must be set to 
an ExifCollection

247



Atalasoft DotImage Developer's Guide

Example
This example demonstrates how to load a JPEG image with EXIF information, querying the DateTime 
field, then re-saving the image back to a JPEG with just the EXIF tags intact.

C#

ExifParser exifParse = new ExifParser();
ExifCollection exifTags = exifParse.ParseFromImage(@"c\in.jpg");
//get JPEG Markers
JpegMarkerCollection appMarkersIn = new JpegMarkerCollection(@"c\in.jpg");
//read image
Workspace myWorkspace = new Workspace();
myWorkspace.Open(@"c\in.jpg");
//get the DataTime Tag from the image and display the value
if (exifTags != null)
{ 
   ExifTag tag = exifTags.LookupTag("DateTime"); 
   if (tag != null) 
       MessageBox.Show("This photo was taken on " + tag.Data.ToString());
}
JpegEncoder jpeg = new JpegEncoder(75);
//only write EXIF Tags back to the image (APP1)
JpegMarkerCollection appMarkersOut = new JpegMarkerCollection();
foreach (JpegMarker mk in appMarkersIn) 
   if (mk.Type == JpegMarkerTypes.MarkerApp1) 
       appMarkersOut.Add(mk);
jpeg.AppMarkers = appMarkersOut;
myWorkspace.Save("c:\\out.jpg", jpeg);

Retrieve metadata from an image
Metadata can be retrieved from an image, without loading the image data at all, by using the 
ExifParser, IptcParser, ComTextParser, or XmpParser classes. Each metadata parser class allows a 
filename or stream to be passed into the ParseFromImage() method, which returns a collection 
with all tags of the associated type in the image.

See each of the Parser classes for an example of its use.

Example
The following code returns a collection of EXIF tags from a JPEG image.

C#
ExifParser exifParser = new ExifParser();
ExifCollection exifTags = exifParser.ParseFromImage("myimage.jpg");

Set metadata values
There are several ways to set PDF Translator's metadata.

248



Atalasoft DotImage Developer's Guide

PdfTranslator itself via its properties. When a document is translated through an OcrEngine object, 
the PdfTranslator imposes its document properties onto the OcrDocument. The PdfTranslator 
properties listed below are passed on directly to the output PDF.

Property Name Type Meaning

Title string Title of the document, initially set to the empty string ("")

Subject string Subject of the document, initially set to the empty string ("")

Author string Author of the document, initially set to the empty string ("")

Creator string Creator of the document, initially set to Atalasoft DotImage

Producer string Producer of the document, initially set to Atalasoft DotImage

Keywords string Key words associated with the document, initially set to the empty string ("")

Each property corresponds to a piece of metadata within the PDF specification. Additionally, the 
CreationDate property is set automatically to the current system time.

Example
Setting Metadata Properties Directly

While this is a simple mechanism for setting the metadata, there are times when it might not be 
optimal for the circumstances. For example, if the PdfTranslator is used within several different 
contexts, it might be difficult to set or reset the metadata values. In this case, it might be easier to 
set the OcrDocument metadata properties directly. This is best done using the DocumentProgress 
event within OcrEngine as shown below.

C#
public void SetMetadataHandler()
{ 
   engine.DocumentProgress += new 
 OcrDocumentProgressEventHandler(myMetadataHandlerOnPagePreprocessing);
}
private void myMetadataHandlerOnPagePreprocessing(object sender, 
 OcrDocumentProgressEventArgs e)
{ 
   if (e.Document != null) 
      { 
         e.Document.Title = "An Illustrated Guide to Exhaust Manifold Cruciforms"; 
         // etc. 
      }
}

 It is important to check the Document property for null. In native translators (i.e., translators 
that are built-in to an OcrEngine), there may never be an OcrDocument. Since the event is a 
function of the engine and not the translator, the client must be prepared to handle this case.

It is possible to pre-populate the metadata fields of OcrDocument by creating a subclass of 
BasicOcrFactory and overriding the OcrDocument() method. In this method, the client instantiates a 
new OcrDocument object then sets its metadata properties directly.

249



Atalasoft DotImage Developer's Guide

By default, the PdfTranslator overwrites any existing metadata within the OcrDocument. Setting the 
PdfTranslator property SetDocumentMetadata to false prevents metadata from being overwritten.

Control PDF output characteristics
The properties are available for controlling the characteristics of the PDF Output are listed below.

Property Name Type Effect on Output Default 
Value

UseTempFiles bool When set to true, creates temporary files 
for each page and each thumbnail. When 
set to false, a copy of each image and 
thumbnail is kept in memory.

true

TempPath string String representing a path to a folder for 
temporary image files.

OutputType PdfTranslatorOutputType Controls the means of laying out text and 
images on each page of the file.

UseDocument
TextColor

bool When set to true, the PdfTranslator uses 
text color as reported by the OcrEngine. 
When set to false, all text is rendered with 
the TextColor property.

TextColor Color When UseDocumentTextColor is set to 
true, this color is used to render all text.

black

CompressionSelector PdfCompressionSelector Sets a delegate to use for selecting the 
compression used by an image.

GenerateThumbnails bool When true, the PdfTranslator generates a 
thumbnail image for each page.

true

UseNormalized
Baseline

bool When set to true, the PdfTranslator makes 
sure that every word in a line has the same 
baseline, unless it is clearly superscript or 
subscript text. When set to false, individual 
word baselines are used.

true

Attach metadata to objects
You can attach metadata to both the OcrDocument and OcrPage objects. Metadata is stored in 
a Hashtable contained within the object. In the case of OcrDocument, there are certain pseudo 
properties, which actually access the Metadata object instead.

While Atalasoft DotImage dictates a small number of guidelines for working with OCR metadata, 
the use of Metadata is otherwise entirely up to the client.

In .NET any object type can act as a key to access a value within a Hashtable. Atalasoft DotImage 
metadata is always accessed with enumerated values.

Atalasoft DotImage reserves all metadata that is associated with enumerated values or integral data 
types.

250



Atalasoft DotImage Developer's Guide

In general, a client should adopt the following organizational mechanism for metadata:

• Use strings as keys.
• Use a hierarchy for metadata for different applications
• Group logically associated data

Retrieve a document title
It is strongly recommended that clients do not add application-specific values to this DocumentInfo 
Hashtable. While we intend to support this hashtable in the future, the layout may change 
significantly. Client applications should store their own metadata within the Metadata hashtable, 
associating it with non-numeric keys (such as strings).

Example
C#

string docTitle = (string)GetDocumentInfoValue(OcrDocumentInfoKey.Title);

Read EXIF information
When Atalasoft DotImage reads EXIF data, it attempts to read all supported tags and populate them 
in the ExifCollection object. You can then enumerate through the collection or retrieve a specific tag, 
ID or IFD. This example reads EXIF tags from a JPEG image and outputs each tag it to the console.

Example
C#

ExifParser exifparse = new ExifParser();
ExifCollection exifTags = exifparse.ParseFromImage("exif.jpg");
foreach (ExifTag tag in exifTags)
{ 
   Console.WriteLine(tag.ToString());
}

Read EXIF thumbnails
Most images that contain EXIF data also contain a thumbnail in the Thumbnail IFD. Atalasoft 
DotImage will read this thumbnail if it exists by setting the ThumbnailStream property in the 
ExifCollection. Note that in TIFF images, the thumbnail is usually the second frame in the image and 
it can be read normally by specifying 1 as the frame index.

Example
C#
Obtaining DPI information from a PSD File

251



Atalasoft DotImage Developer's Guide

private void ReadExif(string filename)
{ 
   //read the EXIF metadata and thumbnail 
   ExifParser exifParse = new ExifParser(); 
   ExifCollection exif = exifParse.ParseFromImage(filename); 
   AtalaImage thumb = new AtalaImage(exif.ThumbnailStream);
}

Store EXIF information
Atalasoft DotImage can store existing EXIF information in a new or existing JPEG image by copying 
the APP1 JPEG marker from the source to destination image, or it can recreate EXIF data after the 
data has been altered.

To store EXIF information when saving a new JPEG image, set the AppMarkers property of the 
JpegEncoder containing the APP1 EXIF marker. To transfer the data from one JPEG image to another 
without editing the EXIF data, use the CopyJpegWithNewMarkers() method in the JpegEncoder class.

Add an object to document metadata
A client might establish metadata for an OcrDocument by adding an object to an OcrDocument's 
metadata as shown below.

Example
C#

private static string frobozzKey = "Frobozz, Inc.";
...
myOcrDocument.Metadata[frobozzKey] = frobozzMetadata;

Since the client might be producing several applications that operate in OcrDocuments, it might 
make sense to make their Metadata itself a Hashtable which is accessed with a key defined by 
the application itself. Assume that the client is building an application called POSmart to sort out 
purchase orders from general correspondence. Assume further that there is an object of class 
FrobozzRoutingInfo which should be associated with the document.

Example
Accessing the FrobozzRoutingInfo Object

C#
private static string POSmartKey = "Frobozz, Inc.";
static Hashtable EstablishFrobozzMetadata(OcrDocument document)
{ 
   Hashtable ht; 
   ht = (Hashtable)document.Metadata[POSmartKey]; 
   if (ht == null) 
      { 
         document.Metadata[POSmartKey] = ht = new Hashtable(); 
      } 
   return ht;
}

252



Atalasoft DotImage Developer's Guide

static Hashtable GetFrobozzMetadata(OcrDocument document)
{ 
   Hashtable ht; 
   ht = (Hashtable)document.Metadata[POSmartKey]; 
   if (ht == null) 
      { 
         throw new Exception("Unable to get metadata."); 
      } 
   return ht;
}
static void EstablishPOSmartMetadata(OcrDocument document, FrobozzRoutingInfo info)
{ 
   Hashtable ht = EstablishFrobozzMetadata(document); 
   ht[POSmartKey] = info;
}
static FrobozzRoutingInfo GetPOSmartMetadata(OcrDocument document)
{ 
   Hashtable ht = GetFrobozzMetadata(document); 
   return ht[POSmartKey];
}

Obtain DPI information from a .PSD File
Atalasoft DotImage supports reading and writing Adobe Photoshop Resource Blocks from PSD, 
JPEG, and TIFF images. These resources store non-pixel data such thumbnails, ICC Color Profiles, 
IPTC Data, DPI resolution information, and textual information.

The PhotoshopResourceParser class obtains a collection of PhotoshopResource items. Each 
resource contains an ID, an object containing a byte array of the raw data, and an optional 
description of the resource. This data could be string data with a header, an integer (Motorola Byte 
Order), a byte array, or other custom data structures. To obtain the format specification, join the 
Adobe's developer network.

The object stored in the Data property of the PhotoshopResource must be cast to a byte array. 
Future versions may include a setting to request parsing of the byte array data into a typed object 
such as an integer or string.

This example demonstrates how to obtain the DPI information from a PSD file.

Example
C#
Obtaining DPI information from a PSD File
PhotoshopResourceParser psdParser = new PhotoshopResourceParser();
PhotoshopResourceCollection psdResources = psdParser.ParseFromImage("test.psd");
PhotoshopResource dpiData = psdResources.LookupResource(1005);

Losslessly copy metadata
The CopyJpegWithNewMarkers() method in the JpegEncoder class can be used to losslessly save 
existing metadata to a copy of an existing JPEG image.

One use of this function is to modify IPTC data in a JPEG.

253



Atalasoft DotImage Developer's Guide

If you do not want to create a copy of the file, you must save the output to a temporary file, and 
then overwrite the existing file with your own code.

Document and image formats
Atalasoft DotImage supports the following document and image formats.

Introduction to PDF technology
Atalasoft DotImage provides customers industry leading PDF technology included with Atalasoft 
DotImage Document imaging and the following Atalasoft DotImage add-ons:

• Atalasoft DotImage PDF Reader Module for high speed PDF viewing and text extraction.
• Atalasoft DotImage Document Imaging for generating image-only PDF documents.
• Atalasoft DotImage OCR Searchable PDF Module for generating searchable PDF documents from 

images using OCR.
• Atalasoft DotImage PDF Annotations for annotating PDF documents.
• Atalasoft DotImage PDF Document editing tools

Atalasoft DotImage can also generate PDF/A documents. PDF/A follows the ISO 19005-1:2005 
standard for long-term electronic archiving. Atalasoft DotImage can process documents that follow 
these parts of the PDF/A standard:
• PDF/A-1b: Restricts certain features as well as enforcing requirements to preserve the visual 

appearance of the document. All images must include color profiles to ensure proper color 
reproduction. All fonts must be embedded within generated PDF documents. Image compression 
is restricted to a set that does not include JBIG or JPEG2000.

• PDF/A-2b: Adds the ability to use compressed objects and XRef streams (for smaller file sizes) and 
JBIG and JPEG2000 compressions.

 Adding PDF annotations to an existing PDF/A document does not create PDF/A compliant 
documents.

Multiprocessing for PDF documents
The PdfDecoder used for processing PDFs can be set to multiprocessing mode for faster handling of 
PDF documents. This feature uses parallel processing to improve the handling of large documents.

 This feature is not supported by .NET Framework 3.5.

Initializing PdfDecoder multiprocessing
To use multiprocessing, make sure the Atalasoft.dotImage.PdfReader.Multiprocessing.dll assemlby 
is available and initialize the feature in PdfDecoder. This only needs to be done once when starting 
the application.
PdfDecoderMultiprocessor.Init()

254



Atalasoft DotImage Developer's Guide

Using PdfDecoder multiprocessing in WebDocumentViewer
For PDF documents displayed in WebDocumentViewer, set the multiprocessing parameter to true. 
This enables multiprocessing to be performed on these documents. All multiprocessing procedures 
are encapsulated on the server side. Refer to the following code example.
var _viewer = new Atalasoft.Controls.WebDocumentViewer({  
   ...  
   multiprocessing: true  
});  

var _thumbs = new Atalasoft.Controls.WebDocumentThumbnailer({  
   ...  
   multiprocessing: true  
}); 

Migrating existing processing to multiprocessing
For libraries, consoles, and other types of standalone applications, you may already use PdfDecoder 
to render pages in a loop, as in these examples.
PdfDecoder pdfDec = new PdfDecoder();  
AtalaImage img = pdfDec.Read(stream, frameIndex, null); 

PdfDecoder pdfDec = new PdfDecoder();  
RegisteredDecoders.Decoders.Add(pdfDec);  
AtalaImage img = new AtalaImage(stream, frameIndex, null); 

Instead, use PdfDecoderMultiprocessor to render pages in parallel using multi-threaded processing. 
The following code renders all pages in a PDF document.
PdfDecoderMultiprocessor.ReadPdfPages( 
   settings, 
   inStream, 
   (image, index) => 
   { 
      // where image is an AtalaImage 
      // and index - is 0-based page index 
      ... 
   }, 
   cts.Token);

PdfDecoderMutliprocessor also has methods for rendering page regions and reading. These 
methods only improve performance when called from multi-threaded code.

In place of PdfDecoder.RasterizeScaledRegion() , use this multiprocessing version.
static AtalaImage RasterizeScaledRegion(  
   PdfDecoderMultiprocessorSettings pdfDecoderSettings,  
   Stream stream,   
   int frameIndex,   
   Rectangle srcRect,  
   Size scaledSize, 
   CancellationToken cancellationToken = default(CancellationToken))

And in place of PdfDecoder.Read(), use this multiprocessing version.
static AtalaImage NewAtalaImage(  
   PdfDecoderMultiprocessorSettings pdfDecoderSettings,   
   Stream stream,  
   int frameIndex,  
   CancellationToken cancellationToken = default(CancellationToken))

255



Atalasoft DotImage Developer's Guide

Setting the maximum number of pages to use multiprocessing
You can configure PdfDecoderMultiprocessor to use multiprocessing unless a document has a 
certain number of pages. This can also be configured to use multiprocessing for all size documents. 
Use the following code:
/// Gets or sets the maximum number of pages in a document to use multiprocessing.
/// If this value is exceeded, multiprocessing will not be used.
/// If this value is set to 0, multiprocessing will always be used.
/// Default value is 0.
///  
public static int PagesCountThreshold { get; set; } = 0;

Text extraction in PDF Reader
The Atalasoft DotImage PDF Reader add-on (formerly PDF Rasterizer) provides the ability to extract 
text from PDF files. It provides two classes as detailed in the table below.

Class Description

PdfTextReader • Derived from System.IO.TextReader
• Use to read text from a PDF page, a set of pages, or the entire document in a 

stream-like fashion

PdfTextPage • Determine the number of characters on a page
• Extract characters based on character index or count
• Determine the bounding box for a character
• Determine the bounding box for a range of characters
• Determine the character index for a given point
• Convert between PDF user coordinate space (paper) and image coordinate space

Opening PDF's with a PdfTextDocument
The first step in extracting text from a PDF is to create a PdfTextDocument. PdfTextDocument 
objects implement IDisposable, so you must call Dispose() when you are done with the object. 
The easiest way to do so is to create the object in a using block.

The example that follows shows how to get the number of pages from a PdfTextDocument given a 
Stream that contains a PDF:

C#
public int GetPageCount(Stream s)
{ 
   using (PdfTextDocument doc = new PdfTextDocument(s)) 
   { 
      return doc.PageCount; 
   }
}

Once you have a document, you can get PdfTextPage objects from it. The code below gets the 
number of characters on the first page of a PDF from a Stream.

public int GetCharCount(Stream s, int pageNum)  
{ 

256



Atalasoft DotImage Developer's Guide

   using (PdfTextDocument doc = new PdfTextDocument(s)) 
   { 
         PdfTextPage textPage = doc.GetPage(pageNum); 
         return textPage.CharCount; 
    }
}

Reading text with a PdfTextReader
PdfTextReader inherits from TextReader thereby giving you access to the text in a PDF. 
PdfTextReader objects are obtained from PdfTextDocument objects by calling GetPdfTextReader().

The example that follows shows you how to create a PdfTextReader and read all of its text.

Example

C#

public String ReadTextFromPages(Stream s)  
{ 
     using (PdfTextDocument doc = new PdfTextDocument(s)) 
     { 
         PdfTextReader rdr = doc.GetPdfTextReader(); 
         return rdr.ReadToEnd(); 
      }
}

You can call GetPdfTextReader with a single page number, or a range of pages.

Using a PdfTextPage to Extract Text

A PdfTextPage can do much more than simply telling you the number of characters on a page. The 
following example show how to get text from a page by providing an index and a count.

Example

C#

public String GetText(Stream s, int pageNum, int index, int count)  
     { 
         using (PdfTextDocument doc = new PdfTextDocument(s)) 
         { 
             PdfTextPage textPage = doc.GetPage(pageNum); 
             return textPage.GetText(index, count); 
         }
}

As a range of text can span lines, it may have multiple bounding boxes. For this reason, a request 
for the bounding boxes returns an array of bounding boxes (which need not be rectangular). This 
next example shows how to determine the bounding boxes of a range of text.

C#

public QuadrilateralF[] GetText(Stream s, int page, int index, int cnt)
{ 

257



Atalasoft DotImage Developer's Guide

  using(PdfTextDocument doc = new PdfTextDocument(s)) 
  { 
     PdfTextPage textPage = doc.GetPage(page); 
     return textPage.GetBoxes(index, cnt); 
  }
}

These quadrilaterals returned are in PDF User Space, that is, they are in the PDF coordinate system 
with the origin at bottom-left, increasing Y values as you go from bottom to top.

If you need to translate one of these quadrilateral to one that could be used on a rasterized version, 
use PdfTextPage. ConvertPdfUnitsToPixels(), which takes the PDF User Space quadrilateral and the 
resolution that the image was rendered at.

In the  PDF Demo project, the class PdfFindHighlighter shows how to turn quadrilaterals from 
PdfTextPage into RectangleAnnotation objects you can use to highlight characters. You can also use 
this class in your own projects.

Using a PdfTextPage to Search for Text
A PdfTextPage can also search for text automatically. The following example shows how to do such 
an automatic search.

C#

public void Search(Stream s, int pageNum, int index, string txt)
{ 
   using (PdfTextDocument doc = new PdfTextDocument(fs))  
   { 
      PdfTextPage p = doc.GetPage(pageNum); 
      using (PdfSearchResults res = p.Search(index, txt, false, false))  
      { 
         while (res.FindNext())  
      { 
            // res.StartIndex and res.CharCount have 
            // the results of the search 
            // you could call p.GetText() or p.GetBoxes() here 
         } 
      } 
   }
}

See the Atalasoft DotImage PDF Demo project for an example of how to search across an entire 
document with the class PdfDocumentSearch as well as how to call delegates every time a new 
instance is found. You can use this class in your own projects.
In the demo, it is wired to a PdfFindHighlighter object that puts RectangleAnnotation objects on the 
image to show found text.

Editing PDF documents
Atalasoft DotImage provides tools for high level editing and composition of PDF documents.

With these tools you can:
• Rearrange, add, or remove pages from existing PDF documents.
• Split existing PDF documents into separate documents.

258

ftp://ftp.kofax.com/proddev/xxyyzzyyxx/atalasoft_support/legacydemos/pdfdemo.zip
ftp://ftp.kofax.com/proddev/xxyyzzyyxx/atalasoft_support/legacydemos/pdfdemo.zip


Atalasoft DotImage Developer's Guide

• Combine any number of existing PDF documents into a single document.
• Create or edit book marks for navigation.
• Create or edit document metadata, including title, subject, author, creator, keywords and custom 

metadata.
• Encrypt or decrypt documents.

All this functionality is tied into a simple object model that doesn't require the programmer to 
memorize the PDF specification. Much of this functionality has been extended to cover existing PDF 
generation tools, including the Document Imaging tool for generating image-only PDF documents 
and the OCR Searchable PDF module.

Create searchable PDFs with OCR
The PdfTranslator class allows client applications to generate high quality PDF documents from 
scanned documents. The Atalasoft DotImage PdfTranslator provides the following features:
• Setting PDF Metadata fields
• High quality thumbnail images
• Accurate text placement
• Text-Under-Image placement
• Optional placement of picture regions
• Automatic or client-controlled image compression
• Advanced codec support ( JBIG2, JPEG 2000)
• Insertion of client synthesized pages
• Creation of PDF/A-1b and PDF/A-2b documents

PDF file format
Adobe created the PDF file format to enable the encapsulation of any document that could be 
printed digitally so that it retains its content as text, images or graphics in as high quality as 
possible, typography as intended, and accurate color representation. The file format is an object-
oriented format that describes a document as a series of pages, each of which is represented by 
a list of high-level drawing and compositing operations that were modeled after the PostScript 
imaging model. In addition to page content, a document could also include interactive features, 
navigation tools, dynamic forms, and multimedia. PDF was meant to be a publication format, rather 
than an editable format. Generation of PDF was considered to be a final step in the creation of a 
document.

Atalasoft DotImage provides the means to break into the PDF model for the purpose of making 
PDF documents accessible for common operations. For example, an insurance company could 
keep a stock collection of informational documents that could be assembled into a customized PDF 
document tailored for a client. This type of operation in Atalasoft DotImage can be done in a single 
line of code.

Where possible, the details of PDF structure are hidden from client code. Instead, client code 
works with higher level objects, such as documents, pages, bookmarks and actions, packaged in 
familiar .NET objects and collections.

259



Atalasoft DotImage Developer's Guide

PDF page coordinates
Pages in PDF documents have a strongly defined coordinate system. Pages are based on standard 
Cartesian coordinates in the first quadrant. In other words, when looking at a page, the coordinates 
of the lower left hand corner are (0, 0), with X extending positively to the right and Y extending 
positively up.

The PDF format is without resolution. This means that pages should be displayable at any zoom 
with consistent fidelity. Pages, however do have measurements. Pages are measured in default user 
space units, which are 1/72 inch. Although it is possible for a PDF file to specify other units for page 
measurement, it is rare.

A letter sized page will therefore be 612 units wide and 792 units high. An A4 sized page will be 
approximately 595.276 units wide and 841.89 units high.

Conversion of units from one space to another can be done with a set of classes for that 
manage conversion to and from PDF page space and pixels measured in either inches or 
centimeters. These classes are DpiToPdfCoordinateConverter, DpcmToPdfCoordinateConverter, 
PdfToDpiCoordinateConverter and PdfToDpcmCoordinateConverter. See How To Convert AtalaImage 
Coordinates to PDF Coordinates for more information.

PDF document objects
At the heart of the PDF manipulation API is a class called PdfDocument. This class represents the 
main structure of a document and the pages it contains. When a PdfDocument object is created, the 

260



Atalasoft DotImage Developer's Guide

PDF is briefly scanned to extract information about the pages and other document structures, but 
none of the pages themselves are loaded. Within a PdfDocument object is the metadata associated 
with the document, the tree of bookmarks, and a collection of PdfPage objects, one for each page in 
the PDF.

PDF bookmarks
PDF documents can contain a collection of bookmarks that can be used to help navigate the 
document. The structure of the bookmarks is hierarchical, but there are no requirements imposed 
on the hierarchy. The bookmarks can be a single list or a tree. Any structure imposed on the 
collection is at the discretion of the author.

In PDF, a bookmark is string displayed in the UI, some text appearance properties, and a collection 
of actions to be performed when the bookmark is clicked. PDF offers a wide variety of possible 
actions, all of which can be read and rewritten in Atalasoft DotImage, but at the release of 9.0 
Atalasoft DotImage only offers the direct authoring of "Go To View" actions. This type of action 
specifies a destination within the document. This destination specifies the page, a mode for viewing 
the page and possible parameters to more finely control the mode. For example, a destination may 
include "Page 18, fit page to width, view from the top of the page". Another might be "Page 2, view 
on location (0, 0), use the current zoom".

To author PDF bookmarks, all of the PDF generation tools in Atalasoft DotImage or its add-ons 
include a property called BookmarkTree which represents the desired collection of bookmarks for 
the final document. In all cases, the BookmarkTree object is used late in the process of generating 
the document. This allows client code the freedom to build the bookmark tree incrementally before 
the PDF document is finalized.

View a PDF image
The PdfReader assembly includes PdfDecoder which derives from ImageDecoder. It acts 
like any other Atalasoft DotImage decoder in that it has a Read() method which returns 
an AtalaImage of the decoded image, in this case a PDF page. It also can be included in the 
RegisteredDecoders collection which is used when opening images using the AtalaImage 
constructor or Workspace.Open.

In the example that follows demonstrates how to view a PDF image. Included with the SDK is source 
for a full multi-threaded multipage PDF Viewer.

Example
C#

using Atalasoft.Imaging;
using Atalasoft.Imaging.Codec;
using Atalasoft.Imaging.Codec.Pdf;
...
//register the PdfDecoder  
PdfDecoder pdf = new PdfDecoder();
RegisteredDecoders.Decoders.Add(pdf);
//read and display the PDF
myWorkapceViewer.Open("pdfdocument.pdf");

261



Atalasoft DotImage Developer's Guide

Translate a set of images to searchable PDF
The example that follows shows how to translate a set of images to PDF.

To translate a set of images to PDF, write code similar to that shown below.

Example
C#

public void TranslateToPdf(OcrEngine engine, ImageSource images, Stream outputStream)
{ 
    engine.Translate(images, "application/pdf", outputStream);
}   

Use advanced PdfTranslator controls
Managing the translation of an OcrDocument into PDF creates a number of challenging timing 
issues as described below.

Timing issues
The Atalasoft DotImage OCR does not translate an OcrDocument until the document is complete. A 
client can manipulate a recognized document (spell check, re-order pages, and so forth.) before the 
translation happens.

Unfortunately, by the time translation actually occurs, the images used for OCR are no longer 
available or have been substantially altered by the engine. This makes it tricky to create thumbnail 
images for pages or to place the original image over the text in its maximum or native bit depth.

To overcome this problem, when a set of images is translated directly by the engine, the 
PdfTranslator hooks itself into OcrEngine events, make copies of images, and saves them in 
temporary files that can be used to create thumbnail images. When translation is complete, the 
PdfTranslator removes itself from the OcrEngine's events.

If an OcrDocument has been recognized (via one of the Recognize() methods), there are no overlay 
images associated with pages nor are there thumbnail images since the PdfTranslator was not 
asked to generate this information.

There are two ways to handle this problem:
• The client can request that the PdfTranslator hook itself into events before recognition and 

unhook itself at the end.
• The client can add the extra information manually.

To add the information manually, the client should hook into the DocumentProgress event as 
shown in the example below.

The following example demonstrates how to hook into the document progress event.

262



Atalasoft DotImage Developer's Guide

Example
C#

public void HookIntoDocumentProgress(OcrEngine engine)
{ 
   engine.DocumentProgress += new 
 OcrDocumentProgressEventHandler(MyDocumentProgressHandler);
}

Next, allow the PdfTranslator to hook into the engine.

C#
public void MyDocumentProgressHandler(object sender, OcrDocumentProgressEventArgs e)
{ 
   if (e.Stage == OcrDocumentStage.BeginDocument) 
      { 
         myTranslationObject = myPdfTranslator.Prepare(engine, e.Document); 
      }
}

After the document has been recognized and the client has completed any editing, call the 
translator as shown below.

C#

myPdfTranslator.Translate(myEngine, recognizedDocument, "application/pdf",  
destinationFile, myTranslationObject);
myPdfTranslator.Finish(myEngine, recognizedDocument, true, myTranslationObject); 

If you need to add in pages that have not been generated by the OcrEngine itself, you must 
generate the extra information manually.

Add PdfTranslator to Engine's translator collection
The following example shows how to add PdfTanslator to an engine's translator collection.

To use the PdfTranslator, you must add it to the Translators collection of the desired engine as 
shown below. This installs the PdfTranslator into the engine so that it can be used like any other 
type of translator.

Example
MIME type for PDF
The MIME type for PDF is application/pdf.
C#

private PdfTranslator _myPdfTranslator;
private void InstallPdfTranslator(OcrEngine engine)
{ 
    _myPdfTranslator = new PdfTranslator(); 
    engine.Translators.Add(_myPdfTranslator);

263



Atalasoft DotImage Developer's Guide

}

Manually generate PdfTranslator metadata

 The level of access to PdfTranslator internal structures described below is highly advanced and 
should not be undertaken lightly.

An OcrPage has metadata available for general client use. While a document is being recognized 
and translated by the PdfTranslator, the PdfTranslator stores metadata in each OcrPage.

The PdfPageInfo class contains information on how to build this particular page and how to 
set options for it. The properties listed in the table that follows typically are inherited from the 
PdfTranslator:

Name Type Meaning

OutputType PdfTranslatorOutputType Type of page generated. For example, text only, 
image over text, and so forth.

UseDocumentTextColor bool Value is true if the text color should be taken 
from the page rather than overridden.

TextColor Color Color to be applied to document text if 
UseDocumentTextColor is false

CompressionSelector PdfCompressionSelector A delegate that can be used to select the 
compression used for images.

GenerateThumbnails bool Property used by the PdfTranslator during 
recognition, not during translation. Its value 
is inconsequential if set on an OcrPagein an 
existing OcrDocument.

Retrieve metadata
The following examples show how to:
• Retrieve metadata from an object
• Access the PageInfo object

To access this information, retrieve the object in the page's metadata using the PdfPageInfo key as 
shown below.

C#

object pdfMetadata = page.Metadata[OcrPageMetadataKey.PdfPageInfo];

Access PageInfo object

This object is a Hashtable. The PageInfo object within the Hashtable can be accessed using the key 
OcrPdfPageMetadataKey.

To access this information, retrieve the object in the page's metadata using the PdfPageInfo key as 
shown below.

264



Atalasoft DotImage Developer's Guide

C#

 Hashtable ht = (Hashtable)pdfMetadata; 
  object pdfData = ht[OcrPdfPageMetadataKey.PageInfo]; 
  if (pdfData == null || !(pdfData is PdfPageInfo)) 
        throw new Exception("No PdfPageInfo in OcrPage Metadata."); 
  PdfPageInfo pdfInfo = (PdfPageInfo)pdfData;

Add support for reading PDFs
Use the following code to add support for reading PDFs.

C#
Atalasoft.Imaging.Codec.RegisteredDecoders.Decoders.Add( 
    new Atalasoft.Imaging.Codec.PdfDecoder());

Print a PDF image
The following samples demonstrate how to print a PDF image efficiently.

C#
using System.IO;  
using System.Drawing.Printing;  
using Atalasoft.Imaging.Codec.Pdf;  
...  
private Pages imagesToPrint = null;  
private int current = 0;  
private void button1_Click(object sender, System.EventArgs e)  
{  
        OpenFileDialog d = new OpenFileDialog();  
        d.Filter = "PDF files(*.pdf) | *.pdf";  
        if (d.ShowDialog() == DialogResult.OK)  
        {  
                using (var fs = new FileStream(d.FileName, FileMode.Open))  
                {  
                Document theDoc = new Document(fs);  
                this.imagesToPrint = theDoc.Pages;  
                // Use System.Drawing.Print.PrintDocument  
                PrintDocument thePrintDoc = new PrintDocument();  
                thePrintDoc.PrintPage +=new 
 PrintPageEventHandler(thePrintDoc_PrintPage);  
                this.current = 0;  
                thePrintDoc.Print();  
                }  
        }  
}  
private void thePrintDoc_PrintPage(object sender, PrintPageEventArgs e)  
{  
        e.HasMorePages = true;  
        Page p = imagesToPrint[current++];  
        // fit to page, only when image is too large.  
 float newX = (float)(e.PageBounds.Width / p.Width);  
        float newY = (float)(e.PageBounds.Height / p.Height);  
        if (!(newX > 1 && newY > 1))  
                e.Graphics.ScaleTransform(newX, newY);  
        // Draw pdf image onto graphics object here.  
        p.Draw(e.Graphics);  
        if (current >= imagesToPrint.Count)  

265



Atalasoft DotImage Developer's Guide

                e.HasMorePages = false;  
}

Create PDF/A documents
Atalasoft DotImage has the ability to generate PDF/A-1b or PDF/A-2b compliant documents. Both 
the PdfEncoder object and the OCR PdfTranslator object support this.

To support this in the PdfEncoder, you can set it in the constructor

C#
using Atalasoft.Imaging.Codec.Pdf;
using Atalasoft.PdfDoc;
// set the document type in the constructor
PdfEncoder encoder = new PdfEncoder(PdfDocumentType.PdfA1b);

In addition, you can set this using the DocumentType property.

C#
using Atalasoft.Imaging.Codec.Pdf;
using Atalasoft.PdfDoc;
// set the document type by changing a property
PdfEncoder encoder = new PdfEncoder();
encoder.DocumentType = PdfDocumentType.PdfA1b;

The PdfTranslator add-on to the OCR searchable PDF module has an identical constructor and an 
identical DocumentType property and can be used in the same manner.

Compressed Object and XRef streams
Object streams and XRef streams allow to reduce size of the document, but to increase the creation 
time of the document.

To create a PDF document with object streams and XRef streams, the
UseCompressedObjectStreams flag should be set to true:

PdfEncoder encoder = new PdfEncoder
{ 
  UseCompressedObjectStreams = true
};

PdfTranslator trans = new PdfTranslator
{ 
  UseCompressedObjectStreams = true
};

 PDF/A-1 does not support compressed object streams.

 Compressed object streams in linearized PDFs are not supported.

266



Atalasoft DotImage Developer's Guide

Create PDF 2.0 documents
PdfEncoder and PdfTranslator support the creation of PDF 2.0 documents.

PDF 2.0 in PdfTranslator and PdfEncoder enables you to create password-protected PDF documents 
with AES-256 encryption. To do this, set PdfVersion = 2.0 and pass the password to the method 
SetOneTimePasswords().

Sample for PdfEncoder:
var encoder = new PdfEncoder {PdfVersion = 2.0}; 
    encoder.SetOneTimePasswords(password);

using (var image = new AtalaImage(@"image.tif"))
using (var result = File.Create("pdf_2_0_document.pdf"))

{ 
     encoder.Save(result, image, null);
}

Sample for PdfTranslator:
using (GlyphReaderEngine engine = new GlyphReaderEngine())
{ 
     PdfTranslator xlate = new PdfTranslator {PdfVersion = 2.0}; 
     xlate.SetOneTimePasswords(password); 
     engine.Translators.Add(xlate); 
      
     engine.Initialize(); 
     FileSystemImageSource source = new FileSystemImageSource( 
          new string[] { file }, false); 

     using (var stm = new FileStream(outputFile, FileMode.Create, 
 FileAccess.ReadWrite)) 
           engine.Translate(source, "application/pdf", stm);
}

When saving a password-protected documents with version 1.7 and earlier, RC4 encryption 
algorithm is used.

All other features of PDF 2.0 standard are not applicable to PdfTranslator and PdfEncoder.

Create an image only PDF document
There are several ways to create an image-only PDF document. If you're working with a single 
AtalaImage, the simplest way is to use a PdfEncoder directly.

C#
public void SaveAsPdf(Stream stm, AtalaImage image)
{ 
    PdfEncoder encoder = new PdfEncoder(); 
    encoder.Save(stm, image, null);
}

C#
using Atalasoft.Imaging.Codec.Pdf;
using Atalasoft.PdfDoc;
// set the document type by changing a property

267



Atalasoft DotImage Developer's Guide

PdfEncoder encoder = new PdfEncoder();
encoder.DocumentType = PdfDocumentType.PdfA1b;

 You can generate PDF/A-1b files by passing in PdfDocumentType.PdfA1b to the PdfEncoder 
constructor.

In many cases you may want to generate PDF files from several images. Keeping them all in 
memory at once is inefficient. In these cases, it's best to use an ImageSource object such as 
FileSystemImageSource to provide the images to PdfEncoder.

C#

public void SaveAsPdf(Stream stm, ImageSource images)
{ 
    PdfEncoder encoder = new PdfEncoder(); 
    encoder.Save(stm, images, null);
}

In this case, PdfEncoder takes care of loading and disposing images for you.

Convert AtalaImage coordinates to PDF coordinates
Given an AtalaImage, it is easy to convert its coordinate space to PDF coordinate space. Given the 
image's resolution units, you select an appropriate converter. This can be done with the following 
code:
public static PdfCoordinateConverter GetConverter(AtalaImage image)
{ 
   if (image.Resolution.Units == ResolutionUnit.DotsPerCentimeters) 
   { 
      return new DpcmToPdfCoordinateConverter(image.Resolution.X, new Size(image.Width, 
 image.Height)); 
   } 
   return new DpiToPdfCoordinateConverter(image.Resolution.X, new Size(image.Width, 
 image.Height));
}

Convert one space to another.
PdfCoordinateConverter converter = GetConverter(myImage);
Point pdfPoint = convert.Convert(new Point(x, y)); // x and y in image coordinate space

Author PDF bookmarks
To author PDF bookmarks, you need three basic objects: a PdfBookmarkTree object to hold a 
collection of bookmarks, one or more PdfBookmark object to represent the actual bookmarks and a 
PdfAction object which represents what will happen when the PdfBookmark has been clicked.

Bookmark tree:

Making a bookmark tree is easy.
PdfBookmarkTree tree = new PdfBookmarkTree(); // makes a new empty bookmark tree

This initial tree has no bookmarks in it. It's main property, Bookmarks, is a list of PdfBookmark 
objects that represent the top-level bookmarks for the PDF document. To make a bookmark, you 

268



Atalasoft DotImage Developer's Guide

simply call the constructor. The default constructor will make a PdfBookmark with no text and with 
no action. There are other constructors that let you set the various properties as well. The most 
commonly used constructor takes a string and an action.

Make a Bookmark
PdfBookmark bookmark = new PdfBookmark("Introduction", null); // a null action will be 
 ignored - we can set it later

The only available action presently is the "Go To View" action. This is usually constructed with a 
destination for the action. A destination is a combination of a viewing mode, some parameters and 
a page reference. Page references are an abstract notion of a page. Presently, they only represent 
a page in the current document associated with the action, but in the future they may also be 
references to embedded or external PDF documents or external files. To make a destination, you 
can use the default constructor directly, but the PdfDestination class has a number of static factory 
methods to make it easier to author specific view modes and to ensure that the parameters are 
correct.

Make an Action

PdfDestination dest = PdfDestination.FitPage();
dest.Page = new PdfIndexedPageReference(3); // page numbers a 0-based.  0 is the first 
 page.  3 is the 4th page.
PdfGoToViewAction action = new PdfGoToViewAction(dest);

Putting it all together

Tying this together is a matter of association these objects with each other. We can do this in any 
logical order:
PdfBookmarkTree tree = new PdfBookmarkTree(); // make the tree
PdfBookmark bookmark = new PdfBookmark("Introduction", null); // make a bookmark
PdfDestination dest = PdfDestination.FitPage(); // make a destination
dest.Page = new PdfIndexedPageReference(3);
PdfGoToViewAction action = new PdfGoToViewAction(dest); // make an action
bookmark.ClickAction.Add(action); // add the action to the bookmark
tree.Bookmarks.Add(bookmark); // add the bookmark to the tree

The collection of bookmarks in PDF can be a tree structure. In order to describe the hierarchy, each 
PdfBookmark object has a property called Children, which is a collection of PdfBookmark objects 
that will be presented as a sub tree of that bookmark. By default, the list of the Children in any 
PdfBookmark object is empty. The maximum depth to which PdfBookmarks can nest is limited only 
by the maximum number of objects that are allowed within a PDF document - about 10 billion. The 
only real restriction is that the tree may not have cycles in it. In other words, a PdfBookmark object 
may not be put in any Children for which it is a parent or in a parent chain.

Add bookmarks with the PDF encoder
To author PDF bookmarks, you need three basic objects: a PdfBookmarkTree object to hold a 
collection of bookmarks, one or more PdfBookmark objects to represent the actual bookmarks and 
a PdfAction object which represents what will happen when the PdfBookmark is clicked.
FileSystemImageSource source = new FileSystemImageSource(@"multipage.tif", true);
PdfEncoder encoder = new PdfEncoder();
encoder.BookmarkTree = new PdfBookmarkTree();
using (FileStream stm = new FileStream("output.pdf", FileMode.Create))
{ 
    int i = 0; 

269



Atalasoft DotImage Developer's Guide

    encoder.Save(stm, source, (sender, e) => 
    { 
        if (e.Current == 0) 
            return; 
        PdfDestination dest = PdfDestination.FitWidth(null); 
        dest.Page = new PdfIndexedPageReference(i); 
        PdfGoToViewAction action = new PdfGoToViewAction(dest); 
        PdfBookmark mark = new PdfBookmark("Page " + (i + 1), action); 
        encoder.BookmarkTree.Bookmarks.Add(mark); 
        i++; 
    });
}

Add bookmarks with the PdfTranslator
To create bookmarks on a page-by-page basis with the PdfTranslator, it is easiest to hook into the 
PageConstructed event of the OcrEngine object to generate bookmarks for that page. In this event, 
you will have access to the entire structure of the OcrPage that has just been recognized, so it is 
possible to use contextual information on the page to generate more specific bookmarks or to 
generate hierarchical information for the bookmark tree.

In this example, the code generates a simple bookmark with the page number and the view mode 
set to FitPage.
void engine_PageConstructed(object sender, OcrPageConstructionEventArgs e)
{ 
    OcrEngine engine = sender as OcrEngine; 
    if (engine == null) 
        return; 
    PdfTranslator pdfTranslator = null; 
    foreach (ITranslator translator in engine.Translators) 
    { 
        pdfTranslator = translator as PdfTranslator; 
        if (pdfTranslator != null) 
            break; 
    } 
    if (pdfTranslator == null) 
        return; 
    PdfDestination dest = PdfDestination.FitPage(); 
    dest.Page = new PdfIndexedPageReference(_pageNumber); 
    PdfGoToViewAction action = new PdfGoToViewAction(dest); 
    PdfBookmark mark = new PdfBookmark("Page " + (_pageNumber + 1), action); 
    pdfTranslator.BookmarkTree.Bookmarks.Add(mark); 
    _pageNumber++;
}
int _pageNumber;
void TranslateToPdf(FileSystemImageSource source, string outputPath)
{ 
    GlyphReaderEngine engine = new GlyphReaderEngine(); 
    PdfTranslator xlator = new PdfTranslator(); 
    engine.Translators.Add(xlator); 
    xlator.BookmarkTree = new PdfBookmarkTree(); 
    engine.PageConstructed += new 
 OcrPageConstructionEventHandler(engine_PageConstructed); 
    _pageNumber = 0; 
    try 
    { 
        engine.Initialize(); 
        using (FileStream stm = new FileStream(outputPath, FileMode.Create)) 
        { 
            engine.Translate(source, "application/pdf", stm); 

270



Atalasoft DotImage Developer's Guide

        } 
    } 
    finally 
    { 
        engine.ShutDown(); 
    }
}

Combine PDF documents
To combine PDF documents, you can use the PdfDocument class. There is a static method called 
Combine, which takes either an output Stream or an output path and any number of input paths 
or input Streams. The input PDF documents are combined in order to create one output PDF 
document. This is essentially a one line task:
PdfDocument.Combine("output.pdf", "MobyDick.pdf", "Pride and Prejudice.pdf", 
 "Metamorphosis.pdf");

You can also use a stream as the output:
using (Stream outputStream = GetStream())
{ 
    PdfDocument.Combine(outputStream, "A Room With a View.pdf", "Howard's End.pdf", "A 
 Passage to India.pdf");
}

Finally, you can pass in streams for the output as well as the input. In this case, it is your 
responsibility to close the Stream objects when you're done.

 If at least one of the documents being merged is PDF 2.0, the resulting document will be 
version 2.0.

Encrypt a PDF document
The PdfDocument class can be used to encrypt existing PDF documents. To do this, you create a 
PdfDocument object from your existing file and save with a password to a new file.
PdfDocument doc = new PdfDocument("plaintext.pdf");
PdfSaveOptions options = new PdfSaveOptions();
options.SetOneTimePasswords(password);  
doc.Save(output, options, null);

There are no restrictions on password length or content.

To create password-protected PDF documents with version 1.7 and lower, the RC4 encryption 
algorithm is used.

When saving a password-protected PDF 2.0 documents, AES-256 encryption algorithm is used 
automatically.

Decrypt a PDF document
The PDF Document class can be used to decrypt existing PDF documents. To do this, you create a 
PdfDocument object from your existing file and password and save to a new file without a password
try

271



Atalasoft DotImage Developer's Guide

{ 
    PdfDocument doc = new PdfDocument("encrypted.pdf", password); 
    doc.Save("cleartext.pdf");
}
catch (CodecException e)
{ 
    Console.WriteLine("Unable to open document: " + e.Message);
}

.TIF files
Atalasoft DotImage provides the ability to manipulate TIFF IFD's, Tags, and Pages using the 
TiffFile, TiffDirectory, and TiffDirectoryCollection classes located in the Atalasoft.Imaging.Codec.Tiff 
namespace. This section introduces these classes and provides an overview of the structure of a 
TIFF document.

A TIFF file, represented by the TiffFile class in Atalasoft DotImage consists of a header, which 
identifies the data as a TIFF and points to the first Image File Directory (IFD), represented by a 
TiffDirectory in Atalasoft DotImage. Every TIFF has at least one IFD, which contains TIFF Tags and 
usually image data. Certain TIFF Tags are required for readers to read the encoded image data, such 
as ImageWidth and ImageLength. Other TIFF Tags can be stored within an IFD, including arbitrary 
Tags that can store data in any of the available TIFF Tag data types.

A TIFF Tag can contain a single scalar value, or an array of scalars. Tags must be one of the following 
available data types listed in the table.

Data Type Size

Byte = 1 8-bit unsigned integer

Ascii = 2 8-bit bytes w/ last byte null

Short = 3 16-bit unsigned integer

Long = 4 32-bit unsigned integer

Rational = 5 64-bit unsigned fraction

SByte = 6 8-bit signed integer

Undefined = 7 8-bit untyped data

SShort = 8 16-bit signed integer

SLong = 9 32-bit signed integer

SRational = 10 64-bit signed fraction

Float = 11 32-bit IEEE floating point

Double =12 64-bit IEEE floating point

Ifd = 13 32-bit unsigned integer (offset)

A TIFF File contains at least one image encoded to one of the supported compression formats. 
The TiffFile class does not actually handle the compression or decompression of image data. It 
only handles the TIFF Tags and supports reordering, inserting, removing, and adding existing TIFF 
images into a new TIFF File.

272



Atalasoft DotImage Developer's Guide

TiffFile is also used to read all TIFF Tags from a file, and writes new TIFF Tags to a new file, including 
EXIF data.

TiffFile basics
The TiffFile class can be used to manipulate images and Tags in a multipaged TIFF. This section 
provides code examples that demonstrate how to perform these actions.

Read a TIFF file
The steps for reading a TIFF file are as follows:

1. Create an instance of the TiffFile class.

2. Invoke the Read() method to read the tags and IFD's from an existing TIFF document.

3. As the Read() method requires a Stream, open a Stream must be open for the entire time TIFF 
File is being used.

4. Close the Stream after the image is saved, or after all Tags have been accessed.

Edit a TIFF file
Once a TIFF File has been read, the TiffDirectory objects can be modified, removed, inserted from 
another TiffFile by accessing the Images property, and it's Tags can be edited.

A new image can be added or inserted from an existing AtalaImage object by using the appropriate 
constructor in the TiffDirectory class. In this case, the image is compressed using a TiffEncoder, then 
extracted into a new TiffDirectory just as if the image was saved as a separate file, then opened in 
it's own TiffFile class.

Save a TIFF file
After a TIFF File has been read, you can save it by invoking the Save() method. This saves current 
state of the TiffFile object to a new file or stream, including any modifications to the Tags and the 
collection of TiffDirectories.

The filename or stream of the saved TIFF File must be different than that of the source.

When adding or editing TIFF Tags and saving to a file, ensure that the tags being edited are not 
critical to decoding the TIFF. If they are, there is a chance that the resulting file will be corrupt. For 
example, editing the Compression tag to a value other than what the underlying compressed data 
is causes all readers, including Atalasoft DotImage to yield a corrupted image. Knowledge of the 
TIFF Specification is needed if you edit TIFF Tags.

Catch errors and warnings
TiffFile is designed to parse as much as it can from TIFF images, even if there are errors with the file. 
Instead of throwing exceptions when a problem is encountered while reading a particular tag, the 
CodecError event is raised. Handle the CodecError event in order to view any warnings associated 
with reading the TIFF directories.

273



Atalasoft DotImage Developer's Guide

Multipage TIFF file
A multipage tiff file consists of data structures called image file directories (IFD). Each IFD holds 
information of an individual page of a TIFF image. As a singly-linked list, insertion/deletion/
rearrangement of IFDs is easy to do.

Managed code
Written in managed code, TiffFile provides functionalities to control IFDs of given tiff files. TiffFile 
regards a multipage TIFF file as a collection of IFDs, and an IFD as a collection of directory entires 
(DEs). Using TiffFile, clients can organize (insert/delete/swap pages) multipage TIFF and manage 
(insert/delete arbitrary tiff tags) an individual TIFF page.

TIFF file interfaces
The TiffFile interfaces consist of TiffFile, TiffDirectoryCollection, TiffDirectory.

TiffFile contains TiffDirectoryCollection obtained through extracting IFDs from a tiff image. Use the 
methods of TiffDirectoryCollection to control multi-TIFF images. The methods include swap and 
anything provided by CollectionBase.

Designed for manipulation of TIFF Tags, TiffDirectory contains a TiffTagCollection obtained 
automatically by extracting IFD.

TIFF tools
Atalasoft DotImage provides several different tools for creating or manipulating TIFF images. Each 
tool is designed for specific a purpose, but there is also a certain amount of overlap in functionality. 
The following table lists each of the tools and describes their features. With this information, you 
can select the appropriate tool for your job.

Tool Description

TiffDecoder Reads images from TIFF files.
Provides read-only access to TIFF tags within a file.

TiffEncoder Creates new TIFFs or appends images to existing 
TIFFs.
Add TIFF tags as images are added.

TiffFile, TiffDirectory, TiffDirectoryEntry Reads and writes entire TIFF files allowing full access 
to tags and images.
Replace or insert images and tags in any order.
Must save to a new file.
Can read images from files, but TiffDecoder is more 
efficient.

TiffDocument, TiffPage Simple, highly efficient set of objects for editing 
pages in a TIFF file.
Easily insert pages from multiple files.
Trivially combine multiple files into a single file.
Does not provide access to TIFF tags.

274



Atalasoft DotImage Developer's Guide

TiffDocument and TiffPage
Atalasoft DotImage includes two classes for manipulating TIFF files:
• The TiffDocument class represents a high-level model of the pages within a TIFF file.

When a TiffDocument object is constructed from an existing TIFF file, it contains a collection of 
TiffPage objects for each page within the file. TiffDocument attempts to be as efficient as possible 
in retrieving information from the files and does not ever load the actual images into memory. As 
such, it is possible to reorder and remove pages from files of arbitrary length. In addition, you can 
mix pages from other TiffDocument objects as easily as working with a document’s own pages. 
Finally, TiffDocument contains a set of static methods that can be used for combining existing 
files, making the task of merging TIFF files into a simple one-liner.

• TiffPage is a high-level model of a page within a TIFF file. It contains a number of read-only 
properties that reflect the elements of each page within the file, including size, pixel format, 
resolution and frame number. TiffPage objects do not provide the means to edit these details. 
This is considered very advanced and is best handled by using the TiffFile, TiffDirectory, and 
TiffDirectoryEntry objects.

In addition to being constructed from the contents of existing TIFF files, it is possible to create new 
TiffPage objects from AtalaImage objects.

 When making a TiffPage from an AtalaImage, the TiffPage contains a compressed copy of the 
AtalaImage.

For the reason just stated, the code that follows is perfectly valid.

C#
public TiffPage FromImage(AtalaImage image)
{ 
      TiffPage page = new TiffPage(image); 
      image.Dispose(); // image memory no longer needed 
 return page;
}

Be aware that creating a TiffPage from an AtalaImage consumes memory. The intent when creating 
TiffPage objects from AtalaImage objects is to make it easy to add a few pages to a document from 
in-memory. If you need to create dozens of TiffPage objects, it is more memory efficient to save the 
images into temporary files first using the TiffEncoder.

Work with TiffDocuments
Use TiffDocument to combine files. Either one of the code examples that follow combines several 
TIFF documents into a single file.
TiffDocument.Combine(destFile, sourceFiles); // sourceFiles is an array

or
TiffDocument.Combine(destFile, sourceFile1, sourceFile2, … sourceFileN);

This takes all of the source files and combines them in order into the destination file.

275



Atalasoft DotImage Developer's Guide

 sourceFiles and destFile can be either streams or path names. destFile cannot have the same 
name as one of the source files as this damages the TIFF files.

Suppose you have job of adding a cover sheet onto a set of existing TIFF files. Using TiffDocument, 
you can write the following method:
public void AddTPSCoverSheet(AtalaImage coverSheet, string sourceFile, string destFile)
{ 
      TiffPage coverPage = new TiffPage(coverSheet); 
      TiffDocument doc = new TiffDocument(sourceFile); 
      doc.Pages.Insert(0, coverPage); 
      doc.Save(destFile);
}

AddTPSCoverSheet injects a new TiffPage into a TiffDocument and saves it into a new file.

Determine if the pages of TIFF document are 1-bit black and white
Write the following method to determine if all of the pages of a TiffDocument are 1-bit black and 
white.
public bool IsBlackAndWhite(string sourceFile)
{ 
      using (FileStream stm = new FileStream(sourceFile, FileMode.Open, 
 FileAccess.Read))  
            { 
            TiffDocument doc = new TiffDocument(stm); 
            foreach (TiffPage page in doc.Pages)  
            { 
                  if (page.PixelFormat != PixelFormat.Pixel1bppIndexed) 
                        return false; 
            } 
            return true; 
      }
}

The stream is closed after all the work with a document is complete. Closing a stream that is 
contained in an active TiffDocument is an error. Using TiffDocument is more efficient than calling 
TiffDecoder.GetImageInfo() multiple times.

To intersperse the pages of two documents, use the following method:
public void Intersperse(Stream stm1, Stream stm2, Stream output)
{ 
   TiffDocument final = new TiffDocument(stm1); 
   TiffDocument mixin = new TiffDocument(stm2); 
   int index = 1; 
   foreach (TiffPage page in mixin.Pages) 
   { 
      if (index < final.Pages.Count) 
      { 
         final.Pages.Insert(index, page); 
      } 
      else 
      { 
         final.Pages.Add(page); 
      } 
      index += 2; 
   } 
   final.Save(output);

276



Atalasoft DotImage Developer's Guide

}

Read TIFF tags
To read a TIFF tag from an image, use the static GetSingleTag from the TiffDecoder. Standard TIFF 
Tag ID's are stored in the TiffTagID enumeration.

The following example demonstrates how to obtain WANG annotation data from a TIFF image using 
GetSingleTag.

C#
TiffTag tag = TiffDecoder.GetTiffTag((int)TiffTagID.WangAnnotations, 
   "myimagewithwang.tif", 0);
byte[] data = (byte[])tag.Data; 

Write TIFF tags
To write TIFF Tags with an image, set the TiffTags property of the TiffEncoder class to a collection of 
TIFF Tags with the TiffTagCollection.

This example demonstrates how to save WANG annotation data with the image.

C#
TiffTagCollection tags = new TiffTagCollection(); 
 tags.Add(new TiffTag(TiffTagID.WangAnnotations, data); 
 TiffEncoder tiffEncoder = new TiffEncoder(); 
 tiffEncoder.TiffTags = tags; 
 myImage.Save("myimagewithwang.tif", tiffEncoder, null);

Save an image to a multipage TIFF file
Use these samples to save an image into an existing multipage tiff file.

C#
FileStream saveFile = new FileStream(@"C:\existingTiff.tif", FileMode.Open);
TiffFile theFile = new TiffFile(saveFile);

// Remove the old Image
theFile.Images.Remove(5);

// Add new Image from viewer as a new TiffDirectory
theFile.Images.Insert(5,new TiffDirectory(WS_Viewer.Image));

// Save to a temp file.
theFile.Save(@"C:\temp.tif");
saveFile.Close();

// Copy, and delete temp file.
File.Copy(@"C:\temp.tif", @"C:\existingTiff.tif", true);
File.Delete(@"C:\temp.tif");

Join two TIFF streams
Use these samples to save an image into an existing multipage tiff file.

277



Atalasoft DotImage Developer's Guide

C#
// open two TiffFiles using either stream or string
TiffFile oneTiff = new TiffFile(streamOne);
TiffFile twoTiff = new TiffFile(streamTwo);

// add two files
oneTiff.Images.Add(twoTiff.Images[0]);

// save
oneTiff.Save(targetStream);

Add an AtalaImage to a TIFF stream
C#
// open a TiffFile and an AtalaImage
TiffFile oneTiff = new TiffFile(streamOne);
TiffDirectory twoTiff = new TiffDirectory(atalaImage);
// add two files
oneTiff.Images.Add(twoTiff);
// save
oneTiff.Save(targetStream);

Remove pages from a multipage TIFF
C#
// open multipage TiffFile using either stream or string
TiffFile oneTiff = new TiffFile(streamOne);
// remove a page
oneTiff.Images.RemoveAt(1);
// save
oneTiff.Save(targetStream);

Merge two TIFF files
This code sample combines all images in two multipage TIFF files into one file.

C#
// open two TiffFiles using either stream or string
TiffFile oneTiff = new TiffFile(streamOne);
TiffFile twoTiff = new TiffFile(streamTwo);
// add two files
oneTiff.Images.Add(twoTiff.Images[0]);
// save
oneTiff.Save(targetStream);

Swap pages in a TIFF file
C#
TiffFile file = new TiffFile();

using (Stream fs1 = new FileStream("file1.tif", FileMode.Open, FileAccess.Read,  
    FileShare.Read))
{ 
        file.Read(fs1); 
        file.Images.Swap(0, 1); 

278



Atalasoft DotImage Developer's Guide

        file.Save("swappedtiff.tif");
}

Add arbitrary TIFF tags
C#
// open a TiffFile  
TiffFile oneTiff = new TiffFile(streamOne);

// access to a TiffDirectory
TiffDirectory image = oneTiff.images[0];

// access to TiffTagCollection
TiffTagCollection tags = image.Tags;

// add Tiff Tags (add copyright)
Tags.Add(33432,”Atalasoft”);

// add Tiff Tags
string datetime = “2005:07:26 09:31:23\0”;
Tags.Add(306,datetime,TiffTagDataType.Ascii);

// save
oneTiff.Save(targetStream);

Delete a TIFF tag
C#
// open a TiffFile
TiffFile oneTiff = new TiffFile(streamOne);
// access to a TiffDirectory
TiffDirectory image = oneTiff.Images[0];
// access to TiffTagCollection
TiffTagCollection tags = image.Tags;
// remove Tiff Tags (remove copyright)
tags.Remove(new TiffTag(33432, "Atalasoft", TiffTagDataType.Ascii));
// save
oneTiff.Save(targetStream);

View all tags in a TIFF file
TiffFile file = new TiffFile();
using (Stream fs1 = new FileStream("file1.tif", FileMode.Open, FileAccess.Read,  
    FileShare.Read))
{ 
        file.Read(fs1); 
        foreach (TiffDirectory image in file.Images) 
        { 
                foreach (TiffTag tag in image.Tags) 
                { 
                        Console.WriteLine(tag.ToString()); 
                } 
        }
}

279



Atalasoft DotImage Developer's Guide

Add a TIFF tag
The following example adds new TIFF tags to an existing image.

C#
TiffFile file = new TiffFile();
using (Stream fs1 = new FileStream("file1.tif", FileMode.Open, FileAccess.Read,  
    FileShare.Read))
{ 
        file.Read(fs1); 
        TiffTagCollection tags = file.Images[0].Tags; 
        tags.Add(new TiffTag(TiffTagID.Copyright, "(c) Atalasoft, Inc.")); 
        tags.Add(new TiffTag(306, "2005:07:26 09:31:23", TiffTagDataType.Ascii)); 
        file.Save("newtags.tif");
}

Add and retrieve binary TIFF tag
The following example adds and retrieves a binary TIFF tag.

This code embeds an image inside an arbitrary tag, and retrieves that image back.

C#
AtalaImage img1;
AtalaImage img2;
TiffFile file = new TiffFile();
using (Stream fs1 = new FileStream("file1.tif", FileMode.Open, FileAccess.Read, 
   FileShare.Read))
{ 
   file.Read(fs1); 
   img1 = new AtalaImage("file2.tif"); 
   TiffTag tag = new TiffTag(65535, img1.ToByteArray(new TiffEncoder()), 
       TiffTagDataType.Byte); 
   file.Images[0].Tags.Add(tag); 
   file.Save("embeddedimagetag.tif");
}
//verify
TiffFile file2 = new TiffFile();
using (Stream fs1 = new FileStream("embeddedimagetag.tif", FileMode.Open, 
 FileAccess.Read, 
   FileShare.Read))
{ 
   file2.Read(fs1); 
   TiffTag tag = file2.Images[0].Tags.LookupTag(65535); 
   MemoryStream ms = new MemoryStream((byte[])tag.Data); 
   img2 = new AtalaImage(ms);
}   

Get All TIFF tags in image
The TiffFile class can be used to obtain all TIFF Tags in an image.

This code displays all of the TIFF tags in a TIFF document.

C#

280



Atalasoft DotImage Developer's Guide

using (Stream fs = new FileStream("multi.tif", FileMode.Open, FileAccess.Read, 
 FileShare.Read))
{ 
   int count = 1; 
   TiffFile file = new TiffFile(); 
   file.Read(fs); 
   foreach (TiffDirectory image in file.Images) 
   { 
      Console.WriteLine("Tags in page: " + count); 
      foreach (TiffTag tag in image.Tags) 
      { 
         Console.WriteLine(tag.ToString()); 
      } 
      count++; 
      Console.WriteLine(); 
   }
}

Convert between TIFF and JPEG
After parsing EXIF data, EXIF Tags and the thumbnail can be added, removed, and edited.

To save the edited ExifCollection back into a JPEG image, use the ToByteArray in the ExifCollection 
to create a new APP1 JpegMarker. Then set the AppMarkers in the JpegEncoder prior to saving the 
image, or prior to using CopyJpegWithNewMarkers. To save EXIF information into a TIFF image, use 
the TiffFile class and set the TiffDirectory object's ExifTags property to the ExifCollection containing 
the EXIF data.

With the EXIF editing capabilities of Atalasoft DotImage, it is possible to convert an image from JPEG 
to TIFF, and retain the EXIF information. Likewise it is possible to convert from TIFF to JPEG, also 
retaining the EXIF data. The following example demonstrate both techniques.

Convert from JPEG to TIFF with EXIF
C#
ExifParser exifparse = new ExifParser(); 
 ExifCollection exifTags = exifparse.ParseFromImage(filename); 
 TiffFile tFile = new TiffFile(); 
 tFile.Images.Add(new TiffDirectory(new AtalaImage(filename), 
 TiffCompression.JpegCompression)); 
 tFile.Images[0].ExifTags = exifTags; 
 tFile.Save("convertedTiffWithExif.tif");

Convert from TIFF to JPEG with EXIF
string filename = "exif.tif"; 
 ExifParser exifparse = new ExifParser(); 
 ExifCollection exifTags = exifparse.ParseFromImage(filename); 
 JpegMarkerCollection markers = new JpegMarkerCollection(); 
 markers.Add(new JpegMarker(JpegMarkerTypes.MarkerApp1, exifTags.ToByteArray())); 
 JpegEncoder jpg = new JpegEncoder(); 
 jpg.AppMarkers = markers; 
 AtalaImage image = new AtalaImage(filename); 
 image.Save("convertedJpegWithExif.jpg", jpg, null);

281



Atalasoft DotImage Developer's Guide

Work with multipage TIFFs
Many document imaging applications require the use of multipage TIFF images. Atalasoft DotImage 
Document Imaging is designed to handle this with the MultiFramedImageDecoder (inherited by the 
TiffDecoder), the IAppendable interface (implemented by the TiffEncoder), and the ImageSource 
class which is designed to handle multi-framed images.

For manipulating TIFF pages (inserting, removing) and tags directly without re-encoding or 
decoding image data, see the TiffFile overview.

Open a multipage TIFF image
There are two ways to open a multipage TIFF image. To load each image in the TIFF at the 
same time for easy navigation and manipulation, use the Open() method in the Workspace 
or WorkpaceViewer object without specifying a frame index. This method sets the Images 
property with an ImageCollection containing each image in the file. We no longer recommend 
this. However, if the TIFF contains many pages, it is best to open only one image at a time, as it 
opens faster and conserves memory. This can be done manually, but we recommend using the 
FileSystemImageSource object to loop over each frame in the file.

Read each page in the TIFF

The following example demonstrates how to load each image into the Images property, and then 
loop through the ImageCollection to access information from each image.

C#
//load each image into the ImageCollection
myWorkspace.Open(filename);

//display information from each image
foreach (AtalaImage image in myWorkspace.Images) 
    Console.WriteLine(image.ToString());

Read each page in the TIFF using a FileSystemImageSource

The following example demonstrates how to loop over each page in an image using the 
FileSystemImageSource object.

FileSystemImageSource source = new FileSystemImageSource(new string[] { filename }, 
 true); 
   while (source.HasMoreImages()) 
   { 
      AtalaImage image = source.AcquireNext(); 
      Console.WriteLine(image.ToString()); 
      source.Release(image); 
   }

Read a single page in the TIFF

You can open a specific page from a multipage TIFF file by specifying the frame index. The following 
example loads only the first page by specifying a frameindex of 0.

C#
//load a specified page in the image
int frameindex = pagenumber - 1;

282



Atalasoft DotImage Developer's Guide

myWorkspace.Open(filename, frameindex);

Display and manipulate images in the ImageSource

To display a particular image in the FileSystemImageSource, or to apply an ImageCommand to an 
image other than the first image in the collection, you need to release the old image, if any, and 
then acquire the new image and set it to the current image. At that point, operations accessed 
through the Workspace object will act on that image. For coding convenience, the Workspace.Image 
property is a pointer to Workspace.Images.Current.

The following example demonstrates how to change the current image to the second image in the 
image source.

Change the current image to the second in the image source

C#
// select the next image
if (myWorkspace.Images.Current != null) 
    source.Release(myWorkspace.Images.Current);

 The FileSystemImageSource object can be treated as an array of images. This is somewhat 
confusing because the act of getting an element of the array does an implicit Acquire(). The 
Acquire() must be paired with a matching Release().

Replace the current image

The Workspace.Image property has two purposes:
• To get the current image in the ImageCollection (same as Workspace.Images.Current),
• To replace the current AtalaImage with a new image (same as Workspace.Images.Replace).

Add an image to the ImageCollection

If you open an image with the Open() method, the image is automatically added to the 
ImageCollection. However, there are situations where you may want to assemble a multiple page 
file. You can add an existing AtalaImage into the existing ImageCollection with the Add() or Insert() 
method of the ImageCollection class.

The following example shows how to load a series of single page images into one ImageCollection

C#

for(int i = 1; i < 4; i++)
{ 
    //opens the images image1.tif, image2.tif, and image3.tif 
    //and adds each image to the tiffAssembler workspace 
    myWorkspace.Images.Add(new AtalaImage("c:\\image" + i.ToString() + ".tif"));
}

In addition to adding an image to the collection, you can also insert an image into a specified 
position in the ImageCollection, or replace an existing image with another image.

283



Atalasoft DotImage Developer's Guide

Save or append a multiple page TIFF image

To save an existing ImageCollection as a multiple page TIFF, invoke the Workspace.Save() method 
and specify the TIFF encoder image type. You do not need to specify a frameindex to save.

The following example demonstrates how to save the current ImageCollection as a multiple page 
TIFF file with G4 FAX compression.

C#
for (int i = 1; i < 4; i++)
{ 
    //opens the images image1.tif, image2.tif, and image3.tif 
    //and adds each image to the tiffAssembler workspace 
    myWorkspace.Open("c:\\image" + i.ToString() + ".tif"); 
    myWorkspace.Save("c:\\multiimage.tif", new TiffEncoder( 
        TiffCompression.Group4FaxEncoding, true));
}

Save an image specifying compression type
The following example shows how to save an image as a TIFF, specifying the compression type.

C#
myWorkspace.Save("myImage.tif", new TiffEncoder(TiffCompression.Group4FaxEncoding));

DICOM
Digital Imaging and Communications in Medicine (DICOM) is the standard format used to manage 
medical imaging information and its related workflow. Developed in 1993, the DICOM standard 
consists of a file format definition and a network communications protocol.

DICOM is rapidly becoming the standard for all electronic health record systems that include 
imaging information as part of patient records. Adherence to the DICOM standard allows DICOM 
compliant devices from multiple manufacturers to work together in a seamless fashion as every 
DICOM complaint device must specify the DICOM classes it supports. Software developers who are 
DICOM conformant ensure that every medical imaging facility can use their software and that their 
tools can integrate with any electronic health records system.

DICOM was developed the the DICOM Standards Committee and is managed by the the 
Association of Electical and Medical Imaging Manufacturers. For more information, go to http://
DICOM.nema.org/.

The DicomDecoder is an ImageDecoder that decodes DICOM images into an AtalaImage. The basic 
information you need to create a DotImage Decoder for DICOM images is provided here.
• Assembly Atalasoft.dotImage.Dicom.dll
• Namespace Atalasoft.Imaging.Codec.Dicom

Use the DicomHeaderParser to read metadata from a DICOM image.

284



Atalasoft DotImage Developer's Guide

Some classes allow manipulation of DICOM datasets and images closer to the raw formats provided 
by the file format. The classes DicomDataset and DicomImage allow more efficient repeated 
dynamic adjustments to be made to images without having to repeatedly decode them.

Extra classes for handling DICOM images
In addition to the DicomDecoder object, Atalasoft DotImage includes classes for more efficient 
manipulation of DICOM Images. In particular, it is often important to be able to manipulate the 
brightness and contrast of a Dicom image and display the changes in an active user interface. While 
this can be done by decoding a DICOM image into an AtalaImage object and repeatedly applying 
the BrightnessContrastCommand, it can be important to perform these transformations in the 
native image space that is produced by a specific imaging device. In DICOM parlance, this is called 
applying window and leveling.

Three native DICOM image spaces are available to clients of Atalasoft DotImage:
• Raw: Format that represents the raw samples that are contained within the file.
• Modality Transformed: Format that represents the image transformed by a modality transform 

supplied by the imaging device.
• Presentation: Format that represents the image transformed into ranges that are suitable for 

presentation, usually via a window and leveling transform defined in the file.

DicomDataset
The DicomDecoder creates all three images to provide an AtalaImage. First the raw image is read, 
then it is transformed into the modality image, then into the presentation image, before being put 
into an AtalaImage.

In most cases, client code will use a modality transformed image then repeatedly apply a window 
and leveling to produce a series of AtalaImage objects. By operating this way, the original image will 
only be decoded once and the the modality transform will only be applied once.

The two main objects used for this process are DicomDataset and DicomImage. A DicomDataset 
object models the dataset structure from within a DICOM file. Constructed from a Stream object, 
the DicomDataset object implements IDisposable. It is very important for client code to call the 
Dispose() method when it is done with a DicomDataset. If this is not done, an exception may be 
thrown when the application exits.

A DicomDataset is a factory for DicomImage objects. Client code calls one of the Get...Image 
methods to get a new DicomImage object of the desired type. Each Get...Image method requires an 
index to the desired frame. Note that multiple calls with the same frame index will return unique, 
newly-allocated images.
• GetRawImage(int frameIndex) - returns a new raw dicom image with minimal processing of the 

image data
• GetModalityTransformedImage(int frameIndex) - returns a new raw dicom with the device 

modality transform applied
• GetPresentationImage(int frameIndex) - returns a new raw dicom image with the modality 

transform and a window and leveling transform applied.

285



Atalasoft DotImage Developer's Guide

DicomImage
The DicomImage object is a model of the underlying raw data format. Using the DicomImage 
object, client code can transform it into a new or existing AtalaImage with an optional window and 
leveling transform. In addition, the DicomImage object has information about how the image may 
have been transformed.

For example, DICOM images are often represented by sample values that are signed rather than 
unsigned. Since most imaging systems use signed sample values, it is necessary to shift the signed 
values into an unsigned range. If an image was shifted out of the signed range, the property 
ImageCameFromSignedSamples will be true and the amount of this shifting is available via the 
ImageDataShiftedBy property.

DicomImage implements IDisposable and like the DicomDataset object, it is very important for 
client code to call the Dispose() method when it is done with a DicomImage.

Use DicomDataset and DicomImage
Using DicomDataset and DicomImage it is possible to implement the functionality of the 
DicomDecoder method:

Implement DicomDecoder.Read
public AtalaImage Read(Stream stm, int frameIndex) 
 { 

    using (DicomDataset dataset = new DicomDataset(stm)) { 

        if (frameIndex < 0 || frameIndex >= dataset.FrameCount) 

            throw new ArgumentOutOfRangeException("frameIndex"); 

        using (DicomImage image = dataset.GetPresentationImage(frameIndex)) { 

            return image.GetAtalaImage(); 

        } 

    }
}

This code creates a DicomDataset object, range checks the frameIndex, then retrieves the 
presentation DicomImage and translates it to an AtalaImage. Note the use of the "using" syntax to 
ensure that the DicomDataset and DicomImage objects are disposed.

A typical application will want to open a modality transformed image then repeatedly perform 
window and leveling operations on the image. Rather than allocate a new AtalaImage for each 
operation, it is desirable to apply the window and leveling operation directly into an existing image. 
An appropriate image can be constructed via the DicomImage method AllocateAtalaImage.

Apply window and leveling

The window value is typically stored in a signed sample range and must therefore be shifted by the 
same amount as the samples. If this is not done, then it is likely that the resulting image will be all 
white or all black.
private void OpenDicomImage(Stream stm)  

286



Atalasoft DotImage Developer's Guide

{  

    _dataSet = new DicomDataset(stm);  

    _dImage = _dataSet.GetModalityTransformedImage(0);  

    _atalaImage = _dImage.AllocateAtalaImage();  

    _window = _dImage.DefaultWindow;  

    _leveling = _dImage.DefaultLeveling;  

    UpdateImage();  

}  

private void UpdateImage()  

{  

    int window = _window;  

    if (_dImage.ImageCameFromSignedSamples)  

        window += _dImage.ImageDataShiftedBy;  

    _dImage.GetAtalaImage(_image, window, _leveling); // transforms into _image  

} 

JPEG2000 - encoding images
Encoding JP2 images involves creating an instance of Jp2Encoder, which derives from 
ImageEncoder, and then invoking the Save() method. The Standard edition, allows adjustment of 
just one property, the Compression property. The Professional edition grants low level access to the 
Codec. This covers all encoder settings.

Encode tiled images
Among the important features of JPEG2000 is capability of encoding a large image - up to (232 - 1) 
× (232 - 1) pixels - without breaking into tiles. JPEG2000 also has a facility of compressing an image 
into tiles in which data may be compressed independently in each tile or in each color component. 
Encoding with (or without) tiles using Atalasoft DotImage Jpeg2000 is explained here.

To encode without tiles Set the TileSize property to of Jp2Encoder to (0,0) or 
Size.Empty which implies no tiles.

To encode with tiles Set the TileSize property of Jp2Encoder to any non-
zero size.

Encode region of interest
The JPEG2000 specification includes the ability to encode user specific areas of the image at higher 
quality. This gives more detail to certain areas of an image, without compromising file size. The 
Jp2Encoder has an EnhancedRegions property, which points to a collection of Jp2EnhancedRegion 

287



Atalasoft DotImage Developer's Guide

objects. Setting the EnhancementFactor in the Jp2EnhancedRegions collection boosts the quality of 
all regions by a factor over the Compression property.

Baseline encoder properties
The properties listed in the table below can be set for the entire image only (cannot be 
independently set to tiles or components).

Compression
Gets or sets the compressed size of the image as a percentage of an uncompressed image.

EnhancedRegions
Gets a collection of Enhanced Regions that can be set at a higher quality level than the rest of the 
image during compression.

FileFormat
Gets or sets the file format to generate (JP2, JPEG2000 codestream, or JPX).

IPData
Gets or sets intellectual property rights data to be encoded with the image.

IptcTags
Gets or sets IPTC data that will be stored in the encoded image.

Precision
Gets or sets a value indicating the precision of the wavelet coefficients.

QualityStyle
Gets or sets a value indicating the quality mode during lossy compression.

SpeedMode
Gets or sets the speed mode (Fast or Accurate) to use during lossy compression.

TileSize
Gets or sets the size in pixels of each individual tile.

UuidBoxes
Gets or sets UuidBox metadata to be stored in the encoded image.

UuidInfoBoxes
Gets or sets UuidInfoBox metadata to be stored in the encoded image.

WriteTileLengthMarker
Gets or sets a value indicating if a tile length marker is written to the encoded image.

XmlBoxes
Gets or sets XML metadata to be stored with the image.

Per tile encoder properties
These properties can be set for the entire image or independently for each tile. These properties 
exist in EncoderOptions, and by default are applied to the entire image unless overriding 
GetEncoderOptions.

288



Atalasoft DotImage Developer's Guide

QualityLayers
Gets or sets the number of quality layers in the code stream for use with progressive decoding.

ProgressionOrder
Gets or sets the organization of the coded data.

PacketMarkers
Gets or sets a value that creates special markers at the beginning and/or at the end of each block of 
a coded area.

Per tile and per component properties
These properties can be set for the entire image, independently for each tile, and independently for 
each component. These properties exist in EncoderOptions, and by default are applied to the entire 
image unless overriding GetEncoderOptions.

WaveletFilterMethod
Gets or sets a value selecting reversible (WaveletFiveThree) or irreversible (WaveletNineFive) wavelet 
filters.

WaveletLevels
Gets or sets the number of wavelet transformation levels.

QuantizationStyle
Gets or sets the quantization steps.

CodeBlockSize
Gets or sets the size of the blocks of coded data.

CoderOptions
Gets or sets the coder options for faster compression / decompression.

Getting Started with JPEG2000
This section gives you information to get started with JPEG2000.

Register the JPEG2000 codec in Atalasoft DotImage
To set up Atalasoft DotImage to decode JP2 images, add an instance of the Jp2Decoder to the 
Atalasoft.Imaging.Codec.RegisteredDecoders.Decoders collection.

Use the JPEG2000 imaging codec

C#

...  
Jp2Decoder jp2 = new Jp2Decoder();  
RegisteredDecoders.Decoders.Add(jp2); 

289



Atalasoft DotImage Developer's Guide

Link to the license file
To compile Atalasoft DotImage JPEG2000 in a Windows Forms application such that the royalty free 
license is installed into the application resource, a file called licenses.licx must be added to the 
project, with the following line in that file:
Atalasoft.Imaging.Codec.Jpeg2000.Jp2Decoder, Atalasoft.dotImage.Jpeg2000  
   

This instructs the Visual Studio .NET compiler to embed the license file to the resources in the exe. 
For information about compiling and embedding the license, see Generating licenses.

Decode JPEG2000 images
Once the decoder is registered, all methods that decode an image, such as Workspace.Open or 
new AtalaImage(filename) recognizes JP2 images as valid supported images. The Read() method of 
Jp2Decoder can also be called directly to bypass the image format check determining the codec to 
use.

Get information from JPEG2000 images
It is possible to retrieve information from a JPEG2000 image without decoding it by using 
the GetImageInfo() method of the Jp2Decoder class, or the GetImageInfo() method of the 
RegisteredDecoders class. Information, including width, height, bitdepth, is available. To access 
Intellectual Property Rights data and the type of code stream, cast the returned ImageInfo class to a 
Jp2ImageInfo.

Get image information

To encode JPEG2000 images, create an instance of the Jp2Encoder class, and pass it into the 
Workspace.Save() method, the AtalaImage.Save() method, or the Save() method in the Jp2Encoder 
class. The Compression property in the Jp2Encoder can be set to compress the resulting image 
to the desired amount. For example, setting the compression to 5 results in an image that is 
approximately five per cent of the size of the original uncompressed image.

C#

using Atalasoft.Imaging.Codec.Jpeg2000;
...  
Jp2ImageInfo info = (Jp2ImageInfo)RegisteredDecoders.GetImageInfo("myimage.jp2");
Console.WriteLine(info.FileFormat);

Deploy Atalasoft DotImage JPEG2000
When deploying Atalasoft DotImage JPEG2000 to a client machine or server, the following must be 
copied to the same folder as the exe which references the Atalasoft DotImage assemblies:
• Atalasoft.dotImage.dll

• Atalasoft.dotImage.Jpeg2000.dll

• Atalasoft.dotImage.Lib.dll

When distributing client desktop applications, the license file is embedded into the resource, and 
there is no need to distribute or activate any additional licenses.

290



Atalasoft DotImage Developer's Guide

When installing on a production server, a server license must be acquired and activated for the 
server.

Introduction to JBIG2
Atalasoft DotImage JBIG2 codec can be used to decode and encode JBIG2 images using the 
Microsoft .NET Framework. JBIG2 compression is an open standard and can compress bi-tonal 
images 2 - 5 times more than the same image compressed with the industry standard TIFF CCIT 
Group4 compression. The codec is available as a plug-in that integrates with Atalasoft DotImage 
seamlessly. Atalasoft DotImage JBIG2 is based off of Luratech's Lurawave.jb2 compression 
technology. Licensing is runtime royalty free for desktop applications.

The JBIG2 standard has been developed by the Joint Bi-level Experts Group (JBIG) for the efficient 
lossless and lossy compression of bilevel (black and white) images. It is capable of compressing 
black and white documents considerably more than the more commonly used CCIT Group 4 TIFF 
compression.

The use of symbol dictionaries and symbol matching in JBIG2 enables very effective encoding of 
documents containing recurring symbols, making JBIG2 ideal for compressing documents. JBIG2 
has been made popular by Adobe PDF, which incorporates JBIG2 in the PDF 1.5 specification. PDF 
Reader includes JBIG2 support for reading these types of PDF documents.

Product Features
• Ability to decode any page from a 1-bit JBIG2 image.
• Encode a single or multipage document as a JBIG2 image, an image only PDF document.
• Supports Lossless or Lossy compression
• Supports encoding or decoding from any stream
• Read a specified region from an existing JBIG2 image stream.
• Generate image only PDF documents with embedded JBIG2 images.
• Integrated with the Atalasoft DotImage PDFEncoder to encode PDF images with other 

compression formats.
• Runtime Royalty Free Desktop Licensing

JBIG2 Compression
Jb2Encoder, derived from MultiFramedImageEncoder, can compress a bi-level image (i.e. 
PixelFormat.Pixel1bppIndexed) to JBIG2 or PDF.

 An exception is thrown if the source image is not 1-bit image. To avoid the exception, convert 
the image to 1-bit prior to compression.

The JBIG2 Codec can compress images as JB2 format, or PDF with embedded JBIG2 images, or 
a JBIG2 stream that can be directly embedded inside a PDF. See the ExportFormat property for 
specifying the export format.

The EncodingMode property indicates if an image is compressed Lossy or Lossless.

291



Atalasoft DotImage Developer's Guide

JBIG2 Decompression
The Jb2Decoder. derived from MultiFramedImageDecoder, can access an existing JBIG2 file or JBIG2 
embedded stream. To decode a stream, see the Read() method.

The decoder supports decoding a single frame, specifying the frame index, or directly to an 
ImageCollection. To register the JBIG2 decoder in the list of known codecs, add an instance of the 
Jb2Decoder into the Atalasoft.Imaging.Codec.RegisteredDecoders.Codecs collection.

Compression Examples

Uncompressed CCIT Group IV JBIG2 Lossless JBIG2 Lossy PDF w/ Lossless 
JBIG2

3-page FAX, 
1728 x 2293

1,454 Kb 121 Kb 24 Kb 23 Kb 26 Kb

strip chart grid 
scan, 9760x6976

8,321 Kb 1,088 Kb 675 Kb 674 Kb 676 Kb

Mechanical 
CAD drawing, 
9259x6816

7,716 Kb 209 Kb 104 Kb 100 Kb 105 Kb

Custom codecs - image codec
An image codec is a program that can encode and decode an image.

Atalasoft DotImage can read and write most common image formats. Images are read with 
ImageDecoders and written with ImageEncoders. The extensibility model of Atalasoft DotImage 
allows custom encoders and decoders to be created easily by Atalasoft DotImage or third parties. 
Plug-ins for Jpeg2000 and other codecs are available separately.

Supported formats
Format ImageDecoder ImageEncoder Assembly location

Jpeg JpegDecoder JpegEncoder Atalasoft.dotImage

Png PngDecoder PngEncoder Atalasoft.dotImage

Bmp BmpDecoder BmpEncoder Atalasoft.dotImage

Tiff TiffDecoder TiffEncoder Atalasoft.dotImage

Gif GifDecoder GifEncoder Atalasoft.dotImage

Pcx PcxDecoder PcxEncoder Atalasoft.dotImage

Tga (Targa) TgaDecoder TgaEncoder Atalasoft.dotImage

Psd PsdDecoder PsdEncoder Atalasoft.dotImage

Wbmp WbmpDecoder WbmpEncoder Atalasoft.dotImage

Emf EmfDecoder EmfEncoder Atalasoft.dotImage

292



Atalasoft DotImage Developer's Guide

Wmf WmfDecoder WmfEncoder Atalasoft.dotImage

Tla TlaDecoder TlaEncoder Atalasoft.dotImage

Pcd PcdDecoder - Atalasoft.dotImage

Pnm PnmDecoder PnmEncoder Atalasoft.dotImage

Pdf† - PdfEncoder Atalasoft.dotImage.Pdf

Pdf** PdfDecoder - Atalasoft.dotImage.PdfReader

Raw* RawDecoder - Atalasoft.dotImage.Raw

JPEG 2000** Jp2Decoder Jp2Encoder Atalasoft.dotImage.Jpeg2000

JBIG2** Jb2Decoder Jb2Encoder Atalasoft.dotImage.Jbig2

DWG** DwgDecoder - Atalasoft.dotImage.Dwg

DXF** DwgDecoder - Atalasoft.dotImage.Dwg

DICOM** DicomDecoder - Atalasoft.dotImage.Dicom

XPS XpsDecoder - Atalasoft.dotImage.Wpf

JpegXR JpegXrDecoder JpegXrEncoder Atalasoft.dotImage.Wpf

Heif HeifDecoder - Atalasoft.DotImage.Heif

* Included with Atalasoft DotImage Photo Pro and Atalasoft DotImage Document Imaging

**Available as a separate plug-in module

† Included with Atalasoft DotImage Document Imaging

Create a decoder
The Decoder class reads image data and converts it into an AtalaImage object. This class inherits 
from the Atalasoft.Imaging.Codec.ImageDecoder object.

Required methods
The following methods are required to qualify as a compatible Atalasoft DotImage plug-in.

C#
public override ImageInfo GetImageInfo(Stream stream)

This method is used to gather information about this image, including ImageType, width, height, 
bit depth, PixelFormat and DPI. You can also create your own custom ImageInfo object if the image 
format contains additional information. See Create Custom Image Information.

C#
public override bool IsValidFormat(Stream stream)

Atalasoft DotImage uses this method to find out if the image being opened can be read by your 
plug-in. The method returns true if it can be read.

C#

293



Atalasoft DotImage Developer's Guide

public override AtalaImage Read(Stream stream, ProgressEventHandler progress)

This method is called to ask the plug-in to read the image from a stream and convert it into an 
AtalaImage object. If possible, you should also raise the progress event for each scan line. If you are 
unable to read the image in the stream, return null.

In addition to the preceding methods, you must also include the following property.

C#

public override ImageType SupportedImageType
{ 
 get { return ImageType.Unknown; }
}

This property indicates what image type your plug-in can read. If the image type is unknown to 
Atalasoft DotImage, you should return ImageType.Unknown.

Additional methods and properties
If the image format your decoder reads can make use of additional methods and/or properties, go 
ahead and add them. While Atalasoft DotImage does not use them, you can use your class to access 
those features directly.

AtalaImage data format
It is very important that you know how the image data should be formatted in order for Atalasoft 
DotImage to display and manipulate it properly.

Internally, the image data is stored as a top-down, 32-bit aligned buffer. This makes it very likely 
that you will have to add padding to the end of each row. In addition, the colors of 24- and 32-bit 
images are stored in BGR and BGRA order.

Palettes
If the image format you are reading requires a palette, you will have to add the palette entries to 
the AtalaImage.Palette object. You can do this by using the Palette.SetEntry() method.

If the image is grayscale, a standard grayscale palette is automatically be added when you create 
the AtalaImage object. This palette is ordered from black (0) to white (255).

If the image is 1-bit, a black and white palette is automatically created in which white is 0 and black 
is 1. If the image requires different colors, you can change them with the SetEntry() method.

ImageData
The AtalaImage.ImageData property is a pointer to the beginning of the image data. You can set 
the image data using Marshal.Copy, or you can use unsafe code to set the image data directly to the 
pointer.

There is also an AtalaImage constructor which lets you to set the value of the ImageData property. 
You may prefer this if you want to control the memory allocation.

294



Atalasoft DotImage Developer's Guide

Create an encoder
The image encoder is used to save an AtalaImage object into a specific image format. Your encoder 
must inherit the Atalasoft.Imaging.Codec.ImageEncoder class.

There is only one required method for the encoder as shown in the example.

Required method for image encoder
This method is used to save the AtalaImage into the specified stream. If possible, you should raise 
the progress event for each scan line. The return value is the number of bytes written to the stream.

C#
public override int Save(Stream stream, AtalaImage image, ProgressEventHandler 
 progress);
 

Additional methods and properties
You are free to add any additional methods and properties to your encoder. If you review the source 
code for PortableImageEncoder, you see that Atalasoft DotImage has added multiple constructors 
and three properties that provide easy access to the features of this image format.

AtalaImage data format
Image data is stored as a top-down, 32-bit aligned buffer. You must be sure to watch for row 
padding in the image data, and remember that 24- and 32-bit images are stored in BGR and BGRA 
order.

Extend a codec
Atalasoft DotImage was designed with extensibility in mind. Advanced .NET programmers can 
extend or override existing functionality. Many methods are marked as virtual, meaning that they 
can be overridden when the class is inherited. This allows native functionality to be overridden and 
enhanced.

The Atalasoft DotImage ImageCommands and Codecs provide good examples of how a developer 
can extend and customize the Atalasoft DotImage application. By inheriting the ImageCommands 
and Codecs base classes, you can add your own plug-ins to the product.

For example, you can create an ImageCommand that uses your own special algorithm. 
Alternatively, you can add an ImageDecoder for your favorite, but unsupported and obscure, image 
format. You have the option to sell your plug-ins commercially.

To create a custom decoder or encoder, you must inherit the abstract base class 
%ImageDecoder:Atalasoft.DotImage~Atalasoft.Imaging.Codec.ImageDecoder% or 
%ImageEncoder:Atalasoft.DotImage~Atalasoft.Imaging.Codec.ImageEncoder% respectively. The 
next section explains how to create a custom decoder and encoder.

295



Atalasoft DotImage Developer's Guide

Decoder tutorial
One of the great features of Atalasoft DotImage is the ability to create your own plug-in to support 
extra file types. You can even create your own image format and take advantage of the image 
processing features of Atalasoft DotImage.

This tutorial covers they key concepts you need to create your own plug-in. The code examples are 
taken from the PortableImage component. The tutorial includes the following:

• The Decoder
• Requirements
• Additional Methods and Properties
• The AtalaImage Data Format
• Palettes
• Image Data
• Example Code

• Custom ImageInfo
• The Constructor

• The Encoder
• Requirements
• Additional Methods and Properties
• The AtalaImage Data Format
• Example Code

Adjust decoder properties
Some Image Decoders have properties that can be set to change the decoding behavior. For 
example, the JpegDecoder can be set to read at scaled down levels.

The following example shows how to change the image loading scale for a JPEG image.

Reset decoder properties
This example demonstrates how to change the properties of the default JpegDecoder so that the 
image is loaded at one-half scale.

C#
JpegDecoder jpeg = 
 (JpegDecoder)RegisteredDecoders.GetDecoderFromType(typeof(JpegDecoder));
jpeg.ScaleFactor = JpegScaleFactor.Half;

Read a PPM image
The following example shows how to write code to read a PPM Image into an AtalaImage object.

Reset decoder properties
The following code is used to read a PPM (24-bit) image into an AtalaImage object.

296



Atalasoft DotImage Developer's Guide

The method in the following example loops through each pixel, reads the three bytes which make 
up the RGB data and sets the memory values to this data in BGR order. At the end of each row, it 
moves to the beginning of the next row by advancing the pointer by offset amount.

To calculate the offset (padding), take the number of bytes required for one row (width * 3 in this 
case) and subtract it from the number of bytes in a 32-bit aligned row (image.RowStride).

C#
private AtalaImage _Read24BitBinary(Stream stream, int width, int height, int 
 maxColor,  
    ProgressEventHandler progress)
{ 
    AtalaImage image = new AtalaImage(width, height, PixelFormat.Pixel24bppBgr); 
    ProgressEventArgs e = new ProgressEventArgs(0, height,  
        System.Reflection.MethodInfo.GetCurrentMethod().Name);                

    unsafe  
    { 
        int offset = (image.RowStride - (width * 3)); 
        byte[] bytes = new byte[3]; 
        byte* pointer = (byte*)image.ImageData; 
                         
        // Read each line into the image buffer with padding. 
        for (int y = 0; y < height; y++)  
        { 
            // Raise the progress event. 
          if (progress != null)  
            { 
                e.Current = y; 
                progress(this, e); 
            } 

            for (int x = 0; x < width; x++)  
            { 
                stream.Read(bytes, 0, 3); 
                Utilities.GetReadColorValue(ref bytes, this.maxColor); 
                                                 
                // The color is stored in BGR order. 
                pointer[0] = bytes[2]; 
                pointer[1] = bytes[1]; 
                pointer[2] = bytes[0]; 
                                                 
                // Move to the next pixel. 
                pointer += 3; 
            } 
                   
            // Advance to the next row. 
            pointer += offset; 
        } 
    } 

    // Send final progress event. 
    if (progress != null)  
    { 
        e.Current = height; 
        progress(this, e); 
    } 

    return image;
}

297



Atalasoft DotImage Developer's Guide

Save an AtalaImage to a PPM file
The following is the code used to save an AtalaImage object into a PPM (24-bit) file. Take a look at 
the PortableImagePlugin source code for 8 and 1-bit saving.

C#

private int _Save24Bit(Stream stream, AtalaImage image, ProgressEventHandler
progress)
{ 
    // Save the header information. 
    int count = _WriteTheHeader(stream, image); 
     
    int height = image.Height; 
    int widthBytes = image.Width * 3; 
    byte[] bytes = new byte[widthBytes]; 
    int rs = image.RowStride; 
    int padding = rs - widthBytes; 
    byte[] ascii; 
    IntPtr p = image.ImageData; 
     
    ProgressEventArgs progressArgs = new ProgressEventArgs(); 
     
    for (int y = 0; y < height; y++)  
    { 
         
        // Raise the progress event. 
        if (progress != null)  
        { 
            progressArgs.Current = y; 
            progress(this, progressArgs); 
        } 
         
        // Read one line of the image. 
        Marshal.Copy(new IntPtr(p.ToInt32() + y * rs), bytes, 0, widthBytes); 
         
        // Remember, internally the image is a DIB in BGR format. 
        Utilities.SwapRedAndBlue(ref bytes, widthBytes); 
                         
        if (this.binaryEncoding)  
        { 
            // Adjust the color values if needed. 
           if (this.maxColor != 255) 
                Utilities.GetSavedColorValue(ref bytes, this.maxColor); 
             
            stream.Write(bytes, 0, widthBytes); 
            count += widthBytes; 
        }  
        else  
        { 
            // Convert the data into its ascii version and do the color correction. 
            ascii = Utilities.BinaryToAscii(bytes, this.maxColor); 
            stream.Write(ascii, 0, ascii.Length); 
            count += ascii.Length; 
        } 
         
    } 
     
    // Raise the progress event. 
    if (progress != null)  

298



Atalasoft DotImage Developer's Guide

    { 
        progressArgs.Current = height; 
        progress(this, progressArgs); 
    } 
         
    return count;
}

Create custom image information
When creating a decoder for an image, there may be times when the image format contains unique 
information beyond what the ImageInfo object provides. Create a class that inherits ImageInfo to 
allow users access to this extra information.

The image formats supported by the PortableImagePlugin contain a parameter called MaxColor, 
which specifies the maximum value of a single color component in the image data. The ImageInfo 
object does not contain this property, so the custom class, PortableImageInfo provides that 
information upon return from the GetImageInfo() method in the decoder.

This allows Atalasoft DotImage to use the known properties of ImageInfo and also allows users of 
the to get the MaxColor value from your plug-in.

C#
public class PortableImageInfo : ImageInfo

The constructor
The constructor of your custom class must also create the ImageInfo object to set the properties. As 
these properties are read-only, use the following syntax to accomplish this.

C#
public PortableImageInfo(Size size, int colorDepth, PixelFormat pixelFormat, int 
 maxColor)  
    : base(size, colorDepth, ImageType.Unknown, new Dpi(0, 0, 
 ResolutionUnit.Undefined),  
    pixelFormat)

This code creates the base (ImageInfo) constructor, using the parameters of the PortableImageInfo 
constructor. Because the image formats supported by this plug-in always return 
ImageType.Unknown, we removed this parameter from our constructor, and placed it in the base 
constructor.

 The addition of the maxColor parameter in our constructor. The parameter sets the value 
returned my the MaxColor property of the custom ImageInfo class.

Bar code reading
Atalasoft DotImage BarcodeReader was designed to be very easy to use. An application needs just a 
few lines of code to read all supported bar codes located within an image.

Before working with bar codes, you may also wish to review the Barcode Reader Demo supplied 
with the Atalasoft DotImage Toolkit. It is a working Windows Forms application that demonstrates 

299



Atalasoft DotImage Developer's Guide

the abilities of the component. Full source code is supplied. For more information on this demo, see 
Atalasoft DotImage Demos.

As of Atalasoft DotImage 7.0b, there is a new Barcode Reader. It was designed to be as compatible 
as possible with the old Barcode Reader, but there are a few differences:

1. The new object for reading is call BarCodeReader.

2. BarCodeReader implements the IDisposable interface and should be disposed as soon as you 
are done with it. We recommend putting BarCodeReadings in a C# using block.

3. BarCodeReader is highly optimized for 1-bit images. To make this easier, there are two new 
constructors:
• BarCodeReader(AtalaImage image, bool autoThreshold) - if autoThreshold is true, this 

constructor will convert images that are not 1-bit to 1-bit. This process is done with the 
DynamicThresholdCommand if it is licensed or with the ThresholdCommand otherwise.

• BarCodeReader(AtalaImage image, ImageCommand thresholdCommand) - if the image 
is not 1-bit, thresholdCommand will be applied to the image to convert it. If the processed 
image is not 1-bit, it will be disposed and ignored.

4. BarCodeReader now includes the property SupportedSymbologies which returns a 
Symbologies enumeration that includes all bar code symbologies recognized and licensed 
for use by the BarCodeReader. In addition, there is the method IsSymbologySupported(), 
which returns true if a passed in Symbologies enumeration is recognized and licensed by the 
BarCodeReader.

5. The new BarCodeReader no longer supports the MicroQr, Planet, AustraliaPost, Code11, 
IntelligentMail, Itf14, Rss14, RssLimited, Telepen or Rm4scc symbologies.

6. The XOptions property of the ReadOpts class is no longer used and has been marked obsolete

7. The Directions enumeration now includes diagonal compass points (Northeast, Southeast, 
etc.). Directions.Northeast is not equivalent to Directions.East | Directions.North.

8. The ScanInterval property of the ReadOpts class is not currently used.

9. ReadOpts now includes a property called ReadingQuality, which controls the balance of speed 
vs. accuracy in the BarCodeReader. The default value, ReadingQuality.MostAccurate, reads with 
the greatest accuracy. ReadingQuality.Fastest reads as fast as possible, but with less accuracy.

10. The Symbologies enumeration now includes convenience values All1D, All2D, and All, 
which represent all one-dimensional symbologies, all two-dimensional symbologies, and all 
symbologies, respectively.

11. The BarCode object now includes a property, Data, which contains the data for a bar code as an 
array of bytes.

Upgrade tips
In most cases, all that needs to be done is to reference the new assembly 
Atalasoft.dotImage.BarCoding and change the name of the Barcode Reader class from BarReader 
to BarCodeReader. It is strongly recommended that you dispose BarCodeReader objects as soon 
as possible after you are done with them. This can be done in a C# using block. In addition, we 
recommend that you read 1-bit images. You can convert them 1-bit yourself, or construct the 
BarCodeReader with autoThreshold set to true:

300



Atalasoft DotImage Developer's Guide

using (BarCodeReader reader = new BarCodeReader(image, true))

{ 

    BarCode[] bars = reader.ReadBars(myReadOpts); 

    ProcessBars(bars);

}

Use the BarcodeReader
The BarcodeReader was designed to be very easy to use. An application needs just a few lines of 
code to read all supported bar codes located within an image.

The following examples demonstrate how to read bar codes from an Atalasoft.Imaging.AtalaImage 
object.

The steps involved in reading a bar code are as follows:

1. Create an instance of BarCodeReader by passing in an AtalaImage object.

2. Create an instance of the ReadOpts class and set the symbology(s) and directions you wish to 
read.

3. Invoke the ReadBars() method in the BarCodeReader class. This returns an array of Barcode 
instances. Each element of the array corresponds to a bar code read from the image:

Reading a bar code
You can use a single BarCodeReader instance to read the same image a number of times, each time 
with different options as shown in the example that follows.

C#
// 1: Load the image containing bar codes
AtalaImage myImage = new AtalaImage("barcodes.tif");
// 2: Create BarCodeReader for specified image.
using (BarCodeReader br = new BarCodeReader(myImage))
{ 
   // 3: Create a ReadOptions. 
   ReadOpts options = new ReadOpts(); 
   // 4: Read left to right. 
   options.Direction = Directions.East; 
   // 5: Symbology to read. 
   options.Symbology = Symbologies.Code128; 
   // 6: Read the bar codes contained in the image. 
   BarCode[] bars = br.ReadBars(options); 
   // 7: Process the results. 
   for (int i = 0; i < bars.Length; i++) 
   System.Console.WriteLine(bars[i].ToString());
}

Read a bar code with options set
C#
// 1: Load the image containing bar codes

301



Atalasoft DotImage Developer's Guide

AtalaImage myImage = new AtalaImage("barcodes.tif");
// 2: Create BarCodeReader for specified image.
using (BarCodeReader br = new BarCodeReader(myImage))
{ 
   // 3: Create a ReadOptions.  
   ReadOpts options = new ReadOpts(); 
   // 4: Read left to right. 
   options.Direction = Directions.East; 
   // 5: Symbology to read. 
   options.Symbology = Symbologies.Code128; 
   // 6: Read the barcodes contained in the image. 
   BarCode[] bars = br.ReadBars(options); 
   if (bars.Length == 0) 
   { 
      // No bar codes read. Maybe the image was scanned upside down. Recheck by 
 scanning the opposite direction. 
      options.Direction = Directions.West; 
      bars = br.ReadBars(options); 
   }
}

Render a bar code into an AtalaImage
Even though the Barcode Writing assembly has no direct Atalasoft DotImage dependencies, 
it's easy to write bar codes into an AtalaImage. The process is simple, first create a 24-bit color 
AtalaImage, then use the GetGraphics method to get a Graphics object, then use the bar code 
writers Render method.

This process is shown in the following code sample.

C# - Code 39 Barcode Writing
AtalaImage CreateBarcodeImage(string text, int width, int height)
{ 
    AtalaImage image = new AtalaImage(width, height, PixelFormat.Pixel24bppBgr, 
 Color.White); 
    BarcodeWriter bc = new BarcodeWriter(BarcodeStyle.Code39); 
    Graphics g = image.GetGraphics(); 
    bc.Render(text, g, new Rectangle(0, 0, width, height)); 
    return image;
}

Verify a bar code can represent a string
Since some 1-D bar codes are limited in what they can represent, it is useful to be able to ask the 
BarcodeWriter if it can correctly render a given string. This is done by calling the BarcodeWriter's 
Validate method. Validate takes a string and a boolean and will return true if the string can 
be rendered in the BarcodeWriter's current BarcodeStyle. If the boolean passed in is true, the 
BarcodeWriter will throw an ArgumentException if given an invalid string. If the boolean passed in is 
false, the Validate will return false if given an invalid string.

This process is shown in the following code sample.

C# - Validating Code 39
public void CheckCode39String(string s)
{ 

302



Atalasoft DotImage Developer's Guide

    BarcodeWriter bc = new BarcodeWriter(BarcodeStyle.Code39); 
    if (!bc.Validate(s, false)) 
    { 
        Console.WriteLine("Invalid bar code string: " + s); 
    } 
    else 
    { 
        Console.WriteLine("Barcode string accepted."); 
    }
}

Barcode Writing
The DotImage Barcode Writing assembly is designed to be a simple set of classes that make it easy 
to create bar codes within a .NET application. There are objects that are designed for writing directly 
into Graphics objects and corresponding Win Forms Controls that allow bar codes to appear in 
window-based applications.

The Barcode Writing classes can be used for many common 1-D bar code types as well as PDF417 
and DataMatrix bar codes.

Deployment
When using Barcode Writing, the assemblies that need to be copied with your application include:

Assembly Description

Atalasoft.Shared.dll Shared classes such as licensing management

Atalasoft.dotImage.Barcoding.Reading.dll Barcode Writing Engine

Use the Barcode Writer
The simplest way to use the Atalasoft DotImage Barcode Writer is to drag a bar code control onto a 
window form. There are three main controls:

1. BarcodeControl - for all 1-D bar codes such as Code 39, Codabar, UPCA etc.

2. DataMatrixBarcodeControl - for DataMatrix 2-D bar codes

3. Pdf417BarcodeControl - for PDF417 2-D bar codes.

Once placed on a form, you can change the size and placement in the designer and adjust specific 
settings in the Properties window.

Each control has a property called Text which is used to set the text encoded in the bar code. Note 
that many 1-D barcodes have restrictions as to what characters can be encoded in the bar code- for 
example, many 1-D bar codes only represent numbers and letters.

The bar code writers can also be used to write into a Graphics object directly. For each bar code 
control, there is a corresponding class that will write the bar code:

1. BarcodeWriter - writes all 1-D bar codes.

303



Atalasoft DotImage Developer's Guide

2. Pdf417BarcodeWriter - writes PDF417 2-D bar codes.

3. DataMatrixBarcodeWriter - writes DataMatrix 2-D bar codes.

Each of these classes contains a method called Render which draws the requested bar code. 
All bar code writers have a flavor of Render that handles strings. Pdf417BarcodeWriter and 
DataMatrixBarcodeWriter have methods for handling raw data in the form of a byte array.

Writing a raw data PDF417 bar code
public void WriteRawPDF417Data(Graphics g, Rectangle bounds, byte[] data)
{ 
    Pdf417BarcodeWriter writer = new Pdf417BarcodeWriter(); 
    writer.Render(data, g, bounds);
}

OCR document design considerations
Since some 1-D bar codes are limited in what they can represent, it is useful to be able to ask the 
BarcodeWriter if it can correctly render a given string. This is done by calling the BarcodeWriter's 
Validate method. Validate takes a string and a boolean and will return true if the string can 
be rendered in the BarcodeWriter's current BarcodeStyle. If the boolean passed in is true, the 
BarcodeWriter will throw an ArgumentException if given an invalid string. If the boolean passed in is 
false, the Validate will return false if given an invalid string.

The design of the OcrDocument hierarchy reflects the conflicting needs of OCR engines and OCR 
clients.

It is highly likely that a client of an OcrEngine will modify the OcrDocument and OcrPage classes. 
For example, a client may add keywords to the OcrDocument object or thumbnail images to the 
pages. Therefore, concrete engine implementations should never construct an OcrDocument or 
OcrPage class directly. It is the responsibility of the client to supply code to construct the objects 
within the hierarchy.

On the other hand, the engine is likely to supply implementations of OcrLine, OcrWord, and 
OcrGlyph that can be tightly coupled to data supplied by the engine. This means the engine needs 
to be able to make very specific versions of these classes.

To manage these conflicting goals, the Ocr namespace uses two patterns. The first is a factory used 
to construct document elements. Never access constructors for document elements directly. Use 
the engine's Factory property instead as shown in the example below.

Use the factory property to construct a document
OcrPage page; 
  
//Do not do this!
page = new OcrPage(width, height, resolution);  
  
//This is much better
page = engine.Factory.OcrPage(width, height, resolution); 

304



Atalasoft DotImage Developer's Guide

The page element object represents an extensible interface to the element without dictating the 
implementation. The data accessor defines how that data is stored and retrieved.

For example, the implementation of the Baseline property in OcrLine does not use a member 
variable to store the baseline. Instead, it uses an object called an OcrLineAccessor to get the 
baseline. In this way, a client can supply definitions for OcrLine, OcrWord, and OcrGlyph.The engine 
supplies the accessors that define how the object's information is retrieved. A client could then 
override OcrLine to include extra information about a line of text without affecting how any given 
engine is required to provide information that meets the core definition of an OcrLine.

Furthermore, once an OcrDocument has been constructed, its elements can be edited, augmented, 
deleted, or merged without affecting any of the existing components. For example, OcrPage objects 
taken from an OcrDocument recognized by one engine can be inserted into an OcrDocument that 
was produced by another engine, or words can be changed (spell corrected, moved, replaced) 
without affecting any of the other elements, even if they are still tied to a specific engine.

To get an OcrDocument or an OcrPage from an image, use the OcrEngine's Recognize() method. 
There are versions that operate on single images and ImageSource objects.

Load OCR resources
In order to operate, each of our OCR engines require some external resources. The particular type 
and content of those resources as well as how they are structured vary greatly from one engine to 
another. Thankfully, we have taken care to streamline the management of these resources for you. 
There are only two potential issues you need to keep in mind when developing an OCR product with 
Atalasoft DotImage: Initialization and Deployment.

Initializing resources
Most supported OCR Engines are external programs you can interface with. These programs may 
need to be run or otherwise loaded into memory before they can be used. To simplify this we have 
provided specialized loaders which take care of this for you.

GlypthReaderLoader
C#
static Form1()
{ 
  //Preload the GlyphReader resources from a default location. 
  GlyphReaderLoader loader = new GlyphReaderLoader();
}

To make it easy to jump in and start developing an OCR application, our packaged OCR engines 
know where your OCR resources are installed and will access them automatically. For similarly 
simple deployment, you can copy the OcrResources directory located within the bin directory 
of your Atalasoft DotImage installation directly into the directory which holds your application's 
assemblies. All of our engine's wrappers are designed with this case in mind and should require no 
further configuration. However, if you wish to place these resources elsewhere, some care must 
be taken to ensure they are loaded properly. Exactly what must be done can vary from engine to 
engine.

305



Atalasoft DotImage Developer's Guide

GlyphReader
All of the resources required by GlyphReader are contained within it's own executable. Therefore, 
there is no need to worry about them once the GlyphReaderLoader has been called. However, you 
will need to ensure that the loader can find the executable, the configuration file, and the dll found 
within the GlyphReader subdirectory of OcrResources.

GlyphReaderLoader will look in the following locations for its resources, in order:

If the resourceDir constructor parameter is supplied:

1. The "OcrResources\GlyphReader\v5.0" subdirectory of the specified directory is checked.

2. The "GlyphReader\v5.0" subdirectory of the specified directory is checked

If the resourceDir constructor parameter is not supplied:

1. The bin\OcrResources subdirectory of your Atalasoft DotImage installation directory is 
checked.

2. The OcrResources\GlyphReader\v5.0 subdirectory of the directory where the GlyphReader 
Assembly is located is checked.

3. The GlyphReader\v5.0 subdirectory of the directory where the GlyphReader Assembly is 
located is checked.

To place the resources in a different directory you will need to specify that location inside the 
GlyphReaderLoader constructor.

C#
static Form1()
{ 
  //Preload the GlyphReader resources from a subfolder of the  
  //global ApplicationData directory. 
 string appdata = 
 Environment.GetFolderPath(Environment.SpecialFolder.CommonApplicationData); 
  string subfolder = @"GlyphReader Resources"; 
  string resourcePath = Path.Combine(appdata, subfolder); 
  GlyphReaderLoader loader = new GlyphReaderLoader(resourcePath);
}

Tesseract
Atalasoft DotImage supports the Tesseract 3 and 5 engines. Both versions require a large number 
of external files. Most of these are datasets for each of the languages Tesseract supports. These 
are loaded at construction time from a folder within the Tesseract folder in OcrResources. The 
loading process depends on the version of the Tesseract Engine.

 Although Atalasoft DotImage supports the Tesseract3Engine, it is obsolete. If you select 
Tesseract3Engine, you will receive a warning that the engine is obsolete.

306



Atalasoft DotImage Developer's Guide

Tesseract3Engine resource loading
When the Tessearct3Engine resources are loaded, the folder list is created and each folder in that 
list is checked to see if it contains the Tesseract\v3.04\tessdata folder structure. When the 
matching folder is found, it is checked to ensure that it contains all of the correct resource files. If 
any of the resources are missing an OcrException is thrown.

Each of the following is checked for the Tesseract\v3.04\tessdata path in order:

1. If the constructor's resources argument is supplied, it is checked. (For example: C:
\Tessearct3ResourcesFolder.)

2. If the constructor's resources argument is supplied, the OcrResources folder of the argument 
is checked. (For example: C:\Tessearct3ResourcesFolder\OcrResources.)

3. The SDK OcrResources folder, as determined by a registry key, is checked. (For example, C:
\RegistryKeyFolder\OcrResources.)

4. The location of the Tesseract Assembly is checked. (For example, C:
\Tesseract3AssemblyFolder.)

5. The location of the Tesseract Assembly's OcrResources folder is checked. (For example, C:
\Tesseract3AssemblyFolder\OcrResources.)

6. The value of the TESSDATA_PREFIX environment variable is checked. (For example, C:
\Tess3DataPrefixFolder.)

To place the resources in a different directory you will need to specify that location inside of the 
Tesseract3Engine constructor:

C#
private OcrEngine MakeTesseractEngine()
{ 
  //Load the Tesseract resources from a subfolder of the  
  //global ApplicationData directory. 
 string appdata = 
 Environment.GetFolderPath(Environment.SpecialFolder.CommonApplicationData); 
  string subfolder = @"Tesseract Resources"; 
  string resourcePath = Path.Combine(appdata, subfolder); 
  Tesseract3Engine engine = new Tesseract3Engine(resourcePath); 
  return engine;
}

Visual Basic
Private Function MakeTesseractEngine() As OcrEngine 
  'Load the Tesseract resources from a subfolder of the  
 'global ApplicationData directory. 
  Dim appdata As String = 
 Environment.GetFolderPath(Environment.SpecialFolder.CommonApplicationData) 
  Dim subfolder As String = "Tesseract Resources" Dim resourcePath As String = 
 Path.Combine(appdata, subfolder) 
  Dim engine As New Tesseract3Engine(resourcePath) 
  Return engine
End Function

307



Atalasoft DotImage Developer's Guide

Tesseract5Engine resource loading
When the Tessearct5Engine resources are loaded, the folder list is created and each folder in that 
list is checked to see if it contains the Tesseract\v5.3.0 folder structure. When the matching 
folder is found, it is checked to ensure that it contains all of the correct resource files. If any of the 
resources are missing an OcrException is thrown.

Each of the following is checked for the Tesseract\v5.3.0 path in order:

1. If the constructor's resources argument is supplied, it is checked. (For example, C:
\Tesseract5ResourcesFolder.)

2. If the constructor's resources argument is supplied, the OcrResources folder of the argument 
is checked. (For example, C:\Tesseract5ResourcesFolder\OcrResources.)

3. The SDK OcrResources folder, as determined by a registry key, is checked. (For example, C:
\RegistryKeyFolder\OcrResources.)

4. The location of the Tesseract Assembly is checked. (For example, C:
\Tesseract5AssemblyFolder.)

5. The location of the Tesseract Assembly's OcrResources folder is checked. (For example, C:
\Tesseract5AssemblyFolder\OcrResources.)

6. The value of the TESS5DATA_PREFIX environment variable is checked. (For example, C:
\Tess5DataPrefixFolder.)

To place the resources in a different directory you will need to specify that location inside of the 
Tesseract5Engine constructor:

C#
private OcrEngine MakeTesseractEngine()
{ 
  //Load the Tesseract resources from a subfolder of the  
  //global ApplicationData directory. 
 string appdata = 
 Environment.GetFolderPath(Environment.SpecialFolder.CommonApplicationData); 
  string subfolder = @"Tesseract Resources"; 
  string resourcePath = Path.Combine(appdata, subfolder); 
  Tesseract5Engine engine = new Tesseract5Engine(resourcePath); 
  return engine;
}

Visual Basic
Private Function MakeTesseractEngine() As OcrEngine 
  'Load the Tesseract resources from a subfolder of the  
 'global ApplicationData directory. 
  Dim appdata As String = 
 Environment.GetFolderPath(Environment.SpecialFolder.CommonApplicationData) 
  Dim subfolder As String = "Tesseract Resources" Dim resourcePath As String = 
 Path.Combine(appdata, subfolder) 
  Dim engine As New Tesseract5Engine(resourcePath) 
  Return engine
End Function

308



Atalasoft DotImage Developer's Guide

OmniPageLoader
C#
static Form1()
{ 
  //Preload the OmniPage resources from the directory to which they  
  // were downloaded into. 
  OmniPageLoader loader = new OmniPageLoader(@"c:\OmniPageEngineOcrResources ");  
}

 There is the second OmniPageLoader constructor without parameters that is used when 
resources are located in the predefined locations.
OmniPageLoader loader = new OmniPageLoader();

OmniPage
The resources required for the initialization of the OmniPage Engine are not included in the main 
Atalasoft DotImage installation. They must be downloaded separately, and a link and details are 
issued to the customers of this add-on. The resources are delivered in a single compressed file that 
must be decompressed into a folder for Atalasoft DotImage to read them.

The location of the resource folder, whether absolute or relative, can then be passed in as a 
parameter to the loader. This resource folder will have to be included into any distribution of your 
application.

Stages in OCR translation
Broadly speaking, the stages in OCR translation are:
• Preparing for the translation
• Doing the work of translation
• Cleaning up after the translation

Work of translation
The work of translation can, for most OCR engines, be broken down into several stages. Typically 
there are three stages as shown below.
• During preprocessing, an image is treated to make it more likely that it is correctly recognized.
• During location, an image is broken up into regions that contain specific content such as text, 

images, bar codes, and so forth.
• During recognition, these regions are analyzed and scanned for content.

Preprocessing
Image preprocessing options allow you to make changes to an image before it is processed by 
the OcrEngine. These options serve to clean up the image so that the results of optical character 
recognition are improved.

309



Atalasoft DotImage Developer's Guide

Engines that support built-in document preprocessing provide a number of options. The 
OcrPreprocessingOptions class maintains options settings as a 32-bit integer with each bit 
representing an option.

• To select an option, set the property corresponding to the option you want on to true.
• To deselect an option, set the property corresponding to the option you want off to false.

The pre-processing options are listed in the following table.

Option Description

Deskew Image is straightened

Autorotate Image is rotated so that it is oriented correctly for reading

Despeckle Noise in the image is stripped out

ToBilevel Image is down-sampled to 1 bit per pixel

Invert Image's sense of black and white is reversed

FlipLeftRight Image is mirrored left/right

Not all engines support these options. Use the OcrEngine property AvailablePreprocessingOptions 
to determine if an option is supported by a particular engine.

Atalasoft DotImage performs all Deskew operations. This is done via the AutoDeskewCommand 
by default. This behavior can be overridden in two ways. In both cases, clients start by creating 
a subclass of the specific OcrEngine object. To change how the AutoDeskewCommand operates, 
override the factory method MakeDeskewCommand and return a new AutoDeskewCommand 
object with properties set to your needs. The second way is to override the virtual method 
HandleDeskew. HandleDeskew takes an input image and returns a deskewed version of the image 
as well as the angle detected, or null if there was no need to deskew.

All other operations are performed by the engine itself. The order of operations is entirely engine 
dependent.

A client could add any or all of these methods to an engine by attaching to the ImageSendOff event 
and performing the operations there.

Recognition / Translation
OcrEngine supports the events listed in the table below.

When a page is recognized, the following events are fired and are in this order listed in the table 
below.

Event When fired Notes

DocumentProgress When document processing starts. Indicates in broad terms what an 
engine is in the process of doing 
and how far along it is.

PageProgress When page processing starts. Indicates in broad terms what an 
engine is in the process of doing 
and how far along it is

310



Atalasoft DotImage Developer's Guide

ImageIntroduction When image is first presented to 
the engine.

This is the first opportunity that a 
client has to manipulate the image.

ImageTransformation When an image is processed in 
such a way that it might affect the 
overall page coordinate system.

This is where deskewing is done

PageConstructing OcrPage object for this page has 
been constructed and its size fixed.

This is an opportunity to hang 
client specific data onto the page 
object to be accessed later (ie, 
metadata, page numbers, etc).

ImageSendOff Image is in its final state before 
being sent to the engine.

This is the last opportunity to 
access or modify the image before 
it is otherwise changed by the 
engine (turned to black and white 
or processed)

PageLocation Bounding region have been 
identified.

If the engine supports this 
capability, provides a set of 
bounding regions that represent 
areas identified for recognition. 
Engines that do not support this 
capability return a single text 
region encompassing the entire 
page. A client may choose to 
modify this set of regions to limit 
OCR to particular areas.

PageConstructed After a page had been fully 
populated with all page elements.

A client may opt to spell-check or 
otherwise edit the page contents at 
this point.

The DocumentProgress and events can be used to cancel an OCR in progress.

If an engine has Native Translators, it may not fire all of these events during translation. In 
particular, PageConstructing and PageConstructed do not make sense in a NativeTranslator 
context.

Translator types
Broadly speaking, here are two different types of translators: native and foreign. Native translators 
are built into a particular engine, foreign are not.

Native translators
Native translators never create an OcrDocument object. It may be difficult or impossible to adjust 
their feature sets and if they do not provide an interface for streaming. Foreign translators are 
those that are supplied from outside of an engine. A foreign translator is likely to be flexible in its 
configuration and output styles, but can be less efficient, when used with some engines, since it 
operates at a significantly higher level than native translators.

Typically, native translation never incurs the generation of an OcrDocument and foreign translations 
always incur the generation of an OcrDocument. This distinction allows us to publish low-level 

311



Atalasoft DotImage Developer's Guide

engine's translators and to provide a means of adding other translators that are treated as first 
class objects.

Text translator
A TextTranslator class implements is a foreign translator that is used to generate text files from an 
OCR engine. TextTranslator properties are used primarily to control how much the TextTranslator 
attempts to mimic the layout and format of the original document.

PDF translator
The Atalasoft DotImage PdfTranslator class allows client applications to generate high quality PDF 
documents from scanned documents. PdfTranslator provides the following features:
• Ability to set PDF Metadata fields
• High quality thumbnail images
• Accurate text placement
• Text-Under-Image placement
• Optional placement of picture regions
• Automatic or client-controlled image compression
• Advanced codec support ( JBIG2, JPEG 2000)
• Insertion of client synthesized pages
• Generation of PDF/A-1b and PDF/A-2b compliant documents with embedded fonts and color 

profiles

Page region types
Once the images that make up a page are located or recognized, an OcrPage is created. The 
OcrEngine also creates an OcrRegionCollection that contains OcrRegion objects for every located or 
recognized area on the page.

Atalasoft DotImage OCR defines the set of OcrRegion types listed in the following table.

Region type Area type

OcrTextRegion Contains text

OcrImageRegion Contains an image

OcrBarcodeRegion Contains a bar code

OcrTableRegion Contains a table

OcrFormElementRegion Contains form elements such as check boxes or 
bubbles

Picture shown in illustration

312



Atalasoft DotImage Developer's Guide

Bounding boxes
Every OcrRegion has a property called Bounds which is the bounding box for that element on the 
page. The bounding box is always measured in pixels using the source image resolution for units.

The GlyphReader engine only supports OcrTextRegion.

OCR engine
Atalasoft DotImage OCR is designed to easily interface with other aspects of your application. 
It is extensible with an event driven object-oriented object model. In just a few lines of code, a 

313



Atalasoft DotImage Developer's Guide

developer can recognize an image and output that image to a file, or enumerate its lines, words, 
and characters with confidence.

Data sources for the engine can be scanned images or files. The engine output consists of either a 
file or a class hierarchy. This model is illustrated below.

As the OcrEngine object is abstract, you cannot create an instance of this object. Nevertheless, the 
object definition contains most of the necessary functionality needed for a concrete subclass to 
function with a minimum of extra code.

The OcrEngine object has five primary components as illustrated below:

• Preprocessing options
• Document translators
• Page element factory
• Font mapping
• Font building

314



Atalasoft DotImage Developer's Guide

GlyphReader engine
The GlyphReader engine is a highly accurate OCR engine built for Atalasoft DotImage. The engine 
has been tested with the ISRI OCR Performance Toolkit and has been found to be more accurate, 
with a 99.5% accuracy rate, than other expensive industry leading OCR engines.

GlyphReader is a lexicon OCR engine requiring no dictionary. It supports European characters only. 
The following ASCII characters are supported.

The GlyphReader engine does not support font name or family determination. This engine does 
support font size, baseline, glyph bounds, and confidence.

315



Atalasoft DotImage Developer's Guide

Features
GlyphReader supports the following features:

• European Character Set.
• Reports individual character position and size.
• Reports character confidence.
• OCR's of rotated pages, reports the rotation angle.
• Automatically breaks merged characters, or merges broken characters.
• Optionally rejects low confidence characters.
• Optionally reject low confidence lines.
• Disabling recognition of specific characters.
• Full Page color OCR can be generated when combined with the Searchable PDF Module.

Features that are found in some engines but not in GlyphReader include zoning, and determining 
font characteristics.

Output formats
As with any OCR engine using the Atalasoft DotImage OCR interface, all foreign translators are 
supported. Text translation is supported out of the box. Searchable PDF is available with the PDF 
Translator add-on. Therefore, the following mime types are supported for output:
• text/plain
• application/pdf (requires PDF Translator add-on)

Licensing
The Atalasoft DotImage OCR GlyphReader Engine is licensed per concurrent use. Two GlyphReader 
licenses are required for two applications to use GlyphReader simultaneously. If the application 
will only be residing on the server, you have the option of purchasing a server license granting 
an unlimited number of users connected to the server running the Atalasoft DotImage OCR 
GlyphReader Engine enabled application with up to 20 concurrent processes/threads running at 
once.

Deployment
• Atalasoft.Shared.dll

• Atalasoft.dotImage.Lib.dll

• Atalasoft.dotImage.dll

• Atalasoft.dotImage.Ocr.dll

• Atalasoft.dotImage.GlyphReader.dll

GlyphReader also requires the following unmanaged assemblies and support files, located in: C:
\Program Files\Atalasoft\DotImage 11.5\Bin\OcrResources\GlyphReader\v5.0:

• TOCR50.qnp

316



Atalasoft DotImage Developer's Guide

• TOCR50.teh
• TOCR50de.gar
• TOCR50el.gar
• TOCR50en.gar
• TOCR50es.gar
• TOCR50fr.gar
• TOCR50it.gar
• TOCR50nl.gar
• TOCR50no.gar
• TOCR50ru.gar
• TOCR50sk.gar
• TOCR50tr.gar
• x86

• GlyphReader.dll
• GlyphReaderEngine.exe
• GlyphReader.ini

• x64

• GlyphReader.dll
• GlyphReaderEngine.exe
• GlyphReader.ini

Please leave the directory structure intact when deploying the engine. Code inside
Atalasoft.dotImage.GlyphReader.dll will determine which GlyphReaderEngine.exe will be 
executed. If 64-bit dlls are used the 64-bit engine will be executed, if 32-bit dlls are used then the 32-
bit engine will be executed.

These assemblies can be installed along side the managed assemblies only if the 
OcrResourceLoader or GlyphReaderLoader class is instantiated in a static constructor of the class 
that invokes GlyphReader.

By default the unmanaged assemblies are found in <SDK folder>\OcrResources\GlyphReader
\v5.0\.

Due to the architecture of the GlyphReader engine, to specify a location other than a default 
search path you need to create an instance of the OcrResourceLoader or GlyphReaderLoader in a 
static constructor before any OCR code is loaded. This is the case even if the resources are in the 
assembly folder. There you can specify an alternate location of the resources if desired.

Tesseract engine
The Tesseract OCR engine, which is presented by two classes, Tesseract3Engine and 
Tesseract5Engine, is an open source engine that we provide without charge to those who purchase 
the OCR Package. It is a commercial quality OCR engine originally developed at HP between 1985 
and 1995. HP and UNLV open-sourced this engine in 2005.

317



Atalasoft DotImage Developer's Guide

Features
The Tesseract OCR engine is fast and runtime royalty free although it is not quite as powerful as the 
other engines supported by Atalasoft DotImage. In particular, it lacks segmentation and it is not 
very good at recognizing low quality documents.

Supported languages
The Tesseract OCR engine supports the following languages:

• Dutch
• English
• French
• German
• Italian
• Norwegian
• Portuguese
• Spanish

Supported output formatters
The Tesseract OCR engine supports the following output formatters and provides a structure that 
allows you to build your own.

• Text
• PDF

Deployment
• The assemblies listed below are required for deployment.

• Atalasoft.dotImage.Ocr.Tesseract3 or Atalasoft.dotImage.Ocr.Tesseract5
• Atalasoft.dotImage
• Atalasoft.dotImage.Ocr
• Atalasoft.dotImage.Lib
• System
• System.Data
• System.Drawing

Additionally, the Tesseract language files must be accessible. These are automatically placed in the 
Atalasoft DotImage directory during toolkit installation. When deploying, you must either copy the 
OcrResources to your application directory or tell the engine their location explicitly by passing it 
into the Tesseract OCR engine constructor.

See the Tesseract3Engine or Atalasoft.dotImage.Ocr.Tesseract5 class documentation for additional 
information.

318



Atalasoft DotImage Developer's Guide

The Tesseract OCR engine is used in exactly the same way as the other OCR engines, all of which 
inherit from the same base class, Atalasoft.dotImage.OCR.

Special considerations
Once the Tesseract OCR engine is used and recognize is called with a language, you cannot change 
to an alternate language. The initialization happens the first time a document is recognized. 
Attempting to change the language at any time beyond that point results in an exception being 
thrown.

OmniPage Engine
The OmniPage Capture SDK lets developers access a broad range of algorithms and workflows that 
can recognize machine printed text as well as hand printed text in a variety of languages. Atalasoft 
DotImage includes the OmniPage Engine as an optional, purchasable add-on.

Features
The OmniPage Engine supports nearly all of the standard functionality defined by the 
Atalasoft.dotImage.Ocr.OcrEngine base class. This includes recognition and translation, whether 
using foreign translators (TextTranslator and PdfTranslator), or the engine's own built-in translation 
functions.

In addition to the standard functionality, the OnmiPage engine supports some additional features.

ICR (Intelligent Character Recognition) is used for recognizing printed handwritten text. In order to 
provide support for ICR, OmniPageIcrTextRegion class is used to represent an area of hand-printed 
text on a page with optional parameters specific to the OmniPage OCR engine.

This additional Recognize method is added:
OcrPage Recognize(AtalaImage image, List<OmniPageOcrTextRegion> regionList)

This method takes an AtalaImage as a parameter and a List consisting of OmniPageOcrTextRegion 
objects which extends OcrTextRegion. There are several implementations which specifies certain 
regions for recognition:
• OmniPageOcrMicrTextRegion
• OmniPageOcrCMC7TextRegion
• OmniPageIcrTextRegion

This feature enables you to create a list consisting of a mix of these objects or a list consisting of 
just one type or the other type and pass them into a Recognition process along with the image 
(AtalaImage) they pertain to. An object of one of these types holds information on a location 
in the image (x and y coordinates for width and height). Optionally, the object can contain the 
orientation of the text marked by its relation to the page. This info is used by the OmniPage Engine 
for configuration of the recognition process. The type of object itself instructs the OmniPage Engine 
which operation to perform on the corresponding region in the image.

Construction of an OmniPageOcrTextRegion (also as any of the implementations) can be performed 
through one of these constructors:
• OmniPageOcrTextRegion (Rectangle bounds)

319



Atalasoft DotImage Developer's Guide

• OmniPageOcrTextRegion (PolygonF bounds)
• OmniPageOcrTextRegion (Rectangle bounds, OcrTextRotation rotation)

The bounds parameter referenced in all of these constructors designates the location of the region 
in the image. The OcrTextRotation rotation parameter designates the orientation of the text in 
relation to the top of the document. If this parameter is not given, the text referred to by this 
OmniPageOcrTextRegion is assumed to be at 0 degrees in relation to top.

An alternative way to set specific recognition regions is to create a custom 
OcrPageLocationEventHandler by the client and register it to the PageLocation event of the 
OmniPageEngine instance. It should be registered before Recognition or Translation is launched.

The handler should retrieve the collection (OcrRegionCollection) of recognized regions output by 
the engine from the RegionsIn property of the OcrPageLocationEventArgs object returned from the 
event or create a new collection if this property is null. After retrieving this collection, the client can 
add new regions, remove or change located regions.

The result regions collection should be assigned to the RegionsIn property of the 
OcrPageLocationEventArgs object as in the following example code:
engine.PageLocation += (sender, e) =>
{ 
   OcrRegionCollection regionsColl = e.RegionsIn ?? new OcrRegionCollection(); 
   var region1 = new OmniPageOcrTextRegion(new Rectangle(150, 150, 350, 187)); 
   var region2 = new OmniPageOcrTextRegion(new Rectangle(538, 216, 319, 67)); 
   regionsColl.Add(region1); 
   regionsColl.Add(region2); 
   e.RegionsOut = regionsColl;
};

Supported languages
Use the GetSupportedRecognitionCultures method of the Atalasoft.dotImage.Ocr.OcrEngine base 
class to obtain a full list of supported languages.

The following table shows all supported languages:

English Moldavian Interlingua Shona

German Bulgarian Kasub Sioux

French Byelorussian Kawa Sami

Dutch Ukrainian Kikuyu Sami(Lule)

Norwegian Russian Kongo Sami(Northern)

Swedish Chechen Kpelle Sami(Southern)

Finnish Kabardian Kurdish Somali

Danish Afrikaans Latin Sotho

Icelandic Aymara Luba Sundanese

Portuguese Basque Luxembourgish Swahili

Spanish Bemba Malagasy Swazi

Catalan Blackfoot Malay Tagalog

320



Atalasoft DotImage Developer's Guide

Galician Breton Malinke Tahitian

Italian Brazilian Maori Pirez

Maltese Bugotu Mayan Tongan

Greek Chamorro Miao Visayan

Polish Tswana(Chuana) Minangkabau Welsh

Czech Corsican Mohawk Sorbian(Wend)

Slovak Crow Nahuatl Wolof

Hungarian Eskimo Nyanja Xhosa

Slovenian Faroese Occidental Zapotec

Croatian Fijian Ojibway Zulu

Romanian Frisian Papiamento Japanese

Albanian Friulian PidginEnglish Chinese(S)

Turkish Gaelic(Irish) Provencal Chinese(T)

Estonian Gaelic(Scottish) Quechua Korean

Latvian Ganda(Luganda) Rhaetic Thai

Lithuanian Guarani Romany Arabic

Esperanto Hani Rwanda Hebrew

Serbian(Latin) Hawaiian Rundi Vietnamese

Serbian Ido Samoan

Macedonian Indonesian Sardinian

The following table shows all supported ICR languages:

Catalan Finnish Latvian Spanish

Croatian* French Lithuanian Swahili

Czech Gaelic Norwegian Swedish

Danish German Polish Tagalog

Dutch Hungarian Portuguese Turkish*

English Indonesian Slovak Welsh*

Estonian Italian Slovenian

* Minor limitations

Note the following:
• Cyrillic languages and Greek are not supported for ICR.
• In Hungarian, lowercase i acute (í), o acute (ó), and u acute (ú) are not supported, which limits 

recognition to uppercase characters for ICR.
• There are limitations when combining Asian and Western language recognition on the same 

page. Asian languages are handled differently from Western languages. Only one Asian language 

321



Atalasoft DotImage Developer's Guide

should be set for recognition, and Western languages should not be set alongside an Asian 
language. The exception is English because the Asian OCR Engine can recognize short English 
text embedded in any Asian language.
With CCJK OCR, English text is recognized by default without requiring English to be set. Some 
other languages with Latin alphabets might also be recognized, but accented characters might 
not always recognized correctly. For Thai, Vietnamese, and Hebrew, Western languages should 
not be set, except for English. Limitations have also been noted when attempting to recognize 
Arabic, Japanese, and English text on one page.

MICR E13B and CMC7 fonts support
The appropriate region (OmniPageOcrMicrTextRegion or OmniPageOcrCMC7TextRegion) should be 
added to RegionsOut property in PageLocation event. Only the necessary detection region can be 
set to recognize MICR.

MICR E13B and CMC7 fonts are supported by OmniPage. E13B contains digits and 4 special 
symbols. CMC7 has a 15-character set, comprising the 10 numeric digits and 5 control characters: 
internal, terminator, amount, routing, and an unused character. The control characters are set 
correspondingly to A, B, C, D, and E.

Output formats
The OmniPage Engine supports the following output formats, which are listed with their 
corresponding MIME types.

Output document type Corresponding MIME type

Plain Text (.txt) text/plain

Rich Text (.rtf) text/richtext

HTML text/html

XML text/xml

XML Paper Specification (.xps) application/vnd.ms-xpsdocument

PDF application/pdf

EPUB application/epub+zip

Microsoft Word 2007+ format (.docx) application/vnd.openxmlformats-
officedocument.wordprocessingml.document

Microsoft Excel format (.xls) • application/vnd.ms-excel
• application/excel

Microsoft Excel 2007+ format (.xlsx) application/vnd.openxmlformats-
officedocument.spreadsheetml.sheet

Microsoft PowerPoint format (.ppt) application/vnd.ms-powerpoint

322



Atalasoft DotImage Developer's Guide

Output document type Corresponding MIME type

Microsoft PowerPoint 2007+ format (.pptx) application/vnd.openxmlformats-
officedocument.presentationml.presentation

CSV format text/csv

Deployment
The OmniPage Engine requires all assemblies and support files within the resource archive that is 
distributed to customers of the add-on.

The x86/bin and x64/bin folders are within the resources folder. These folders correspond to 
the resources for x86 and x64 processor architectures, respectively. The sets of resources are loaded 
upon initialization depending on which processor configuration of Atalasoft DotImage is installed 
and packaged with your application (x86 or x64).

Leave the folder and document structure unchanged. Any changes could adversely affect the 
correct initialization of the engine.

Special consideration
The OmniPage Engine enables to use the multiprocessing capabilities of the user's hardware 
configuration. The number of processes to run is detected automatically, depending on the number 
of available logical CPU cores and the number of images passed to the engine.

When in multiprocessing mode, the following limitations apply:
• PageProgress, ImageTransformation, and PageConstructed events are not fired during the OCR 

process.
• It is not possible to modify images in event handlers. In case of not using multiprocessing 

mode, OcrEngine allows to modify images in ImageIntroduction , ImageTransformation and 
ImageSendOff events handlers. With multiprocessing mode enabled, the engine discards image 
modifications.

• ImageSource objects have to be used in order to process images in parallel. Other 
methods that accept single images work in singleprocessing mode regardless of the 
OmniPageEngine.ParallelProcessing property value.

• You can only cancel in multiprocessing mode at the OcrDocumentStage.BeginPage stage.

To turn on the multiprocessing mode, do the following:

1. Set the OmniPageEngine.ParallelProcessing property to true.

2. Prepare the list of images to be recognized as ImageSources.

3. Use the OmniPageEngine.Translate() or OmniPageEngine.Recognize() methods, which accept 
ImageSource as a parameter.

 Even in the multiprocessing mode, recognition methods run synchronously and parallel OCR 
processing is performed internally.

323



Atalasoft DotImage Developer's Guide

Use an OCR engine
Using an OCR engine entails four steps:

1. Engine construction

2. Engine initialization

3. Translation of an image collection into a document

4. Engine shutdown

Engine usage example
Any number of Translate operations can be performed between Initialize and Shutdown. In most 
cases, you construct exactly one instance of a given engine, initialize that instance, use the object 
through the life of the application, and call shutdown at application close.

Although it is possible to shut down and reinitialize the engine any number of times, be aware that 
in some engines, initialization may be a costly operation
OcrEngine engine;
// Initialize your application here 
 // Construct a new engine
engine = new SpecificEngine();  
  
// Initialize the engine
engine.Initialize(); 
  
// Translate an ImageCollection into a document.
engine.Translate(imageCollection, "application/msword", outputPath); 
  
// Terminate your application here 
 // Shut the engine down
engine.Shutdown();

Get and set engine options
You can get or set engine options using the PreporcessingOptions property.

Get engine options
Use the PreprocessingOptions property to get the set of options currently employed by an engine. 
This property only contains options supported by the engine.

When an engine is initialized, PreprocessingOptions are set to reasonable defaults for that engine. 
Use the following code to reset the options to those defaults.
engine.PreprocessingOptions = engine.GetDefaultPreprocessingOptions();

Set engine options
The GetDefaultPreprocessingOptions() method is abstract and is defined by concrete OcrEngine 
objects. If you are unhappy with the particular set of defaults supplied by an engine, you can 

324



Atalasoft DotImage Developer's Guide

change the PreprocessingOptions shortly after engine construction or, alternatively, you can 
subclass the engine in question and override the GetDefaultPreprocessingOptions() method.

Despite the fact that you can request that any of the options be given default values, the actual 
values are constrained by the options available for a given engine.

Determine if an engine supports a mime type
Translation of an image or set of images to another file format is managed through a collection of 
ITranslator objects contained within the engine. To translate a set of images, the engine is asked 
for a translator that supports a desired mime type and a specific output style. If the engine finds a 
translator that supports these conditions, that translator is applied to the set of images.

The set of supported mime types varies by engine. Use the engine's CanTranslate() method to 
determine if an engine can translate to a given mime type. The method returns true if there is an 
installed translator that supports a given mime type. To find out if it's possible to translate to a 
stream, use the engine's CanStream() method.

You can choose either of the two methods shown below to obtain this information.

Example
You can make the determination in one of the two ways shown below.

Both of the following code samples are exactly equivalent.
if (engine.CanTranslate(mime) && engine.CanStream(mime)) { ... }

if (engine.CanStream(mime)) { ... }

Alter the interpretation of page elements
A client can use the PageLocation event of type OcrPageLocationEventHandler to alter the 
interpretation of page elements.

For example, if a set of documents contain landmark text or form information in particular locations 
on a page, the locations to be searched can be reduced to just these locations. If a set of scanned 
pages with page numbers are out of order, they can be sorted by looking only at the bottoms and 
tops of the pages for page numbers.

The PageLocation event is fired after the engine has performed its location operation. A handler for 
this type is passed an object of type OcrPageLocationEventArgs which contains the properties listed 
in the table below

Property Description

Image Image that is currently being scanned for regions.

RegionsIn Object of type OcrRegionCollection which contains the list of regions detected 
on the current page.

RegionsOut Object of type OcrRegionCollection which contains a list of regions that should 
be used by the engine for this image.

325



Atalasoft DotImage Developer's Guide

RegionsIn is a read-only property. Do not modify the contents of RegionsIn. Changes to this object 
or its contents are ignored by the engine. Even though each of the OcrRegion objects within the 
collection are real objects, with the exception of the Bounds property, they have no valid content.

RegionsOut is initially set to null. If you wish to change the regions used for recognition on a page, 
make a new OcrRegionCollection and populate it with the regions you want to use.

Remove non-text regions
To export text and nothing else, use the following code shown below to remove everything but the 
text regions.
void TextFilterLocationHandler( object sender, OcrPageLocationEventArgs e) 
 { 
   foreach (OcrRegion region in e.RegionsIn) { 
      if (region is OcrTextRegion) { 
          if (e.RegionsOut == null) { 
            e.RegionsOut = new OcrRegionCollection(); 
         } 
         e.RegionsOut.Add(region); 
      } 
   } 
 }

Not every engine understands every type of page element. For example, if an engine does not 
support the recognition of tables, then an OcrTableRegion object added to RegionsOut is ignored.

The OcrEngine that is currently locating is located in the sender object.

Determine translation type
For most OCR applications, it is important to know whether a translation is handled natively.

For an object that implements ITranslator, you can determine whether it is a native translator by 
checking to see if the class is an INativeTranslator. An example is provided below.

Determine if native translator is in use
The following code snippet can be used to determine if a native translator is in use.
if (myTranslator is INativeTranslator) { ... }

Distinguish between OCR region types
You can distinguish between OcrRegion object types by getting their class at runtime.

For example, the code that follows determines a region's type and draws each region type's 
bounding box in a different color.

Color region's bounding box ot reflect region type
The following code snippet can be used to determine if a native translator is in use.
Color GetRegionColor(OcrRegion region)

326



Atalasoft DotImage Developer's Guide

{ 
   if (region is OcrTextRegion) 
   { 
      return Color.Red; 
   } 
   else if (region is OcrImageRegion) 
   { 
      return Color.Blue; 
   } 
   else if (region is OcrBarcodeRegion) 
   { 
      return Color.Yellow; 
   } 
   else if (region is OcrTableRegion) 
   { 
      return Color.Green; 
   } 
   else if (region is OcrFormElementRegion) 
   { 
      return Color.Magenta; 
   } 
   return Color.Black; 
   } 
   void PaintBounds(OcrRegionCollection regions, Graphics g) 
   { 
      foreach (OcrRegion region in regions) 
         { 
            Rectangle destRect = region.Bounds; 
            Color theColor = GetRegionColor(region); 
            Pen thePen = new Pen(theColor); 
            g.DrawRectangle(thePen, region.Bounds); 
            thePen.Dispose(); 
         } 
    }

Clean up after translation
The Finish() method allows the translator to clean up translation session specific data or whatever 
else is necessary after translation.

Example
The following code shows how to create the Finish() method.
public void Finish(OcrEngine engine, OcrDocument document, bool successful, object 
 translationObject)
{
}

Traverse an OCR document
The Translate() method traverses the OcrDocument, writing its contents to the appropriate 
destination.

Translate a document into plain text file using a stream
The following example demonstrates how to translate a document into a plain text file using a 
stream.

327



Atalasoft DotImage Developer's Guide

public void Translate(OcrEngine engine, OcrDocument doc, string mimeType, 
   System.IO.Stream outStream, object translationObject)
{ 
   System.IO.StreamWriter writer = new System.IO.StreamWriter(outStream); 
   foreach (OcrPage page in doc.Pages) { 
      foreach (OcrRegion region in page.Regions) { 
         if (region is OcrTextRegion){ 
            OcrTextRegion textRegion = (OcrTextRegion)region; 
            foreach (OcrLine line in textRegion.Lines) { 
               for (int i=0; i<line.Words.Count; i++){ 
                  writer.Write(line.Words[i].Text); 
                  if (i<line.Words.Count-1){ 
                     writer.Write(" "); 
                  } 
                  else { 
                     writer.Write("\n"); 
                  } 
               } 
            } 
         } 
      } 
   }

Cancel OCR in progress
To cancel an OCR in progress

1. Create an OcrPageProgressEventHandler.

2. Set the Cancel property of the EventArgs to true.

3. Hook into the event handler.

Create OCR page progress handler
The following code example shows how to create an OCR page progress handler.
private void PageProgressHandler(object sender, OcrPageProgressEventArgs e)
{ 
    //Boolean set elsewhere in your code 
 if (CancelHasBeenRequested) { 
        e.Cancel = true; 
    }
}

Hook into an event handler
The following code example shows how to hook into the event handler.

// install the handler
engine.PageProgress += new OcrPageProgressEventHandler(PageProgressHandler); 

Track page progress in a UI
To track page progress, create a PageProgressEventHandler and translate the information in the 
event arguments to your UI.

1. Translate OCR Page Stage Information to a string.

328



Atalasoft DotImage Developer's Guide

2. Create the event handler.

3. Install the event handler.

Translate the OcrPageStage information to a string
The first step in this task is to translate the OcrPageStage information to a String, which can be 
done with a method like the one shown in the code.
private string TranslatePageStageToString(OcrPageStage stage)
{ 
    string message = ""; 
    switch (stage) { 
    case OcrPageStage.Analysis: 
        message = "Analyzing"; 
        break; 
    case OcrPageStage.Canceling: 
        message = "Canceling"; 
        break; 
    case OcrPageStage.Export: 
        message = "Exporting"; 
        break; 
    case OcrPageStage.Location: 
        message = "Locating"; 
        break; 
    case OcrPageStage.Postprocessing: 
        message = "Post Processing"; 
        break; 
    case OcrPageStage.Preprocessing: 
        message = "Preprocessing"; 
        break; 
    case OcrPageStage.Recognition: 
        message = "Recognition"; 
        break; 
    case OcrPageStage.Spellchecking: 
        message = "Checking spelling"; 
        break; 
    default: 
        message = "Unknown stage"; 
        break; 
    } 
    return message;
}

Create the event handler
The next step is to create the event handler.

private void PageProgressHandler(object sender, OcrPageProgressEventArgs e)
{ 
    string message = TranslatePageStageToString(e.Stage); 
    MyUITextDisplay.Text = message; 
    MyPageProgressBar.Value = e.Progress;
} 

The final step is to install the event handler.

329



Atalasoft DotImage Developer's Guide

Use page deskew events
Atalasoft DotImage OCR now includes a built-in facility for automatically deskewing images. In 
previous versions, this facility was provided by the OcrEngine.

In some cases, an OcrEngine will not provide this facility, as the quality might not be acceptable 
or because it is required that the image be bi-level, making antialising or creation of high quality 
thumbnails impractical. More importantly, coordinates of bounding boxes of page elements (lines, 
words, images, and so forth.) are accurate since any coordinate transform and image dimension 
changes happen before the actual OcrPage object has been constructed.

All engines report Deskew as an available preprocessing option and they also report that it is part of 
the default set of preprocessing options.

Out of necessity, deskew is performed before all other preprocessing operations and is not included 
in the preprocessing event. In other words, when the preprocessing event is fired, the OptionsIn 
flag will never have the deskew bit set.

In addition, the OcrEngine now adds an event for tracking the deskew operation specifically. The 
following example shows how to track a deskew event.

Deskew method
To track a deskew event, a client implements a method like that shown below.
void PageDeskewedHandler(object sender, OcrPageDeskewdEventArgs args)
{
}

The event arguments object includes the following members listed below.

Property Description

Page OcrPage that will be associated with this image

BeforeImage AtalaImage that was deskewed

AfterImage Image that was created. If AfterImage is null, there 
was no deskew operation

Angle Detected angle of rotation

IsDeskewed true if a deskew operation was performed

This event allows the client to perform additional processing, to inform a UI about the deskew 
amount and to cache the final image.

The deskewed image, if any, is owned and managed by the OcrEngine. It is not recommended that 
client code keep a reference to the deskewed image, as it is very likely that it will be disposed by the 
Engine.

Deploy an OCR engine
Each OCR engine has different deployment requirements. We have tried to formalize this process as 
much as possible by providing guidelines on the mechanism for deployment.

330



Atalasoft DotImage Developer's Guide

This shows how you can ensure that an OcrEngine can start and is able to find its resources.

Loading and locating folders
Before thinking about deploying an application it is helpful to know about the following key file 
folders.

Folder Typical file name or location Contents

SDK C:\Program Files\Atalasoft
\DotImage 11.5\Bin

All the Atalasoft DotImage 
assembly files as installed as part 
of the Atalasoft DotImage SDK.

OCR resources engine resources C:\Program Files\Atalasoft
\DotImage 11.5\Bin
\OcrResources

such as C:\Program Files
\Atalasoft\DotImage 
11.5\Bin\OcrResources
\GlyphReader\v5.0

All OCR Engine resources.
Individual OCR Engine's resource 
files.

32-bitengine module C:\Program Files
\Atalasoft\DotImage 
11.5\Bin\OcrResources
\v5.0\x86\GlyphReader.dll

Engine supplied 32-bit dll that 
provides engine functionality.

64-bitengine module C:\Program Files
\Atalasoft\DotImage 
11.5\Bin\OcrResources
\v5.0\x64\GlyphReader.dll

Engine supplied 64-bit dll that 
provides engine functionality.

assembly C:\Program Files\Atalasoft
\DotImage 11.5\Bin\3.5

Atalasoft DotImage 
assembly files (such as 
Atalasoft.dotImage.Ocr.dll), this 
may be the same as the application 
folder.

application ____Your choice Install location for your application.

Most of the work of loading and locating resources is managed by Atalasoft DotImage or by the 
engine itself. In custom situations, however, the client may have work to do.

Before you can use most engines, the following must be available:

• An engine module is needed for some aspects of OCR functionality.
• Resource files used to configure the engine or otherwise provide necessary data or services. This 

may include such things as dictionaries, grammar rules, glyph shapes, neural networks, and so 
on.

An engine that requires engine modules typically needs to have those modules loaded before 
it attempts to construct a class. The assembly that uses the engine module should contain the 
knowledge of how to find the engine module but the engine module needs to be loaded before 
the module that needs be able to find it is loaded. Atalasoft DotImage OCR tries to handle this 
conundrum for you when possible but there are some cases, as outlined below, where you must 
handle the problem yourself.

331



Atalasoft DotImage Developer's Guide

Options for the developer
You can select from the options in the table.

Option Consequences

Leave the engine module in the OcrResources folder 
as shipped.

You must put the OCR resources folder within the 
assembly folder.

Move the OcrResources folder in the location of your 
choice.

You must load the dll. If the OcrResources folder 
is not in the assembly folder, you are required to 
pass its location in to the OcrEngine's constructor or 
resource loader.

Move the engine module out of the OcrResources 
folder.

If the engine module is put into the application 
folder or the assembly folder, it should be located 
automatically. If the engine module is located 
somewhere else, you must locate the module and 
load it. If the OCR resources folder is within the 
assembly folder, you can pass null to the engine 
constructor for the path, otherwise you must pass the 
location in.

Access document information properties
The OcrDocument class provides the document information properties listed in the table below.

Except for Metadata, these are not true properties in that they are not contained within the 
OcrDocument object itself. The actual values are contained within an object in the Metadata 
hashtable.

To retrieve the document information properties, you need code similar to the following.

Retrieve document information properties
public static Hashtable GetDocumentInfo(OcrDocument document) 
 { 
    object infoObject = document.Metadata[OcrDocumentMetadataKey.DocumentInfo]; 
    if (infoObject == null) 
        throw new Exception("Unable to find document info."); 
    Hashtable infoTable = (Hashtable)infoObject; 
    return infoTable; 
 }

Access document information properties
public static object GetDocumentInfoValue(OcrDocumentInfoKey key) 
 { 
    Hashtable ht = GetDocumentInfo(document); 
    if (ht == null) 
        throw new Exception("Unable to get document info."); 
    return ht[key]; 
 }

332



Atalasoft DotImage Developer's Guide

Color management
Atalasoft DotImage enables images to be correctly adjusted based on color profiles and the 
international standard established by the International Color Consortium. You need only minimal 
knowledge of color management or ICM 2.0 to add full color management support to your 
applications using Atalasoft DotImage.

The ImageViewer and WorkspaceViewer controls have built-in support for color management with 
color profiles. Atalasoft DotImage uses Little CMS Color Management to automatically transform an 
image for display based on the device and output profiles. To enable automatic color management 
in the control, set the ColorManage property to true. With color management enabled, the colors 
are adjusted based on the color profile associated with the image (See the AtalaImage.ColorProfile 
property) and the color profile associated with the display device. If no profile is found for either the 
image or the monitor, the default sRGB profile is used.

Color profiles
Color profiles are used to adjust colors so that they correctly match the desired visual or printed 
color when you display an image. You can also use color profiles to convert images from one color 
space to another (for example, from CMYK to RGB), store them on a disk as ICM or ICC files, or 
embed them in an image. Atalasoft DotImage supports reading color profiles from a file, or in TIFF, 
PNG, or JPEG images.

You can use the ColorProfile object in the ColorManagement namespace to set the ColorProfile 
property in an AtalaImage object. Normally, an AtalaImage object would not have a color profile; it's 
value would be set to null. However, if the image has an embedded profile, the ColorProfile value is 
set, and the specified color profile is used when converting between color spaces. The ColorProfile 
is most relevant when you display a CMYK image, and when you convert from the CMYK color space 
to the RGB color space.

CMYK images
CMYK images are commonly used in the pre-press industry. They contain color values for cyan, 
magenta, yellow, and black. These images occupy a different color space than RGB images, 
the most commonly used color space for image formats, because the colors are subtractive. 
For example, when you increase the value of one of the four color values, that color is actually 
subtracted from the image. For example, increasing the value of cyan in an image subtracts cyan 
from the color. In CMYK images, the color value 0,0,0,0 is white, while in RGB images, the absence of 
color is black.

Because CMYK displays are additive and no color is perceived as black, you must convert a CMYK 
image to an RGB image to display it. Because Atalasoft DotImage uses Color Profiles (commonly 
saved as ICC or ICM files), it can display CMYK images properly, without losing the integrity of the 
data. Atalasoft DotImage does this by converting the CMYK image to RGB for display, and then 
creating a cache of the image.

Most Atalasoft DotImage commands work on CMYK images.

333



Atalasoft DotImage Developer's Guide

Draw on the canvas
The Atalasoft DotImage Drawing namespace can be used to draw text, lines, rectangles, and other 
primitives onto images and graphic objects. The Drawing namespace is very similar to native GDI+ 
drawing in .NET, but while GDI+ can draw only on RGB and RGBA images, Atalasoft DotImage can 
draw on RGB, RGBA, CMYK, grayscale, grayscale-alpha, colormapped, and 1-bit images.

The canvas
Before drawing on an image, a Canvas object must be created. The constructor of the Canvas object 
requires either an AtalaImage object or a Graphics object.

The canvas is similar to .NET's graphics object in that it is where primitives and text are drawn onto 
other images. All drawing operations are drawn directly onto the AtalaImage or the Graphics object.

Atalasoft DotImage drawing versus GDI+
The Drawing namespace in Atalasoft DotImage is not meant entirely to replace the drawing 
features in .NET's GDI+ implementation. It is designed to allow drawing text and primitives on 
CMYK, grayscale, colormapped, and binary images where GDI+ requires RGB or RGBA.

GDI+ offers more features, and is a good choice when drawing onto RGB or RGBA images.

The following table explains the key differences between the Atalasoft DotImage Drawing 
namespace and GDI+.

Feature Atalasoft DotImage drawing 
(Canvas)

.NET GDI+ crawing (graphics)

RGB and RGBA support X X

Grayscale support X

CMYK support X

Color-mapped and 1-bit black and 
white support

X

Floating point positioning and 
accuracy

X

Antialiasing* X X

Draw borders and fills for solid 
entities

X

Hatched fills X X

Set the transparency X X

Geometric transforms XOR 
inverted pens

X

* GDI+ uses different antialiasing technology than Atalasoft DotImage.

334



Atalasoft DotImage Developer's Guide

Draw text
Using Atalasoft DotImage to draw high quality text involves setting the FontQuality property in the 
Canvas class to a value of ClearType of Antialias. ClearType is only supported on XP Machines, while 
Antialias is supported on all machines.

The following illustrates the differences in FontQuality as it relates to drawing text with DrawText:
• NonAntialiased
• Antialiased
• ClearType

Draw primitives and text onto a workspace or WorkspaceViewer object
The following example shows how to draw primitives and text onto a Workspace or 
WorkspaceViewer object. It draws a blue-filled rectangle with a red border and then draws 
transparent text on top of the rectangle.

 To update the display in a WorkspaceViewer after using the Canvas object, the Refresh() 
method must be invoked to cause a repaint and update the cached display image.

C#
Canvas myCanvas = new Canvas(myWorkspaceViewer.Image);
myCanvas.DrawRectangle(new Rectangle(10, 10, 100, 100),  
   new AtalaPen(Color.Red, 5), new SolidFill(Color.Blue));
myCanvas.DrawText("Atalasoft DotImage", new Point(20, 20), new Font(new 
 FontFamily("Arial"), 24),  
   new SolidFill(Color.FromArgb(127, Color.Black)));
//Update the display
myWorkspaceViewer.Refresh();   

Draw shapes
It is possible to draw text, lines, circles, rectangles, and other shapes, but they are not visible until 
they are "burned" into the image. You cannot edit them once they are drawn.

For example, suppose the user creates a rectangular selection (RubberBand) on the image. When 
the mouse is released, the event can automatically post back to the server, and programmatically 
draw a circle on the image, using the bounding box that the user just created.

1. Set the AutoPostBack property of the WebImageViewer 's Selection, to true.

2. Create a new event handler for the WebImageViewer' s SelectionChanged event similar to the 
method shown in the following example.

Draw a rectangle using the rubber band selection mousetool
C#
Canvas myCanvas = new Canvas(this.WebImageViewer1.Image);
Rectangle mySelection = this.WebImageViewer1.Selection.Rectangle;  
  

335



Atalasoft DotImage Developer's Guide

// Draws a black rectangle, with a semi-transparent orange fill  
myCanvas.DrawRectangle(mySelection, new AtalaPen(Color.Black), new 
 SolidFill(Color.FromArgb(128, Color.DarkOrange)));  
  
// Resets the Selection so it's no longer there  
this.WebImageViewer1.Selection.Reset();  
  
// Notifies the control that the Image was modified  
this.WebImageViewer1.Update(); 

Draw with rubber bands
The Atalasoft DotImage Rubberband class provides a convenient way to allow a user draw onto an 
image.

When using a rubberband for WinForm drawing, be sure that the Persist property is set to false. 
This causes the Rubberband to disappear once the entity is drawn.

The RectangleSelection can be used to draw rectangles, but the Persist property is true by default. 
In addition, the pen in the RubberBand probably should be set to the same pen being used to draw 
on the image. In this case, it renders the entity onto the image, and only permanently marks it after 
the user depresses the mouse button.

1. Open Visual Studio and start a new WPF Windows Application project.
2. Drop a RectangleRubberband onto the form and set the Parent property to the 

WorkspaceViewer that was just added Drop a WorkspaceViewer or ImageViewer onto the form 
and set the Image property to any image.

3. In the RectangleRubberband , set the Active property to true.
4. Change the Pen properties to the desired color and style. Be sure to turn Inverted off so the 

rubber band draws with a particular color.
5. To add code to the changed event, in the property grid, click the Events button, and then 

double-click the Changed event in C#. Enter the following code.
C#
private void rectangleRubberband1_Changed(object sender,  
    Atalasoft.Imaging.WinControls.RubberBandEventArgs e)
{ 
    Atalasoft.Imaging.Drawing.Canvas myCanvas =  
        new Atalasoft.Imaging.Drawing.Canvas(workspaceViewer1.Image); 
    myCanvas.DrawRectangle(e.GetBounds(), rectangleRubberband1.Pen); 
    workspaceViewer1.Refresh();
}

6. Finally, run the project and draw away! Keep in mind that you can draw other shapes by using 
other Rubber band objects, such as the EllipseRubberband and LineRubberband.

Interoperability - Work with GDI+ images
You can use Atalasoft DotImage to:
• Directly process native .NET Bitmap images by creating a copy of the data.
• Pass the data directly into the AtalaImage constructor.

336



Atalasoft DotImage Developer's Guide

Create a copy of the data
To process a native .NET Bitmap image by creating a copy of the data:

1. Create an AtalaImage copy of the Bitmap.

2. Process the image.

3. Create a bitmap copy of the results.

 Atalasoft DotImage has a built-in type converter that can be used to cast a bitmap to an 
AtalaImage and vice versa.

Pass the data directly to the AtalaImage constructor
Manipulate the Bitmap bits directly by creating an AtalaImage that points to the same block of 
memory as the Bitmap.

 Directly manipulating the bits is more difficult than creating a copy, but does conserve 
memory.

Process a bitmap directly
You can create an AtalaImage directly from a Bitmap object using the static 
AtalaImage.FromBitmap() method.

 When you use this method, AtalaImage takes ownership of the Bitmap and its associated 
memory and manages its disposal. Assume that when you create an AtalaImage from a Bitmap, 
you lose permission to access the Bitmap object.

The following example shows direct processing of a bitmap.

Create a bitmap object using AtalaImage.FromBitmap() method

C#
AtalaImage image = AtalaImage.FromBitmap(srcBitmap);
BlurGaussianCommand blur = new BlurGaussianCommand(2);
AtalaImage newImage = blur.Apply(image).Image;
// Dispose of srcBitmap
image.Dispose();  

//Bitmap only points to the newImage.
//  The newImage still controls the memory and it must be disposed when done.
Bitmap bm = new Bitmap(newImage.Width, newImage.Height, newImage.RowStride, 
   (System.Drawing.Imaging.PixelFormat)((int)newImage.PixelFormat), 
   PixelMemory.PixelDataFromPixelMemory(newImage.PixelMemory));
 

Interoperability - Work with WPF images
This topic explains how to use the AtalaImageViewer in a WPF application.

337



Atalasoft DotImage Developer's Guide

The example code that follows is written in C#; however any CLS compliant language can be used.

Add the AtalaImageViewer control to a WPF windows application
You have several options for creating a WPF application. The following example uses Visual Studio 
and its XAML source editor to create the project.

1. Open Visual Studio and start a new WPF Windows Application project.
2. Add the following references:

• Atalasoft.dotImage
• Atalasoft.dotImage.Lib
• Atalasoft.dotImage.Wpf
• Atalasoft.Shared

3. Double-click Window1.xaml to launch the editor.
4. Use the form designer to set the window size, title and other common options.
5. Switch to XAML source view.
6. Add the following XML namespace to the Window tag:

xmlns:atala="clr-
namespace:Atalasoft.Imaging.Wpf;assembly=Atalasoft.dotImage.Wpf"

7. Inside the Grid tag, add the following code:

<Grid.ColumnDefinitions> 
    <ColumnDefinition/>
</Grid.ColumnDefinitions>
<Grid.RowDefinitions> 
    <RowDefinitionHeight="22"/> 
    <RowDefinition/>
</ Grid.RowDefinitions>
<MenuGrid.Column="0"Grid.Row="0"> 
    <MenuItemHeader="_File"> 
        <MenuItemHeader="_Open"Click="OnOpenFile"/> 
        <MenuItemHeader="_Save"Click="OnSaveFile"/ > 
            <Separator/> 
            <MenuItemHeader="E_xit"Click="OnExit"/> 
        </MenuItem> 
    </Menu> 
    <atala:AtalaImageViewer Name="Viewer" Grid.Column="0" Grid.Row="1"/>

8. Open the Window1.xaml.cs file and add the file menu event handlers.
9. Build and run the application.

Use mouse tools
AtalaImageViewer has a MouseTool property that takes any class deriving from the MouseTool 
class. This allows you to create custom mouse tools for the viewer. The Atalasoft DotImage WPF 
component provides several commonly used tools including selection, panning, magnifier and 
zoom.

The following code tells the viewer to use the panning tool:
this .Viewer.MouseTool = new PanningMouseTool();

338



Atalasoft DotImage Developer's Guide

All the viewer mouse tools have common default values making it easy to switch between the tools. 
You may want to modify the look or behavior of a tool to better fit your application or preference. 
For instance, the PanningMouseTool can have two cursors: one for the normal cursor and another 
for a mouse down (grab) cursor.

Forms processing
Forms processing brings the ability to analyze and process documents containing user-filled forms 
to the Atalasoft DotImage Document Imaging toolkit.

Key features:
• Document alignment: With the DocumentAligner class you can align one document to a 

predefined template. This allows for the reliable extraction of individual bar codes, small sections 
of text via OCR, and marks via OMR.

• Alignment rejection: After performing alignment, use the AlignmentRejector class to test if the 
alignment was successful.

• OMR (Optical Mark Recognition): Using the OmrEngine class you can check for expected marks 
on a document.

Align an image to a template
Aligning an image to a template is a three-step process:

1. Generate PageFingerprints with the PageFingerprintGenerator.
2. Generate an AlignmentResult by passing those fingerprints into the DocumentAligner.
3. Validate that AlignmentResult with the AlignmentRejector.

C#
//Load Images
AtalaImage sourceImage = new AtalaImage(@"C:\temp\sourceImage.tif");
AtalaImage targetImage = new AtalaImage(@"C:\temp\targetImage.tif"); 
  
//Generate PageFingerprints
PageFingerprintGenerator generator = new PageFingerprintGenerator();
PageFingerprint sourceFingerprint = generator.GenerateFingerprint(sourceImage);
PageFingerprint targetFingerprint = generator.GenerateFingerprint(targetImage); 
  
//Align with PageFingerprints
DocumentAligner aligner = new DocumentAligner();
AlignmentResult result = aligner.Align(sourceFingerprint, targetFingerprint); 
  
//Validate Alignment
AlignmentRejector rejector = new AlignmentRejector();
rejector.TestAlignmentResult(result);

Disable alignment rejection heuristics
In some cases you might find that one of the AlignmentRejector's alignment rejection heuristics 
is incorrectly reporting your document as misaligned. In this case, you can disable this particular 
heuristic by removing it from the AlignmentRejectionHeuristics enumeration property with the 
exclusive-or operator.

339



Atalasoft DotImage Developer's Guide

C#

AlignmentRejector rejector = new AlignmentRejector();
rejector.AlignmentRejectionHeuristics ^= 
 AlignmentRejectionHeuristics.AlignmentConfidence;

Use the OMR engine to recognize marks on a page
Given an existing OmrTemplateDocument and an FileSystemImageSource, basic usage of the 
OmrEngine class is a three step process:

1. Create an OmrEngine instance.

2. Pass your document and template in to the OmrEngine.

3. Parse the OmrEngine results.

C#

//Create engine instance
OmrEngine engine = new OmrEngine(); 
  
//Load OMR Template
OmrTemplateDocument docTemplate = OmrTemplateDocument.Load(@"C:\temp
\document.template"); 
  
//Load Document to perform OMR on
FileSystemImageSource imageSource = new FileSystemImageSource(@"C:\temp\omrimage.tif", 
 true); 
  
//Perform OMR  
OmrDocument results = engine.RecognizeDocument(imageSource, docTemplate); 
  
//Parse Results
foreach (OmrPage page in results.Pages)
{ 
    foreach (OmrGroup group in page.Groups) 
    { 
        foreach (OmrMark mark in group.Marks) 
        { 
            string markString = String.Format("Mark {0}: {1}", 
                                              mark.Template.Name, 
                                              mark.IsMarked); 
            System.Console.WriteLine(markString); 
        } 
    }
}

Create and save an OMR template
Creating OMR templates is simply a matter of stacking together the various OmrTemplate classes. 
Each represents a different template concept:
• An OmrTemplateDocument represents an entire document.
• An OmrTemplatePage represents a single document page.
• An OmrTemplateGroup represents a group of marks.
• An OmrTemplateMark represents a single location to check for a mark.

1. Create an OmrTemplateDocument to hold your template pages:

340



Atalasoft DotImage Developer's Guide

OmrTemplateDocument templateDoc = new OmrTemplateDocument();

2. Whenever you open a new image as a page for this template, you'll also want to create a new 
OmrTemplatePage to go with it.
AtalaImage templateImage = new AtalaImage(@"C:\Temp\templateImage.tif");
OmrTemplatePage templatePage = new OmrTemplatePage(templateImage);
templateDoc.Pages.Add(templatePage);

3. Create a group to hold your marks, which are currently for organizational purposes but can be 
used for more complex tasks. When creating a group, assign it a name that can be used to find 
it after processing. For this reason, each group's name should be unique within the page.
String groupName = "Group One";
OmrTemplateGroup templateGroup = new OmrTemplateGroup(groupName);
templatePage.Groups.Add(templateGroup);

Perform additional preprocessing in the OMR engine
Sometimes you may wish to do additional image preprocessing before entering the rest of the OMR 
process.

1. Create an EventHandler<OmrImagePreprocessingEventArgs> which:
• Performs the desired preprocessing.
• Assigns the result to the InMarkedImage property of the 

OmrImagePreprocessingEventArgs.
2. Install the event handler.

Create an OmrImagePreprocessingEventArgs event handler
As images are passed in to the OmrEngine do not have the AutoDeskewCommand applied by 
default, this is one example of when you may want to perform additional preprocessing.

1. Perform the desired preprocessing.
2. Assign the result to OmrImagePreprocessingEventArg's InMarkedImage property.

void PreprocessingHandler(object sender, OmrImagePreprocessingEventArgs e)
{ 
    AutoDeskewCommand command = new AutoDeskewCommand(); 
    AtalaImage newImage = command.Apply(e.InMarkedImage).Image; 
    e.InMarkedImage = newImage;
}

3. Install the handler into the OmrEngine instance's ImagePreprocessing event.
omrEngine.ImagePreprocessing += new 
 EventHandler<OmrImagePreprocessingEventArgs>(PreprocessingHandler);

Cancel OMR in progress
Use this procedure to cancel an OMR session that is in progress.

1. Create a PageProgress event handler which sets the Cancel property of the OmrPageProgress 
EventArgs to true.

2. Install the event handler.

341



Atalasoft DotImage Developer's Guide

Create an OMR page progress handler
The following code example shows how to create an OMR page progress handler that cancels 
processing when the class-wide boolean CancelHasBeenRequested is set to true.

1. When the desired conditions for cancellation are met, set the Cancel property to true.
private void CancelPageProgressHandler(object sender, OmrPageProgressEventArgs e)
{ 
    //Boolean set elsewhere in your code 
    if (CancelHasBeenRequested) 
    { 
        e.Cancel = true; 
    }
}

2. Install the handler into the OmrEngine instance's PageProgress event.
// Install the handler 
  
omrEngine.PageProgress += new 
 EventHandler<OmrPageProgressEventArgs>(CancelPageProgressHandler); 

Track OMR engine page progress in a UI
To track page progress, create an EventHandler<OmrPageProgressEventArgs> and translate the 
information in the event arguments to your UI.

1. Create an event handler that:
• Translates OMR Page Stage Information to a String.
• Passes that string and current progress to your UI.

2. Install the event handler.

Translate the OmrPageStage information to a string
1. Translate the OmrPageStage information to a String.

private string TranslatePageStageToString(OmrPageStage stage)
{ 
    string message = "Unknown Stage"; 
    switch (stage) 
    { 
        case OmrPageStage.Preprocessing: 
            message = "Preprocessing Image and Template"; 
            break; 
        case OmrPageStage.Aligning: 
            message = "Aligning Template"; 
            break; 
        case OmrPageStage.Recognizing: 
            message = "Recognizing Marks"; 
            break; 
        case OmrPageStage.Finishing: 
            message = "Finishing"; 
            break;  
    }  
    return message;
}

2. Create the event handler.

342



Atalasoft DotImage Developer's Guide

private void TrackingPageProgressHandler(object sender, OmrPageProgressEventArgs 
 e)
{ 
    string message = TranslatePageStageToString(e.Stage); 
    TextToShow = message; 
    if (e.Progress.HasValue) 
        ProgressBarValue = e.Progress.Value;
} 

3. The handler must be installed into your OmrEngine instance's PageProgress event.

 omrEngine.PageProgress += new EventHandler 
 <OmrPageProgressEventArgs>(TrackingPageProgressHandler);

Web Document Viewer
The WebDocumentViewer is JavaScript based image viewing control that can be created on the 
client side without the need for a traditional WebServerControl back end. It communicates directly 
with a WebDocumentRequestHandler on the server side, so there are no page lifecycle problems to 
deal with.

A WebDocumentViewer only requires a few snippets of HTML and JavaScript on your page, and a 
separate bare-bones handler.

The WebDocumentViewer doesn't have a Toolbox item to drag onto a form, so you can create 
the control on any page that you need to use it, without forms. See our Web Document Viewer 
Guide for a step-by-step tutorial of setting up a WebDocumentViewer in a new project and 
deploying it to an IIS server. A complete example of the WebDocumentViewer is also included in the 
DotImageWebForms demo projects that are installed with Atalasoft DotImage.

The Web Document Viewer online documentation is available at https://
atalasoft.github.io/web-document-viewer. The offline verison can be downloaded from the 
public GitHub repository at https://github.com/Atalasoft/web-document-viewer/tree/
master/docs.

343



Chapter 4

Deploy Atalasoft DotImage

Atalasoft DotImage does not contain COM components to register, and no Registry modifications 
are required to use the SDK. To deploy the SDK, copy Atalasoft DotImage assemblies alongside your 
EXE.

Visual C++ Runtime dependencies
Atalasoft DotImage is distributed in several configurations, which are listed in the Atalasoft 
DotImage Technical Specifications.

Deploy Atalasoft DotImage in ASP.NET
When deploying Atalasoft DotImage in an ASP.NET application, the Atalasoft DotImage license file 
must be located in the bin directory of the application.

Dependencies using Atalasoft DotImage class library
The following files must be included on the server that usesAtalasoft DotImage. This is all that is 
required when using the class library only:
• Atalasoft.dotImage.dll

• Atalasoft.dotImage.Lib.dll

• Atalasoft.Shared.dll

• Atalasoft.dotImage.lic

All of these files must be placed in the application's bin folder.

Dependencies using Atalasoft DotImage with WebControls
The following files must be included on the server that uses Atalasoft DotImage with WebControls:
• Atalasoft.dotImage.dll

• Atalasoft.dotImage.WebControls.dll

• Atalasoft.dotImage.Lib.dll

• Atalasoft.Shared.dll

• Atalasoft.dotImage.lic

• Atalasoft.dotImage.Pdf.dll

344



Atalasoft DotImage Developer's Guide

• Atalasoft.dotImage.PdfReader.dll

• Atalasoft.dotImage.PdfDoc.Bridge.dll

• Atalasoft.dotImage.PdfDoc.dll

• Atalasoft.dotImage.Ocr.dll

• Atalasoft.dotImage.AdvancedDocClean.dll

All of these files must be placed in the application's bin folder.

Generating licenses
To license application components, a license file is generated or updated and compiled into the 
project output.

The licenses.licx file is generated or updated automatically by Windows Form Designer when a 
licensed control is added to a form. For console application, this file is added manually as shown in
HOWTO: License an EXE for Deployment on the Atalasoft website. During compilation, the project 
system transforms licenses.licx into a .licenses binary resource that provides support for .NET 
control licensing. The binary resource is embedded in the project output.

For .NET Framework, use the License Compiler (lc.exe) to compile and embed the license binary 
resource. (See the Microsoft website for instructions.) For .NET 6 or later, the License Compiler is 
not supported. Instead, use the Atalasoft License Compiler (AtalasoftLicenseCompiler.exe) provided 
with Atalasoft DotImage to transform and embed the license binary resource. Just like the License 
Compiler, the Atalasoft License Compiler takes the licenses.licx file that was generated or updated 
by Windows Form Designer or added manually, transforms the file into a .licenses binary resource, 
and embeds it into the project output.

The Atalasoft License Compiler can be run separately, and it uses the same command-line 
arguments as the License Compiler, as in this example:
AtalasoftLicenseCompiler.exe
/complist:<licenses.licx_path>
/outdir:<result_folder_path> /target:<application_name>
/i:"<refassembly1>;<refassembly2>;<refassembly3>;..;<refassemblyN>"

But to embed licensing, you need to install the Atalasoft.dotImage.AtalasoftLicenseCompiler.x86 
or Atalasoft.dotImage.AtalasoftLicenseCompiler.x64 NuGet package for .NET 6 project. The NuGet 
package includes AtalasoftLicenseComplier.exe and the appropriate targets and instructions for 
*.licenses generation. Targets are added to the .csproj file during compilation.

To use the Atalasoft License Compiler, follow these steps:

1. Install the NuGet package, either Atalasoft.dotImage.AtalasoftLicenseCompiler.x86 or 
Atalasoft.dotImage.AtalasoftLicenseCompiler.x64.

2. Create or add the licenses.licx file.
If you create the file, make sure it is in <project folder>/Properties. If you add it, follow 
the instructions in HOWTO: License an EXE for Deployment on the Atalasoft website.

3. Build the project.

345

https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.atalasoft.com%2FKB2%2FKB%2F50311%2FHOWTO-License-an-EXE-for-Deployment&data=04%7C01%7C%7C971ff3ee3ae6449a73b808d9db47d7fb%7Cbcd8ba5f75e24d6c8aa5fff6c8baa1ff%7C0%7C0%7C637781923916032734%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=2ExbgwCsbIR26P7wgx3ptGKUKv5OKLD35W2v8Xylep8%3D&reserved=0
https://docs.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/ha0k3c9f(v=vs.100)?redirectedfrom=MSDN
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.atalasoft.com%2FKB2%2FKB%2F50311%2FHOWTO-License-an-EXE-for-Deployment&data=04%7C01%7C%7C971ff3ee3ae6449a73b808d9db47d7fb%7Cbcd8ba5f75e24d6c8aa5fff6c8baa1ff%7C0%7C0%7C637781923916032734%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=2ExbgwCsbIR26P7wgx3ptGKUKv5OKLD35W2v8Xylep8%3D&reserved=0


Atalasoft DotImage Developer's Guide

During compilation, the following takes place:

a. The AtalasoftLicenseComplier.exe utility and necessary assemblies are copied to
<destination folder>/lib.

b. The <application name>.licenses file is generated and embedded into the resulting 
application file.

4. Check the build log file for any errors.

 If the license is not found for the assembly, an error message is added to the build log, 
but the build does not fail.

346



Chapter 5

Program with DotPdf

DotPdf is a set of tools used for creating or manipulating PDF documents. PDF is a file format 
created by Adobe Systems that is used to represent the content and structure of a document in a 
way that the appearance of the document will maintain its quality independent of the device on 
which it is displayed. For example, TIFF documents are scanned images that only look as good as 
the resolution of the scan, whereas PDF documents can contain text and graphic content that do 
not have a fixed resolution and render well on low or high resolution devices.

In addition, PDF can contain a number of interactive features including hyperlinks, annotations, 
bookmarks.

DotPdf includes two main tools for operating on PDF files:
• PdfDocument - Object for performing efficient, document-level manipulation of PDF documents, 

including rearranging or deleting existing pages, adding pages from another document, creating 
or editing the bookmark tree, creating or editing document metadata, or combining multiple 
documents into one.

• PdfGeneratedDocument - Object capable of doing everything PdfDocument can do, but requires 
reading in the full content of the document. In addition, PdfGeneratedDocument can be used for 
adding content to existing pages and creating new content from scratch.

Both PdfDocument and PdfGeneratedDocument have the ability to detect and repair many types of 
broken or non-compliant PDF documents.

The PDF document format is a standard format that describes the appearance layout, and to 
a certain extent the behavior of a collection of pages. PDF documents are designed to look 
consistently good on whatever device is used to display them, whether the device is a computer 
screen, a desktop printer, a phototypesetter, or a cell phone. Unlike most image formats, PDF has 
no sense of resolution. This means that a document can viewed at arbitrary magnification with little 
or no loss of information.

The Atalasoft PDF Generating library provides a mechanism for creating PDF documents that is 
simple, consistent, and extensible. Since the underlying document format is complicated, the library 
is built to separate the document format from the means used to create the document. Client code 
needs to concern itself with the content and the mathematical modeling. The actual production of 
PDF from this is handled behind the scenes.

In addition to basic shapes, images and text, the Atalasoft library has tools for creating your own 
shapes from primitive shapes, composites of basic shapes, as well the ability to stitch all of these 
together into high-level tools for creating documents from very little code.

To create a PDF document, one needs to make a document object, add pages to the document, put 
content onto the pages and save the document. The following example demonstrates how to make 
a basic PDF:

347



Atalasoft DotImage Developer's Guide

  PdfGeneratedDocument doc = new PdfGeneratedDocument(); 
   
  PdfGeneratedPage page = PdfDefaultPages.Letter; 
   
  doc.Pages.Add(page); 
   
  string font = doc.Resources.Fonts.AddFromFontName("Times New Roman"); 
   
  PdfTextLine line = new PdfTextLine(font, 12, "Hello, PDF", new PdfPoint(72, 400)); 
   
  page.DrawingList.Add(line); 
   
  doc.Save("hello.pdf");   

The authoring library has seven main components: resources, pages, drawing primitives, shapes, 
forms, annotations and rendering. Resources are collections of large objects that may be used 
multiple times on a page or a document such as fonts or images. Resource objects are named 
and are always referred to by name. Pages are objects that contain dimensions as well as a list 
of drawings that make the visible contents of the page. Pages may be moved freely from one 
document to another, cloned and serialized. Drawing primitives are objects that can directly 
generate PDF page content. Primitives include paths, rectangles, primitive text, and images. Shapes 
are higher level objects that are more easily described and controlled and may include transforms 
to apply to the shape like scale and rotation. Shapes can be built in terms of primitives or in terms 
of other shapes. Rendering is the process of turning a collection of pages and their content into 
PDF or some other format. Although most applications concerned with making PDF documents will 
only need to concern themselves with resources, pages and shapes, the Atalasoft library is designed 
to be open and extensible. Advanced applications can work with primitives directly, create their 
own higher level shapes or create their own renderers. And while the rendering process is typically 
invisible to client code, the mechanism is open so that documents can be created that are limited 
only by the PDF specification.

Mathematical model
In PDF, a page is based on a formal Cartesian coordinate system. In this model, the origin is in the 
lower left corner of the page with the positive X axis stretching to the right and the positive Y axis 
extending up. Units are in PDF standard units which are 1/72 of an inch. Coordinates are expressed 
in floating point numbers. Every page includes an Affine transformation matrix through which all 
coordinates are pushed before being placed on the page.

 This differs from conventional image coordinates where the origin is in the upper left corner of 
the image and the positive Y axis extends down.

For drawing, there are five main primitives: paths, rectangles, images, text, and templates. A path is 
a collection of lines and Bezier curves. Paths may be disjoint or non-disjoint. In non-disjoint paths, 
all elements are connected. A non-disjoint path may be closed or open. In a closed path, there is an 
explicit step to connect from the first element in the path to the last element in the path. A disjoint 
path may consist of any number of sub paths which may be open or closed.

Paths and rectangles are placed on the page. After a shape has been placed on the page, it may be 
stroked, filled or clipped. Outlines in the path may be stroked with solid or dashed lines. Line ends 

348



Atalasoft DotImage Developer's Guide

may rounded, square projecting, or square flat. Line joints may be beveled or mitered. Paths may 
filled with solid colors. Clipping and filling are done based on one of two different filling rules, the 
even-odd rule and the non-zero winding rule.

Images in PDF are considered to be 1 by 1 in PDF units. To place an image on the page, one sets a 
transform to set the location and size of the image on the page.

Templates are encapsulated collections of other PDF primitives. In PDF Generating they are 
intended for two main purposes: creating reusable page content like letterhead, backgrounds or 
watermarks. Templates can also be used for building transparency or blending layers.

Transformations
The PDF imaging model includes the notion of a current transformation. All objects that are 
rendered get pushed through the transformation before being rendered.

Transformations are represented by an Affine transformation matrix which is a 3x3 matrix of the 
form:

When a point (x, y) is transformed by the matrix, the output of the transformation will be (  ), 
where  and  . In the Atalasoft Pdf Generating library, transformations 
are represented by the class PdfTransform. Within that class there are some factory methods for 
making common transformations.

PdfTransform.Identity() returns a new identity matrix:

PdfTransform.Translate(double x, double y) returns new matrix that will perform a translation:

PdfTransform.Scale(double s) returns a new matrix that will perform a uniform scale:

PdfTransform.Scale(double x, double y) returns a new matrix that scales in x and y directions, 
possibly by different amounts:

349



Atalasoft DotImage Developer's Guide

PdfTransform.Rotate(double theta) returns a new matrix that will perform a counter clockwise 
rotation by theta radians:

PdfTransform.Skew(double x, double y) performs a two dimensional skew operation by x and y 
radians:

PdfTransform includes a property, TransformType that attempts to determine if the transform is 
one of the primary transformation types. If the transform type can't be determined, the property 
will be set to PdfTransformType.Other.

To transform a point, use the Transform methods. For example, to rotate a point counterclockwise 
around the origin, you can do this:
PdfPoint p = new  PdfPoint(x, y);
PdfTransform transform = PdfTransform.Rotate(angle);
p = transform.Transform(p);

PdfTransform can also combine transformation by using the Concat() method:
PdfTransform combined = PdfTransform.Rotate(angle);
PdfTransform translate = PdfTransform.Translate(x, y);
combined.Concat(translate);

Note that the Concat operation is not reflexive - a.Concat(b) is not necessarily the same as 
b.Concat(a).

In PdfDrawingSurface, there is a method called ApplyTransformation() which takes a PdfTransform 
object and Concats it onto the drawing surface's current transformation. In this way, transforms are 
cumulative. Applying a transformation will accumulate changes into the drawing surface. To undo a 
transform, there are two approaches. The first is to apply the inverse transformation:
PdfTransform transform = GetTransform();
if (!transform.IsInvertable()) 
 return;
PdfTransform itransform = transform.GetInverse(); 
  
Renderer.DrawingSurface.ApplyTransformation(transform);
...perform drawing operations
Renderer.DrawingSurface.ApplyTransformation(itransform);

In order to do this, the specific transform to be applied must have an inverse. In all but degenerate 
transformations (scale by 0 or a skew that creates a flat line), there will be an inverse that can be 
applied. Using the IsInvertable() method will tell you if an inverse exists.

350



Atalasoft DotImage Developer's Guide

The second way to undo a transform is to use the GSave() and GRestore() methods that are part of 
the PdfPageRenderer objects. GSave() takes the entire drawing state of the PdfPageRenderer and 
saves it on a stack. GRestore() pops the most recently saved drawing state and restores it. GSave()/
GRestore() performs a great deal more work than saving and restoring the current matrix. It will 
also save line style, clipping, and more. Generally speaking, for working with transformations, it's 
best to always avoid degenerate transformations and to apply the transform, perform operations 
and then apply the inverse.

The power of the cumulative approach to transformation is that it is straight forward to encapsulate 
drawing within another transformation. For example, the entire DrawingList of an existing 
PdfGeneratedPage could be rendered as a the contents "thumbnail" shape with a dog-eared page 
by applying a scale transform, doing a GSave(), clipping to the dog eared page boundary, calling the 
DrawingList's Render() method, doing a GRestore(), stroking the dog-eared page boundary and then 
undoing the transform.

PdfBaseShape provides indirect access to the transforms by breaking out Translation, Scale, and 
Rotation into separate properties and concatenating them together before drawing the shape.

When any of the Add or Place methods are used in PdfDrawingSurface, an implicit transform will 
be applied before the operation and the inverse afterwards. For example, AddRect(PdfBounds r) is 
implemented in terms of AddRect(r, PdfTransform.Identity()).

PdfGeneratedDocument
For creating or modifying exist PDF documents, use the PdfGeneratedDocument object. Unlike 
the PdfDocument object, the PdfGeneratedDocument object allows you to directly manipulate 
the content and details of PDF documents to a much greater depth (and is also more resource 
intensive). Strictly speaking, PdfGeneratedDocument offers a superset of the features in 
PdfDocument.

With both PdfGeneratedDocument and PdfDocument, you can rearrange or delete pages, 
add pages from other documents, rotate pages, set document permissions, create or modify 
bookmarks, encrypt or decrypt documents, set automatic printing, or create or edit document 
metadata. With PdfGeneratedDocument, you can replace images in a document, add new pages 
with new content, add content to existing pages, create or edit annotations, create and edit data 
collection forms, import SVG artwork, and define high level shapes.

PdfGeneratedDocument can be the cornerstone of a report generation system, a document 
format converter, a document review system, or a print driver. Since content created within a 
PdfGeneratedDocument can be serialized and embedded within the output PDF itself, it is easy to 
create content and read it back for editing.

Pages
The main page class PdfGeneratedPage is a container class that represents a page in a PDF 
document. It contains a set of PdfBounds objects that are used to describe the page's dimensions 

351



Atalasoft DotImage Developer's Guide

as well as PdfDrawingList object that represents the page's contents. The main dimensions of the 
page are described with the following:
• Media Box - this is the size of the physical media on which the page is to be printed.
• Crop Box - this is the area to which all content on the page will be cropped when being displayed 

or printed.
• Bleed Box - this is an area that defines the area that will be used for cropping in a production 

environment, which may include extra area to accommodate cutting folding and trimming 
equipment.

• Trim Box - this is the area of that page to be trimmed to in a production environment. It may 
be smaller than the Media Box to allow for printing instructions, cut marks, color bars or other 
printer's marks.

• Art Box - this is the area of the page that contains meaningful content intended by the creator.

Each of these areas are measured in PDF units and are subject to PDF's size limitations (3 units (1/24 
inch) minimum and 14400 units (200 inches) maximum).

When a new PdfGeneratedPage is constructed only the MediaBox property is set to an area. All 
other boxes are set to null PdfBounds objects, indicating "not used". In addition, all boxes must be 
either the same size or within the MediaBox.

Standard page sizes
The object PdfDefaultPages contains a number of static properties that create new 
PdfGeneratedPages initialized to standard sizes. While it is straightforward enough to create a page 
with the PdfGeneratedPage constructor and pass in the desired width and height in PDF units, the 
factory properties in PdfDefaultPages make it easy to work with common standard page sizes such 
as letter, legal, ledger, A4-A6, B4-B6, and C4-C6. For each default size in portrait layout (the page is 
thinner than it is tall), there is also a landscape version of the same.

Create stationery
There are a number of ways to create the effect of stationery in the PDF Generating API. Since each 
PdfGeneratedPage object contains a list of things that are drawn on the page, it can be as simple 
as prepopulating that list with a few items. Here is a simple example that creates a page that will 
appear to be a note card.

In this sample, we first make a page that is wide x high in inches. Next we make a background 
rectangle the same size as the page and add it to the drawing list. Then we make a path that is a 
single red line a half inch (36 PDF units) down from the top and add it to the page. Finally, we make 
a disjoint path of blue lines that are evenly spaced by quarter inches down from the red line. Since 
each line in the path is defined with a separate MoveTo/LineTo pair, the path is disjoint. When the 
page is returned from this method, there will be three items in the page's drawing list: a rectangle, a 
red path and a blue path.

public PdfGeneratedPage Notecard(double wide, double high, IPdfColor backGroundColor)
{ 

352



Atalasoft DotImage Developer's Guide

 PdfGeneratedPage page = new PdfGeneratedPage(wide * 72, high * 72); 
 double top = page.MediaBox.Top; 
 double right = page.MediaBox.Right; 
 PdfRectangle backGround = new PdfRectangle(page.MediaBox, backGroundColor); 
 page.DrawingList.Add(backGround); 
 PdfPath redLine = new PdfPath(PdfColorFactory.FromRgb(.75, .16, .45), 0.5); 
 redLine.MoveTo(new PdfPoint(0, top - 36)); 
 redLine.LineTo(new PdfPoint(right, top - 36)); 
 page.DrawingList.Add(redLine);  
 PdfPath blueLines = new PdfPath(PdfColorFactory.FromRgb(.08, .64, .89), 0.5); 
 for (double y = top - 36 - 18; y >= 0; y -= 18) 
 { 
  blueLines.MoveTo(new PdfPoint(0, y)); 
  blueLines.LineTo(new PdfPoint(right, y)); 
 } 
 page.DrawingList.Add(blueLines); 
 return page;
}

If you wanted to structurally organize your drawing so that the background of the page was a single 
layer, you could use a separate layer for background. Although the PDF file format doesn't have 
strong support for this kind of structural organization, the Atalasoft Generating library gives you the 
ability to generate with structure if you choose via the PdfDrawingList object. In this way, we could 
rewrite the note card sample to use a PdfDrawingList for the background:

public PdfGeneratedPage Notecard1(double wide, double high, IPdfColor backGroundColor)
{ 
 PdfGeneratedPage page = new PdfGeneratedPage(wide * 72, high * 72); 
 double top = page.MediaBox.Top; 
 double right = page.MediaBox.Right; 
 PdfDrawingList backLayer = new PdfDrawingList(); 
 backLayer.Name = "background"; 
 page.DrawingList.Add(backLayer); 
 PdfRectangle backGround = new PdfRectangle(page.MediaBox, backGroundColor); 
 backLayer.Add(backGround); 
 PdfPath redLine = new PdfPath(PdfColorFactory.FromRgb(.75, .16, .45), 0.5); 
 redLine.MoveTo(new PdfPoint(0, top - 36)); 
 redLine.LineTo(new PdfPoint(right, top - 36)); 
 backLayer.Add(redLine); 
 PdfPath blueLines = new PdfPath(PdfColorFactory.FromRgb(.08, .64, .89), 0.5); 
 for (double y = top - 36 - 18; y >= 0; y -= 18) 
 { 
  blueLines.MoveTo(new PdfPoint(0, y)); 
  blueLines.LineTo(new PdfPoint(right, y)); 
 } 
 backLayer.Add(blueLines); 
 return page;
}

Every object that can be in a PdfDrawingList implements the interface IPdfRenderable. One element 
of that interface is the property "Name" which is a string that names that item. This property is 
never used by the PDF Generating library. It is intended for client code. In this example, the Name 
property is used to make the backLayer object easy to identify in later code. For example, if you 
wanted to create a sense of back-, mid- and foreground layers you could add three PdfDrawingList 
objects to the page and name them appropriately.

353



Atalasoft DotImage Developer's Guide

Clipping
In every PDF page there is always an area that clips drawing to a reduced area. The initial clipping 
region for any page is the rectangle that defines the page itself. When creating PDF content, it is 
possible to change that clipping region. Clipping in PDF is different than clipping in GDI. In GDI, any 
region can be set as the current clipping region. In PDF when you request a new clipping region, the 
result is the intersection of the current clipping region and the requested one. The net result is that 
in PDF, it is only possible to reduce the current clipping region or keep it the same. It is, however, 
possible to save and restore the current clipping region through calls to PdfPageRenderer.GSave() 
and PdfPageRenderer.GRestore().

In this example, a circle is added to the page as a clipping shape and the rectangle added 
afterwards will be clipped to the circle.

C# code
PdfCircle circle = new  PdfCircle(new  PdfPoint(72, 600), 
 100,PdfColorFactory.FromGray(1));
circle.Clip = true;
page.DrawingList.Add(circle);
PdfRectangle rect = new  PdfRectangle(new  PdfBounds(72, 600, 288, 72),
PdfColorFactory.FromGray(0), 6, PdfColorFactory.FromRgb(0.1, 0, .9));
page.DrawingList.Add(rect);

This code produces this output.

Since clipping is permanent outside of calls to PdfPageRenderer.GSave() and 
PdfPageRenderer.GRestore(), there are two IPdfRenderable objects named GSave() and GRestore() 
which make those calls for you. By modifying the previous sample, the clipping region can be saved 
and restored:

C# code

page.DrawingList.Add(new GSave());
PdfCircle circle = new PdfCircle(new PdfPoint(72, 600), 100,
PdfColorFactory.FromGray(1));
circle.Clip = true;
page.DrawingList.Add(circle);
PdfRectangle rect = new PdfRectangle( 
 new PdfBounds(72, 600, 288, 72), 
 PdfColorFactory.FromGray(0),  
 6,  
 PdfColorFactory.FromRgb(0.1, 0, .9));
page.DrawingList.Add(rect);
page.DrawingList.Add(new GRestore());
rect = new PdfRectangle( 

354



Atalasoft DotImage Developer's Guide

 new PdfBounds(36, 636, 400, 18), 
 PdfColorFactory.FromRgb(1, 0, 0));
page.DrawingList.Add(rect);

This code produces this output.

As with any filled shape, clipping to a path or shape is done via either the non-zero winding rule or 
the even odd rule.

Colors
The color model in PDF is very flexible. Colors are associated with a notion of a current color space. 
Color spaces can include RGB, Gray, CMYK, Lab, and others. Color spaces may also be calibrated or 
uncalibrated. The Atalasoft PDF Generating library gives you access to colors through a color factory 
which hides the complexity of the PDF color model. To make a color, use the PdfColorFactory static 
methods FromRgb, FromColor, FromGray, or FromCmyk. Each of these methods will return a new 
IPdfColor object that represents the requested color. Color channel values go from 0.0, representing 
the minimum value, to 1.0, representing the maximum value. Colors may be associated with the 
name of a PdfColorSpaceResource object. If a color has a resource name, then the color will be a 
calibrated color, possibly with an associated ICC color profile.

To use RGB colors with an ICC color profile, you can use the resource name "sRgb" as the resource 
name for your colors. This uses the "standard" RGB ICC color profile which is always available in 
the color space resources. While there will always be a profile named "sRgb", it is better to use 
the property DefaultRgbColorSpace as the default resource name. This allows you code to change 
the name of the default RGB color space resource without changing the calibration of any colors 
already selected with the previous default.

To add additional color profiles to the resources, you only need a stream, path or the raw data itself. 
For example, you could use the following C# code to add in a new ICC profile:

 PdfGeneratedDocument doc = new PdfGeneratedDocument(); 
 String csname = doc.Resources.ColorSpaces.AddFromFile("mycolorprofile.icm"); 
 IPdfColor color = PdfColorFactory.FromRgb(1.0, .8, .8, csname);

Note that it is up to client code to create colors that are in the appropriate color space for a given 
resource. In the previous example, if the color profile had been for a CMYK color space, the code 
requesting an RGB color would be in error and may result in an invalid PDF. In addition to a 
standard RGB color space, there is also a calibrated gray color space preinstalled. The calibrated 
gray color space has the resource name "CalGray" and is also accessible using the string property 

355



Atalasoft DotImage Developer's Guide

DefaultGrayColorSpace. While there is a property for a default CMYK color space, there is no default 
installed. A standard CMYK color profile can be downloaded from Microsoft from the link http://
msdn.microsoft.com/en-us/windows/hardware/gg487391.

All color space resources include a property called ColorSpaceType which can be used to find the 
type of color space represented by the resource.

Rendering
The PdfGeneratedDocument and the PdfGeneratedPage classes are representations of PDF 
documents and PDF pages, but they are not actual documents or pages. No PDF is created until the 
document is saved. The process of saving a document to PDF is part of a more general rendering 
process and in this case, the output of rendering is a PDF document.

The rendering process involves creating an object that is a subclass of the abstract 
DocumentRenderer class. DocumentRenderer defines the overall process that is used to render a 
document including firing events, error handling and page rendering. The overall process follows 
this outline:

1. Notify that the document has begun.
2. Render each page.

a. Notify that a page has begun.

b. Construct a PdfPageRenderer object for the page.

c. Generate the page.

d. Notify that the page has finished.
3. Notify that the document has finished.

Behind the scenes, the PdfGeneratedDocument.Save() method creates a PdfPageRenderer object 
and uses it to create the PDF. In most cases, it will not be necessary to use any other means to 
save a PDF document. The PDF Generating library is robust for creating documents that may 
have a thousand pages or more without having to worry about memory use. However, in some 
cases client code may wish to use another mechanism to produce documents. In this case, the 
client code can construct the PdfPageRenderer directly and use the Render method that takes a 
PdfGeneratedDocument and an ICollection<BasePage>. In this way client code can use their own 
collections of pages instead.

Resources
PDF has the notion of document resources. These are objects or chunks of data that may be shared 
within a page or several pages to reduce the memory needed for the document. There are several 
classes of resources within PDF. Of them, the Atalasoft PDF library exposes four types: fonts, 
images, templates and color spaces. In the Atalasoft PDF library, to use a resource, you create it and 
assign it a name. From then on the resource is referred to by name.

The PdfGeneratedDocument class contains a property, Resources, of type GlobalResources. This 
object contains properties which represent "managers" for each type of resource. While each 

356

http://msdn.microsoft.com/en-us/windows/hardware/gg487391
http://msdn.microsoft.com/en-us/windows/hardware/gg487391


Atalasoft DotImage Developer's Guide

resource manager shares a common base class which contains methods for adding, getting, and 
querying resources, each manager also contains convenience factory methods specific to each 
resource type so that making resources is easier.

For example, it might be easier to work with a font by its font name, so The PdfFontManager has a 
method that will search through installed fonts and attempt to create a font resource based on that.

Font resources
The PDF Generating library supports fonts in PDF via True Type font files. Fonts resources can be 
created from a font's name (such as Goudy Old Style Bold), a path to a .ttf or .otf file or a Stream 
containing the True Type font. Note that .otf files may contain either True Type or Type 1 fonts, but 
only True Type fonts are accepted.

When creating a font resource, client code assigns the font a name (or accepts an auto-generated 
one). The actual name is inconsequential and is only used as a unique identifier for the font. Client 
code should feel free to use any name it wishes. All references to that font will be made through 
that name and not the resource object.

In version 10.4 and above, there is support for PDF standard Type 1 fonts. In the original version of 
Acrobat, there were a set of standard fonts that did not need to be embedded within a PDF file and 
were guaranteed to render accurately. These fonts will be pre-installed in any new GlobalResources 
object.

The fonts are referred to by their PostScript names:

• Times-Roman
• Times-Bold
• Times-Italic
• Times-BoldItalic
• Helvetica
• Helvetica-Bold
• Helvetica-Oblique
• Helvetica-BoldOblique
• Courier
• Courier-Bold
• Courier-Oblique
• Courier-BoldOblique
• Symbol
• ZapfDingbats

 Type 1 fonts do not typically have support for more than 255 simultaneously encoded 
characters. The standard Roman fonts use PDF Standard Encoding, but Symbol and Zapf Dingbats 
use an Identity encoding scheme where the character value corresponds to the Adobe index of a 
particular glyph name for the font.

357



Atalasoft DotImage Developer's Guide

Type 1 symbol font encoding
Unicode 
character

Character code Glyph Unicode 
character

Character code Glyph

space 32 space ! 33 !

" 34 ∀ # 35 #

$ 36 ∃ % 37 %

& 38 & ' 39 ∋

( 40 ( ) 41 )

* 42 ∗ + 43 +

, 44 , - 45 −

. 46 . / 47 /

0 48 0 1 49 1

2 50 2 3 51 3

4 52 4 5 53 5

6 54 6 7 55 7

8 56 8 9 57 9

: 58 : ; 59 ;

< 60 < = 61 =

> 62 > ? 63 ?

@ 64 ≅ A 65 Α

B 66 Β C 67 Χ

D 68 ∆ E 69 Ε

F 70 Φ G 71 Γ

H 72 Η I 73 Ι

J 74 ϑ K 75 Κ

L 76 Λ M 77 Μ

N 78 Ν O 79 Ο

P 80 Π Q 81 Θ

R 82 Ρ S 83 Σ

T 84 Τ U 85 Υ

V 86 ς W 87 Ω

X 88 Ξ Y 89 Ψ

Z 90 Ζ [ 91 [

\ 92 ∴ ] 93 ]

358



Atalasoft DotImage Developer's Guide

Unicode 
character

Character code Glyph Unicode 
character

Character code Glyph

^ 94 ⊥ _ 95 _

` 96 � a 97 α

b 98 β c 99 χ

d 100 δ e 101 ε

f 102 φ g 103 γ

h 104 η i 105 ι

j 106 ϕ k 107 κ

l 108 λ m 109 μ

n 110 ν o 111 ο

p 112 π q 113 θ

r 114 ρ s 115 σ

t 116 τ u 117 υ

v 118 ϖ w 119 ω

x 120 ξ y 121 ψ

z 122 ζ { 123 {

| 124 | } 125 }

~ 126 _ 127

128 Ä 129 Å

130 Ç 131 É

132 Ñ 133 Ö

134 Ü 135 á

136 à 137 â

138 ä 139 ã

140 å 141 ç

142 é 143 è

144 ê 145 ë

146 í 147 ì

148 î 149 ï

150 ñ 151 ó

152 ò 153 ô

154 ö 155 õ

156 ú 157 ù

158 û DŸD 159 ü

359



Atalasoft DotImage Developer's Guide

Unicode 
character

Character code Glyph Unicode 
character

Character code Glyph

160 € ¡ 161 ϒ

¢ 162 ′ £ 163 ≤

¤ 164 ⁄ ¥ 165 ∞

¦ 166 ƒ § 167 ♣

¨ 168 ♦ © 169 ♥

ª 170 ♠ « 171 ↔

¬ 172 ← • 173 ↑
® 174 → ¯ 175 ↓

° 176 ° ± 177 ±

² 178 ″ ³ 179 ≥

´ 180 × µ 181 ∝

¶ 182 ∂ · 183 •

¸ 184 ÷ ¹ 185 ≠

º 186 ≡ » 187 ≈

¼ 188 … ½ 189 |

¾ 190 # ¿ 191 ↵

À 192 ℵ Á 193 ℑ

Â 194 ℜ Ã 195 ℘

Ä 196 ⊗ Å 197 ⊕

Æ 198 ∅ Ç 199 ∩

È 200 ∪ É 201 ⊃

Ê 202 ⊇ Ë 203 ⊄

Ì 204 ⊂ Í 205 ⊆

Î 206 ∈ Ï 207 ∉

Ð 208 ∠ Ñ 209 ∇

Ò 210 ® Ó 211 ©

Ô 212 ™ Õ 213 ∏

Ö 214 √ × 215 ⋅

Ø 216 ¬ Ù 217 ∧

Ú 218 ∨ Û 219 ⇔

Ü 220 ⇐ Ý 221 ⇑

Þ 222 ⇒ ß 223 ⇓

à 224 ◊ á 225 〈

360



Atalasoft DotImage Developer's Guide

Unicode 
character

Character code Glyph Unicode 
character

Character code Glyph

â 226 ® ã 227 ©

ä 228 ™ å 229 ∑

æ 230 æ ç 231 ç

è 232 è é 233 é

ê 234 ê ë 235 ë

ì 236 ì í 237 í

î 238 î ï 239 ï

ð 240 ñ 241 ñ

ò 242 ∫ ó 243 ⌠

ô 244 ô õ 245 ⌡

ö 246 ö ÷ 247 ÷

ø 248 ø ù 249 ù

ú 250 ú û 251 û

ü 252 ü ý 253 ý

þ 254 þ ÿ 255

Embed fonts
Standard Type 1 Fonts are not embedded. Allowed True Type fonts are embedded within created 
PDFs by default. True Type fonts contain information about the contexts in which embedding is 
permissible.

To embed a font, the PdfFontManager provides the embedding policy for the font. The policy 
provided looks at the embedding permissions and returns a PdfFontEmbeddingPolicy object 
containing an action to take.These actions include embed, don't embed, or throw an exception. The 
default policy provider will embed where allowed and throw an exception when not allowed.

You can also replace the policy provider with a provider that embeds all fonts. Policy providers may 
also exclude a set of common fonts that are typically on all systems or are known to Acrobat. In this 
case, when a common font is not present, Acrobat will create a matching "faux font".

Color space resources
PDF allows the use of calibrated colors within documents. This can be done through specific 
calibrated color spaces or through an ICC Color profile. To handle this the PdfColorSpaceManger 
object holds a set of color space resources which can be embedded in PDF documents. See the 
section on Colors for more information.

361



Atalasoft DotImage Developer's Guide

Image resources
In PDF images resources are stored as a resolution free stream of two dimensional samples. The 
stream is typically compressed in some manner within the file. The Atalasoft DotImage model for 
image resource handling to allow the resource manager to accept any object type as an image and 
then use a set of installed image compressors to determine how to handle that object type. When 
an image resource is created, all handlers are iterated until one determines that it can handle the 
object type. That handler then reports a list of possible ways that it can compress the object into a 
stream suitable for PDF. A compression method is then selected and subsequently applied to the 
object. For example, if presented with a .NET Bitmap object that is 24 bit RGB, the default handler 
will report that the image can be compressed using either DCT (JPEG), Flate, or no compression. A 
compression selector in the PdfImageManager then selects the most appropriate compression to 
use from that list and then the image is compressed to a stream suitable for PDF.

Image resource streams are kept in a "Stored Stream" object. This object is used to allow a chunk of 
data to be written out to an appropriate storage device for later retrieval. The default StoreStream 
type uses the systems temp folder for creating file streams that will be used for storing data. 
This mechanism can be replaced with other systems if needed by changing the StreamProvider 
property in the PdfImageManager object. In addition to the default TempStreamProvider, there is a 
MemoryStreamProvider which is equivalent, but keeps compressed streams in memory. This will be 
fast, but will clearly place a load on memory used and is therefore not recommended for anything 
but small images.

The PdfImageManager contains a collection of objects that implement the IPdfImageCompressor 
interface for compressing images. By default, this will be initialized to contain an instance of the 
GdiImageCompressor object for handling .NET Bitmap objects.

Compressors are selected by their ability to handle a particular object type. For any given object, a 
compressor is asked if it can handle the object at a particular "skill." Skills are an indication of the 
type of work needed to create the actual image data and includes:

• Perfect: The image is handled as is with no changes.
• IncreaseInformation: The image is handled, but the output image will have more information 

(for example, a compressor might not handle 1-bit perfectly, but instead converts it to 24 bit rgb 
color).

• DecreaseInformation: The image is handled, but the output image will have less information (for 
example, a compressor might not handle 48 bit rgb, but reduces it to 24 bit rgb).

For any given image format, there may be a number of different codecs that could be used to 
compress that image. When an IPdfImageCompressor has been selected, it will return a collection 
of PdfImageCodec enums that describe how the image will be compressed. Before compressing 
the image data, the PdfImageManager calls a CompressionSelector with the set of available 
PdfImageCodecs and returns back a PdfImageCompression object which fully describes all the 
parameters need to compress the image data. The default CompressionSelector always chooses the 
first compression in the list.

When an image is compressed and cached, the PdfImageManager uses a IStoredStreamProvider 
object to provide a way to get at the cache later. The default implementation is the 
TempFileStreamProvider, which creates a temporary file for the compressed stream for retrieving 
later. There is also a MemoryStreamProvider that keeps compressed image data in memory. In 

362



Atalasoft DotImage Developer's Guide

most cases, it will not be necessary to change the default selections, but every step is the process is 
replaceable if need be.

In addition, there is an extra assembly for interacting with Atalasoft DotImage that contains an 
AtalaImageCompressor object for handling all AtalaImage types.

See Integrate with Atalasoft DotImage for more information.

Template resources
PDF defines a way to create page content that can be reused efficiently. In the PDF specification, 
these are called Form XObjects, but they are unrelated to the process of data input and collection 
(Acro Forms). In Atalasoft DotImage, these are called Templates or Drawing Templates. A template 
resource is a reference to a DrawingTemplate object. A DrawingTemplate object is very similar to a 
PdfGeneratedPage in that it contains a bounding rectangle which defines a clipping rectangle for 
the entire DrawingTemplate and a DrawingList which contains the shapes or operations that will 
mark the page. DrawingTemplate objects themselves can refer to all other resource types.

Shapes
The Atalasoft PDF Generating library includes a hierarchy of high-level shapes. Each shape is 
meant to fully encapsulate the shape's parameters and be able to draw itself. There are shape 
objects that represent paths, circles, arcs, rounded rectangles, images, and text. Each of these 
objects descends from a single class, PdfBaseShape. PdfBaseShape contains the definitions for the 
shape's color (fill and stroke), the line style used for stroking, and the location, scale and rotation 
of the object. Shapes that descend from PdfBaseShape typically only have to concern themselves 
with how they are drawn (how they are filled or stroked) and not with how they are placed on 
the page (location, scale, rotation). There is no requirement to use any of the PdfBaseShape-
derived classes. Each shape is implements at least the PdfRenderable interface and optionally the 
PdfRenderableContainer and PdfResourceConsumer interfaces. All shapes must be serializable.

PdfPath
Path shapes are one of the fundamental components of PDF rendering. A path is a list of operations 
that are performed in sequence to draw the path. There are four operations that can be performed: 
move, line, curve and close. For example, you could create a square path with the following C#
code:
private PdfPath Square(double wide, IPdfColor outlineColor, double lineWidth)
{ 
      PdfPath path = new PdfPath(outlineColor, lineWidth); 
      path.MoveTo(0, 0); 
      path.LineTo(wide, 0); 
      path.LineTo(wide, wide); 
      path.LineTo(0, wide); 
      path.Close(); 
      return path;
}

The path starts with a move operation and traces the outline of the square. Notice that the square 
ends with a close operation and not another line. This is because PDF recognizes closed paths and 
treats them differently. When path is closed, the PDF viewer will automatically connects a straight 

363



Atalasoft DotImage Developer's Guide

line from the last point to the first point and creates a joint to make a clean corner. If you connect 
the line directly yourself, the PDF viewer doesn't know that it should create a clean corner. The 
results may not be what you expect. For example, the square on the left was drawn with a close 
operation. The square on the right was drawn without a close operation.

 All the path operations return the PdfPath object itself so you can use a "fluent" style if you 
choose. The previous path construction could have been written as:

return path.MoveTo(0, 0).LineTo(wide, 0).LineTo(wide, wide).LineTo(0, 
wide).Close();

Curves in PDF are represented by cubic Bézier functions. A Bézier is represented by four points, a 
start point and an end point (P 0 and P 3 ) and two control points (P 1 and P 2 ) and is represented 
by the following formula:

Where t represents time and ranges from 0.0 to 1.0. B(t) represents a point on the curve at time t.

Bézier curves have a number of desirable properties including: a small amount of information (4 
points) can represent a wide variety of curves, they can be rendered efficiently, the entire curve will 
always be contained within a rectangle bounded by the minima and maxima of the four points and 
the segments P0P1 and P2P3 are tangent to curve at the start and end points respectively.

In the PdfPath shape, you can add a curve using the CurveTo method. This method takes three 
points which represent the two control points and the end point of the curve. The start point of the 
Bézier will be the last point in the path from any of MoveTo, LineTo or CurveTo methods.

Paths can be filled, stroked or clipped. When a line is stroked, there are a variety options that can be 
selected for the style of the line, including thickness, joint style, end caps and dashes. These are all 
available in the LineStyle property of PdfBaseShape.

364



Atalasoft DotImage Developer's Guide

The thickness of a line is in PDF units and defaults to 1.0. When set to 0, the PDF viewer is instructed 
to render the line in the thinnest possible way. Since this is device-dependent, the final output 
will not be consistent from device to device and this should be avoided (consider the difference 
between the thinnest possible line on a 96 dpi monitor versus a 2400 dpi phototypesetter). If a 
client application wants to create a hairline, it should pick an appropriate thickness instead of 0.

The joint style for a path is how consecutive segments are merged together. There are three 
possible styles, square, rounded and beveled as shown in these squares.

Paths may be stroked in an arbitrary dash pattern. The pattern is a phase number and a collection 
of alternating dash lengths and gap lengths. The dash and gap lengths are distances along the path 
in PDF units. The phase is how far into the pattern to start a line. The entire collection of dash and 
gaps is used until it is exhausted, then it is repeated until the complete path has been stroked.

The following figure shows dash patterns, from top to bottom: [ 1 ], [1 2], [0.5], [0.5, 1, 2, 1]

In the sample dash patterns, a single entry implies alternating dash and gaps of the same length. In 
the bottom example, you can see how complex dashes patterns can be made. Each pattern above 
has a phase of 0, meaning that the PDF viewer starts the pattern at the beginning. If the phase were 
0.5, the first example would have started with a half dash then continued normally.

Paths may be stroked with three different types of ends: butt, round or projecting square.

The final line style is the miter limit. This is a parameter that is used to handle cases when a path 
with a highly acute angle will project in a reasonable way. In this picture the path is shown with an 
acute angle and the full miter is project from the line in blue. The miter limit prevents the miter 
from extending out this distance.

365



Atalasoft DotImage Developer's Guide

The miter limit is a point at which the mitering will be turned off. It is defined by the ratio of the 
miter length and the line thickness. When this ratio exceeds the miter limit, mitering will not be 
done on the line. Since the miter length is related to the angle between the two lines, there is also a 
relationship between miter limit and line join angle:

Where theta is the angle between the two lines.

A miter limit of 2.0 will cut off miters at angles less than 60 degrees. The default miter limit is 10.

In addition to stroking, paths may be filled with a color. A path may be filled using one of two 
techniques, either the non-zero winding rule or the even-odd rule. In the non-zero winding rule, 
horizontal rays are shot through the path. Whenever a path segment crosses the ray going up, 
one is added to a winding number. Whenever a path segment crosses the ray going down, one 
is subtracted from the winding number. Whenever the winding number is non-zero, areas along 
the ray will be filled. In the even odd rule, rays are shot through the path. Whenever the ray has 
crossed an odd number of path segments, areas along the ray will be filled. The choice of the rule 
will produce different filled areas in compound paths or paths that self-intersect.

The following figure shows the same shape with the non-zero winding rule (left) and the even-odd 
rule (right).

PdfRectangle
PdfRectangle is a shape that represents a rectangle. In addition to the properties of PdfBaseShape, 
it includes a property Bounds, which represents the area of the rectangle. The fill method doesn't 
affect how a rectangle is filled.

366



Atalasoft DotImage Developer's Guide

PdfRoundedRectangle
PdfRounded rectangle is a shape that represents a rectangle with rounded corners. In addition to 
the normal PdfBaseShape properties, PdfRoundedRectangle includes a property Bounds, which 
represents the area of the rectangle and a property CurveRadius that represents the radius of each 
corner.

PdfCircle
PdfCircle is a representation of a circle from a center and radius. The circle itself is drawn in PDF 
using a Bézier path approximation of the circle. By changing the Scale property to a non-uniform 
scale you can get an ellipse.

PdfArc
PdfArc represents a circular arc. It consists of a the center and radius of a circle as well as the start 
angle and end angle of the arc in degrees. If the property Clockwise is set to true, the arc will be 
drawn from the start angle to the end angle in a clockwise direction, otherwise the arc will be drawn 
counterclockwise. If the property IncludeWedge is set to true, the center will be added to the path 
drawn.

The following figure shows two PdfArc shapes stroked and filled with IncludeWedge set to false 
(left) and IncludeWedge set to true (right).

PdfImageShape
PdfImageShape represents an image placed in a rectangular area on the page. It includes a Bounds 
property representing the area that will be covered with the image and ImageName, the name 
of an image resource to use to fill the shape. The FillColor, OutlineColor and Clip properties of 
PdfBaseShape are ignored.

The following C# code creates an image shape from a bitmap.
PdfImageShape ConvertBitmapToShape(PdfGeneratedDocument doc, Bitmap bmp)
{ 
      string imageName = doc.Resources.Images.AddImage(bmp); 
      PdfImageShape shape = new PdfImageShape(imageName, new PdfBounds(0,  
 0, bmp.Width, bmp.Height)); 
      bmp.Dispose(); // if you don't need the Bitmap, dispose it 
      return shape;
}

367



Atalasoft DotImage Developer's Guide

If you have also purchased the DotImage DocumentImaging toolkit, then you will have access 
to the classes AtalaImageCompressor and AtalaJpegStreamCompressor in the assembly 
Atalasoft.dotImage.PdfDoc.Bridge. The AtalaImageCompressor can be added to Images resource 
manager in a PdfGeneratedDocument's Resources and will handle compressing any object of 
type AtalaImage. Similarly the AtalaJpegStreamCompressor can be added to the Images resource 
manager and will handle streams that represent JPEG images. Any stream passed in will, if it is a 
JPEG image, be copied to the current StoredStreamProvider (default is a temporary file) without 
recompressing the JPEG data.

To install AtalaJpegStreamCompressor, use the following C# code:
doc.Resources.Images.Compressors.Insert(0, new  
AtalaJpegStreamCompressor());

In addition to the above method to install a new compressor, the AtalaImageCompressor object 
contains a utility factory method which will construct a new PdfGeneratedDocument with both the 
AtalaImageCompressor and the AtalaJpegStreamCompressor pre-installed.

To create a document using the factory method, use the following C# code:
PdfGeneratedDocument doc = AtalaImageCompressor.CreateDocument();

 The CreateDocument() method also has a flavor that accepts instances of the Jpeg2000Encoder 
and Jb2Encoder objects (or null for none). If you have a license for these objects, you can pass 
them in and they will automatically be used for color images and 1-bit images respectively.

When the AtalaImageCompressor is installed in a PdfGeneratedDocument, you can pass an 
AtalaImage directly into the resource manager.

In addition to the AtalaImageCompressor, the bridge assembly also contains a class, 
AtalaImageCoordinateConverter, which can be used to convert coodinates back and forth between 
image coordinates and image resolution to PDF coordinates and PDF units.

Remember that images can consume very large amounts of memory. Keeping images in memory 
will not scale well beyond a few dozen images. If you're working with hundreds of pages with 
hundreds of images, you should adopt an approach where you create image resources as early as 
possible and dispose the original images soon thereafter.

You can convert a folder of images to a PDF by using the following C# code:
public void OneImagePerPage(string inputDirectory, string outputFile)
{ 
 PdfGeneratedDocument doc = AtalaImageCompressor.CreateDocument(); 
 FileSystemImageSource images = new FileSystemImageSource(inputDirectory, true); 
 while (images.HasMoreImages()) { 
  AtalaImage image = images.AcquireNext(); 
  PdfImageShape shape = AtalaImageCompressor.CreateImageShape(doc.Resources, image); 
  PdfGeneratedPage page = doc.AddPage(new PdfGeneratedPage(shape.Bounds.Width, 
 shape.Bounds.Height)); 
  page.DrawingList.Add(shape); 
  images.Release(image); 
 } 
 if (doc.Pages.Count > 0) 
  doc.Save(outputFile);
}

368



Atalasoft DotImage Developer's Guide

PDF text shapes
There are six main text shapes available, PdfTextLine, PdfClippedTextLine, PdfTextPath, PdfTextBox, 
PdfStyledTextBox and DynamicPdfTextBox. Each of the set have different uses and constraints.

PdfTextLine is the simplest of the set. It represents a horizontal line with text on top of it. Text is 
drawn along the line as people tend to hand write - the bottoms of most letters will be tangent 
to the line, except for letters with descenders (such as g, p, q, y etc.) which will appear with the 
descender below the line.

PdfClippedTextLine represents a line of text that will be clipped inside a bounding box on the page. 
It uses a PdfTextLine shape internally to draw the text.

PdfTextPath is similar to PdfTextLine except that instead of a horizontal line, text will follow any 
arbitrary set of path operations, including Bézier curves.

PdfTextBox is a shape that draws formatted text on a page. The text will be formatted to fit the 
bounds using the text properties.

PdfStyledTextBox is similar to PdfTextBox except that it accepts a StyleTextInput object which can be 
used to add new styled text to the box. Typically this will be used for font changes or color changes.

DynamicPdfTextBox is similar to PdfTextBox except that instead of the text being limited to a fixed 
box, the DynamicPdfTextBox lets you set a fixed width and it will grow the box up to a maximum.

Each text shape that inherits from PdfBaseTextShape will include the RenderMode property. This is 
a flags enumeration that allows you to pick one of 8 possible modes of rendering the text which are 
a combination of filling, stroking, and clipping.

369



Atalasoft DotImage Developer's Guide

The following C# code provides a demonstration of the RenderMode property.

The code produces the following output.

PdfTable
PdfTable is a conceptual model of a table of text. The table is broken down into a collection of 
columns. Rows are added to the table to fill out the columns with data. Once the data has been 
added to the table, call the Fill() method to finalize the content.

Columns are defined by a few properties:
• A key or name for referring to the column
• Text to display as the column header
• The width of the column in PDF units
• The alignment of text in the column
• Left and right padding of the column

Rows can be represented by a Dictionary<string, string> where each key corresponds to a key in the 
columns. The value associated with that key in the dictionary will be displayed in the row under the 
column. In addition, rows can be represented by an enumeration of objects that have properties 
that correspond to the column names.

The following C# creates a simple table.
[Serializable]
public class Person
{ 
 public string Name { get; set; } 
 public int Age { get; set; } 
 public string Color { get; set; }
} 
          
public void MakeSimpleTable()
{ 
 PdfGeneratedDocument doc = new PdfGeneratedDocument(); 

370



Atalasoft DotImage Developer's Guide

 PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter); 
 PdfTable table = new PdfTable(new PdfBounds(72, 300, 400, 400), "Arial", 12); 
 table.HeaderFontName = "Arial Bold Italic"; 
 table.BorderStyle = PdfTableBorderStyle.Grid; 
 table.Columns.Add(new PdfTableColumn("Name", "Person", 120, PdfTextAlignment.Center, 
 8, 8)); 
 table.Columns.Add(new PdfTableColumn("Age", "Age", 60, PdfTextAlignment.Center, 8, 
 8)); 
 table.Columns.Add(new PdfTableColumn("Color", "Favorite Color", 0, 
 PdfTextAlignment.Center, 8, 8)); 

 List<Person> people = new List<Person>() { 
  new Person() { Name = "John", Age = 15, Color = "Orange" }, 
  new Person() { Name = "Emily", Age = 37, Color = "Blue" }, 
  new Person() { Name = "Philippe", Age = 19, Color = "Green" }, 
  new Person() { Name = "Jill", Age = 23, Color = "Ochre" } 
 }; 

 table.AddRows(people.GetEnumerator()); 
 table.Fill(doc.Resources.Fonts); 

 page.DrawingList.Add(table); 
 doc.Save("basictable.pdf");
}

PdfTemplateShape
The PdfTemplateShape is a very simple shape that is used to place a DrawingTemplate (represented 
by a Template resource name) on a page. In order to work with a PdfTemplateShape, you need 
to first create a DrawingTemplate object and add it to your document's Template resources. Then 
construct a PdfTemplateShape using the resource's name and a desired Bounds on the page. The 
PdfTemplateShape will be drawn using the all the transformation information in PdfBaseShape 
(Location, Scale, and Rotation).

 It is easier to make a template shape with coordinates that is based around the origin and 
Bounds that match the DrawingTemplate's bounds, then use the Location to place it where you 
want.

The following C# code makes a simple template.
public void SimpleTemplate()
{ 
 PdfGeneratedDocument doc = new PdfGeneratedDocument(); 
 doc.EmbedGeneratedContent = false; 

 PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter); 

 DrawingTemplate template = new DrawingTemplate(new PdfBounds(0, 0, 200, 200)); 
 template.DrawingList.Add(new PdfRoundedRectangle(template.Bounds, 12, 
 PdfColorFactory.FromRgb(.8, .8, 0))); 

371



Atalasoft DotImage Developer's Guide

 template.DrawingList.Add(new PdfCircle(new PdfPoint(template.Bounds.Width / 2, 
 template.Bounds.Height / 2), 
  template.Bounds.Height / 4, PdfColorFactory.FromRgb(0, 0, 0), 2, 
 PdfColorFactory.FromRgb(.8, .2, .1))); 

 string resourceName = doc.Resources.Templates.Add(template); 

 page.DrawingList.Add(new PdfTemplateShape(resourceName, new PdfBounds(144, 400, 
 template.Bounds.Width, template.Bounds.Height))); 

 doc.Save("simpletemplate.pdf");
}

Note that the DrawingTemplate object has a DrawingList in it that is identical to a 
PdfGeneratedPage object. As such, you can put any PDF shape (and any IPdfRenderable) object into 
the your DrawingTemplate.

The output of this example is shown below:

372



Atalasoft DotImage Developer's Guide

 When the DrawingList in a DrawingTemplate is rendered it will be clipped to the 
DrawingTemplate.Bounds property. Since lines in PDF are centered in width over the 
mathematical line that defines them, adding a PdfRectangle with a drawn outline that is 
coincident with the DrawingTemplate.Bounds will result in half of the rectangle's outline being 
clipped (since it extends beyond the DrawingTemplate.Bounds.

Although DrawingTemplates offer a great deal of flexibility, there are a few artifacts that may 
be undesirable. All graphic elements will be scaled to the PdfTemplateShape's bounds (and it's 
Scale). You might wish to make a background box to represent an underlay of a highlighted area 
and define a single unit-sized DrawingTemplate to represent it it. This will work as expected if the 
template only uses filled shapes, but if you add any lines, the line width will also be scaled, possibly 
non-uniformly, producing unpleasant results. In fact, anything with a typically fixed aspect ration 
(images, text, circles) will get scaled and may look off.

The original intent for DrawingTemplates in PDF was to create letterhead or logos that could be 
shared from page to page without appreciably increasing the document size.

By modifying the previous sample slightly, we can see how multiple PdfTemplateShapes can be 
used on a page without altering the original shape.

The following code uses multiple copies of the sample DrawingTemplate.
public void SimpleTemplate3()
{ 
 PdfGeneratedDocument doc = new PdfGeneratedDocument(); 
 doc.EmbedGeneratedContent = false; 

 PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter); 

 DrawingTemplate template = new DrawingTemplate(new PdfBounds(0, 0, 204, 204)); 
 template.DrawingList.Add(new PdfRoundedRectangle(new PdfBounds(2, 2, 
 template.Bounds.Width - 4, template.Bounds.Height - 4), 
  12, PdfColorFactory.FromRgb(.8, .8, 0), PdfColorFactory.FromRgb(0, 0, 0), 4)); 
 template.DrawingList.Add(new PdfCircle(new PdfPoint(template.Bounds.Width / 2, 
 template.Bounds.Height / 2), 
  template.Bounds.Height / 4, PdfColorFactory.FromRgb(0, 0, 0), 2, 
 PdfColorFactory.FromRgb(.8, .2, .1))); 

 string resourceName = doc.Resources.Templates.Add(template); 

 PdfTemplateShape shape = page.DrawingList.Add<PdfTemplateShape>(new 
 PdfTemplateShape(resourceName, new PdfBounds(0, 0, template.Bounds.Width / 4, 
 template.Bounds.Height / 4))); 
 shape.Location = new PdfPoint(144, 400); 

 for (int i = 1; i <= 30; i++) 
 { 
  shape = page.DrawingList.Add<PdfTemplateShape>(new PdfTemplateShape(shape)); 
  shape.Rotation = i * 3; 
 } 

 doc.Save("simpletemplate3.pdf");
}

373



Atalasoft DotImage Developer's Guide

PostnetBarcodeShape
The PostnetBarcodeShape is an example shape that renders a zip code using a Postnet Barcode. A 
Posnet bar code accepts a text string with either 5, 9, or 11 digits. The bar code is placed starting at 
the Location property and moving to the right. Full height bars will be 0.125 inches high and short 
bars will be 0.05 inches high.

GSave / GRestore
The GSave and GRestore objects are not strictly shapes – they are IPdfRenderable objects that 
perform graphics state save and restore operations in a DrawingList object.

In PDF (and historically in PostScript), many graphics operations make changes to the current 
graphic state that aren't changeable. For example, if the clipping area in a PDF page can only be 
made smaller by clipping operations, not larger. To work around this issue, there are operations in 
PDF to save and restore the current graphics state. Graphics state includes:
• Stroke Color
• Fill Color

374



Atalasoft DotImage Developer's Guide

• Transformation matrix
• Font name
• Font size
• Text rendering mode
• Font leading
• Word spacing
• Character horizontal scaling
• Line style (width, dash pattern, line caps, line join, miter limit)
• Clipping
• Current path

Normally, client code will not need these operations as PdfBaseShape is careful to save and restore 
the current transformation matrix and shapes that clip automatically generate GSave and GRestore 
operations.

There are cases, where it does make sense. For example, if you need to watermark or otherwise 
add content on top of existing content an existing PDF document created by software that is not 
so careful, it will be vital to ensure that the graphics state is predictable. This can be done either by 
inserting a GSave object in the beginning of the DrawingList and a GRestore object at the end of the 
list.

The following C# code ensures a clean graphics state in existing content.
PdfGeneratedDocument doc = new PdfGeneratedDocument(sourceStream, true);
PdfGeneratedPage page = doc.Pages[0] as PdfGeneratedPage;
if (page == null) throw new Exception("unable to import page 0");
page.DrawingList.Insert(0, new GSave());
page.DrawingList.Add(new GRestore());
// add more content here
doc.Save("output.pdf");

Transform
The Transform object is not a shape. It is an object that implements IPdfRenderable. Transform 
encapsulates a PdfTransform object that will be applied to the PDF content that follows it. Note 
that transformations are cumulative not commutative. A scale transform applied after a translate 
transform is rarely the same as a translate transform followed by a scale transform.

Marked content
PDF allows content on a page to contain special markups that define special areas of interest with a 
name. The meaning of these names are highly specific to the task they represent. For example, the 
tag "Tx" is used to mark where text operations should fall for rendering an annotation with variable 
text; the tag "ReversedChars" is usually used for text in a right-to-left reading system that is being 
rendered by a font that follows left-to-right advancing.

The PdfMarkedContent object encapsulates the PDF marked content markups. It is not a shape 
itself, but instead contains a DrawingList that will contain content that will be surrounded by 
marked content markups.

375



Atalasoft DotImage Developer's Guide

Make custom shapes
To make custom shapes, the easiest approach is to subclass the PdfBaseShape object. Consider 
the task of making a shape that represents a regular polygon. To make a regular polygon, you 
need a center, a radius and the number of sides. One way to generate the points is to use get one 
starting point and rotate it around the center by the angle subtended each side. In creating a new 
descendant of PdfBaseShape, you need to write a constructor, a clone method and a means to draw 
the shape:

[Serializable]
public class RegularPolygon : PdfBaseShape
{ 
 public RegularPolygon(PdfPoint center, double radius, int sides) : 
  base(PdfColorFactory.FromGray(0.0), 5.0) 
 { 
  if (sides < 3) throw new ArgumentException("Polygons must have at least 3 sides"); 
  GeneratePoints(center, radius, sides); 
  Center = center; 
  Radius = radius; 
  Sides = sides; 
 } 
 public PdfPoint Center { get; private set; } 
 public double Radius { get; private set; } 
 public int Sides { get; private set; } 
 private void GeneratePoints(PdfPoint center, double radius, int sides) 
 { 
  Points = new List<PdfPoint>(); 
  PdfPoint currPoint = new PdfPoint(0, radius); 
  Points.Add(currPoint + center); 
  PdfTransform transform = PdfTransform.Rotate(2 * Math.PI / (double)sides); 
  for (int i = 1; i < sides; i++) 
  { 
   currPoint = transform.Transform(currPoint); 
   Points.Add(currPoint + center); 
  } 
 } 
 public List<PdfPoint> Points { get; private set; } 
 protected override PdfBaseShape CloneInstance() 
 { 
  return new RegularPolygon(Center, Radius, Sides); 
 } 
 protected override void DrawShape(PdfPageRenderer pdfPageRenderer) 
 { 
  PdfPath path = new PdfPath(this); 
  for (int i = 0; i < Points.Count - 1; i++) 
  { 
   PdfPoint p = Points[i]; 
   if (i == 0) { path.MoveTo(p); } 
   else { path.LineTo(p); } 
  } 
  path.Close(); 
  path.Render(pdfPageRenderer); 
 }
}

In this example, a private list of points is used to hold the points at the corners of the polygon. 
GeneratePoints() creates a start point at (0, radius) and adds successive rotations of the point to 

376



Atalasoft DotImage Developer's Guide

the list. DrawShape is an abstract method defined in PdfBaseShape. Overriding this method lets us 
draw the polygon as we see fit - in this case we use a PdfPath object to draw the shape for us.

Suppose that you want to create a check box shape. A check box could have a property for its size 
as well as a property for whether or not it is checked. We could implement this very simply with a 
PdfBaseShape.

Create a check box with a PdfBaseShape using C#.
[Serializable]
public class PdfCheckBoxShape : PdfBaseShape
{ 
 public PdfCheckBoxShape(double size, bool isChecked, IPdfColor outlineColor, double 
 lineWidth) 
   : base(outlineColor, lineWidth) 
 { 
  Size = size; 
  IsChecked = isChecked; 
 } 
  
 public  double Size { get; set; } 
  
 public  bool IsChecked { get; set; } 
  
 protected  override  PdfBaseShape CloneInstance() 
 { 
  return  new  PdfCheckBoxShape(Size, IsChecked, OutlineColor, Style.Width); 
 } 
  
 protected  override  void DrawShape(PdfPageRenderer w) 
 { 
  PdfRectangle rect = new  PdfRectangle(new  PdfBounds(0, 0, Size, Size), OutlineColor, 
 Style.Width, FillColor); 
  rect.Render(w); 
  if (IsChecked) 
  { 
   PdfPath path = new PdfPath(OutlineColor, Style.Width); 
   path.MoveTo(new PdfPoint(0, 0)); 
   path.LineTo(new  PdfPoint(Size, Size)); 
   path.MoveTo(new  PdfPoint(0, Size)); 
   path.LineTo(new  PdfPoint(Size, 0)); 
   path.Render(w); 
  } 
 }
}

When adding these shapes to a PDF, we get something that looks like this:

Or like this when a fill color has been set:

377



Atalasoft DotImage Developer's Guide

This may be satisfactory for your needs, but what if you didn't want to have a fill color at all and 
maybe you feel that PdfBaseShape does too much work for you? In either case, you could define 
your own class from the ground up. All you would need to do is create a class that implements the 
interface IPdfRenderable, as in this C# code.
[Serializable]
public class  PdfSimplestCheckBoxShape : IPdfRenderable
{ 
 public PdfSimplestCheckBoxShape(double size, bool isChecked, PdfPoint location, double 
 lineWidth) 
 { 
  Size = size; 
  IsChecked = isChecked; 
  Location = location; 
  LineWidth = lineWidth; 
 } 
  
 public  double Size { get; set; } 
 public  bool IsChecked { get; set; } 
 public  PdfPoint Location { get; set; } 
 public  double LineWidth { get; set; } 
  
 public  string Name { get; set; } 
  
 public  void Render(PdfPageRenderer w) 
 { 
  w.DrawingSurface.Begin(); 
  w.DrawingSurface.AddRect(new  PdfBounds(Location.X, Location.Y, Size, Size)); 
  
  if (IsChecked) 
  { 
   List<PdfPathOperation> path = new  List<PdfPathOperation>(); 
   path.Add(PdfPathOperation.MoveTo(Location)); 
   path.Add(PdfPathOperation.LineTo(Location.X + Size, Location.Y + Size)); 
   path.Add(PdfPathOperation.MoveTo(Location.X, Location.Y + Size)); 
   path.Add(PdfPathOperation.LineTo(Location.X + Size, Location.Y)); 
   w.DrawingSurface.AddPath(path); 
  } 
  
  PdfLineStyle style = PdfLineStyle.Default; 
  style.Width = LineWidth; 
  w.DrawingSurface.Stroke(style, PdfColorFactory.FromGray(0)); 
  w.DrawingSurface.End(); 
 }
}

In this case, the infrastructure of PdfBaseShape is gone, so we have to implement the method 
Render(). This method is give an object called PdfPageRenderer which is responsible for creating 
content that will go into the pages content. This object itself is an abstraction of the PDF rendering 
model and provides a number of operations that make is easy to create correct PDF content. Within 
the PdfPageRenderer object, there is a property called DrawingSurface. The DrawingSurface is 
a virtual canvas for performing drawing operations, including paths, rectangles, templates, and 
images. To draw shapes, you add path elements (paths or rectangles) then either stroke or fill them. 

378



Atalasoft DotImage Developer's Guide

Before performing any drawing operations, you must call the Begin() method and after you are 
done, you must call the End() method. Begin() and End() calls may be nested to any depth.

Note the following:
• Whether you are subclassing PdfBaseShape or implementing IPdfRenderable, you should 

make your object serializable. When document content is embedded within a PDF document, 
the elements of drawing lists will be serialized into the final PDF. If any element is not 
serializable, this will cause a failure during a Save when the PdfGeneratedDocument property 
EmbedGeneratedContent is true.

• If you are implementing a shape that uses document resources (fonts, colorspaces, templates, 
images, etc.) or contains an object that implements IPdfResourceConsumer, you must 
implement the interface IPdfResourceConsumer. This interface allows an object to report the 
resources it uses as well as rename them if needed. In implementing ResourcesUsed and 
NotifyResourceRenamed, if you refer to Template resources or any other object that implements 
IPdfResourceConsumer, you must also find and return the resources consumed by them.

• If you are implementing a shape that contains text, consider implementing the interface 
IPdfTextContainer which will allow a standard way of setting and getting text from a shape.

• If you are implementing a shape that may contain sub-shapes, consider making a property 
of type PdfDrawingList and implementing IEnumerable<IPdfRenderable> and returning 
the PdfDrawingList's GetEnumerator(). This will ensure that child enumeration happens in a 
predictable manner.

Round trip documents
PDF documents can be created with a number of different tools and the process or toolset used 
in their creation determines the actual PDF data content, which in turn may bear little or no 
resemblance to the original data structures. As such, PDF is often considered to be a write-only 
or final format. The Atalasoft PDF Generating toolkit provides some means around this limitation. 
If you create a PDF from a PdfGeneratedDocument object and set the EmbedGeneratedContent 
property to true, then after the PDF content has been rendered, the DrawingList object in the 
PdfGeneratedPage will be serialized and embedded in the PDF so that it can be retrieved later and 
rebuilt.

In other words, you can get full round-trip editing of PDFs by embedding your Generated content 
within the PDF itself. This also means that shape objects like PdfCircle which generate Bezier curves 
in the final PDF will come back as PdfCircle objects and not as a PdfPath object.

Embedding the Generated content adds a moderate amount of overhead to the final PDF, but 
resource objects do not count in this overhead as these resources will get rebuilt from the PDF 
content itself.

The Atalasoft PDF Generating toolkit also includes the ability to import pages from the Atalasoft 
PdfDocument object. For example, you can dynamically insert a cover page into an existing 
document or easily pull in a page, say a legal disclaimer, from an existing PDF. PdfPage objects from 
the Pages property of PdfDocument also inherit from the BasePage object and can therefore go 
into the Pages collection of a PdfGeneratedDocument.

379



Atalasoft DotImage Developer's Guide

PdfPage objects from PdfDocument objects are very light-weight in comparison to 
PdfGeneratedPage objects as they only reference the original page instead of containing a 
representation of data within the page (size, rotation, annotations, scripts, etc.).

Integrate with DotImage
In addition to the main assembly, there is an additional assembly, Atalasoft.PdfDoc.Bridge. This 
assembly provides a bridge between Atalasoft DotImage classes and the PDF Generating classes. 
The main class is the AtalaImageCompressor. To use this class, make an instance of it and add it to 
the Compressors collection using the following code.
PdfGeneratedDocument doc = new  PdfGeneratedDocument();
doc.Resources.Images.Compressors.Insert(0, new  AtalaImageCompressor());

This will provide tools that will allow the PdfImageManager method FromImage to accept 
AtalaImage objects. All pixel formats are accepted by the AtalaImageCompressor. In addition, if the 
AtalaImageCompressor object is constructed with instances of the Atalasoft Jpeg2000Encoder and 
Jb2Encoder objects, then images can be compressed using JPX and JBIG2 encoding.

There is also another image compressor, the AtalaJpegStreamCompressor. This compressor accepts 
a .NET stream object and if the stream contains a JPEG image, it will create an image resource with 
the already compressed stream and will not degrade the image by decoding and re-encoding it.

To make this process easier, AtalaImageCompressor has a static factory method called 
CreateDocument which will create a new, empty PdfGeneratedDocument object with the 
AtalaImageCompressor and AtalaJpegStreamCompressor preinstalled.

C#
PdfGeneratedDocument doc = AtalaImageCompressor.CreateDocument();
PdfGeneratedDocument doc1 = AtalaImageCompressor.CreateDocument(new Jpeg2000Encoder(), 
 null);

string imName = doc.Resources.Images.AddImage(atalaImage);
string imName1 = doc1.Resources.Images.AddImage(atalaImage);

In this example, doc1 is created with the Atalasoft Jpeg2000Encoder which will provide JPX 
compression, if it is available.

Since AtalaImage objects may contain calibrated color profiles through the ColorProfile property, 
it is advantageous to pass this on to the generated PDF. This can be done manually, by creating a 
PdfColorSpace resource through the PdfColorSpaceManager, but it can be done automatically via 
the static method AddImageResource in the AtalaImageCompressor:

C#
AtalaImage image = new AtalaImage(200, 200,  
PixelFormat.Pixel24bppBgr);
image.ColorProfile = ColorProfile.FromSrgb();
string[] names = AtalaImageCompressor.AddImageResource(doc.Resources, image);

In this example, AddImageResource will first see if the image has a non-null ColorProfile and if so it 
will create a PdfColorSpaceResource for that ColorProfile and will then make a PdfImageResource 

380



Atalasoft DotImage Developer's Guide

for the AtalaImage using the created PdfColorSpaceResource. The method returns an array of two 
strings. The first string is the name of the image resource and the second will be the name of the 
color space resource or null if there was no color profile.

When working with PdfImageShape objects, it is necessary to size the resulting object to 
PDF dimensions. This can be done automatically by using the static methods ImageSize and 
ImageSizeAt in AtalaImageCompressor. Given an AtalaImage object, these methods return a 
PdfBounds object that is sized in PDF units to match the image's real-world dimensions as specified 
by the Width, Height, and Resolution property of the image. If the units are not specified in the 
resolution, they will be treated as if they were pixels per inch.

Finally, there are a pair of utility methods in AtalaImageCompressor to make PdfImageShapes as 
automatically as possible. They are called CreateImageShape() and CreateImageShapeAt(). Both 
are passed the PdfGeneratedDocument Resources property and the source AtalaImage and return 
a new PdfImageShape object representing that image. CreateImageShapeAt() also takes an x and 
y in PDF coordinates specifying location of the lower left corner of the image. Note that once a 
PdfImageResource or PdfImageShape object has been created from an AtalaImage, the source 
image is no longer necessary and may be disposed freely. The PdfImageShape object and the 
PdfImageResource are themselves very lightweight when compared with the original AtalaImage 
as the actual image data will have been written out to a temporary stream on resource creation 
and is kept out of memory entirely - even at the point of calling PdfGeneratedDocument, the data 
is streamed across from the temporary stream to the final PDF and never stays in memory beyond 
buffering.

Actions
PDF defines a set of actions that can be performed in response to user interaction on a page or 
in response to other events that happen at a page or document level. In general, anything that 
cause or respond to an event usually has a suite of actions associated with it. For example, any 
PDF document may contain a list of bookmarks and instead of having each bookmark be simply 
associated with a location within the document, they are instead an action list of actions to take, 
one of which is likely to be a "go to view" action.

Actions may be put in a number of places within a PdfGeneratedDocument including:
• PdfGeneratedDocument.AdditionalActions: A set of actions that are triggered by document-level 

events.
• PdfGeneratedDocument.GlobalJavaScriptActions: A set of JavaScript-only actions that are 

performed when a document has been opened. This is intended to be used to define global 
functions to be shared across all JavaScript actions in the entire document.

• PdfGeneratedPage.AdditionalActions: A set of actions that are triggered by page-level events.
• BaseAnnotation.AdditionalActions: A set of actions that are triggered by annotation events. Even 

though the PDF spec allows for these to exist in all annotation types, they appear to only be 
honored by Adobe Acrobat with BaseWidgetAnnotation objects.

• BaseAnnotation.ClickActions: A set of actions that are triggered when an annotation has been 
clicked.

381



Atalasoft DotImage Developer's Guide

PdfAction
PdfAction is an abstract base class from which all actions inherit. It has a single property in it, 
ActionType, which is an enumeration that indicates the type of the action. These are the possible 
values of ActionType:
• GoToView - Go to a specific page and location in the document
• GoToRemote - Go to a page and location in a remote document
• GoToEmbedded - Go to a page and location in an embedded file
• LaunchApplication - Launch an application
• ReadThread - Start reading at a threaded point
• FollowURI - Resolve a uniform resource identifier
• PlaySound - Play a sound
• PlayMovie - Play a movie
• Hide - Set an annotation's hidden flag
• PerformNamedAction - Perform a set of actions associated with a name
• SubmitForm - Submit form data to a URI
• ResetForm - Reset form data to defaults
• ImportData - Import form data from a file
• JavaScript - Execute a JavaScript script
• SetOCGState - Set the state of optional content groups
• Rendition - Control how multimedia is played
• PerformTransition - Perform a transition
• GoTo3DView - For to a view in a 3D model.

Not all types are presently supported. Those that are not supported will have the correct 
ActionType, but will be represented as a PdfUnknownAction.

Go To View actions
The most common type of PdfAction is a PdfGoToView actions. A PdfGoToView action is very simple 
- it contains a Destination property that defines the location to where the viewer should navigate 
when the action is executed. The destination is an object of type Destination which contains 
information about which page will be visited and how to zoom on that page. While it is straight-
forward to make a PdfDestionation object and construct a PdfGoToView action which contains 
it, there are factory methods within PdfDestination that make both PdfDestination objects or a 
PdfGoToViewAction containing the appropriate PdfDestination object with this C# code.
PdfAction action = PdfDestination.FitPageAction(targetPageIndex);

This will go to the 0-based page specified by targetPageIndex and display the page so that the 
entire page fits within the viewer window.

 If you reorder pages within a document, it will be necessary to modify actions within the 
document that point to that page.

382



Atalasoft DotImage Developer's Guide

PdfDestination has factory methods for making the following PdfGoToViewActions:

• PointZoomAction
• FitPageAction
• FitWidthAction
• FitHeightAction
• FitRectangleAction
• FitBoundsAction
• FitBoundsWidthAction

URI actions
The PdfURIAction object represents a URI with an optional Base URI that represents a target for 
a link. When activated, a typical viewer will request permission from the user to follow the URI 
specified. There is also an optional parameter to allow the area (if any) represented by a link to act 
as a mapped link. The coordinates of the click relative to the link area will be appended to the URI in 
the form ?<x-coordinate>,<y-coordinate>.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);
doc.BookmarkTree = new PdfBookmarkTree();
doc.BookmarkTree.Bookmarks.Add(new PdfBookmark("Atalasoft", Color.Blue, 
 FontStyle.Regular, 
 new PdfURIAction(new Uri("http://www.atalasoft.com")), true));
doc.Save("uriaction.pdf");

JavaScript actions
PDF has the ability to define actions that execute JavaScript code when activated. The specifics for 
what can be done with JavaScript actions is extensive. Please refer to the  Adobe documentation for 
the proper use of JavaScript action. It should be noted that the JavaScript within the actions is not 
checked for syntactic or semantic correctness.

The following C# code makes a document self-printing.
PdfJavaScriptAction selfPrint = new 
 PdfJavaScriptAction("this.print({bUI:true,bSilent:false,bShrinkToFit:true});");
document.GlobalJavaScriptActions.Add("MySelfPrint", selfPring);

Sound actions
PDF has the ability to play sounds to actions. This can allow you to add audible feedback when 
buttons are pressed or links activated. Sounds to be played by PdfSoundAction objects can be 
specified using the Sound object. Within a PdfSoundAction, you can specify the volume of the 
sound, if it will be played synchronously, if it should repeat and if it should mixed with already 
playing sounds.

 Acrobat version 5.0 and earlier does not support the MixWithPlayingSounds property and 
Acrobat 6.0 does not correctly support the IsSynchronous property.

383

http://partners.adobe.com/public/developer/en/acrobat/sdk/AcroJS.pdf


Atalasoft DotImage Developer's Guide

To make a sound action, the first step is to create a Sound object. That can be done with a 
WavReader, which determines the sound characteristics (sampling rate, bits per sample, etc) and 
populates a Sound object. The PdfSoundAction object refers to the sound that will be played. This 
way multiple actions can refer to the same sound.

In this sample C# code, a document plays a sound when opened.
public void SoundActionOnOpened()
{ 
 using (FileStream stm = new FileStream(ImageUtilities.ImageDatabase + @"\PDF
\Multimedia\Sound\boing.wav", FileMode.Open, FileAccess.Read, FileShare.Read)) 
 { 
  PdfGeneratedDocument doc = new PdfGeneratedDocument(); 
  PdfGeneratedPage page1 = doc.AddPage(PdfDefaultPages.Letter); 

  WavReader reader = new WavReader(stm); 
  Sound sound = Sound.FromWavReader(reader); 
  PdfSoundAction soundAction = new PdfSoundAction(sound); 
  doc.AdditionalActions.OnDocumentOpened.Add(soundAction); 
  doc.Save("soundonopened.pdf"); 
 }
}

Show/Hide action
The PdfShowHideAction is used to make sets of annotations or form fields visible or invisible. It 
does this by setting the Hidden property within an annotation or field. The action can show or hide 
an arbitrary number of fields or annotations using a set of PdfAnnotationIdentifier objects. Each 
PdfAnnotationIdentifier either refers to an annotation by the index of the page and the index of the 
annotation within the page's collection or by FieldFullName (if the annotation is a form field).

 Generally speaking, it is more convenient to use the FieldFullName for widget annotations 
instead of the page index/annotation index pair as it is immune to the annotation getting 
moved from page to page or having its order on the page changed. If the annotation is a 
widget annotation and is the child of a FormField, be sure to set the FieldName and ParentField 
properties of the widget annotation to ensure that FieldFullName is correct. If the ParentField is 
not properly set, DotPdf will set it for you on save, but this will cause the FieldFullName to change.

The following C# code shows and hides an annotation.
public void ShowHideAction()
{ 
 PdfGeneratedDocument doc = new PdfGeneratedDocument(); 
 doc.Form = new PdfForm(); 
 PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter); 

 PushButtonWidgetAnnotation toHide = new PushButtonWidgetAnnotation(new PdfBounds(72, 
 600, 200, 36), "Hide Me", null, null); 
 page.Annotations.Add(toHide); 
 doc.Form.Fields.Add(toHide); 

 PushButtonWidgetAnnotation willHide = new PushButtonWidgetAnnotation(new PdfBounds(72, 
 650, 200, 36), "Hide", null, null); 
 willHide.AdditionalActions.OnClickUp.Add(new PdfShowHideAction(true, new 
 PdfAnnotationIdentifier(toHide.FieldFullName))); 
 doc.Form.Fields.Add(willHide); 
 page.Annotations.Add(willHide); 

384



Atalasoft DotImage Developer's Guide

 PushButtonWidgetAnnotation willShow = new PushButtonWidgetAnnotation(new 
 PdfBounds(300, 650, 200, 36), "Show", null, null); 
 willShow.AdditionalActions.OnClickUp.Add(new PdfShowHideAction(false, new 
 PdfAnnotationIdentifier(toHide.FieldFullName))); 
 doc.Form.Fields.Add(willShow); 
 page.Annotations.Add(willShow); 

 doc.Save("annothideshow.pdf");
}

This creates a one-page document that has three button annotations. The first button is hidden 
when the button named "Hide" is pressed and is shown when the button named "Show" is pressed.

Named actions
PDF defines a type of action called a Named action which includes the name of a particular 
navigation action to take. These actions are ways for changing the current page being viewed. They 
are more convenient for coding than PdfGoToView actions in that PdfGoToView actions always need 
an absolute page number, whereas named actions are always relative to your current page.

Available names are:

• NextPage
• PrevPage
• FirstPage
• LastPage

 The PDF specification allows nearly any arbitrary name for the action, but viewers are only 
responsible for responding to the four standard names. Viewers will typically ignore anything 
beyond the standard names. You can use the static method PdfNamedAction.IsStandardName to 
determine if a name is standard or not.

The following C# code adds navigation buttons to a page.
public void AddNavigationButtons(PdfGeneratedPage page, int pageIndex)
{ 
 string[] labels = new string[] { "|<", "<", ">", ">|" }; 
 string[] names = new string[] { "FirstPage", "PrevPage", "NextPage", "LastPage" }; 

 for (int i = 0; i < labels.Length; i++) 
 { 
  PdfBounds bounds = new PdfBounds(36 + 40 * i, page.MediaBox.Top - 40, 36, 36); 
  PushButtonWidgetAnnotation button = new PushButtonWidgetAnnotation(bounds, 
 String.Format("p{0}b{1}", pageIndex, i), null, null); 
  // The FieldName must be unique, but the Name need not be. 
  button.Name = labels[i]; 
  button.AdditionalActions.OnClickUp.Add(new PdfNamedAction(names[i])); 
  page.Annotations.Add(button); 
 }
}

public void NavigationButtons()
{ 
 PdfGeneratedDocument doc = new PdfGeneratedDocument(); 
 string fontResName = doc.Resources.Fonts.AddFromFontName("Arial Black"); 
 for (int i = 0; i < 4; i++) 
 { 

385



Atalasoft DotImage Developer's Guide

  PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter); 
  page.DrawingList.Add(new PdfTextLine(fontResName, 300, String.Format("{0}", i + 1), 
 new PdfPoint(200, 400))); 
  AddNavigationButtons(page, i); 
 } 
 doc.Save("navbuttons.pdf");
}

Submit Form Actions
The PdfSubmitFormAction is an action that will cause data within the form of the current PDF to 
be submitted to a remote client. The action has a number of flags that control what data will be 
submitted and the format of the submission. Formats include FDF, XFDF, HTML, and PDF. The action 
also has a property called Fields which can be used to exclude or include any particular field within 
the document.

 Like PdfShowHideAction, the fields in PdfSubmitFormAction are referenced with a 
PdfAnnotationIdentifier. Using PdfAnnotationIdentifier with a form full name will be more reliable 
to changes than page/annoation indexes.

Reset Form Action
The PdfResetFormAction is an action that will cause fields within the form of the current PDF to be 
reset to their default value. Most fields have a DefaultValue property that will be used for the field. 
The action also has a property called Fields which can be used to exclude or include any particular 
field or fields within the document in the reset.

 Like PdfShowHideAction, the fields in PdfResetFormAction are referenced with a 
PdfAnnotationIdentifier. Using PdfAnnotationIdentifier with a form full name will be more reliable 
to changes than page/annoation indexes.

Annotations
PDF comes with a rich set of annotations and the means of representing the annotation on the 
page and controlling the interactions with the user. Annotations can be anything from simple marks 
on the page to a complex set of appearances with attendant complex behaviors. Most annotations 
in PDF are supplied with a default appearance by the viewer, but using drawing template resources, 
it's easy to make annotations appear as you wish.

Each PdfGeneratedPage object contains a property called Annotations, which is a collection of all 
annotations on the page. Annotations are located on the page with a Bounds property that defines 
the location and dimensions of the annotation. The location and orientation by default follows the 
page orientation unless it is a sticky note/popup or if the NoRotate property is set to true.

Annotations fall into three broad categories:

General annotations
• LinkAnnotation
• OpaqueAnnotation

386



Atalasoft DotImage Developer's Guide

• PopupAnnotation
• SoundAnnotation

Mark up annotations
• CaretAnnotion
• CalloutAnnotation
• EllipseAnnotation
• LineAnnotation
• PolygonAnnotation
• PolylineAnnotation
• RectangleAnnotation
• RedactionProposalAnnotation
• RubberStampAnnotation
• StickyNoteAnnotation
• TextBoxAnnotation
• TextMarkupAnnotation
• TypeWriterAnnotation

Widget annotations
• CheckboxWidgetAnnotation
• ChoiceWidgetAnnotation
• PushButtonWidgetAnnotation
• RadioButtonWidgetAnnotation
• SignatureWidgetAnnotation
• TextWidgetAnnotation

Mark up annotations are annotation types that are used to describe annotations that are used for 
document mark up or review. Widget annotations are used to define form fields for data collection 
or user interaction. General annotations are all else.

All annotations will inherit from the abstract class BaseAnnotation. All markup annotations will 
inherit from BaseMarkupAnnotation. All widget annotations inherit from BaseWidgetAnnotation.

Properties common to all annotations
All annotation inherit from the class BaseAnnotation. BaseAnnotation defines a set of properties 
that are common to all annotation types. While all annotations have these properties, not all 
annotations use them, or use them in the same way.

387



Atalasoft DotImage Developer's Guide

Property name Property type Description

AdditionalActions AnnotationAdditionalActions A collection of annotation events 
by name with an associated 
collection of actions to take 
when that event happens. 
These are usually reserved for 
widget annotations, but the PDF 
specification demands that they 
are available in all annotation 
types whether or not they are 
meaningful.

AnnotationType string Gets the original type of the 
annotation if read from a PDF file, 
else empty string.

Appearance AppearanceSet A collection of appearances to be 
used for this annotation.

Border AnnotationBorder For simple annotation types 
(circle, rectangle, polygon), sets 
the corner radii (if applicable), 
line width, and line dash pattern. 
It is generally easier to control 
the actual appearance of a 
custom annotation by creating an 
appearance.

BorderStyle BorderStyle For any annotation with a border, 
define the line style of the 
annotation. It is generally easier to 
control the actual appearance of a 
custom annotation by creating an 
appearance.

Bounds (Required) PdfBounds Gets or sets the boundary 
rectangle for this annotations. This 
rectangle is in page coordinate and 
PDF standard units. The Bounds 
will be oriented relative to the page 
and its Rotation unless NoRotate is 
set to true. (Required)

ClickActions PdfActionList A set of actions performed when 
the annotation has been clicked.

Color IPdfColor Gets or sets the dominant 
color for the annotation. The 
interpretation of Color depends on 
the annotation. It may represent 
the color of the annotations 
icon (if any) or the border of the 
annotation.

388



Atalasoft DotImage Developer's Guide

Property name Property type Description

Contents string Represents the text of the 
annotation. Its interpretation 
depends on the annotation type. 
For sticky note annotations, it will 
be the contents of the note.

DefaultAppearanceState string Represents the initial/default 
state of an annotation. 
When an annotation is
"Normal" (no interaction), 
the appearance that will be 
used for the annotation will be 
Appearance.Normal[DefaultAppearanceState].

Hidden bool If true, the annotation will neither 
be visible nor will it print.

Invisible bool If true, if the annotation type is not 
recognized by the viewer, it will 
not be displayed, otherwise the 
viewer will try to make a substitute 
appearance.

IsParentRequired (Required) bool If true, this annotation type 
requires the Parent property to be 
set. (Required)

IsTransparent bool If set to true, indicates that the 
Color property will be ignored. This 
does not indicate opacity.

Locked bool If set to true, indicates that the 
annotation may not be selected or 
moved (although its Contents may 
be editable).

ModificationDate DateTime Gets or sets the modification date 
of the annotation. DotPdf does not 
track or modify this property.

Name string Gets or sets the name of the 
annotation. This string is an 
identifier that is typically used 
for JavaScript actions to locate a 
particular annotation. It should be 
unique for annotations on a given 
page. If there are annotations with 
duplicate names, DotPdf will make 
the names unique if necessary on 
save.

NoRotate bool If set to true, the annotation will 
not be rotated with the page 
rotation.

389



Atalasoft DotImage Developer's Guide

Property name Property type Description

NoView bool If set to true, the annotation will 
not be visible and will not interact 
with the user, but it will be printed. 
This is one way of making a print-
only watermark on a page.

NoZoom bool If set to true, the annotation will 
not zoom with the viewer but 
instead will be displayed in its 
native size.

ParentPage
(Sometimes required)

PdfGeneratedPage Gets or sets the page on which 
the annotation is attached. This 
property is encouraged but is only 
required on ScreenAnnotations.

Print bool If set to true, indicates that the 
annotation should be printed with 
the document.

ReadOnly bool If set to true, the annotation will 
not interact with the user.

ToggleNoView bool If set to true, indicates that when 
the mouse enters the annotation, 
the NoView property should be 
toggled.

Properties common to all mark up annotations
BaseMarkupAnnotation defines a set of properties that are common to all annotation types. While 
all mark up annotations have these properties, not all mark up annotations use them, or use them 
in the same way.

Property names Property type Description

AuthorName string Gets or sets the author of the 
annotation. Conventionally, this 
will be set to the current username 
or the full name of the user who is 
making the annotation.

CreationDate
(Required, automatic)

DateTime Gets the date and time 
when the annotation was 
created. This value is set 
automatically by the constructor 
of BaseMarkupAnnotation to the 
current time. (Required)

InReplyTo BaseAnnotation Null unless the annotation is 
meant to be a reply to another 
existing annotation.

InReplyToRelation ReplyRelation Describes the relationship of a 
reply annotation. Not required, but 
only meaningful if InReplyTo is set.

390



Atalasoft DotImage Developer's Guide

Property names Property type Description

Intent
(Required, automatic)

AnnotationIntent Describes the intent of the 
annotation. When required, this is 
set by individual classes.

Popup PopupAnnotation Gets or sets an annotation to be 
displayed as a Popup to a markup 
annotation. In the original version 
of Acrobat, a sticky note was the 
only annotation type with a pop-
up text window and was a special 
case. In later versions, the ability 
to add pop-up information to an 
annotation was added to all mark 
up annotations.

RichTextContent XmlDocument RichTextContent is an XML 
representation of marked up text 
for display. It allows the body, p, 
i, b, and span tags. If you set the 
RichTextContent property, be sure 
to set the Content property to the 
plain text equivalent.

Transparency double Gets or sets the overall 
transparency of the annotation. 
A value of 1.0 means fully 
transparent and a value of 0.0 
means fully opaque.

Properties common to all widget annotations
BaseWidgetAnnotation defines a set of properties that are common to all widget annotation types. 
While all widget annotations have these properties, not all annotations use them, or use them in the 
same way.

Property name Property type Description

BackgroundColor IPdfColor Gets or sets the color of the 
background.

BorderColor IPdfColor Gets or sets the color of the border.

ChildFields IList<IFormElement> Null

DefaultTextAppearance PdfTextAppearance Gets or sets the default 
appearance of text in the 
annotation.

DefaultValueAsString string Gets the default value of the 
annotation as a string.

FieldAlternateDescription string A string used to describe the 
field for use in display in a user 
interface. This typically gets 
displayed in a tooltip.

391



Atalasoft DotImage Developer's Guide

Property name Property type Description

FieldFullName string Returns the full name of the 
field. This is created by starting 
with the parent-most field's 
FieldNameForExport (or FieldName 
if FieldNameForExport is 
null), descending down to the 
annotation and separating 
them with '.' characters (ex: 
Address.Street.Number). It is the 
user's responsibility to ensure that 
if a widget annotation is a child of 
another field that its ParentField is 
set.

FieldName
(Required)

string Gets or sets the field's name. 
This name is used for submitting 
form information (unless 
FieldNameForExport is set) and 
display in the user interface. The 
FieldName should be selected 
so that the FieldFullName will be 
unique. (Required)

FieldNameForExport string Gets or set a field name that will 
be used for data export. The 
FieldNameForExport, if present, 
will be used instead of FieldName. 
It should therefore be chosen so 
that FieldFullName is unique.

HighlightAppearance WidgetHighlightAppearance Gets or sets how the widget will 
appear when it receives a mouse 
down event.

IsFieldNoExport boolean If set to true, this field will not be 
exported.

IsFieldReadOnly boolean If set to true, this field cannot be 
edited.

IsFieldRequired boolean If set to true, this field must be set 
by the user.

ParentField IFormElement This property should represent the 
parent field of this widget (if any). 
Widget annotations may not be the 
parent of any other form element.

ValueAsString string Returns the value of the form 
element as a string.

General annotations
General annotations are annotations that don't really fit into any other category. These include:

• LinkAnnotation

392



Atalasoft DotImage Developer's Guide

• OpaqueAnnotation
• PopupAnnotation
• SoundAnnotation

LinkAnnotation
In the original version of Acrobat, a link annotation was a set of regions bound to a destination 
within the document. When actions were added to the PDF specification, link annotations were 
changed to be a set of regions that included a ClickAction that described what should happen when 
the link was clicked.

The regions are defined by a set of PdfQuadrilateral objects. This intended so that you can delimit 
a set of words that are not axis aligned and they will highlight correctly. If the Regions is empty, the 
Bounds will be used as the link area. If the Regions is not empty, the Bounds will be automatically 
expanded to contain all the quadrilaterals.

The LinkAnnotation object comes with a number of convenience constructors for making simple 
URI links or single click actions.

Property name Property type Description

HighlightAppearance LinkHighlightAppearance Gets or sets how the link will 
appear when it is clicked. Can be 
one of None, Invert, Outline, and 
PushDown

Regions PdfQuadrilateralCollection A set of quadrilateral regions that 
define the annotation.

The following C# code creates a simple link annotation.
LinkAnnotation annot = new LinkAnnotation(new PdfBounds(72, 500, 72, 72),  
new PdfURIAction(new Uri("http://www.atalasoft.com")));

OpaqueAnnotation
An OpaqueAnnotation represents an annotation type that is not currently supported by DotPdf. 
These can only be generated by reading in a PDF file that contains unknown annotations.

PopupAnnotation
A PopupAnnotation is a companion annotation to any kind of BaseMarkupAnnotation. As such it 
can never appear on its own. A PopupAnnotation may be open (in view) or closed (out of view). The 
PopupAnnotation is connected to the BaseMarkupAnnotation via the ParentAnnotation property 
and the BaseMarkupAnnotation is connected to the the PopupAnnotation via its Popup property. 
When in view, the PopupAnnotation will appear within its Bounds.

 Even though the PopupAnnotation expects a BaseMarkupAnnotation for its ParentAnnotation 
property, the property is a BaseAnnotation. The PDF specification allows this, even though it is not 
strictly correct. If the ParentAnnotation is not a BaseMarkupAnnotation, the properties will not 
reflect each other.

393



Atalasoft DotImage Developer's Guide

The PopupAnnotation has properties that represent the Contents, AuthorName, ModificationDate, 
and Color of the parent annotation. When the PopupAnnotation is connected to an appropriate 
parent BaseMarkupAnnotation, it these properties will reflect or modify the matching properties in 
the ParentAnnotation.

 If you set the Contents, AuthorName, or ModificationDate before setting the 
ParentAnnotation, these property values will be lost.

Property Name Property Type Definition

AuthorName string Gets or sets the author of the 
annotation. Conventionally, this 
will be set to the current username 
or the full name of the user who is 
making the annotation.

Color IPdfColor Gets or sets the dominant 
color for the annotation. The 
interpretation of Color depends on 
the annotation. It may represent 
the color of the annotations 
icon (if any) or the border of the 
annotation.

Contents string Represents the text of the 
annotation. Its interpretation 
depends on the annotation type. 
For sticky note annotations, it will 
be the contents of the note.

IsOpen bool Gets or sets whether the 
PopupAnnotation should be 
in view when the document is 
opened.

ModificationDate DateTime Gets or sets the modification date 
of the annotation. DotPdf does not 
track or modify this property.

ParentAnnotation BaseAnnotation Gets or sets the parent annotation 
for the PopupAnnotation. The 
parent annotation should be a 
BaseMarkupAnnotation even 
though the PDF specification 
allows for any type of annotation.

The following C# code creates a RectangleAnnotation with an attached PopupAnnotation.
public void RectangleWithPopup()
{ 
 PdfGeneratedDocument doc = new PdfGeneratedDocument(); 
 doc.EmbedGeneratedContent = false; 

 PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter); 
 RectangleAnnotation rectAnnot = new RectangleAnnotation(new PdfBounds(36, 300, 200, 
 200)); 
 rectAnnot.InternalColor = PdfColorFactory.FromRgb(1, 1, 0); 
 rectAnnot.Color = PdfColorFactory.FromRgb(0, 0, 0); 

394



Atalasoft DotImage Developer's Guide

 page.Annotations.Add(rectAnnot); 
 PopupAnnotation popup = new PopupAnnotation(new PdfBounds(36, 400, 150, 350), 
 rectAnnot); 
 popup.Color = PdfColorFactory.FromRgb(.7, 0, 0); 
 popup.IsOpen = true; 
 page.Annotations.Add(popup); 
 rectAnnot.Contents = "This space intentionally left blank."; 
 rectAnnot.AuthorName = "Ignatius P. Reilly"; 

 doc.Save("rect_and_popup.pdf");
}

SoundAnnotation
A SoundAnnotation is a note on a page with an associated Sound object. A SoundAnnotation 
appears on the page with an icon specified by IconName. When the icon is double-clicked (or 
activated in some other way) by the user, it will play the sound. The PDF specification has two 
recommended icon names, Speaker and Mic. The specification alludes that other names may be 
supported, but there is no further information as to what those names might be.

 If you want a specific icon, it's best to create a custom appearance for the annotation.

The following C# code creates a sound annotation.
using (FileStream stm = new FileStream(@"mysound.wav", 
  FileMode.Open, FileAccess.Read, FileShare.Read))
{ 
 WavReader reader = new WavReader(stm); 
 Sound sound = Sound.FromWavReader(reader); 
 PdfGeneratedDocument doc = new PdfGeneratedDocument(); 
 PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter); 
 SoundAnnotation anno = new SoundAnnotation(new PdfBounds(72, 600, 72, 72)); 
 anno.Sound = sound; 
 page.Annotations.Add(anno); 
 doc.Save("soundannot.pdf");
}

Markup annotations
Markup annotations are intended for document editing and collaboration. The annotations include:
• CalloutAnnotation
• CaretAnnotation
• EllipseAnnotation
• LineAnnotation
• PolygonAnnotation and PolylineAnnotation
• RectangleAnnotation
• RedactionProposalAnnotation
• RubberStampAnnotation
• StickyNoteAnnotation
• TextBoxAnnotation
• TextMarkupAnnotation
• TypeWriterAnnotation

395



Atalasoft DotImage Developer's Guide

CalloutAnnotation
A CalloutAnnotation is a TextBoxAnnotation that also serves to point to content on the page. A 
CalloutAnnotation includes a Line that defines where the annotation points as well as a LineEnding 
that defines how the end of the line should appear. There are no guidelines as to how the Line 
should appear, but generally speaking, it should start from one edge of the Bounds nearest to 
the target and end at the point of interest. While the point of origin doesn't have to start at the 
annotation, if a user moves the annotation in Acrobat, the viewer will change the point of origin.

To make it easier to use there CalloutAnnotation constructor that includes a PdfPoint describing 
where the annotation will point and it will choose an appropriate set of points in order to make 
the call out line look least offensive. In addition, the CalloutAnnotation also has a method called 
PointAt(PdfPoint target) which will return a new CalloutLine object that points to the given point.

Property name Property type Description

Line CalloutLine Gets or sets an object that 
defines the geometry of the 
line that will be drawn for the 
annotation. CalloutLine is an 
abstract type and may be either 
a TwoPointCalloutLine or a 
ThreePointCalloutLine. Oddly 
enough, this property is valid 
if it is null. In this case, the 
CalloutAnnotation will render the 
same as a TextBoxAnnotation.

LineEnding LineEndingKind Gets or sets the line ending for the 
callout line which will appear at the 
target point.

The following C# code creates a CalloutAnnotation.
CalloutAnnotation annot = new CalloutAnnotation(new PdfBounds(72, 360,  
300, 200), 
      "Lorem ipsum sic dolor", new PdfPoint(144, 200));
somePage.Annotations.Add(annot);

CaretAnnotation
A CaretAnnotation represents an editor's markup where text or other content should be inserted. 
The caret is defined by the Bounds of the annotation. The caret symbol will be drawn such that it 
fills the bounds with the point of the caret centered left/right and pointing to the top of the bounds.

Property name Property type Description

InsetArea PdfBounds A rectangle that specifies margins 
around the caret symbol. The 
rectangle needs to be fully 
contained within the Bounds 
rectangle.

396



Atalasoft DotImage Developer's Guide

Property name Property type Description

Symbol CaretSymbol Changes the symbol used for 
the caret. When set to none, the 
symbol will be the default caret 
shape. When set to Paragraph, it 
will be the paragraph symbol (¶).

The following C# code creates a caret annotation and shows its bounds.
public void Caret()
{ 
 PdfGeneratedDocument doc = new PdfGeneratedDocument(); 
 PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter); 
 string font = doc.Resources.Fonts.AddFromFontName("Times New Roman"); 
 page.DrawingList.Add(new PdfTextLine(font, 18, "Here is some sample text", new 
 PdfPoint(72, 750))); 
 CaretAnnotation caret = new CaretAnnotation(new PdfBounds(80, 730, 20, 20)); 
 page.Annotations.Add(caret); 
 page.DrawingList.Add(new PdfRectangle(caret.Bounds.Expand(0.5), 
 PdfColorFactory.FromRgb(1, 0, 0), .5)); 
 doc.Save("caret.pdf");
}

The code snippet produces the following output.

EllipseAnnotation
An EllipseAnnotation is identical to a RectangleAnnotation except that it is rendered as an ellipse 
that fits within the Bounds property.

LineAnnotation
A LineAnnotation is representation of a line on the page. It may contain decorative line endings, 
a caption, and an intended usage. Usage refers to the intent of the line which may be one of Line, 
Arrow, or Dimension.

When a line annotation has a caption, the caption may be positioned above the line or within the 
line by setting the CaptionPositioning property. Normally, captions are positioned centered along 
the length of the line and at a fixed vertical position based on CaptionPositioning, but by setting 
the CaptionOffset property, the caption will be moved relative to its normal placement based 
on that value. For example, if you wanted to position the caption below the line, you would set 
CaptionPositioning to Top and set CaptionOffset to new PdfPoint(0, -fontAscentInPoints).

A line may have a set of leader lines attached to it. Leader lines are perpendicular ends that extend 
from the line, usually to indicate a dimension.

397



Atalasoft DotImage Developer's Guide

A leader line is made from three parts, a leader line, a leader line extension and a leader line offset. 
A line should only have a leader line extension and a leader line offset if it also has a leader line. 
These elements are in PDF units.

Property name Property type Description

CaptionOffset PdfPoint The relative offset of placement 
from its normal position.

CaptionPositioning CaptionPositionKind One of either Top or Inline, 
specifying whether the text will 
appear above or within the line 
itself.

EndPt
(Required)

PdfPoint Gets or sets the end point of the 
line.

IsCaptioned bool Gets or sets whether the Content 
property will be used as a caption.

LeaderLineExtensionLength double Gets or sets the length of the 
leader line extensions (see 
diagram).

LeaderLineLength double Gets or sets the length of the 
leader lines.

LeaderLineOffset double Gets or sets the offset of the 
leader line from an object being 
measured.

LineEnding LineEndingKind[] A two entry array containing the 
LineEndingKind for the start and 
the end of the line.

StartPt
(Required)

PdfPoint Gets or sets the start point of the 
line.

Usage LineUsageKind Gets or sets the intent of the line.

398



Atalasoft DotImage Developer's Guide

PolygonAnnotation and PolylineAnnotation
A PolygonAnnotation is an annotation that is represented by three or more points connected in a 
closed path.

Property name Property type Description

Effect BorderEffect Gets or sets an effect to apply to 
the border of the polygon when it 
is rendered.

InternalColor IPdfColor Gets or sets an internal color of the 
polygon.

IsInternalColorTransparent bool When set to true, the internal color 
is transparent.

LineEnding LineEndingKind[] Gets or sets the line ending 
for an open polygon. The PDF 
specification indicates that for 
a polygon, these elements may 
be present even though they are 
ignored. The will be honored in 
PolylineAnnotation.

Vertices IList<PdfPoint>
List<PdfPoint>

A collection of PdfPoint that 
represent the vertices of the 
polygon. There should be a 
minimum of three points in the 
collection for a valid polygon.

A PolylineAnnotation is identical to a PolygonAnnotation except that it the LineEndings will be 
honored and a PolylineAnnotation is valid with a minimum of two points.

RectangleAnnotation
A RectangleAnnotation is an annotation that represents a rectangle drawn on the page. The 
rectangle may have an outline or it may be filled with a color. It may also have an effect applied to 
the border. The EllipseAnnotation inherits directly from RectangleAnnotation and is no different 
except in the shape that will be drawn on the page.

Property name Property type Meaning

Effect BorderEffect Gets or sets an effect to apply 
when rendering the border of the 
rectangle.

InternalColor IPdfColor Gets or sets the color used to fill 
the rectangle.

RedactionProposalAnnotation
The RedactionProposalAnnotation is an annotation that indicates an area on the page to be 
redacted later by a viewer or other PDF processing tool. The RedactionProposalAnnotation does not 
perform actual redaction nor does it change page content in any way. When a redaction is applied 

399



Atalasoft DotImage Developer's Guide

by a viewer, the annotation is removed from the page, all content within the area of redaction will 
be stripped and the redaction appearance will be added to the page's content.

At a minimum, the RedactionProposalAnnotation needs the Bounds to be set to the area of the 
document to be redacted. You can also use the Regions property to create a set of PdfQuadrilateral 
objects that will be used for the redaction area.

There are a number of properties that can be set that affect how the redaction will appear after it 
has been applied. For example, if you set the OverlayText property, that text will be written into the 
redaction area. This is useful if you wanted each redaction to have a note on it to alert the reader 
why the content is not present ("removed by court order," for example).

Property name Property type Description

AutoGenerateBasicAppearance bool If set to true, the annotation will 
autogenerate a simple appearance 
upon being rendered. If the 
Regions collection is empty, it 
will generate a single rectangle 
outlined with the annotation's 
Color. If the Regions collection is 
not empty, it will generate a single 
PdfPath with each quadrilateral 
outlined in the annotation's Color.

DefaultTextAppearance PdfTextAppearance This property, if set, will represent 
how the OverlayText will appear on 
the annotation. If not set, the text, 
if any, will appear in Helvetica 12 
point.

IsOverlayTextRepeated bool If set to true, the OverlayText string 
will be repeated over the surface 
of the redacted area when the 
redaction is applied.

OverlayText string Gets or sets text that will be 
rendered on the redaction area 
after the redaction has been 
applied.

RedactionInteriorColor IPdfRgbColor An RGB color that will be used 
to render the interior area of the 
redaction after it has been applied. 
If RedactionTemplate is set, this 
will be ignored.

RedactionTemplate string Gets or sets the name of a 
template resource to use when 
rendering redaction after it has 
been applied.

400



Atalasoft DotImage Developer's Guide

Property name Property type Description

Regions PdfQuadrilateralCollection Gets a collection of 
PdfQuadrilateral objects to use 
for the area(s) to be redacted. If 
this collection is non-empty, upon 
rendering, the Bounds property 
will be adjusted to reflect the 
contents of the Regions.

TextAlignment AnnotationTextAlignment Gets or sets how the OverlayText 
will appear when rendered.

The following C# code adds a simple redaction proposal to a page.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

PdfTextBox box = new PdfTextBox(new PdfBounds(72, 400, 250, 150), "Times-Roman", 12, 
 "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer sed diam id ipsum 
 egestas lacinia. Nulla vel nulla sit amet elit aliquet feugiat. Donec varius euismod 
 augue, vel lacinia arcu mollis nec. In tempor neque vitae velit dapibus cursus. Etiam 
 ut sodales neque. Integer quis sem orci. Praesent tincidunt odio non sapien adipiscing 
 vestibulum. Duis porttitor quam ut metus posuere at venenatis velit gravida. Nulla 
 facilisi. Ut dapibus suscipit risus, vitae tempor velit adipiscing id. Vestibulum ante 
 ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Fusce mattis 
 volutpat metus, ac molestie tortor tristique sed. Cras lacinia facilisis lobortis. 
 Duis elementum congue bibendum.");
page.DrawingList.Add(box);

RedactionProposalAnnotation redaction = new RedactionProposalAnnotation(new 
 PdfBounds(72, 450, 150, 36));
redaction.Color = PdfColorFactory.FromRgb(1, 0, 0);

page.Annotations.Add(redaction);

doc.Save("simpleredact1.pdf");

This will add a red hollow box on page which when the redaction is actually applied by a viewer will 
remove the text below it and leave a blank spot behind.

RubberStampAnnotation
The RubberStampAnnotation is an annotation that is used to mark a page with standard text as 
if it was created by a rubber stamp. The PDF specification defines a list of standard rubber stamp 
types for use in this annotation. Even though the text of the rubber stamp can be set to anything, 
the specification indicates that only this set needs to be supported:
• Approved
• AsIs
• Confidential
• Departmental
• Draft
• Experimental
• Expired

401



Atalasoft DotImage Developer's Guide

• Final
• ForComment
• ForPublicRelease
• NotApproved
• NotForPublicRelease
• Sold
• TopSecret

 If you want to ensure that you create RubberStampAnnotation objects with supported rubber 
stamp kinds, either use the RubberStampAnnotation that takes a RubberStampKind or use the 
utility method FromRubberStampKind() to covert a RubberStampKind to a string.

Property Name Property Type Description

StampLabel
(Required)

string This is the label that will be used 
for the rubber stamp. Although it 
can be any non-null, non-empty 
string, there is no guarantee that 
anything but the standard types 
can be rendered by a viewer. 
(Required)

The following C# code creates a TopSecret stamp.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

RubberStampAnnotation annot = new RubberStampAnnotation(RubberStampKind.TopSecret, new 
 PdfBounds(72, 650, 144, 72));
page.Annotations.Add(annot);

doc.Save("topsecretstamp.pdf");

StickyNoteAnnotation
A StickyNoteAnnotation represents a note of information placed on the page. The text of the 
information is stored in the Contents property of the annotation. The annotation can also have 
one of a set of standard icons associated with it on the page and the annotation may be either an 
"open" or "closed" state. When a StickyNoteAnnotation is closed, only the icon is visible. When it 
is open, a PopupAnnnotation will be shown that shows the Contents and (possibly) allows it to be 
edited. Finally, StickyNoteAnnotations can be used as part of a review process. The PDF specification 
defines a general ReviewProcess and two specific ones that each have discrete states of the review. 
It is possible to define your own kinds of review process, but there is no guarantee that it will be 
supported by any particular PDF viewer.

Property name Property type Description

IconName string A name of an icon to use for the 
annotation on the page. If this 
property is not set, the icon will 
default to "Note."

402



Atalasoft DotImage Developer's Guide

Property name Property type Description

IsOpen bool Gets or sets the open state of the 
sticky note.

ReviewProcess ReviewProcess Gets or sets the review process for 
this sticky note.

 The IconName can be set to a standard name by using static properties in 
StickyNoteAnnotation. The entire list can be retrieved from the StandIconNames static property.

The following C# code makes a help sticky note.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

StickyNoteAnnotation sticky = new StickyNoteAnnotation(new PdfBounds(144, 400, 72, 72), 
 "note text here", new PdfBounds(156, 420, 100, 100));
sticky.Color = PdfColorFactory.FromRgb(1, 1, .8);
sticky.IconName = StickyNoteAnnotation.HelpIconName;
page.Annotations.Add(sticky);
doc.Save("stickynote.pdf");

 If you use the StickyNoteAnnotation constructor that has a popupBounds parameter, the 
constructor will also construct and attach a PopupAnnotation to the StickyNote annotation.

TextBoxAnnotation
A TextBoxAnnotation is simply a box on the page with text in it. Unlike the StickyNoteAnnotation, 
the text box annotation doesn't have an open/closed state, but is instead always open and 
constrained by the bounds. The text may be either plain text, using the Content property or rich 
text, using the RichTextContent and the Content properties (the Content property should be set to a 
plain text equivalent of the rich text).

Property name Property type Description

DefaultTextAppearance PdfTextAppearance Gets or sets the appearance of text 
in the text box. If not set or set 
to null, the text appearance will 
default to 10pt Helvetica.

DefaultRichTextTyleString string Gets or sets the default style string 
used for rich text, for example 
"font: 12pt Arial".

Effect BorderEffect Gets or sets a border effect for the 
text box.

InsetArea PdfBounds Gets or sets the inset area for the 
text box, creating margins for the 
text. This property should be set so 
that it is fully contained within the 
Bounds property.

403



Atalasoft DotImage Developer's Guide

Property name Property type Description

TextAlignment AnnotationTextAlignment Gets or sets how the text will be 
aligned or justified in the Bounds.

The following C# code creates a TextBoxAnnotation.
TextBoxAnnotation annot = new TextBoxAnnotation(new PdfBounds(72, 360,  
300, 200), "Lorem ipsum sic dolor");
annot.Color = PdfColorFactory.FromRgb(.39, .58, .92);
somePage.Annotations.Add(annot);

TextMarkupAnnotation
A TextMarkupAnnotation is not an annotation that contains text. Instead, it is a set of possible mark-
ups to add to text on a page. The annotation is not itself associated with the text on the page at all. 
Any associations or relationships between the annotation and the text is made by the PDF viewing 
software.

The location of the markup is represented by the Regions property, which is a 
PdfQuadrilateralCollection of (possibly) disjoint quadrilaterals that surround areas of interest.

The appearance of the markup is determined by the MarkupKind property which is one of:
• Highlight
• Underline
• Squiggly
• StrikeOut

The particular markup will be rendered in the Color of the annotation.

Property name Property type Description

MarkupKind TextMarkupKind Gets or sets the type of the 
markup.

Regions PdfQuadrilateralCollection Defines the areas of interest for the 
annotation.

The following C# code creates a highlight TextMarkupAnnotation.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

PdfTextBox box = new PdfTextBox(new PdfBounds(72, 400, 250, 150), "Times-Roman", 12,
"Lorem ipsum dolor sit amet, consectetur adipiscing elit.");
page.DrawingList.Add(box);

TextMarkupAnnotation textMarkup = new TextMarkupAnnotation(TextMarkupKind.Highlight);
textMarkup.Color = PdfColorFactory.FromRgb(1, 1, 0);
textMarkup.Regions.Add(new PdfQuadrilateral(72, 410, 94, 480, 80, 500, 68, 440));
page.Annotations.Add(textMarkup);
doc.Save("highlightmarkupannot.pdf");

404



Atalasoft DotImage Developer's Guide

TypeWriterAnnotation
The TypeWriterAnnotation is used for placing text on the page in a way that implies no real 
constraints to the text boundary and very little extra in the appearance beyond the text itself. 
The annotation itself inherits from the TextBoxAnnotation. By default, the text is placed using 
the annotation's StartPoint property. This point will be the left edge and baseline of the text in 
the annotation. The PDF specification uses the Bounds property for the placement of the text, 
but this can be cumbersome. If the AutoGenerateBounds property is true, the Bounds will be 
calculated from the StartPoint, otherwise the bounds will be taken as is and the appearance may be 
unpredictable.

Property name Property type Description

AutoGenerateBounds bool If set to true (default), the 
annotation will use the StartPt 
property, the Contents property, 
and the font information to 
calculate the Bounds property at 
render time. Lines will be split at
"\r" or "\n" characters.

AutoGenerateInsetArea bool If set to true and if 
AutoGenerateBounds is true, then 
the InsetArea will be calculated 
as if it were the bounds and the 
Bounds will be calculated by 
expanding the InsetArea by the 
margins.

LeftRightMargin double If AutoGenerateBounds is true, 
this value will be used to create 
margins on the left and right 
edges. Must be non-negative.

StartPoint PdfPoint If AutoGenerateBounds is true, 
this is starting point for text within 
the annotation. The X coordinate 
will be the left edge of the text and 
the Y coordinate will be the text 
baseline.

TopBottomMargin double If AutoGenerateBounds is true, 
this value will be used to create 
margins on the top and bottom 
edges. Must be non-negative.

 Even though the PDF specification is clear about the intent and usage of the InsetArea of 
a TypeWriterAnnotation, Adobe Acrobat does not honor it correctly, nor does Acrobat honor a 
custom appearance for the annotation. The LeftRightMargin an TopBottomMargin are therefore 
not recommended for use with Adobe Acrobat.

The following C# code creates a TypeWriterAnnotation and shows its bounds.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
string fontName = "Helvetica";

405



Atalasoft DotImage Developer's Guide

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

TypeWriterAnnotation annot = new TypeWriterAnnotation(new PdfPoint(72, 750), "This is
\rannotation text.");
annot.DefaultTextAppearance = new PdfTextAppearance(fontName, 8);
page.Annotations.Add(annot);

// this is the method used by the annotation during rendering
PdfBounds bounds = annot.CalculateBounds(doc.Resources, annot.StartPoint, 
 annot.Contents);
PdfRectangle boundsRect = new PdfRectangle(bounds, PdfColorFactory.FromRgb(1, 0, 0), 
 1);
page.DrawingList.Add(boundsRect);
doc.Save("typewriter.pdf");

Widget annotations
Widget annotations are used for interactive forms. Each widget represents a specific type of user-
interface element and implements the interface IFormElement, which describes the contents and 
behavior of a PDF form field. The supported types of widget annotations are:
• CheckboxWidgetAnnotation
• ChoiceWidgetAnnotation
• PushButtonWidgetAnnotation
• RadioButtonWidgetAnnotation
• SignatureWidgetAnnotation
• TextWidgetAnnotation

CheckboxWidgetAnnotation
A checkbox widget annotation is a widget annotation that represents a two-state selection. It is 
typically represented by an empty box when it is not selected and a box with a mark in it (an x or a 
tick mark).

The checkbox widget annotation does not include any text, it is just the graphic representation. 
The AppearanceSet is used to define how the widget will be drawn in the Normal, Rollover 
and Activated appearances. Within each appearance, there should be an appearance entry 
named after each state. The appearance entry for a checked widget will be named "Yes"
and the appearance entry for not checked will be named "Off." You can use the properties 
CheckboxWidgetAnnotation.CheckedValue and CheckboxWidgetAnnotation.ClearedValue instead.

 While the values for the checkbox on/off states can be any two different strings, you are 
strongly encouraged to use "Yes" and "Off."

Property name Property type Description

CheckedValue string Gets the recommended checked 
value string "Yes."

406



Atalasoft DotImage Developer's Guide

Property name Property type Description

ClearedValue string Gets the recommended cleared 
value string "Off."

Value string The current value of the widget.

DefaultValue string The default value of the widget.

Since there can be a great deal of code for creating appearances for checkboxes, DotPdf includes 
standard appearances which will be installed in your document Resources Templates. These 
templates will be shared among all CheckBoxWidgets that share them. This is done internally via 
the DefaultWidgetTemplates object.

 If you do not supply appearances, Adobe Acrobat does not reliably render the widget.

The following C# code makes a check box.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);
CheckboxWidgetAnnotation annot = new CheckboxWidgetAnnotation(doc.Resources, new 
 PdfBounds(72, 360, 18, 18), "check", null, null);
annot.Value = CheckboxWidgetAnnotation.CheckedValue;
page.Annotations.Add(annot);
doc.Save("checkdocsimp.pdf");

Use this constructor to implicitly install default appearances in the widget and your document 
resources.

The following C# code manually installs standard appearances.
DefaultWidgetTemplates.InstallDefaultAppearances(doc.Resources, false);
myCheck.Appearance.Normal.Add(CheckboxWidgetAnnotation.CheckedValue, 
 DefaultWidgetTemplates.CheckboxCheckedNormalName);
myCheck.Appearance.Normal.Add(CheckboxWidgetAnnotation.ClearedValue, 
 DefaultWidgetTemplates.CheckboxClearedNormalName);
myCheck.Appearance.Activated.Add(CheckboxWidgetAnnotation.CheckedValue, 
 DefaultWidgetTemplates.CheckboxCheckedActivatedName);
mycheck.Appearance.Activated.Add(CheckboxWidgetAnnotation.ClearedValue, 
 DefaultWidgetTemplates.CheckboxClearedActivatedName);

When you add appearances, the second argument is always the name of a Template resource. 
InstallDefaultAppearances() will add in new Template resources using the names shown above.

ChoiceWidgetAnnotation
A choice widget annotation is an annotation that lets a user select one or more items from a list of 
possible choices. The list can either appear as a list in a box, a pop-up list, or a pop-up list with a text 
entry field (also called a combo box). The choices are set via a list of pairs of string objects. Each pair 
contains a display name and an export name. The export value is optional. If omitted, the display 
value will instead be used. The purpose of the pair is so that, for example, it would be possible to 
generate separate forms in different languages that display in the native language but all submit 
with the same export values, making the data submitted language neutral.

407



Atalasoft DotImage Developer's Guide

Like all widgets, ChoiceWidgetAnnotation requires an appearance for the widget. This appearance 
can't be shared between different ChoiceWidgetAnnotations and is built lazily - just before a render 
- so that it will be unaffected by changes in Bounds.

Text of items in the list will be rendered using the DefaultTextAppearance property.

Property name Property type Description

AllowMultiSelect bool If set to true, the user can have 
multiple items selected.

AutoGenerateBasicAppearance bool If set to true (default), the widget 
will make and install a basic 
appearance for the widget.

Choices IList<ChoicePair> A list of elements to present to 
the user. Each choice pair has a 
DisplayName and an optional 
ExportName. The DisplayName 
will be presented to the user. The 
ExportName (or the DisplayName, 
if the ExportName is null)will be 
used when submitting the data.

CurrentSelection IList<int> Contains a list of indexes of current 
selections. If AllowMultiSelect is 
false, only the first value (if any) will 
be used.

FirstVisibleChoice int Gets or sets the index of the first 
visible choice in the list.

ValueAsString string Returns a comma separated list of 
the choices.

The following C# code creates a simple ChoiceWidgetAnnotation.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);
ChoiceWidgetAnnotation anno = new ChoiceWidgetAnnotation(ChoiceWidgetKind.ListBox, 
 "choices", new PdfBounds(72, 400, 288, 144), 
 "once", "twice", "maybe three times", "my uncle is a mime");
anno.DefaultTextAppearance = new PdfTextAppearance();
anno.DefaultTextAppearance.FontName = "Times-Italic";
anno.DefaultTextAppearance.FontSize = 24;
anno.AutoGenerateBasicAppearance = true;
anno.CurrentSelection.Add(2);

doc.Form = new PdfForm();
page.Annotations.Add(anno);
doc.Form.Fields.Add(anno);
doc.Save("choicelist.pdf");

408



Atalasoft DotImage Developer's Guide

The following C# code creates the appearance for the list.
private double StartLineBottom(PdfBounds bounds, int index, double lineHeight)
{ 
 return bounds.Top - 1 - ((index + 1) * lineHeight);
}

private string MakeBasicAppearanceList(GlobalResources gr, PdfBounds bounds, 
 PdfTextAppearance app, double borderWidth, IPdfColor outlineColor, IPdfColor 
 fillColor, IList<ChoicePair> choices, IList<int> currentSelection)
{ 
 var res = gr.Fonts.Get(app.FontName); 
 double lineHeight = res.Metrics.LineSpacing(app.FontSize); 
 double baseLine = (res.Metrics.Descent * app.FontSize) / -1000.0; 

 bounds = new PdfBounds(0, 0, bounds.Width, bounds.Height); 
 DrawingTemplate template = new DrawingTemplate(bounds); 
 if (outlineColor == null && fillColor == null) 
  return null; 

 PdfRectangle rect = new PdfRectangle(bounds, fillColor); 
 template.DrawingList.Add(rect); 

 PdfMarkedContent markedContent = new PdfMarkedContent("Tx"); 
 template.DrawingList.Add(markedContent); 

 PdfBounds inset = new PdfBounds(bounds.Left + 1, bounds.Bottom + 1, bounds.Width - 2, 
 bounds.Height - 2); 
 rect = new PdfRectangle(inset, outlineColor); 
 rect.Clip = true; 
 markedContent.DrawingList.Add(rect); 

 markedContent.DrawingList.Add(new GSave()); 

 if (currentSelection != null) 
 { 
  IPdfColor selColor = PdfColorFactory.FromRgb(0.6, 0.75866, 0.854904); 
  foreach (int sel in currentSelection) 
  { 
   double selY = StartLineBottom(bounds, sel, lineHeight); 
   PdfBounds selBounds = new PdfBounds(1, selY, inset.Width - 1, lineHeight); 

409



Atalasoft DotImage Developer's Guide

   rect = new PdfRectangle(selBounds, selColor); 
   markedContent.DrawingList.Add(rect); 
  } 
 } 

 for (int i = 0; i < choices.Count; i++) 
 { 
  ChoicePair pair = choices[i]; 
  double selY = StartLineBottom(bounds, i, lineHeight) + baseLine; 
  PdfTextLine line = new PdfTextLine(app.FontName, app.FontSize, pair.DisplayName ?? 
 pair.ExportName, 
  new PdfPoint(2.0, selY)); 
  markedContent.DrawingList.Add(line); 
 } 

 markedContent.DrawingList.Add(new GRestore()); 

 string name = gr.Templates.Add(template); 
 return name;
}

 The actual content of the list is put within a PdfMarkedContent object with the "Tx" mark, 
setting it off as the text content of the box.

PushButtonWidgetAnnotation
A PushButtonWidgetAnnotation is the simplest type of widget annotation. It has no 
value associated with it. Instead, it only serves to trigger actions of some kind. This is 
done by adding a new action to its AdditionalActions.ClickDown list. Like other widgets, a 
PushButtonWidgetAnnotation needs to have one or more appearances in order to be rendered. 
The class includes a property to automatically generate an appearance as well as a public factory 
method for creating one.

To ensure that an appearance is made for the button, set the AutoGenerateAppearance property to 
null.

 The auto-generated appearance for a button is an outlined round-cornered rectangle with 
centered text clipped to the outline.

The following C# code creates a button that plays a sound.
using (FileStream stm = new FileStream(@"mysound.wav", 
   FileMode.Open, FileAccess.Read, FileShare.Read))
{ 
 WavReader reader = new WavReader(stm); 
 Sound sound = Sound.FromWavReader(reader); 

 PdfGeneratedDocument doc = new PdfGeneratedDocument(); 
 PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter); 
 PushButtonWidgetAnnotation button = new PushButtonWidgetAnnotation(new PdfBounds(72, 
 400, 144, 40), 
    "Now Hear This", null, null); 
 button.AutoGenerateBasicAppearance = true; 
 PdfSoundAction action = new PdfSoundAction(sound); 
 button.AdditionalActions.OnClickDown.Add(action); 

 doc.Form = new PdfForm(); 
 page.Annotations.Add(button); 

410



Atalasoft DotImage Developer's Guide

 doc.Form.Fields.Add(button); 
 doc.Save("soundbutton.pdf");
}

RadioButtonWidgetAnnotation
RadioButtonWidgetAnnotation are a button widget that is represented by a set/cleared state. 
When radio buttons are cleared, they are represented by the value "Off". When they are set, 
they are represented by a string value that is unique among the group of radio buttons. 
RadioButtonWidgetAnnotations are unusual among widgets in that they are not usable in isolation. 
RadioButtonWidgetAnnotation objects need to have a parent RadioButtonFormField which contains 
the semantics for the entire group.

 Like CheckBoxWidgetAnnotation objects, RadioButtonWidgetAnnotations do not have any 
particular text associated with their appearance - they are usually just the button itself. It does 
need its own set of appearances, but these can be created at construction time and can be shared 
among all radio buttons.

The steps for creating a set of RadioButtonWidgetAnnotation objects is as follows:

1. Make RadioButtonWidgetAnnotations for each choice, setting the FieldName to null and 
passing in the string name of the "selected" value as the onValue.

2. Set the Value and DefaultAppearanceState to the either 
RadioButtonWidgetAnnotation.ClearedValue or to the string name of its "selected" value.

3. Create a RadioButtonFormField object.

4. Set the form field's Value and Default Value to the radio button you would like selected.

5. Set the form field's FieldName.

6. Put each radio button into the form field's ChildFields collection.

7. Set each radio button's ParentField to the form field.

8. Add each radio button to the page's Annotations collection.

9. Construct a new PdfForm and assign it to the document's Form property.

10. Add the form field to the document's Form's Fields collection.

These steps are illustrated (in a slightly different order) in this sample C# code for making radio 
buttons:
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.Form = new PdfForm();
PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);
string font = doc.Resources.Fonts.AddFromFontName("Arial");
RadioButtonWidgetAnnotation yesButton = new RadioButtonWidgetAnnotation(doc.Resources, 
 new PdfBounds(72, 700, 12, 12), 
 null, null, null, "Yes", true);
yesButton.DefaultAppearanceState = yesButton.Value = "Yes";

RadioButtonWidgetAnnotation noButton = new RadioButtonWidgetAnnotation(doc.Resources, 
 new PdfBounds(72, 680, 12, 12), 
 null, null, null, "No", true);
noButton.DefaultAppearanceState = noButton.Value = 
 RadioButtonWidgetAnnotation.ClearedValue; 

411



Atalasoft DotImage Developer's Guide

            
RadioButtonWidgetAnnotation undecidedButton = new 
 RadioButtonWidgetAnnotation(doc.Resources, new PdfBounds(72, 660, 12, 12), 
 null, null, null, "Undecided", true);
undecidedButton.DefaultAppearanceState = undecidedButton.Value = 
 RadioButtonWidgetAnnotation.ClearedValue;

page.Annotations.Add(yesButton);
page.DrawingList.Add(new PdfTextLine(font, 12, "Yes", 
 new PdfPoint(yesButton.Bounds.Right + 4, yesButton.Bounds.Bottom))); 
          
page.Annotations.Add(noButton);
page.DrawingList.Add(new PdfTextLine(font, 12, "No", 
 new PdfPoint(noButton.Bounds.Right + 4, noButton.Bounds.Bottom)));

page.Annotations.Add(undecidedButton);
page.DrawingList.Add(new PdfTextLine(font, 12, "Undecided", 
 new PdfPoint(undecidedButton.Bounds.Right + 4, undecidedButton.Bounds.Bottom)));

RadioButtonFormField ff = new RadioButtonFormField();
ff.FieldName = "Choice";
ff.ChildFields.Add(yesButton);
yesButton.ParentField = ff;
ff.ChildFields.Add(noButton);
noButton.ParentField = ff;
ff.ChildFields.Add(undecidedButton);
undecidedButton.ParentField = ff;
ff.Value = "Yes";
ff.DefaultValue = "Yes";            
doc.Form.Fields.Add(ff);
doc.Save("threechoice.pdf");

 RadioButtonFormField has several factory methods that do most of this work for you. It is 
strongly recommended that you use these methods to avoid errors in creation of the fields.

The following C# code creates a radio button set using the convenience factory method.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.Form = new PdfForm();
PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);
string font = doc.Resources.Fonts.AddFromFontName("Arial");

string[] values = new string[] { "Yes", "No", "Undecided" };
PdfBounds[] bounds = new PdfBounds[] { 
 new PdfBounds(72, 700, 12, 12), 
 new PdfBounds(72, 680, 12, 12), 
 new PdfBounds(72, 660, 12, 12)
};

RadioButtonFormField ff = RadioButtonFormField.MakeRadioSet(doc.Resources, page, 
 "Choice", values[0], values[0], 
 values, bounds);
doc.Form.Fields.Add(ff);

for (int i = 0; i < values.Length; i++)
{ 
 page.DrawingList.Add(new PdfTextLine(font, 12, values[i], 
       new PdfPoint(bounds[i].Right + 4, bounds[i].Bottom)));
}
doc.Save("threechoiceeasy.pdf");

412



Atalasoft DotImage Developer's Guide

SignatureWidgetAnnotation
The SignatureWidgetAnnotation is used to indicate an area that needs to be signed by a user 
reading the document. The SignatureWidgetAnnotation does not sign the document, it indicates 
that a document needs a signature. The area for the signature is represented by the Bounds. This 
annotation doesn't need an appearance added it.

The following C# code adds a signature to a document.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.Form = new PdfForm();
PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);
SignatureWidgetAnnotation sig = new SignatureWidgetAnnotation(new PdfBounds(72, 600, 
 200, 40), "Signature", null, null);  
page.Annotations.Add(sig);
doc.Form.Fields.Add(sig);
doc.Save("signhere.pdf");

TextWidgetAnnotation
The TextWidgetAnnotation is a widget that is used to building forms with text entry. It has a 
number of properties that dictate the formatting of text in the widget, making it one of the most 
configurable widgets. Like most of the widget annotations, it should have an appearance associated 
with it, which can be done for you if AutoGenerateBasicAppearance is true.

Property name Property type Description

AutoGenerateBasicAppearance bool If set to true, before rendering 
the widget will generate a basic 
appearance for the text box.

DefaultRichTextStyleString string Gets or sets a default rich text 
string to be used to define the style 
of the RichTextValue of the widget. 
Note that if you use RichTextValue, 
you need to also set the Vlue 
property to a plain text version of 
the rich text.

DefaultTextValue string Gets or sets the default value for 
the widget.

IsColumns bool If set to true, the MaximumLength 
property will be used to define 
columnar layout of the text. Note 
that IsColumns only makes sense 
if IsPassword, IsScrollable, and 
IsFileSelection are all false.

IsFileSelection bool If set to true, the text is meant to 
represent a file selection, in which 
case the value entered is supposed 
to be the path to the file.

413



Atalasoft DotImage Developer's Guide

Property name Property type Description

IsMultiLine bool If set to true, the text entered will 
be allowed to be multiple lines, 
otherwise it will be forced to be a 
single line. The default is false.

IsPassword bool If set to true, then the text entered 
will be treated as a password and 
will not be displayed direction. 
Note that text entered as a 
password should never be stored 
within the PDF, but should instead 
be used and removed from the 
field. If the PDF is saved without 
encryption and with a password 
value entered, the password will be 
stored in clear text.

IsRichText bool If set to true, then the content of 
the field will be rendered using rich 
text. Even if RichText is set to true, 
any setting of the RichTextValue 
should be reflected in the Value 
property as well.

IsScrollable bool If set to true, then the text widget 
will have a scroll bar on it if 
needed.

IsSpellChecked bool If set to true, then the text in the 
text widget will be marked for 
any spelling errors using a client 
service, if available.

MaximumLength int The greatest number of characters 
that may be entered into the field. 
This value must be non-negative.

RichTextValue XmlDocument The representation of the text 
content using rich text.

TextAlignment AnnotationTextAlignment Gets or sets the justification of the 
text displayed in the widget.

TextValue string The value to display in the text box.

The following C# code creates a text field with existing text.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);
TextWidgetAnnotation tw = new TextWidgetAnnotation(new PdfBounds(72, 350, 300, 50), 
 "noname", "");
tw.TextValue = "Spoon";

tw.DefaultTextAppearance = new PdfTextAppearance();
tw.DefaultTextAppearance.FontName = "Times-Italic";
tw.DefaultTextAppearance.FontSize = 42;
page.Annotations.Add(tw);

doc.Form = new PdfForm();

414



Atalasoft DotImage Developer's Guide

doc.Form.Fields.Add(tw);
doc.Save("textwidget.pdf");

Use annotations
The following is a set of common tasks that can be done with the DotPdf annotation objects.

Place an annotation
This C# sample creates a page with a large light blue rectangle on it and then adds a yellow 
rectangle annotation with no border.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);
page.DrawingList.Add(new PdfRectangle(new PdfBounds(72, 72, page.MediaBox.Width - 144, 
 page.MediaBox.Height - 144),
PdfColorFactory.FromRgb(.8, .8, 1)));

RectangleAnnotation rectAnnot = new RectangleAnnotation(new PdfBounds(36, 600, 200, 
 100));
rectAnnot.InternalColor = PdfColorFactory.FromRgb(1, 1, 0);
rectAnnot.Color = null;
page.Annotations.Add(rectAnnot);

doc.Save("simpleannot1.pdf");

415



Atalasoft DotImage Developer's Guide

Create an annotation with a custom border
This C# sample creates a page with a light blue rectangle and a yellow rectangle annotation with an 
orange dashed border.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);
page.DrawingList.Add(new PdfRectangle(new PdfBounds(72, 72, page.MediaBox.Width - 144, 
 page.MediaBox.Height - 144),
PdfColorFactory.FromRgb(.8, .8, 1)));

RectangleAnnotation rectAnnot = new RectangleAnnotation(new PdfBounds(36, 300, 200, 
 200));
rectAnnot.InternalColor = PdfColorFactory.FromRgb(1, 1, 0);
rectAnnot.Color = PdfColorFactory.FromRgb(1, .5, 0);
rectAnnot.Border = new AnnotationBorder(0, 0, 1.5, new double[] { 4, 1 });
page.Annotations.Add(rectAnnot);

doc.Save("simpleannot2.pdf");

416



Atalasoft DotImage Developer's Guide

Add a pop-up to a markup annotation
This C# sample shows how to add an open pop-up annotation to a markup annotation (in this case 
a rectangle annotation). Note that setting the pop-up color also changes the border color of the 
rectangle annotation

417



Atalasoft DotImage Developer's Guide

Create an annotation with transparency
This C# sample shows how to set transparency in a rectangle annotation.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

418



Atalasoft DotImage Developer's Guide

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);
page.DrawingList.Add(new PdfRectangle(new PdfBounds(72, 72, page.MediaBox.Width - 144, 
 page.MediaBox.Height - 144),
PdfColorFactory.FromRgb(.8, .8, 1)));

RectangleAnnotation rectAnnot = new RectangleAnnotation(new PdfBounds(36, 300, 200, 
 200));
rectAnnot.InternalColor = PdfColorFactory.FromRgb(1, 1, 0);
rectAnnot.Color = null;
rectAnnot.IsTransparent = true;
rectAnnot.Transparency = 0.75;
page.Annotations.Add(rectAnnot);

doc.Save("simpleannot4.pdf");

Skin an annotation
This C# sample demonstrates how to create an annotation with a custom "Normal" appearance. For 
simple skinning, you should create exactly one appearance and put it in the Normal collection under 
the name AppearanceSet.DefaultAppearanceName. This creates a rectangle with an x.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

419



Atalasoft DotImage Developer's Guide

DrawingTemplate template = new DrawingTemplate(new PdfBounds(0, 0, 100, 100));
IPdfColor outlineColor = PdfColorFactory.FromRgb(0, 0, .25);
IPdfColor fillColor = PdfColorFactory.FromRgb(.7, 1, 1);
template.DrawingList.Add(new PdfRectangle(new PdfBounds(1, 1, 98, 98), outlineColor, 1, 
 fillColor));
PdfPath path = new PdfPath(outlineColor, 1, null);
path.MoveTo(1, 1); path.LineTo(99, 99);
path.MoveTo(1, 99); path.LineTo(99, 1);
template.DrawingList.Add(path);
string templateName = doc.Resources.Templates.Add(template);

RectangleAnnotation annot = new RectangleAnnotation(new PdfBounds(72, 300, 102, 102));
annot.Appearance = new AppearanceSet();
annot.Appearance.Normal.Add(AppearanceSet.DefaultAppearanceName, templateName);
page.Annotations.Add(annot);
doc.Save("simpleannot5.pdf");

Make an annotation with a rollover appearance
Annotations can have different appearances for their normal and rollover states. The following C#
code creates a rollover appearance.

public string MakeAppearance(PdfBounds bounds, IPdfColor outline, IPdfColor fill, 
 GlobalResources resources)
{ 
 DrawingTemplate template = new DrawingTemplate(bounds); 
 bounds = bounds.Expand(-1); 
 template.DrawingList.Add(new PdfRectangle(bounds, outline, 1, fill)); 
 PdfPath path = new PdfPath(outline, 1); 
 path.MoveTo(bounds.Left, bounds.Bottom); 
 path.LineTo(bounds.Right, bounds.Top); 
 path.MoveTo(bounds.Left, bounds.Top); 
 path.LineTo(bounds.Right, bounds.Bottom); 
 template.DrawingList.Add(path); 
 return resources.Templates.Add(template);
}

public void MakeAnAnnotationWithARolloverAppearance()
{ 
 PdfGeneratedDocument doc = new PdfGeneratedDocument(); 
 doc.EmbedGeneratedContent = false; 
 PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter); 

420



Atalasoft DotImage Developer's Guide

 RectangleAnnotation annot = new RectangleAnnotation(new PdfBounds(72, 300, 102, 102)); 
 annot.Appearance = new AppearanceSet(); 
 PdfBounds bounds = new PdfBounds(0, 0, 100, 100); 
 annot.Appearance.Normal.Add( 
  AppearanceSet.DefaultAppearanceName, 
  MakeAppearance( 
   bounds, 
   PdfColorFactory.FromRgb(0, 0, 0), 
   PdfColorFactory.FromRgb(.7, 1, 1), 
   doc.Resources)); 
 annot.Appearance.Rollover.Add( 
  AppearanceSet.DefaultAppearanceName, 
  MakeAppearance( 
   bounds, 
   PdfColorFactory.FromRgb(.25, .25, .25), 
   PdfColorFactory.FromRgb(1, 1, .7), 
   doc.Resources)); 
 page.Annotations.Add(annot); 
 doc.Save("simpleannot6.pdf");
}

Make a sticky note annotation
This C# code sample shows how to make a closed StickyNoteAnnotation with a "Help" icon.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

StickyNoteAnnotation sticky = new StickyNoteAnnotation(new PdfBounds(144, 400, 72, 72), 
 "note text here", new PdfBounds(156, 420, 100, 100));
sticky.Color = PdfColorFactory.FromRgb(1, 1, .8);
sticky.IconName = StickyNoteAnnotation.HelpIconName;
page.Annotations.Add(sticky);
doc.Save("simpleannot7.pdf");

Add a review state to a sticky note
This C# sample shows how to add review conditions to a Sticky Note annotation.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

421



Atalasoft DotImage Developer's Guide

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

StickyNoteAnnotation sticky1 = new StickyNoteAnnotation(new PdfBounds(72, 600, 72, 72), 
 "nothing", new PdfBounds(156, 420, 100, 100));
sticky1.IconName = StickyNoteAnnotation.CommentIconName;
sticky1.Color = PdfColorFactory.FromRgb(0, 1, .8);
sticky1.AuthorName = "Steve";
page.Annotations.Add(sticky1);

StickyNoteAnnotation sticky = new StickyNoteAnnotation(new PdfBounds(144, 600, 72, 72), 
 "Completed set by steve hawley", new PdfBounds(156, 420, 100, 100));
sticky.Color = PdfColorFactory.FromRgb(1, 1, .8);
sticky.IconName = StickyNoteAnnotation.CommentIconName;
GeneralReview generalReview = new GeneralReview();
generalReview.CurrentState = GeneralReview.CompletedStateIndex;
sticky.ReviewProcess = generalReview;
sticky.InReplyTo = sticky1;
sticky.Hidden = true;
sticky.AuthorName = "Steve";

page.Annotations.Add(sticky);
doc.Save("simpleannot8.pdf");

Make a highlight annotation
Highlight annotations are represented by a set of quadrilaterals. They are not directly associated 
with any text on the page. Any correspondence with text on the page must be made by the creation 
software.

The following C# code creates a highlight association.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

PdfTextBox box = new PdfTextBox(new PdfBounds(72, 400, 250, 150), "Times-Roman", 12, 
 "...lorem ipsum text...");
page.DrawingList.Add(box);

TextMarkupAnnotation textMarkup = new TextMarkupAnnotation(TextMarkupKind.Highlight);
textMarkup.Color = PdfColorFactory.FromRgb(1, 1, 0);
textMarkup.Regions.Add(new PdfQuadrilateral(72, 410, 94, 480, 80, 500, 68, 440));

422



Atalasoft DotImage Developer's Guide

page.Annotations.Add(textMarkup);
doc.Save("simpleannot10.pdf");

Make a bow tie annotation
When the mark up type is changed to an underline, you can see where the line is drawn relative to 
the quadrilateral. For underline, it is oriented towards the logical bottom which is the edge from the 
first point to the second point.

Quadrilaterals may look unusual if the points are ordered differently. If the quadrilateral is a simple 
rectangle, the first point is the lower left, the second point is the lower right, the third point is the 
upper right, and the last point is the upper left. By swapping the second and third points, you will 
get a "bowtie" shape, as shown in the following C# sample.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

PdfTextBox box = new PdfTextBox(new PdfBounds(72, 400, 250, 150), "Times-Roman", 12, 
 "...lorem ipsum text...");
page.DrawingList.Add(box);

TextMarkupAnnotation textMarkup = new TextMarkupAnnotation(TextMarkupKind.Highlight);
textMarkup.Color = PdfColorFactory.FromRgb(1, 1, 0);
textMarkup.Regions.Add(new PdfQuadrilateral(72, 410, 80, 500, 94, 480, 68, 440));
page.Annotations.Add(textMarkup);
doc.Save("simpleannot11.pdf");

423



Atalasoft DotImage Developer's Guide

When the mark up type is changed to an underline, you can see where the line is drawn relative to 
the quadrilateral. For underline, it is oriented towards the logical bottom which is the edge from the 
first point to the second point, as shown in this C# sample.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

PdfTextBox box = new PdfTextBox(new PdfBounds(72, 400, 250, 150), "Times-Roman", 12, 
 "...lorem ipsum text...");
page.DrawingList.Add(box);

TextMarkupAnnotation textMarkup = new TextMarkupAnnotation(TextMarkupKind.Highlight);
textMarkup.Color = PdfColorFactory.FromRgb(1, 1, 0);
textMarkup.Regions.Add(new PdfQuadrilateral(72, 410, 94, 480, 80, 500, 68, 440));
page.Annotations.Add(textMarkup);

textMarkup = new TextMarkupAnnotation(TextMarkupKind.Underline);
textMarkup.Color = PdfColorFactory.FromRgb(1, 0, 0);
textMarkup.Regions.Add(new PdfQuadrilateral(72, 410, 94, 480, 80, 500, 68, 440));
page.Annotations.Add(textMarkup);
doc.Save("simpleannot12.pdf");

424



Atalasoft DotImage Developer's Guide

If the TextMarkupAnnotation is constructed with TextMarkupKind.StrikeOut, the line will run 
midway between the top and bottom edges. If it is constructed with Squiggly, a zig-zag line will be 
drawn along the bottom edge.

Show the underline location relative to a highlight annotation
C#
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

PdfTextBox box = new PdfTextBox(new PdfBounds(72, 400, 250, 150), "Times-Roman", 12, 
 "...lorem ipsum text...");
page.DrawingList.Add(box);

TextMarkupAnnotation textMarkup = new TextMarkupAnnotation(TextMarkupKind.Highlight);
textMarkup.Color = PdfColorFactory.FromRgb(1, 1, 0);
textMarkup.Regions.Add(new PdfQuadrilateral(72, 410, 94, 480, 80, 500, 68, 440));
page.Annotations.Add(textMarkup);

textMarkup = new TextMarkupAnnotation(TextMarkupKind.Underline);
textMarkup.Color = PdfColorFactory.FromRgb(1, 0, 0);
textMarkup.Regions.Add(new PdfQuadrilateral(72, 410, 94, 480, 80, 500, 68, 440));
page.Annotations.Add(textMarkup);
doc.Save("simpleannot12.pdf");

425



Atalasoft DotImage Developer's Guide

Set a redaction area
The RedactionProposalAnnotation is used to set an area for later redaction by the viewer. The 
annotation itself does not remove content from the document but instead requires the viewing 
application to perform that task. This example shows how a redaction can be placed with custom 
text to show when the redaction has been applied.

The following C# code places a redaction with redaction text.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

PdfTextBox box = new PdfTextBox(new PdfBounds(72, 400, 250, 150), "Times-Roman", 12, 
 "...lorem ipsum text...");
page.DrawingList.Add(box);

RedactionProposalAnnotation redaction = new RedactionProposalAnnotation(new 
 PdfBounds(72, 450, 150, 36));
redaction.Color = PdfColorFactory.FromRgb(1, 0, 0);
redaction.DefaultTextAppearance.FontSize = 18;
redaction.DefaultTextAppearance.StrokeColor = PdfColorFactory.FromRgb(1, 1, 0);
redaction.OverlayText = "Bowdler was here.";
redaction.IsOverlayTextRepeated = true;
redaction.RedactionInteriorColor = PdfColorFactory.FromRgb(.8, .8, .8);

page.Annotations.Add(redaction);
doc.Save("simpleredact2.pdf");

426



Atalasoft DotImage Developer's Guide

Use JavaScript to calculate values
PDF documents can contain form fields for user data entry. Using JavaScript, you can create actions 
to attach to actions to calculate values of make other dynamic changes to the document. For more 
information, see the  JavaScript for Acrobat API Reference.

The following C# example uses the built-in function AFSimple_Calculate, which is provided by Adobe 
Acrobat (formerly, this was in the AForm.js file, but has been precompiled into byte code). Note that 
the sum field is marked read-only so that it will only show the sum.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.Form = new PdfForm();
PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

TextWidgetAnnotation tw = new TextWidgetAnnotation(new PdfBounds(72, 500, 36, 24), 
 "Addend1", "0");
page.Annotations.Add(tw);
doc.Form.Fields.Add(tw);

PdfTextLine tl = new PdfTextLine("Helvetica-Bold", 20, "+", new PdfPoint(114, 506));
page.DrawingList.Add(tl);

tw = new TextWidgetAnnotation(new PdfBounds(130, 500, 36, 24), "Addend2", "0");
page.Annotations.Add(tw);
doc.Form.Fields.Add(tw);

tl = new PdfTextLine("Helvetica-Bold", 20, "=", new PdfPoint(172, 506));
page.DrawingList.Add(tl);

tw = new TextWidgetAnnotation(new PdfBounds(188, 500, 36, 24), "Sum", "0");
tw.IsFieldReadOnly = true;
page.Annotations.Add(tw);
doc.Form.Fields.Add(tw);
tw.AdditionalActions.OnFieldRecalculating.Add(new 
 PdfJavaScriptAction("AFSimple_Calculate(\"SUM\", new Array (\"Addend1\", 
 \"Addend2\"));"));
doc.Form.FieldCalculationSequence.Add(tw);

doc.Save("simplesum.pdf");

427

http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/js_api_reference.pdf


Atalasoft DotImage Developer's Guide

Similarly, you can use the contents of fields together to join data. For example, if you wanted to 
create a signable document that contained fields for the user's first and last names with a place to 
display their entire name you could make a read-only full name field which takes its values from the 
other fields
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.Form = new PdfForm();
PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

TextWidgetAnnotation tw = new TextWidgetAnnotation(new PdfBounds(72, 500, 50, 24), 
 "First", "");
page.Annotations.Add(tw);
doc.Form.Fields.Add(tw);

PdfTextLine tl = new PdfTextLine("Helvetica-Bold", 12, "First Name", new PdfPoint(72, 
 480));
page.DrawingList.Add(tl);

tw = new TextWidgetAnnotation(new PdfBounds(140, 500, 75, 24), "Last", "");
page.Annotations.Add(tw);
doc.Form.Fields.Add(tw);

tl = new PdfTextLine("Helvetica-Bold", 12, "Last Name", new PdfPoint(140, 480));
page.DrawingList.Add(tl);

tw = new TextWidgetAnnotation(new PdfBounds(72, 200, 200, 24), "Full", "0");
tw.IsFieldReadOnly = true;
page.Annotations.Add(tw);
doc.Form.Fields.Add(tw);
tw.AdditionalActions.OnFieldRecalculating.Add(new PdfJavaScriptAction("var 
 fname = this.getField(\"First\").value + \" \" + this.getField(\"Last\").value; 
 this.getField(\"Full\").value = fname;"));
doc.Form.FieldCalculationSequence.Add(tw);

SignatureWidgetAnnotation sig = new SignatureWidgetAnnotation(new PdfBounds(72, 230, 
 200, 40), "Signature", null, null);
page.Annotations.Add(sig);
doc.Form.Fields.Add(sig);

doc.Save("simplenamer.pdf");

428



Atalasoft DotImage Developer's Guide

PDF Forms
PDF Forms are a mechanism within PDF to display information and provide interaction and data 
collection facilities. In the PDF Specification, these are referred to AcroForms. A PDF Form is 
a hierarchical collection of fields that represent the form data as well as some information to 
indication calculation order and general field appearance characteristics.

Fields are any object that implements the interface IFormElement, this interface defines core 
characteristics that are common to all fields, but in practice there are two broad types of fields: 
nodes and leaves. A node can have child fields and a leaf can have no child fields. In DotPdf, all 
leaves will be a subclass of BaseWidgetAnnotation and all nodes will be BaseFormField.

 In the PDF specification, certain properties in a form field will be inherited from its parent. 
DotPdf does not support this directly. When a form is read in, the inheritance is flattened, but 
projecting parent properties onto their children. Upon writing, the properties are written directly 
from each field. It is the client's responsibility to enforce the effect of inheritance.

429



Atalasoft DotImage Developer's Guide

PdfForm
PdfForm is the object that represents a form for data collection and all its elements. If a document 
has a PdfForm, it will be accessed through the Form property of a PdfGeneratedDocument object. 
Through this object, you can access the fields in a document and their values (if any). The form also 
contains properties that define default appearances for text in the fields as well as information 
regarding digital signatures.

 The Form property in a PdfGeneratedDocument is null by default. To create a form, you 
need to assign a new PdfForm object to this property. PdForm objects can be moved from one 
document to another, but care must be taken in the process because the leaf nodes of a PdfForm 
tree are all BaseWidgetAnnotation obects and therefore must also be placed on appropriate 
pages in the target document. Further, the PdfForm and its form fields may refer to JavaScript 
methods that are defined in the source document's GlobalJavaScript actions which must also be 
moved to the target document. It is strictly the client's responsibility to

The process of making a new form from scratch can be as simple as making a PdfForm object and 
assigning it to a PdfGeneratedDocument then putting fields in the form and on the pages of the 
document. However, PdfForm objects can represent a tree of hierarchical fields. In order for the 
hierarchy to be properly represented, each parent node will contain a collection of child nodes. Each 
child should also have a reference to its parent. Since many operations may be performed before 
putting a form element in a parent collection, DotPdf allows the client code to set the parent-child 
and child-parent relationships. There is a utility method in PdfForm called EnforceParentage() which 
will descend the tree and ensure that the relationship is correct. Be aware that if you depend on any 
particular form field's FieldFullName to be correct, the parentage must be set correctly.

 When you save a PdfGeneratedDocument which contains a PdfForm, EnforceParentage() 
will get called automatically. The form will also be checked for cycles and other field relationship 
issues. If there are issues that cannot be repaired, DotPdf will throw an exception.

The following C# code creates a simple form.
public class WidgetPagePair { 
 public BaseWidgetAnnotation Field { get; set; } 
 public int PageIndex { get; set; }
}
// ...
public void PlaceFields(PdfGeneratedDocument doc, IEnumerable<WidgetPagePair> pairs)
{ 
 foreach (WidgetPagePair pair in pairs) 
 { 
  PdfGeneratedPage page = doc.Pages[pair.PageIndex] as PdfGeneratedPage; 
  if (page == null) continue; 
  if (doc.Form == null) doc.Form = new PdfForm(); 
  if (!page.Annotations.Contains(pair.Field)) 
   page.Annotations.Add(pair.Field); 
  doc.Form.Fields.Add(pair.Field); 
 }
}

430



Atalasoft DotImage Developer's Guide

Node form fields
PDF forms may represent a tree of form information. For example, you may want to collect similar 
information in different places, but want to use similar names for the actual data fields. You can do 
this by having a tree structure to your form. For example, you might have a parent node named
"Contact" with a child named "Phone" that has three children named "Work," "Home," "Mobile,"
each with a child named "Number." "Contact" might have another child named "Address" with 
children named "Work" and "Home," each with children named "Street," "City," "State," and "Zip."
In this way, the names of the leaves can be the same and can be treated generically by consuming 
code.

If the child and parent relationships of the fields are enforced, the full name of the phone 
number fields would be Contact.Phone.Work.Number, Contact.Phone.Home.Number, and 
Contact.Phone.Mobile.Number.

In DotPdf, there are several types of node form fields. Each is typed against what its expected
children would be. For example, a TextFormField would expect to have children that are either 
TextFormField or TextWidgetAnnotation and a PushButtonFormField would expect to have children 
that are either PushButtonFormField or PushButtonWidgetAnnotation. If a form field is expected to 
have heterogeneous children, it is best to use a GenericFormField.

All form fields, whether they are node or leaf form fields will implement the interface IFormElement. 
This element defines the properties and behaviors of a PDF form field. A node form field can have 
children and will therefore have a valid ChildFields property, whereas a leaf form field will always 
have a null ChildFields property.

 While the PDF specification does not forbid that a CheckBoxFormField having non-CheckBox 
children, it is likely the field inheritance in the final PDF will do unexpected things. When a 
document with a PdfForm is saved, DotPdf will flag and optionally repair fields that have 
mismatched children by substituting the appropriate form field type or a GenericFormField if the 
children are heterogeneous.

RadioButtonWidgetAnnotations will not function as a group without a parent. 
The RadioButtonFormField comes with a set of static factory methods for making 
a RadioButtonFormField and correctly constructing and associating a set of 
RadioButtonWidgetAnnotations with that field. When accessing the "value" of a radio set, it is more 
common to look at the parent field rather than all of the children to determine the current value.

Leaf form fields
In PDF forms, leaf form fields are form elements that can have no children and in nearly all cases 
contain the actual data of a field value. In DotPdf, all leaf form fields are implemented as subclasses 
of BaseWidgetAnnotation. For specifics of using widgets annotations, see Widget annotations.

Visiting nodes
While it's straight forward to lop over all the nodes within a PdfForm object, DotPdf provides a 
number of utility methods for enumerating through the nodes in a form. The main mechanism for 
doing this is via the FormVisitor object, which provides methods for visiting each of the nodes in 

431



Atalasoft DotImage Developer's Guide

breadth first and depth first order as well as specializations for visiting only BaseWidgetAnnotation 
objects.

Each of the methods returns IEnumerable<IFormElement> or 
IEnumerable<BaseWidgetAnnotation>.

The following C# code converts a PdfForm to XML.
private static XDocument ToXml(PdfForm form)
{ 
 XDocument xdoc = new XDocument(new XElement("fields", 
  from widget in FormVisitor.WidgetsDepthFirst(form) 
  select new XElement("field", 
   new XAttribute("bounds", String.Format("{0} {1} {2} {3}", 
    widget.Bounds.Left, widget.Bounds.Bottom, widget.Bounds.Width, 
 widget.Bounds.Height)), 
   new XAttribute("type", TypeFromWidget(widget)), 
   widget.FieldFullName != null ? new XAttribute("name", widget.FieldFullName) : null, 
   widget.ValueAsString != null ? new XAttribute("value", widget.ValueAsString) : null, 
   widget.DefaultValueAsString != null ? new XAttribute("default", 
 widget.DefaultValueAsString) : null 
   ))); 
  return xdoc;
}

private static string TypeFromWidget(BaseWidgetAnnotation widget)
{ 
 if (widget is TextWidgetAnnotation) return "text"; 
 if (widget is CheckboxWidgetAnnotation) return "check"; 
 // etc... 
 return "unknown";
}

Form actions
There are two global form actions available: reset and submit. Upon executing a 
PdfResetFormAction, all fields or all specified fields will be reset to their default value. Upon 
executing a PdfSubmitFormAction, all fields or all specified fields (and other data) will be submitted 
to a URI.

The following C# code creates a form with a field reset.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.Form = new PdfForm();
PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

TextWidgetAnnotation color = new TextWidgetAnnotation(new PdfBounds(36, 700, 400, 24), 
 "color", "Orange");
color.TextValue = color.DefaultTextValue;
doc.Form.Fields.Add(color);
page.Annotations.Add(color);

PdfTextLine label = new PdfTextLine("Helvetica", 14, "Favorite Color:", new 
 PdfPoint(36, 730));
page.DrawingList.Add(label);

PushButtonWidgetAnnotation reset = new PushButtonWidgetAnnotation(new PdfBounds(36, 
 670, 100, 25), "Reset", null, null);
reset.ClickActions.Add(new PdfResetFormAction());
page.Annotations.Add(reset);

432



Atalasoft DotImage Developer's Guide

doc.Save("resetform.pdf");

 In this example, the reset button was added to the page, but not to the form. This will 
prevent it from being subjected to the reset. This could also have been accomplished by putting 
the button in the form and adding it to the Fields property of the PdfResetFormAction. Since 
PushButtonFields and PushButtonWidgetAnnotation objects do not have a value, resetting them 
to doesn't make sense.

Merge PDF forms
An interactive form - sometimes referred to as an AcroForm - is a collection of fields for gathering 
information interactively from the user. Each field is associated with one or more widget 
annotations that define its appearance on the page.

For example, a Date field could be associated with multiple widget annotations, each of which could 
be placed on different pages. If one of these annotations is filled, the rest of them are automatically 
given the same value.

The field may have a partial field name. A fully qualified field name is constructed from the partial 
field name of the field and all of its ancestors.

The fully qualified field name for ZipCode is PersonalData.Address.ZipCode (a period (.) is used 
as a separator for fully qualified names). If the form contains fields with identical fully qualified 
names, the annotations of these fields are invalid.

In order to merge PDF documents that contain forms, it is necessary to merge forms as well. If 
forms in different documents contain fields with the same name, the user should either rename or 
merge them.

The PdfGeneratedDocument class provides tools for merging PDF documents with forms.

433



Atalasoft DotImage Developer's Guide

Import pages
PdfGeneratedDocument contains the ImportPages() method. This method loads pages from 
an external PDF document. The ImportPages() method has two arguments: path to file and
import options.

The ImportOptions object has properties to specify passwords and RepairOptions for 
opening external documents, indexes of pages, and inserting at the specified location. If the 
current PdfGeneratedDocument and external PDF document contain one or more forms, use
ImportOptions.FormFieldsConflictHandler to define the merge behavior.

Merge forms
If the current PdfGeneratedDocument and external PDF document contain forms, they should 
be merged. FormFieldsConflictHandler is called if there are fields from external and current 
documents with identical fully qualified names. This handler must resolve conflicts by choosing one 
of the following conflict resolution strategies (defined as FormFieldsConflictResult enum):
• KeepCurrentFieldAndMergeChildren - only keep the field from the current form and merge 

children with the external field's children.
• KeepExternalFieldAndMergeChildren - only keep the field from the external form and merge 

children of the external and current fields.
• KeepBoth - keep both fields. In this case one of the fields should be renamed.

Sample for merging fields with same type and renaming fields with different types

        public void CombinePdfForms() 
        { 
            using (var stm = File.OpenRead(@"TwoPagesForm.pdf")) 

            using (var genDoc = new PdfGeneratedDocument(stm)) 
            using (var streamForImport = File.OpenRead(@"docWithForms.pdf")) 
            { 
                genDoc.ImportPages(streamForImport, new ImportOptions 
                { 
                    FormFieldsConflictHandler = ResolveFormFieldsConflict 
                }); 

                using (var outStm = File.Create("CombinedForm.pdf")) 
                    genDoc.Save(outStm); 
            } 
        } 

        private void ResolveFormFieldsConflict(object s, FormFieldsConflictEventArgs a) 
        { 
            if (a.AreFieldTypesEqual) 
            { 
                a.ConflictResolution =  
                    FormFieldsConflictResult.KeepCurrentFieldAndMergeChildren; 
                return; 
            } 
            // generate new name for field 
            a.ExternalField.FieldName = "new" + a.ExternalField.FieldName; 
            a.ConflictResolution = FormFieldsConflictResult.KeepBoth; 
        }

434



Atalasoft DotImage Developer's Guide

Default merging
If the FormFieldsConflictHandler property is not set, all fields with identical fully qualified 
names and the same field types are merged:
• The current field of the current form is not changed.
• All child fields of the external field are added to the children collection of the current field.

If fields with equal fully qualified names have different field types PdfException is thrown with the 
following message:

Fields with different types have identical fully qualified names. Use ImportOptions to specify a conflict 
resolving handler and rename one of the fields.

DotPdf repair
Starting with DotPdf version 10.4, DotPdf includes the facility to detect and repair damaged PDF 
documents. These repairs include:

• Repairing dictionary objects that have missing required values.
• Repairing dictionary objects that have incorrect optional values.
• Repairing array objects that have syntactically incorrect values or references to non-existent 

objects.
• Repairing stream objects that have incorrect length values or are missing the endstream keyword 

or have incorrect line-ending placement.
• Repairing damaged or incorrect cross-reference tables.
• Repairing incorrect PDF file versions.
• Restoring "orphaned" pages.
• Substitute blank pages for unreadable pages.

In most cases, client code will use the repair mechanism as is, but it is possible to hook into the 
repair process to help inform decisions for repairs to the document and its contents. This can 
include allowing or disallowing repairs that may remove content from the document or otherwise 
change the document's appearance, reporting errors and repairs as they happen, or providing an 
alternative to the value that will be used to replace an incorrect or missing value in a repair.

DotPdf repair process
Generally speaking, DotPdf avoids reading entire PDF documents at any one time. For example, 
when you create a PdfDocument object from an existing PDF document, DotPdf only reads the 
document metadata and enough information to determine how many pages are in the document 
as well as the orientation of each page.

No other information will be read from the PDF document until PdfDocument.Save() is called. 
At this point only the "live" objects in the PDF document will be read. For example, if you open a 
multipage PdfDocument and remove one or more pages from the document then save, the pages 

435



Atalasoft DotImage Developer's Guide

you removed (and all the objects they reference, provided they aren't referenced by other pages) 
are no longer live and won't be read.

By contrast, PdfGeneratedDocument reads in substantially more objects when constructed from an 
existing PDF.

Error detection happens at three possible points in time: when a PDF document is initially opened, 
when PDF objects are read, and when PDF objects are written. When errors are detected, they 
are reported and a request is made to accept the error for potential repair. If errors are not 
accepted for potential repair, DotPdf will throw a PdfException. Often an entire PDF object has 
been read, any errors will be checked for repair. An error will be repaired if the repair system is 
configured to perform that class of repair and if the consequences of the repair are acceptable. If 
the proposed repair and consequences are acceptable, it will be performed. After all repairs have 
been completed for the object, if there were any unperformed repairs, a PdfException is thrown, 
otherwise processing continues.

When a PdfException is thrown during repair, it may get caught inside DotPdf and induce further 
repairs. If it was not caught, it will be passed on to client code and the repair has failed.

One exception to the process is the repair of the document cross-reference table. The cross-
reference table is a structure within a PDF that is used to locate all the other objects within the file. 
If the cross-reference table is damaged or can't be located, then the cross-reference table will be 
rebuilt by scanning the entire contents of file. If this error is not repaired, nothing else can be done 
with the file.

Detect errors
In general, any time any content is loaded or saved from a PDF document an a PdfException is 
thrown, the document is a candidate for repair. DotPdf defines two types of exception, PdfException 
and PdfParseException. The latter inherits from PdfException and is thrown when DotPdf is unable 
to locate the document cross reference table or the cross reference table is damaged.

The following C# code detects errors.
public bool PdfHasErrors(Stream inPdf)
{ 
    Stream outStm = GetTemporaryStream(); 
    try { 
        PdfDocument doc = new PdfDocument(inPdf); 
        doc.Save(outStm); 
        return false; 
    } 
    catch (PdfException) { 
        return true; 
    } 
    finally { 
        RemoveTemporaryStream(outStm); 
    }
}

It should be noted that this will be a potentially expensive process as the entire document will be 
scanned. In a workflow environment, it may be more convenient to catch PdfException when a file is 
being processed, mark it as a failure, repair it later and then resubmit it for processing.

Errors can also be fixed as part of the normal course of events. Be aware that not all errors can be 
repaired and repairing some errors may remove or otherwise change visual content in a PDF.

436



Atalasoft DotImage Developer's Guide

 It is never acceptable to blindly copy a repaired document over the original document.

Repair errors
In order to request that errors should be repaired in a PDF in the course of processing it, construct a 
PdfDocument object or a PdfGeneratedDocument passing in a RepairOptions object. Passing in null 
is equivalent to performing no repair.

The RepairOptions object contains sets of properties that determine if and in some cases how 
errors will be repaired. It also contains event objects that an application can use to track errors.

The default values in RepairOptions represent a good balance of repairing problems without 
excessively damaging the appearance or content of the document.

The following C# code repairs errors.

RepairOptions repairOptions = new RepairOptions();
try
{ 
 PdfDocument doc = new PdfDocument(null, null, pdfStream, null, repairOptions); 
 doc.Save(outputStream);
}
catch (PdfException)
{ 
 // clean up outputStream
}
finally
{ 
 if (repairOptions.StructureOptions.RepairedStoredStream != null)  
  repairOptions.StructureOptions.RepairedStoredStream.Dispose();
}

This example opens a PDF document (with no passwords) and copies it to the output, repairing 
errors. The try/catch is necessary since repairs may fail and client code should manage the output 
stream since it may contain partial/invalid PDF. The finally clause is necessary since repairs may 
require rebuilding the entire file. Under such circumstances, a temporary file will be created. The 
call to Dispose() will remove the temporary file.

As a convenience, PdfDocument contains several flavors of the static method Repair() which is 
equivalent to the above code except with no catch block:
try { 
 PdfDocument.Repair(pdfStream, outputStream, new RepairOptions());
}
catch (PdfException)
{ 
 // clean up outputStream
}

Repair events
In order to provide feedback about what is happening during the repair process, the RepairOptions 
object contains the following events:

• ProblemEncountered: Fired when a problem is first encountered.

437



Atalasoft DotImage Developer's Guide

• ProblemRepaired: Fired when a problem has been repaired.
• ProblemSkipped: Fired when a problem was skipped during repair.

Each event will include the ProblemEventArgs object. Within the ProblemEventArgs is a property 
named Problem of type BaseProblem. This object describes the nature of the problem in the 
Description property and possible consequences of enacting the repair in the Consequences 
property.

In the case of DotPdf, the Consequences object will be of type PdfRepairConsequences. This object 
contains information about the severity of the problem as well as a description of what may happen 
if the repair is enacted.

int problemsEncountered = 0;
int problemsRepaired = 0;
int problemsSkipped = 0;
RepairOptions repairOptions = new RepairOptions();          
repairOptions.ProblemEncountered += (s, e) => problemsEncountered++;
repairOptions.ProblemRepaired += (s, e) => problemsRepaired++;
repairOptions.ProblemSkipped += (s, e) => problemsSkipped++;
PdfDocument.Repair(pdfInStream, pdfOutStream, options);          
Console.WriteLine("The document had {0} errors, {1} repaired, {2} skipped.", 
     problemsEncountered, problemsRepaired, problemsSkipped);

This C# code sample shows how to track the number of errors and repairs in a PDF document.

The event mechanism is separate from the problem selection process. No filtering is done with 
events.

Repair filtering
The RepairOptions object in DotPdf has two levels of filtering, the first is when a problem is 
encountered. This is to decide if the problem should be accepted for repair. The second is at repair 
time to choose if a repair will be enacted. An application could choose to filter based on the type of 
problem or on the severity of the consequences or on the number of problems encountered.

The properties are named ProblemSelectorand RepairSelector. It is not necessary to set either. 
Setting them to null (default) will instruct DotPdf to ignore them.

Both delegates return enumerated types which include the value Default, which is an indication that 
DotPdf should take its default action.

The following C# code sets RepairOptions to filter based on severity.
RepairOptions options = new RepairOptions();
options.RepairSelector = (sender, problem) => 
    { 
        PdfRepairConsequences consequences = problem.Consequences as 
 PdfRepairConsequences; 
        if (consequences == null) return RepairAction.Default; 
        if ((int)consequences.Severity > (int)Severity.Serious) 
            return RepairAction.NoRepair; 
        return RepairAction.Repair; 
    };

438



Atalasoft DotImage Developer's Guide

 You can get this same behavior without a filter by setting 
RepairOptions.MaximumAllowableSeverity.

Structure options
In the RepairOptions object there is a property named StructureOptions of type 
StructureRepairOptions. This object contains a set of properties that are used to control what 
structural elements within a PDF will be repaired.

Property name Property type Default value Description

RebuildCross 
ReferenceTable

bool false If set to true, a PDF 
with a damaged cross-
reference table will have 
the entire file rebuilt 
with a correct cross-
reference table. Upon 
completion, the property 
RepairedStoredStream, 
if non-null will be set to 
the StoredStream that 
was used for a temporary 
file. This type of repair 
may be expensive 
in terms of time and 
storage. It is appropriate 
to use this repair if 
opening a PDF throws a 
PdfParseException.

StoredStreamProvider IStoredStreamProvider TempFileStreamProvider This object is used to 
create a StoredStream 
object that is used to hold 
the contents of a PDF file 
that had to have its cross-
reference table rebuilt.

RepairedStoredStream StoredStream null After repairing a cross 
reference table, this 
property will be non-
null and will contain the 
Stream that holds the 
repaired PDF.

 Dispose this 
object after you 
are done with the 
document.

439



Atalasoft DotImage Developer's Guide

Property name Property type Default value Description

RestoreOrphanedPages bool true If set to true and 
RebuildCrossReference 
Table is set to true, then 
any pages found in 
the document during 
rebuilding that aren't 
part of the document's 
page collection will be 
appended to the end of 
the page collection.

CreateBlankPageIf 
NoPagesFound

bool true PDF documents must 
have at least one page. 
If set to true and a 
document contains no 
pages or nothing but 
damaged pages, a blank 
letter-sized page will 
be added to the page 
collection. Although the 
document will have no 
content on pages, it is still 
may be possible to access 
metadata, forms and 
form data, scripts, and 
other non-page content.

CorrectInvalidData 
StreamLengths

bool true If set to true, embedded 
data stream objects with 
incorrect lengths will be 
repaired by measuring 
the actual length of the 
stream.

RepairNameTrees bool true Name trees are structures 
stored within PDF 
documents that hold 
information associated 
with names. For example, 
there is a name tree 
that is used to hold 
JavaScript objects that are 
used globally within the 
document. If set to true, 
damaged name trees will 
be repaired.

DuplicateNameTree 
EntryRepairAction

DuplicateNameTree 
EntryRepairAction

None Determines an action 
to take when duplicate 
name entries are found. 
None is equivalent to 
ignoring any newer 
duplicates. Other options 
include remove the 
previous one or renaming 
either.

440



Atalasoft DotImage Developer's Guide

Property name Property type Default value Description

AllowPartialNameTrees bool true If an unrecoverable error 
happens while reading 
a name tree, this will 
allow whatever name tree 
entries have already been 
read to be passed on. 
Partial name trees may 
result in later errors when 
links try to find missing 
named destinations or 
named JavaScripts.

NameSelector NameReplacer null Given a 
DuplicateNameTree 
EntryRepairAction that 
requires renaming an 
element, this property 
will be used to rename 
the duplicate entry. This 
delegate will be passed 
the name to rename 
and a list of all other 
names in the tree. This 
delegate should return 
a new name that is not 
contained within the list.

Array options
When elements of arrays are damaged, this set of options will be used to determine how to repair 
the elements

Property name Property type Default value Description

RepairDamaged Elements bool true If set to true, DotPdf 
will attempt to repair 
damaged elements PDF 
arrays. This is done, be 
default, by putting in a 
reasonable default for the 
item.

ElementReplacer ArrayElementReplacer null This delegate, when 
non-null, will be called 
by DotPdf to create an 
appropriate value for a 
damaged array element.

Property repair
Most of the internals of PDF documents consist of Dictionary objects that have property names 
associated with values. The PDF specification defines the content and meaning of elements within 

441



Atalasoft DotImage Developer's Guide

dictionaries. For example, a dictionary may have a property that is required and the dictionary is 
incorrect if the property is missing.

DotPdf has a mechanism for tracking the meanings and settings of PDF dictionaries and 
automatically determines appropriate ways to repair them if they are damaged or missing. It is 
possible to override the default behaviors in DotPdf by setting the PropertyValueReplacer in the 
PropertyRepairOptions object.

Note that it is not possible for client code to make appropriate substitutions for all damaged 
dictionary properties since many dictionary properties (including the dictionaries themselves) are 
internal types and inaccessible to client code. Further, changes to dictionary contents typically 
require deep understanding of the PDF specification.

The following C# code repairs damaged URI objects.
RepairOptions options = new RepairOptions();
options.PropertyOptions.Replacer = UriRepairer;
//...
public bool UriRepairer(PropertyInfo property, string propertyName, object 
 propertyOwner, 
         object defaultValue, object fileParsedValue, object fileSuppliedValue, 
         ref object replacementValue)
{ 
 if (property.PropertyType == typeof(Uri)) 
 { 
  replacementValue = new Uri("http://www.mywebsite.com"); 
  return true; 
 } 
 return false;
}

By default, DotPdf replaces invalid URI objects with a Uri that points to http://127.0.01. This code will 
override that setting and replace them with http://www.mywebsite.com.

Digital signatures
Digital signing is process whereupon an electronic document can be marked so that the document's 
origin can be verified and changes to the document can be detected.

In PDF, there are two main operations for signing a document: certification, and signing.

Both operations involve the  signature annotation widget, but the meanings of certification and 
signature are different.

In the case of a certification, you are placing a signature widget annotation on the document (either 
visible or invisible) along with a set of rules that dictate what changes are allowed to be made to the 
document as a whole. When a document has been certified, the person applying the certification 
is saying, "I declare that the content of this document is exactly what it should be at the time of the 
certification and you may only make the following changes..."

In the case of signing, you are placing an equivalent to a physical signature in the document and 
which carries the same implications of physical signing (accepting terms of a contract, verifying that 
information is complete and so on). The signature may dictate that other widget annotations should 
become locked when it has been signed.

442



Atalasoft DotImage Developer's Guide

In DotPdf, you can certify an unsigned, uncertified document and you can sign a certified or 
uncertified document. In addition, you can sign an already signed or unsigned document as long as 
there are signature annotations that are unsigned and that the document allows that.

DotPdf signs a document using the PKCS7 standard and the modification detection can be 
configured to use any of SHA1, SHA256, SHA384, and SHA512 as the message digest. The actual 
digital signature content is represented by an X509 certificate or a chain of X509 certificates.

When working with DotPdf for digital signatures, there are four main actions that are available:

1. Certifying a PDF document

2. Getting information about a signed or certified document

3. Making allowable changes to a signed or certified document

4. Signing a document

This document will be organized around each of these actions and how to do them.

Note the following:
• DotPdf only supports signing and getting information about PDF documents signed using the 

PKCS7 standard.
• DotPdf tries to use the .NET object RSACryptoServiceProvider to perform signing and certifying 

operations. This object is retrieved from the X509Certificate2 object provided by client 
code. Some versions of this object can not sign with anything but the SHA1 message digest 
algorithm. The CmsInformation object, upon construction, checks to see if the requested 
message digest algorithm is supported by the RSACryptoServiceProvider. If it is not, the 
CmsInformation object checks to see if the X509Certificate2 object can be transferred to 
an equivalent supported by BouncyCastle. If not, then at signing time, the signing code will 
either fall back to using SHA1 or will throw an exception. This behavior is controlled by the 
UnsupportedContentDigestAlgorithmAction property in the CmsInformation object, set by 
the constructor. If the X5092Certificate came from a file, such as a .pfx file and was opened 
requesting the ability to export the private key, then if the RSACryptoServiceProvider is unable to 
sign the document then BouncyCastle will be used.

• SHA1 digest method is deprecated in PDF 2.0. CmsInformation with the SHA1 digest method 
call causes PdfException("SHA1 PdfContentDigestMethod is not supported in PDF 2.0.") in 
PdfDocumentSigner on the signing PDF 2.0 document attempt.

• Future version of DotPdf digital signatures are likely to include more direct access to certificates 
via BouncyCastle.

Certify documents
To certify a PDF document is to apply an X509 certificate to the document and a set of rules to 
prevent and detect tampering with the original document. In DotPdf, this is done through the 
PdfDocument object or the PdfGeneratedDocument object. Both objects contain a property called 
DocumentCertification which describes how the document should be certified when it is saved.

The DocumentCertification property is either a PdfDocumentCertification object or a 
PdfGeneratedDocumentCertification object. Both objects descend from a common base class. The 
main properties are:

443



Atalasoft DotImage Developer's Guide

Property name Property type Description

IsVisible bool Determines if the certification 
should be visible in the document 
or not. Typically certifications are 
invisible, but the user should have 
the choice.

CmsInformation CmsInformation This object contains the chain of 
X509 digital signatures that will 
be used for the object. As well an 
information on how the digital 
signature will be built.

AllowedChanges DocumentMDPAllowed Changes Specifies what changes may be 
made to the document after 
certification
• None: No changes are allowed.
• FillFormsAndSigning: Only 

widget annotations (form fields) 
may be modified.

• FillFormsSigningAnd 
Annotation: Widget annotations 
(form fields) may be modified 
and any type of annotation can 
be added to the document.

The real difference between the two is that the PdfDocument object is extremely light weight and 
can only describe the certification and how it is to be applied in very simple ways. For certifying 
a Pdf through PdfDocument, you can only specify the page number of the page upon which the 
signature annotation that will represent the certificate will appear and the bounding box that will 
contain it. The appearance of the signature will be the default appearance and is not changeable. 
Using PdfGeneratedDocument, you can have the entire suite of PDF generation tools available and 
the signature can have a custom appearance. Rather than calling out a page and location for the 
signature, you place a SignatureWidgetAnnotation on PdfGeneratedPage through its annotation 
collection as well as putting it in the PdfGeneratedDocumentCertification object.

Select PdfDocument or PdfGeneratedDocument for certification
Consider the following criteria when selecting between PdfDocument and PdfGeneratedDocument 
for certification.

Criteria PdfDocument PdfGeneratedDocument

Certification signature will be 
invisible.

X X

Memory may be an issue on target 
system.

X

Appearance of signature is 
important.

X

444



Atalasoft DotImage Developer's Guide

Criteria PdfDocument PdfGeneratedDocument

Placement of signature is 
important relative to other 
annotations.

X

Controlling changes to certified documents
You can choose a set of global rules for how the document may be used post certification. This is 
done by setting the AllowedChanges property of the DocumentCertification object. This setting will 
depend upon your needs for the document. Use this guide to help choose the appropriate setting:

Value When to use

None The document should never be changed in any 
way after it has been certified. For example, a 
transcription of an agreement.

FillFormsAndSigning Only widget annotations (form fields) may be 
modified after certification. This is useful for creating 
a document that will to be signed by another party 
at a later date and will might have other information 
added to the document. For example, a permission 
form might contain a signature box as well as a 
checkbox to indicate that the signer is acting as a 
parent or guardian.

FillFormsSigningAndAnnotations It will be possible to edit any and all annotations that 
are associated with the document (unless they have 
been locked by a previous signature). This setting 
is useful if you are creating a document that should 
not be modified in its content, but is under review by 
other people who will mark up the document with 
annotations.

NotSpecified This value cannot be used in DotPdf when certifying a 
document nor will DotPdf generate a document with 
this value. It is present because it is possible to create 
documents with other tools that have no meaningful 
value for this property. One would only see this value 
in examining the certification settings on an existing 
PDF.

Get signer information
When examining a PDF document, you might want a way to display or act on information about 
signature or certification properties present in the document. PdfDocumentSignatureInformation 
provides a lightweight mechanism for accessing this information as well as additional tools present 
to verify the PDF-oriented aspects of the document and its contents.

 DotPdf does not attempt to validate the content of the X509 certificate chain used in the 
document, but the objects representing the certificate chain are readily available.

445



Atalasoft DotImage Developer's Guide

In the PdfDocumentSigner object, there is a method, GetInfo() which accepts a PDF stream and 
optionally a password and returns a new PdfDocumentSignatureInformation object which describes 
the certificate and signatures, if any, that were in the supplied PDF.

PdfDocumentSignatureInformation contains the following properties:

Property name Property type Description

HasSignatures bool True if the document is contains 
signature widget annotations, 
false otherwise. If the document 
contains signatures, those 
signatures may be unsigned.

IsCertified bool True if the document contains 
a certification signature, false 
otherwise.

AllowedChanges DocumentMDPAllowedChanges If IsCertified is true, this property 
indicates what changes may be 
made to the document (if any). If 
IsCertified is false, this property 
will contain NotSpecified.

Certificate PdfSignatureInformation If IsCertified is true, this 
property will contain a 
PdfSignatureInformation object 
that describes the certificate. If 
IsCertified is false, this property 
will be null.

SignatureCount int Returns the total number of 
signature widget annotations in 
the document, 0 if there are none.

SignedSignatureCount int Returns the total number of 
signature widget annotations that 
are signed, 0 if there are none.

Signatures IList<PdfSignatureAnnotation> Gets a list of information about 
all signature widget annotations 
in the document. This list will 
contain both signed and unsigned 
signature widgets. There are no 
signatures, this list will be empty.

446



Atalasoft DotImage Developer's Guide

Property name Property type Description

ErrorsEncountered IList<SignatureValidationError> If any errors occurred in the 
process of retrieving the document 
signature information, this list 
will contain a description of 
those errors. Errors may be 
either PDF specification related 
errors or errors encountered 
while retrieving the signature 
data. Unlike PdfDocument and 
PdfGeneratedDocument, repair 
of errors within a damaged PDF 
are not possible because repairing 
the errors would invalidate any 
signature in the file. Errors will be 
marked with their severity.

 Getting the PdfDocumentInformation object does not perform an exhaustive check on all 
signatures as that can be very time-consuming. For example, when a signature widget has 
been signed it may forbid changes to any (or all) other widget annotations on the page. The 
PdfDocumentSignatureInformaion object will not give feedback about this class of errors. To do 
that, call the Validate() method in PdfDocumentSignatureInformation, which will do an exhaustive 
check to ensure that no changes have been made to the document that violate the allowable 
changes. Validate() returns a list of SignatureValidationError describing what problems were 
found. Validate does not attempt to validate the contents of any of the X509 certificates used to 
sign signatures.

PdfSignatureInformation object
The PdfSignatureInformation object describes an individual signature with a PDF document. This 
information includes the physical location of the signature as well the X509 Certificate used with 
that signature. It contains the following properties:

Property name Property type Description

IsSigned bool True if the signature widget 
annotation associated with the 
PdfSignatureInformation object 
has been signed, false otherwise.

IsVisible bool True if the signature is visible on 
page, false otherwise. The PDF 
specification has multiple ways of 
determining if a signature widget 
annotation is visible. IsVisible will 
be false if any of those indicate 
that the signature is not visible.

Certification PdfCertification Returns an object that describes 
the certificate used to sign the 
signature widget annotation or null 
if it is not yet signed.

447



Atalasoft DotImage Developer's Guide

Property name Property type Description

PageNumber int The 0-based index on which the 
signature widget annotation can 
be found. Note that even invisible 
signatures should exist on a page.

AnnotationIndex int The 0-based index within the 
annotation collection where the 
signature widget annotation can 
be found.

SignatureIteration int Each time one of more signatures 
in an existing PDF document 
has been signed, all changes 
are encapsulated within the PDF 
document as a revision. This 
number indicates in which revision 
the signature has been signed. It is 
meaningless if IsSigned is false.

SignatureFieldName string This is the dot-qualified name of 
the signature widget annotation. In 
PDF the fields can be represented 
as a tree of fields. The name of 
any given field will be its name 
prepended by its parent name and 
a period character in "parent.child"
format. This corresponds to the 
FieldFullName property of the 
signature widget annotation.

PdfCertification and CmsInformation
The PdfCertification object is a container for the certificate that was used to sign a given signature. 
Currently, it only represents X509 certificate objects, but in the future may represent other types of 
certificates as well. CMS is Cryptographic Message Syntax which is used to sign, digest, authenticate 
or encrypt information. The CmsInformation object in DotPdf contains the chain of certificates 
that were used to sign a document. It also contains the digest algorithm that will be used when 
creating a digital signature, but that property does  not reflect the actual file content when getting 
information about a file at present.

For documents version PDF 2.0, certificates with ECDSA private key algorithms are supported.

Document signing operations
A document that has been certified or contains signed signatures has to be handled in a very 
particular way. For example, a PDF document that has been certified may not allow any changes 
to the document whatsoever or it may allow form fields to be filled in. Both PdfDocument and 
PdfGeneratedDocument operate in a way that requires them to rewrite the entire document upon 
doing a save operation. This type of action would completely invalidate and certificate or signed 
signatures. In PDF, when making changes to such a document, it is necessary to append any 
changes as a revision to the existing document.

448



Atalasoft DotImage Developer's Guide

DotPdf manages this class of operation through the PdfDocumentSigner object. 
PdfDocumentSigner in many ways is similar to PdfGeneratedDocument in that it has a 
representation of the PdfForm object contained within a PDF as well as the a representation of all 
annotations on all pages and a set of document resources.

With PdfDocumentSigner, you can add, remove, or change annotations or form fields 
contained within a PDF, but only if those changes are allowed by the document's certification 
or signatures. For example, if a field within a PDF document had been marked read-only 
as a side-effect of a signature being applied, then attempting to change properties in that 
field will generate an exception. BaseWidgetAnnotation and BaseFormField have new 
properties, IsReadOnlyOrFieldReadOnly and IsFieldReadOnly respectively. When that property 
is true, any attempt to change another public property within that object will throw an 
InvalidOperationException.

PdfDocumentSigner Object
A PdfDocumentSigner Object is constructed from a Stream that allows both read and write 
operations (an ImageOutputStream). Once constructed, the object gives you access to the 
annotations and fields contained within the PDF document and allows/disallows editing of those 
objects (depending on the permissions). When the changes are committed, they will be appended 
onto the supplied stream.

Note the following:
• The PdfDocumentSigner object can only commit one round of changes. If you need multiple sets 

of changes, you will need to construct a new PdfDocumentSigner object for each revision.
• PdfDocumentSigner appends changes to the stream supplied in the constructor. If you 

cannot make changes to your source PDF, it is your responsibility to make a copy first. 
PdfDocumentSigner will not make a copy for you.

The following properties are available in the PdfDocumentSigner object:

Property name Property type Description

Info PdfDocumentSignatureInformation Upon construction, 
PdfDocumentSigner will create a 
PdfDocumentSignatureInformation 
object that is uses (in part) to 
create the rest of the contents of 
PdfDocumentSigner. This object 
provides information as to what 
signatures are present within the 
document, if they are signed, and 
what changes are allowable to the 
document.
For more information, see Get 
signer information.

449



Atalasoft DotImage Developer's Guide

Property name Property type Description

Resources GlobalResources This object is used to hold 
resources that are necessary 
for rendering new annotations 
or editing existing annotations 
(for example, Templates to 
use as appearances). Unlike 
PdfGeneratedDocument, no 
effort is made to import existing 
resources from the PDF document. 
Sharing or changing previous 
resources may produce a 
document that is either invalid or 
violates the security of previous 
signatures or certifications.

PagesOfAnnotations ReadOnlyCollection 
<IList<BaseAnnotation>>

This collection represents the 
annotations on each page by using 
one entry for every page. Each 
entry in PagesOfAnnotations is a 
list of annotations that are on the 
corresponding page. If a page has 
no annotations, the corresponding 
list will be non-null, but empty.
If document forbids adding or 
removing fields or annotations, 
each sub-collection will also be 
read-only.
If a document forbids editing 
annotations or fields, those 
objects will be marked read-only 
and any attempt to change a 
property in that object will throw 
an InvalidOperationException.

 Although the top level 
properties in annotations are 
read-only, sub-objects such 
as AppearanceSet objects are 
not. Even though it appears 
like you can change these 
objects, changes to sub-
elements in a read-only 
object will be ignored. This 
prevents malicious code 
from attempting to change 
the appearance of a signed 
signature widget annotation 
(for example).

450



Atalasoft DotImage Developer's Guide

Property name Property type Description

Form PdfForm The form fields in a PDF 
document are represented as 
a conceptual tree of fields such 
that the leaves of the tree, which 
will always be a sub-class of 
BaseWidgetAnnotation, contain 
the actual data. Although the tree 
can be built in exactly one level, it 
is possible to organize data in the 
tree such that related elements 
are in the same hierarchy (for 
example Person.Name.First and 
Person.Name.Last share the same 
general structure in the tree except 
for the terminal fields First and 
Last).
If a document forbids adding 
or removing fields or widget 
annotations, each collection of 
child fields will be read-only.

 When adding or removing 
a widget annotation 
from the document via 
PagesOfAnnotations, it is 
imperative that the parallel 
change be made in Form.

Use signatures and certifications
See the following for instructions on using signatures and certifications.
• Retrieving Field Data
• Collecting Signature Information
• Editing Annotations and Fields During Review
• Editing Annotations, Fields, and Signature Widgets

 For each of these procedures, the Append...Final() methods have a bool argument that 
instructs DotPdf to close the stream once the changes are made. Although closing the stream 
is not strictly necessary, this is there to remind you that the changes that you have made to the 
stream represent a final step. Any attempt to call these methods subsequently will result in a 
PdfException.

Customize signature appearance
In PDF the appearance of a signature widget annotation is managed through the regular 
annotation appearance mechanism. Any annotation may choose to associate a set of appearances 
with itself that will be used by PDF viewers to determine the visual styling of the object. If there is 

451



Atalasoft DotImage Developer's Guide

no style present, it is up to the viewed to determine the appearance. For more details, see Skin an 
annotation.

The easiest way to manage the appearance of a signature annotation is to allow DotPdf to 
do it for you. When you create a PdfDocumentSignature object, there is a property named 
AutoGenerateSignatureAppearance which, when set to true, will induce DotPdf to call the method 
SignatureWidgetAnnotation.MakeBasicAppearance. This method generates a new Template 
resource and returns the name of the resource.

When this is method is called automatically, it will use the signature widget annotations 
Bounds, BorderColor, BackgroundColor, and DefaultTextAppearance values. If either 
BorderColor and BackgroundColor are null, black and white respectively will be used instead. If 
DefaultTextAppearance is null, DotPdf will use 12 point Helvetica.

When you call the method yourself, you can set any of these values as you want and can also 
disable the default logo, if you so choose.

Beyond these customizations, you can also retrieve the automatically generated Template resource 
and edit it directly as well. You can also choose to not use the automatically generated appearance 
and make your own from scratch.

Certify a document with PdfDocument
This sample certifies an existing PDF with an X509 certificate. The certificate will be invisible.

If you do not choose to provide a diget method to the CmsInformation constructor, it will use 
SHA256 by default.

 While the SHA1 digest method is available, the PDF specification does not recommend its use.

The following C# code certifies a document.
public void CertifyDocument(Stream inPdf, Stream outPdf, 
              X509Certificate2Collection certChain, PdfContentDigestMethod 
 digestMethod)
{ 
    PdfDocument doc = new PdfDocument(inPdf); 
    CmsInformation cmsInfo = new CmsInformation(certChain, digestMethod, 
                 UnsupportedContentDigestAlgorithmAction.FallBackToSHA1); 
    doc.DocumentCertification = new PdfDocumentCertification(cmsInfo, 
 DocumentMDPAllowedChanges.None, 
        false, 0, PdfBounds.Empty); 
    doc.Save(outPdf);
} 

Determine if a document is certified or signed
This C# sample opens an existing PDF and determines if it has been signed or certified.
public bool DocumentIsSigned(Stream inPdf)
{ 
    PdfDocumentSignatureInformation info = PdfDocumentSigner.GetInfo(inPdf); 
    if (info.ErrorsEncountered.Count > 0) 
        ReportErrors(info.ErrorsEncountered); 
    return info.IsCertified || info.SignedSignatureCount > 0;
} 

452



Atalasoft DotImage Developer's Guide

Fill fields of a certified document
This C# sample fills in text fields in a previously signed PDF document.
public void FillFields(Stream inPdf, Dictionary<string, string> fieldNamesAndValues)
{ 
    PdfDocumentSigner doc = new PdfDocumentSigner(inPdf, null); 
    if (doc.Info.AllowedChanges == DocumentMDPAllowedChanges.None) 
        throw new Exception("Document may not be changed."); 
    foreach (BaseWidgetAnnotation anno in FormVisitor.WidgetsBreadthFirst(doc.Form)) { 
        string value = null; 
        TextWidgetAnnotation txAnno = anno as TextWidgetAnnotation; 
        if (txAnno == null || anno.IsReadOnlyOrFieldReadOnly) 
             continue; 
        if (fieldNamesAndValues.TryGetValue(txAnno.FieldFullName, out value)) 
           txAnno.TextValue = value; 
    } 
    doc.AppendChangesFinal(true); // close the stream
}

Sign a document with an existing signature
This C# sample signs a preexisting signature widget annotation in a PDF document. Specifically, it 
signs the first unsigned annotation in the document.
private SignatureWidgetAnnotation FindFirstSig(PdfDocumentSigner doc)
{ 
    SignatureWidgetAnnotation sig = null; 
    for (int i = 0; i < doc.PagesOfAnnotations.Count; i++) { 
        for (int j=0; j < doc.PagesOfAnnotations[i].Count; j++) { 
            sig = doc.PagesOfAnnotations[i][j] as SignatureWidgetAnnotation; 
            if (sig != null && !sig.IsSigned) return sig; 
        } 
    } 
    return null;
}
public void SignFirstSignatureWidget(Stream stm, CmsInformation sigData)
{ 
    PdfDocumentSigner doc = new PdfDocumentSigner(stm, null); 
    SignatureWidgetAnnotation sig = FindFirstSig(doc); 
    if (sig == null) 
        throw new Exception("No signature found."); 
    PdfDocumentSignature docsig = new PdfDocumentSignature(sigData, sig, true, true); 
    doc.AppendSignaturesFinal(true, new PdfDocumentSignature[]{ docsig });
} 

Add a signature to a document
This C# sample signs a possibly certified document by adding a widget annotation and signing it.
public void AddAndSign(Stream stm, CmsInformation sigData, PdfBounds bounds)
{ 
    PdfDocumentSigner doc = new PdfDocumentSigner(stm, null); 
    if (doc.Info.AllowedChanges != 
 DocumentMDPAllowedChanges.FillFormsSigningAndAnnotations) 
        throw new Exception("No changes allowed."); 
    SignatureWidgetAnnotation sig = 
           new SignatureWidgetAnnotation(bounds, "NewSig", null, null); 
    doc.PagesOfAnnotations[0].Add(sig); 

453



Atalasoft DotImage Developer's Guide

    doc.Form.Fields.Add(sig); 
    PdfDocumentSignature docsig = new PdfDocumentSignature(sigData, sig, true, true); 
    doc.AppendSignaturesFinal(true, new PdfDocumentSignature[]{ docsig });
}

Linearized PDF
A Linearized PDF-file (also known as "Fast Web View") is a PDF-file with a specific structure and 
additional information that makes it possible to display the first page quickly, before the entire 
file is downloaded from the Web server. So, the total number of pages and size of the linearized 
PDF document should have little or no effect on the user-perceived performance of viewing any 
particular page.

In order to be linearized, a PDF file must meet the following criteria:
• The linearization parameter dictionary must be entirely contained within the first 1024 bytes 

of the PDF file. This limits the amount of data a conforming reader must read before deciding 
whether the file is linearized.

• A mismatch in the length of the file in the linearization dictionary and the actual file size indicates 
that the file is not linearized. Such files will be treated as an ordinary PDF. In this case the 
linearization information will be ignored. (If the mismatch resulted from appending an update, 
the linearization information may still be correct but requires validation).

• Linearized PDF files must have a specific structure according section F.3 of PDF 32000#1:2008 
(found at http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/
PDF32000_2008.pdf.)

• If hint tables are damaged or missed the PDF is not linearized.

DotImage allows create linearized PDF using these classes:
• PdfDocument - linearizes existing PDF files
• PdfGeneratedDocument - generates a new linearized PDF files and linearizes existing PDF files
• PdfEncoder - allows generate new linearized PDF files from images.

PdfDocument and PdfGeneratedDocument integraton
PdfDocument and PdfGeneratedDocument have an overload of Save() method with the
PdfSaveOption parameter. Set the linearization flag in PdfSaveOption and include it in the
Save() method to get a linearized PDF document.

The following example shows how to save linearized PDF using PdfDocument:

PdfDocument document = new PdfDocument("fileName.pdf"); 
            PdfSaveOptions options = new PdfSaveOptions {Linearized = true}; 
            document.Save("linearizedPdf.pdf", options);
This C# code linearizes PDF file using PdfGeneratedDocument 
        using (var stm = File.Open("fileName.pdf", FileMode.Open, FileAccess.Read)) 
        { 
            PdfGeneratedDocument document = new PdfGeneratedDocument(stm); 
            PdfSaveOptions options = new PdfSaveOptions {Linearized = true}; 
            document.Save("linearizedPdf.pdf", options, null); 
        }

454

http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/PDF32000_2008.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/PDF32000_2008.pdf


Atalasoft DotImage Developer's Guide

PdfEncoder integration
To create linearized PDF with PdfEncoder, set the linearization flag in PdfEncoder. The following 
C# sample shows how to save linearized PDF using PdfEncoder:

  FileSystemImageSource fs = 
                new FileSystemImageSource(new[] {@"images.tif"}, true); 
            PdfEncoder encoder = new PdfEncoder {Linearized = true}; 
            string outFile = "output.pdf"; 
            using (FileStream outfs =  
                File.Open(outFile, FileMode.Create, FileAccess.ReadWrite)) 
            { 
                encoder.Save(outfs, fs, null); 
            }

PDF/A
PDF/A is a version of the Portable Document Format (PDF) designed to use in the archiving and 
long-term preservation of electronic documents. It restricts certain features as well as enforcing 
requirements to preserve the visual appearance of the document. All images must include color 
profiles to ensure proper color reproduction. All fonts must be embedded within generated PDF 
documents.

PDF/A in PdfDocument
For document-level manipulation of PDF documents Atalasoft DotImage provides the PdfDocument
class, which can be used to add, move and remove pages, edit bookmarks and perform other 
operations on documents.

The PdfDocument class is designed to work with existent PDF documents and cannot be used to 
create PDF (or PDF/A) documents from the scratch. Nor can it fully work with page elements such as 
annotations, images and text.

The PdfDocument class cannot be used to convert PDF documents into PDF/A compliant 
documents because it order to do this it is necessary to access a page's elements such as images 
and text, which is not possible with PdfDocument.

However, the PdfDocument class can be used to work with existing PDF/A documents of the 
following versions:
• Pdf/A-1 (a, b).
• Pdf/A-2 (a, b, u).
• Pdf/A-3 (a, b, u) (if it does not contain a portfolio).

Changing part and conformance level of PDF/A is not supported.

A PDF/A document can be saved using the PdfDocument class, if:
• All source PDF documents conform to the PDF/A specification.
• All source PDF documents have color profiles with equal color spaces.

455



Atalasoft DotImage Developer's Guide

Saving a PDF/A document
If the source document is PDF/A compliant, the PdfDocument class saves PDF/A document without 
additional configuration.

   var pdfDoc = new PdfDocument("inPdfA.pdf"); 
   // ... 
   pdfDoc.Save("outPdfA.pdf");

If the source file (or one of source files) is not PDF/A compliant, the behavior of the PdfDocument
class can be configured with PdfASavingBehavior property of the PdfSavingOptions class. The 
following options are available:
• PreserveOriginalPdfType - saves a PDF/A document or throws a PdfAException, if all source 

documents are PDF/A. Otherwise a regular PDF document will be saved. This value is used by 
default.

• SavePdfA - saves a PDF/A document, if all source documents are PDF/A and have color profiles 
with the same color spaces. Otherwise, it throws a PdfAException.

• SavePdf - saves regular PDF document without PDF/A metadata, regardless of the source 
document.

Saving behavior for single source document

Single source document typePdfASavingBehavior

Regular PDF PDF/A

PreserveOriginalPdfType Regular PDF PDF/A

SavePdfA PdfAException PDF/A

SavePdf Regular PDF Regular PDF

Example using PdfASavingBehavior:

    var pdfDoc = new PdfDocument("inPdfA.pdf"); 
    // ... 
    var options = new PdfSaveOptions 
    { 
       PdfASavingBehavior = PdfASavingBehavior.SavePdf 
    }; 
    pdfDoc.Save("regularPdf.pdf", options);

In order to save pages from several PDF/A documents into a single one, the following requirements 
are applied to the source documents:
• All source documents are PDF/A compliant.
• All source PDF documents have color profiles with equal color spaces.

Saving behavior for multiple source document

Multiple source document typePdfASavingBehavior

Regular PDF Mixed PDF/A

456



Atalasoft DotImage Developer's Guide

PreserveOriginalPdfType Regular PDF Regular PDF PDF/A or PdfAException

SavePdfA PdfAException PdfAException PDF/A or PdfAException

SavePdf Regular PDF Regular PDF Regular PDF

 PDF/A or PdfAException means that result depends on versions of source PDF/A documents 
(see the PDF/A compatibility table) and main color profiles.

According to the specification, a single ICC color profile should be defined for a PDF/A document 
and placed in the OutputIntents PDF dictionary. Only color profiles with RGB or CMYK color 
spaces should be used.

OutputIntents provides the means for matching the color characteristics of a PDF document with 
those of a target output device or production environment in which the document will be printed.

Therefore, if one of the PDF documents contains a color profile with a different color space, the PDF/
A document cannot be saved. In this case, the PdfDocument class will throw a PdfAException.

In order to find out whether a PDF/A document can be saved, the IsPdfACompatible() method 
of the PdfDocument class can be used. The IsPdfACompatible() method checks the main color 
profiles and the compatibility level (obtained from metadata) of all source documents.

 The IsPdfACompatible() method does not check for compliance with the PDF/A standard.

    var firstDoc = new PdfDocument("first.pdf"); 
    var secondDoc = new PdfDocument("second.pdf"); 
    firstDoc.Pages.AddRange(secondDoc.Pages);  
    var options = new PdfSaveOptions 
    { 
       PdfASavingBehavior = firstDoc.IsPdfACompatible() 
          ? PdfASavingBehavior.SavePdfA 
          : PdfASavingBehavior.SavePdf 
    }; 

    firstDoc.Save("output.pdf", options);

In case of saving PDF document, which contains pages from several documents with different part 
and conformance level of PDF/A standard, part and conformance level for the target document will 
be set according to the PDF/A compatibility table. The resulting conformance level is determined 
based on input documents levels that are read from metadata in the PDF/A compatibility table.

Pdf/A-1 Pdf/A-2 Pdf/A-3

a b a b u a b u

a Pdf/A-1a
Pdf/A-1

b Pdf/A-1b Pdf/A-1b

a exception exception Pdf/A-2a

b exception exception Pdf/A-2b Pdf/A-2bPdf/A-2

u exception exception Pdf/A-2b Pdf/A-2b Pdf/A-2u

457



Atalasoft DotImage Developer's Guide

a exception exception exception exception exception Pdf/A-3a

b exception exception exception exception exception Pdf/A-3b Pdf/A-3bPdf/A-3

u exception exception exception exception exception Pdf/A-3b Pdf/A-3b Pdf/A-3u

PDF/A data in PdfDocumentMetadata
Most PDF documents contain metadata in XML format that stores information about the time of 
creation and modification of the document, the author, etc.

According to the specification, a PDF/A document should contain XML-metadata with information 
about the part and compliance level of the PDF/A standard.

This data can be obtained from the PdfAVersion property of the PdfDocumentMetadata object:

    public enum PdfAVersion 
    { 
        PdfA1a, 
        PdfA1b, 
        PdfA2a, 
        PdfA2b, 
        PdfA2u, 
        PdfA3a, 
        PdfA3b, 
        PdfA3u, 
        NotPdfA 
    }

 The PdfAVersion property value is set based on metadata retrieved from the PDF document. 
This metadata may be incorrect if PDF document itself does not conform to the PDF/A standard 
at all or to the specified version of the PDF/A standard. The PdfDocument class does not check 
for compliance with the PDF/A standard, therefore, the PdfAVersion property value may also be 
incorrect.

The PdfAVersion property can be obtained from:
• PdfDocument.Metadata.PdfAVersion

• ExaminerResults.Metadata.PdfAVersion

• PdfGeneratedDocument.Metadata.PdfAVersion

• PdfDocumentMetadata.FromStream(…).PdfAVersion

PDF/A in PdfGeneratedDocument
PdfGeneratedDocument can be saved as PDF/A-1b using PdfARenderer class.

PdfARenderer is inherited from PdfRenderer and placed in Atalasoft.dotImage.PdfDoc. It is 
responsible for creating PDF/A-1b files/streams from PdfGeneratedDocument objects.

The following code is a demonstration of PdfARenderer usage:
     using (var source = File.OpenRead("doc.pdf")) 
     using (var genDoc = new PdfGeneratedDocument(source))  
     using (var cmykProf = new PdfIccColorSpaceResource( 
            File.OpenRead("CMYK.icm"), true)) // see "Color Spaces" 

458



Atalasoft DotImage Developer's Guide

     using (var result = File.Create("result.pdf")) 
     { 
         PdfARenderer renderer = new PdfARenderer(result) 
         { 
             // see "Color Spaces" 
             CmykColorSpace = cmykProf,  
             // see "Page Extraction" 
             ImageExtractor = new AtalaImageExtractor(), 
             // see "Annotations and Actions" 
             IgnoreUnsupportedAnnotsAndActions = true,  
             // see "Convert pages to images" 
             ConvertIncompatiblePagesToImages = true 
         }; 
         // see "Streamless Fonts" 
         renderer.StreamlessFontFound += (o, arg) => 
                  arg.AlternativeFontPath = GetTTFont(arg.FontResource);  

         renderer.Render(genDoc); 
     }

For more information about properties and methods used in this sample, see subsequent chapters 
in this guide.

Convert pages to images
Not all components in a PDF document can be converted to the PDF/ A standard. To handle this 
case, PdfARenderer has a ConvertIncompatiblePagesToImages property. If this property is set to 
the "true" value and the page cannot be converted to PDF/A, the page is converted to the image 
instead of generating a PdfAException.

If the ConvertIncompatiblePagesToImages flag is set, AtalaImageExtractor should be 
provided to PdfARenderer and AtalaImageCompressor should be provided to compressors of 
PdfGeneratedDocument. Otherwise, the PdfARenderer class throws a PdfAException with the 
following message:

"To use ConvertIncompatiblePagesToImages, ImageExtractor is required."

AtalaImageExtractor is a class that can be set to ImageExtractor-property to extract a page 
image from a PDF document. This class located in Atalasoft.dotImage.PdfDoc.Bridge.dll and uses 
PdfDecoder from Atalasoft.dotImage.PdfReader.dll.
    using (var source = File.OpenRead("doc.pdf")) 
    using (var genDoc = new PdfGeneratedDocument(source))  
    using (var result = File.Create("result.pdf")) 
    { 
            genDoc.Resources.Images.Compressors.Add(new AtalaImageCompressor()); 
            PdfARenderer renderer = new PdfARenderer(result, false) 
            { 
                ConvertIncompatiblePagesToImages = true, 
                ImageExtractor = new AtalaImageExtractor() 
            }; 

            renderer.Render(genDoc); 
    }

459



Atalasoft DotImage Developer's Guide

Color spaces
According to the PDF/A specification, each image and color space should use a specific color profile. 
PdfARenderer uses RgbColorSpace and CmykColorSpace to provide a specific color profile stream 
for each image. ICC and ICM files can be used as color profiles.

If RgbColorSpace is not specified, DefaultRgbColorSpace is used.

If a CMYK image is found and CmykColorSpace is not specified, the 
PdfAImageAndColorSpaceException is thrown with the following message:

"The PDF document contains an image with the DeviceCMYK color space. The PDF/
A specification requires the use of a specific color profile. Please, provide 
the CmykColorSpace."

  using (var source = File.OpenRead("doc.pdf")) 
  using (var genDoc = new PdfGeneratedDocument(source)) 
  // Provide CMYK color profile 
  using (var cmykProf = new PdfIccColorSpaceResource 
        (File.OpenRead("Microsoft Free CMYK Standard - RSWOP.ICM"), true)) 
  // Provide RGB color profile 
  using (var rgbProf = new PdfIccColorSpaceResource( 
          File.OpenRead("ISO22028-2_ROMM-RGB.icc"), true)) 
  using (var result = File.Create("result.pdf")) 
  { 
          PdfARenderer renderer = new PdfARenderer(result) 
          { 
             CmykColorSpace = cmykProf, 
             RgbColorSpace = rgbProf 
          }; 
          renderer.Render(genDoc); 
  }

Images
PdfARenderer does not support images with a mask. If a page contains an image with a mask, 
PdfARenderer throws an PdfAImageAndColorSpaceException with the following message:

"The PDF/A standard does not support images with a mask. Use 
ConvertIncompatiblePagesToImages to convert the page to an image."

As mentioned in the error message, the user can use the ConvertIncompatiblePagesToImages flag 
to convert the entire page into the image.

The PDF/A-1 standard prohibits images with more than 8 bits per color component. Such images 
will be extracted and converted using an ImageExtractor.

In addition, the PDF/A-1 standard prohibits images with JPEG2000 compression. Such images will be 
extracted using an ImageExtractor and then recompressed.

Fonts
A PDF document can use streamless fonts, which are based on metrics and descriptions, but do not 
contain a font stream (FontFile, FontFile2 and FontFile3 in terms of the PDF specification). These 
fonts should be well-known to PDF readers.

460



Atalasoft DotImage Developer's Guide

According to the PDF/A specification, all fonts must be embedded to the target file; in addition to 
the metrics and descriptions of fonts, the document should contain a font stream.

Standard fonts
The PDF standard contains 14 Standard Type 1 Fonts (standard fonts) that are well-known to PDF 
readers and specified only by font name in PDF documents.

According to the PDF/A specification, standard fonts used in a document must be embedded in the 
target file. Therefore, a standard font used in the document is replaced by the system font, which is 
loaded from the system font directory according to the following table.

Original Standard Font System Font

Times-Roman Times New Roman

Times-Bold Times New Roman Bold

Times-Italic Times New Roman Italic

Times-BoldItalic Times New Roman Bold Italic

Helvetica Arial

Helvetica-Bold Arial Bold

Helvetica-Oblique Arial Italic

Helvetica-BoldOblique Arial Bold Italic

Courier Courier New

Courier-Bold Courier New Bold

Courier-Oblique Courier New Italic

Courier-BoldOblique Courier New Bold Italic

Symbol *Not supported

ZapfDingbats *Not supported

* No similar system fonts exist for the Symbol and ZapfDingbats standard fonts. PdfARenderer can't 
save PDF/A documents with these fonts without generating a PdfAException at runtime with the 
following message:

"Could not find alternate font file for font with name [Symbol/ZapfDingbats]. 
You can handle the StreamlessFontFound event by providing your own font."

Or, if ConvertIncompatiblePagesToImages property is set, the pages that use these fonts are 
converted to images.

To replace a standard font with another one, the event StreamlessFontFound is used. See the next 
section.

Streamless fonts
If no stream exists in the font, PdfGeneratedDocument tries to find a similar system font by the 
name specified in /BaseFont.

461



Atalasoft DotImage Developer's Guide

Then the StreamlessFontFound event, placed in the PdfARenderer class, is called. The arguments of 
the StreamlessFontFound event contain:
• FontResource: PDF font resource that contains information about the font.
• GlobalFontName: Global name of PDF font resource that does not have a stream. If for some 

reason the font is not imported to global resources, this value is null.
• AlternativeFontPath: Path to a file with a similar system font. If a similar font is not found, the 

value is null.

The user can replace AlternativeFontPath with the path to a specific file with a TrueType font on 
handling this event.

         using (var source = File.OpenRead("doc.pdf")) 
         using (var genDoc = new PdfGeneratedDocument(source))  
         using (var outStm = File.Create("mergedPdfA.pdf")) 
          { 
             var renderer = new PdfARenderer(outStm); 
             renderer.StreamlessFontFound += (o, arg) =>  
                  arg.AlternativeFontPath = GetTTFont(arg.FontResource); 
             renderer.Render(genDoc); 
         }

If a similar font is not found or is not provided by the user, PdfAFontException is thrown with the 
following message:

"Could not find alternate font file for font with name [base font name]. You 
can handle the StreamlessFontFound event by providing your own font"

Or, if ConvertIncompatiblePagesToImages property is set, the pages that use this font are 
converted to images.

If a font file is found in system fonts or a user file is provided, the PDF file font is converted to 
TrueType and the preceding file is used as the stream.

Encoding
According to PDF specifications, fonts may include encoding to support the use of ANSI character 
codes that represent Unicode symbols, without using Unicode strings and CID fonts.

If a file contains a Type 1 streamless font, it is converted to the TrueType font by PdfARenderer. 
However, this capability is limited, because nonsymbolic TrueType fonts can have only 
WinAnsiEncoding or MacRomanEncoding. PdfARenderer does not support the Type 1 fonts with 
custom encoding. Therefore, if any input document contains such fonts, the PdfAFontException is 
thrown. To avoid the exception, be sure to edit your input document to remove Type 1 fonts that 
include custom encoding.

Transparency
A PDF document can contain objects or groups of objects with full or partial transparency (see 
"11 Transparency" in PDF 32000-1:2008). Text, images, annotations and other objects can be 
transparent.

According to the PDF/A-1b specification, transparency is not supported. So, all transparent objects 
become opaque.

462



Atalasoft DotImage Developer's Guide

Annotations and Actions
The following action types are not permitted in PDF/A.
• ImportData
• JavaScript
• Launch
• Movie
• ResetForm
• SetState
• Sound

If PdfGeneratedDocument contains one of these actions, PdfARenderer throws a 
PdfAActionException with the following message:

"PDF/A does not support [action type] actions."

The following annotation types are permitted in PDF/A:
• Text
• Link
• FreeText
• Line
• Square
• Circle
• Highlight
• Underline
• Squiggly
• StrikeOut
• Stamp
• Popup
• Widget
• PrinterMark
• TrapNet

If PdfGeneratedDocument contains other annotations, PdfARenderer throws a 
PdfAAnnotationException with the following message:

"PDF/A does not support [annotation type] annotations."

The IgnoreUnsupportedAnnotsAndActions-property of PdfARenderer class allows the ability to 
ignore annotations and actions that not supported by the PDF/A-1b standard, instead of generating 
an exception.

All partially transparent annotations become opaque, because transparency is not supported by the 
PDF/A-1b standard.

463



Atalasoft DotImage Developer's Guide

Merge PDF/A documents
To merge PDF documents, create a PdfGeneratedDocument object based on one of the documents, 
call the ImportPages() method with the path to other documents. For more information, see Merge 
PDF Forms.

After that, use PdfARenderer to save PDF/A document:

     using (var stream = File.OpenRead(@"first.pdf")) 
     using (var genDoc = new PdfGeneratedDocument(stream)) 
     using (var streamForImport = File.OpenRead(@"second.pdf")) 
     { 
         genDoc.ImportPages(streamForImport); 
         using (var outStm = File.Create("mergedPdfA.pdf")) 
         { 
             var renderer = new PdfARenderer(outStm)  
             { 
                  ImageExtractor = new AtalaImageExtractor() 
             }; 

             renderer.Render(genDoc); 
         } 
     }

Error handling
While saving the PDF/A document using the PdfARenderer class, the following types of 
PdfAExceptions can be thrown.

Error type Message Solution

PdfAException To use 
ConvertIncompatiblePagesToImages, 
ImageExtractor is required.

Set AtalaImageExtractor to the 
PdfARenderer.ImageExtractor-
property.

PdfAException PDF/A standard does not support 
transparency.

Set 
ConvertIncompatiblePagesToImages 
= true.

PdfAException PDF/A standard does not support 
transfer functions.

Set 
ConvertIncompatiblePagesToImages 
= true.

PdfAException Form or form elements do not 
comply with the PDF/A standard. 
See the inner exception for details.

Solve the inner exception or 
remove Form from the document. 
This issue and inner exception 
cannot be solved with the 
ConvertIncompatiblePagesToImages 
or 
IgnoreUnsupportedAnnotsAndActions 
flags.

PdfAActionException PDF/A does not support [action 
type] actions.

Set 
IgnoreUnsupportedAnnotsAndActions 
= true.

464



Atalasoft DotImage Developer's Guide

PdfAActionException PDF/A does not support 
AdditionalActions in widget 
annotations.

Clear AdditionalActions property 
in widget annotations or set 
IgnoreUnsupportedAnnotsAndActions 
= true.

PdfAActionException PDF/A does not support 
ClickActions in widget annotations.

Clear ClickActions-property 
in widget annotations or set 
IgnoreUnsupportedAnnotsAndActions 
= true.

PdfAActionException PDF/A does not support 
AdditionalActions in form fields.

Clear AdditionalActions-
property in form fields or set 
IgnoreUnsupportedAnnotsAndActions 
= true.

PdfAAnnotationException PDF/A does not support 
[annotation type] annotations.

Set 
IgnoreUnsupportedAnnotsAndActions 
= true.

PdfAAnnotationException Annotation appearance does not 
comply with the PDF/A standard. 
See the inner exception for details.

Solve inner exception, replace 
annotation appearance or set 
IgnoreUnsupportedAnnotsAndActions 
= true.
This and inner exception 
cannot be solved with 
ConvertIncompatiblePagesToImages 
flag.

PdfAFontException Could not find alternate 
font file for font with name 
[BaseFont]. You can handle the 
StreamlessFontFound event by 
providing your own font.

Handle StreamlessFontFound 
event and provide font 
to AlternativeFontPath 
argument. Or set 
ConvertIncompatiblePagesToImages 
= true.

PdfAFontException Type1 streamless fonts with 
custom encoding are not 
supported.

Use external tool to modify input 
document to remove any Type 1 
fonts with custom encoding. Or set 
ConvertIncompatiblePagesToImages 
= true.

PdfAImageAndColorSpaceException PDF/A standard does not 
support images with a mask. Use 
ConvertIncompatiblePagesToImages 
to convert the page to an image.

Set 
ConvertIncompatiblePagesToImages 
= true.

PdfAImageAndColorSpaceException The PDF document contains an 
image with the DeviceCMYK color 
space. The PDF/ A specification 
requires the use of a specific 
color profile. Please provide the 
CmykColorSpace.

Provide CMYK color profile 
stream to CmykColorSpace-
property. Or set 
ConvertIncompatiblePagesToImages 
= true.

PdfAImageAndColorSpaceException The PDF document contains 
content with the DeviceCMYK color 
space. The PDF/ A specification 
requires the use of a specific 
color profile. Please provide the 
CmykColorSpace.

Provide CMYK color profile 
stream to CmykColorSpace-
property. Or set 
ConvertIncompatiblePagesToImages 
= true.

465



Atalasoft DotImage Developer's Guide

PdfAImageAndColorSpaceException Page contains unimported images 
that may contain prohibited 
parameters for PDF/A-1b.

Set 
ConvertIncompatiblePagesToImages 
= true.

PdfAImageAndColorSpaceException Image [global name] has [value] 
bits per color component. PDF/
A-1 prohibits the use of images 
that exceed 8 bits. Provide 
ImageExtractor to extract and 
convert the image.

Set AtalaImageExtractor to the 
PdfARenderer.ImageExtractor 
property.

PdfAImageAndColorSpaceException Image [global name] used 
JPEG2000 compression.
PDF/A-1 prohibits the use of 
JPEG2000 compression. Provide 
ImageExtractor to recompress the 
image.

Set AtalaImageExtractor to the 
PdfARenderer.ImageExtractor 
property.

PdfAImageAndColorSpaceException Image [global name] has an 
unknown color space that can be 
prohibited for PDF/A-1. Provide 
ImageExtractor to extract and 
convert the image.

Set AtalaImageExtractor to the 
PdfARenderer.ImageExtractor 
property.

PDF 2.0
PDF 2.0 is an ISO-standardized second version of the PDF, that extend basic standard with new 
features.

PdfGeneratedDocument supports creation, opening, saving, editing of PDF 2.0 documents.

Document update to version 2.0 is also supported if all annotations contain an Appearance. 
Otherwise PdfException is thrown.
using (var doc = new PdfGeneratedDocument(stm))
{ 
     doc.PdfVersion = 2.0; 
     doc.Save("result.pdf");
}

Sound annotations and actions are deprecated in PDF 2.0. SoundAnnotation and PdfSoundAction 
classes are preserved for PDF 1.7 and earlier, but they should not be used in PDF 2.0 documents. 
Otherwise, PdfGeneratedDocument will skip them or throw PdfException ("Object cannot be saved. 
Object type: {objectType}. Reason: object deprecated in PDF 2.0") on the document save attempt. 
For more information, see Document upgrade to PDF 2.0.

Creation of new digital signatures, 3D-annotations and other objects, specified in PDF 2.0, are not 
supported. But these objects will be preserved "As Is" if they already exist in the original document.

466



Atalasoft DotImage Developer's Guide

Document upgrade to PDF 2.0
Several PDF objects are deprecated in PDF 2.0. Some of the deprecated objects can be safely 
skipped because they contain redundant data. Skipping other deprecated objects may cause data 
loss. Here the list of such objects:
• XFA
• Sound annotation
• Movie annotation
• Sound action
• Movie action

During the upgrade document with deprecated objects, that cannot be safely skipped, 
PdfDocument and PdfGeneratedDocument can skip these objects or throw PdfException with object 
type and reason.

For this purpose, ObjectCannotBeSaved-event is added to PdfSaveOptions. This event occurs on 
saving PDF 2.0 document, before writing deprecated objects.
 using (var stm = File.OpenRead(@"pdf1_5.pdf"))
{ 
    var doc = new PdfGeneratedDocument(stm); 
    doc.PdfVersion = 2.0; 
    var options = new PdfSaveOptions(); 
    options.ObjectCannotBeSaved += (arg, obj) => 
    { 
       switch (obj.ObjectType) 
       { 
            case "XFA": 
                 obj.Action = ObjectCannotBeSavedEventArg.SaveObjectAction.Skip; 
                 break; 
            case "SoundAnnot": 
                 obj.Action = 
 ObjectCannotBeSavedEventArg.SaveObjectAction.ThrowException; 
                 break; 
        } 
     }; 
     doc.Save("pdf2_0.pdf", options, null);
}

467



Chapter 6

DotTwain

DotTwain is a 100% Managed .NET Windows Form component with fast capture of digital images 
from scanners, cameras, and other devices supporting TWAIN.
• Utilizes the improvements of the TWAIN 2.4 specifications for ultra fast scanning.
• Works with a .NET Bitmap object and has no dependencies other than the .NET Framework.

Supported features
• Full context-sensitive help and documentation.
• Object-oriented design; a TWAIN extension to the .NET Framework.
• Create a custom interface to scan images, or use the default TWAIN interface.
• Automatic Document Feeder support, with full control of the feeder operations.
• Support for duplex scanning.
• File system support for navigating the internal device memory.
• Acquire images directly to file utilizing compression algorithms supported by the device.
• Select a region of the scanning bed to be acquired with frame support.
• Upload a scanned image to a server with the built in HTTP Post class.
• Simplified automatic capture allowing the device to quickly capture multiple images for later 

acquisition.
• Imprinter/Endorser methods allowing a text string to be stamped onto the acquired image 

during the acquisition.
• Barcode/Patchcode classes to access bar code and patch code recognition abilities of the device.
• A low-level class allowing even more control over the scanning session for advanced users.
• Extensible to allow custom driver capabilities access.
• Image dataset support enables acquisition of specific images from a camera in a single 

operation.
• Quickly find out what capabilities, compression modes, frame sizes, resolutions and more, are 

supported by a device.
• Over 80 properties and 50 methods to give total control over the image acquisition.

DotTwain has been tested on many industry leading document scanners including those from 
Kodak, Fujitsu, Panasonic, Canon, Visioneer, Xerox, and Bell & Howell.

468



Atalasoft DotImage Developer's Guide

About DotTwain
This introduces you to the basic classes you need to know about to gain a general understanding of 
DotTwain and to begin using it.

Acquire images

Acquisition
The Acquisition object is the primary class in DotTwain. You can add this component to the toolbox 
and then drop it onto a form. You can also instantiate the component directly. This is the only class 
you need to add standard image acquisition capabilities to an application.

For greater control over the acquire process, this class contains a collection of Device objects that 
controls numerous properties used for the image acquisition.

TwainController
The TwainController object is a low-level TWAIN class used by the Device and Acquisition objects. By 
using this class you gain more direct access to TWAIN and you can use custom driver capabilities.

This class can be created as a standalone object or can be accessed through the Device.Controller 
property.

 Only advanced users with knowledge of the TWAIN specification should use this class.

Device
The Device object provides full access to a TWAIN compatible source on the system. Use it to open 
a connection to the device, to get and set properties, and then to acquire one or more images. 
Because this class represents a system device resource, you cannot create an instance of it. You can 
obtain an instance to a Device object by calling ShowSelectSource, or from the Devices collection in 
the Acquisition object.

DeviceCollection
The DeviceCollection holds a read-only collection of Device objects which represent all of the TWAIN 
compatible system resources. You can obtain the system default device from this collection. A 
suitable device also can be found by enumerating through the collection. Should system conditions 
change, such as a device being unplugged, the ScanForChanges () method can be used to recreate 
this collection.

Document feeder control
Many scanners have an automatic document feeder (ADF) that allow scanning multiple images in a 
single process. The DocumentFeeder class gives full control over the feeder. You can also use this 
control to enable or disable the class.

469



Atalasoft DotImage Developer's Guide

Navigating files in a camera

FileSystem
Use the FileSystem object to walk through the file system structure in a TWAIN compatible camera's 
internal storage. You can also use the FileSystem to create, delete, copy and rename files and 
directories directly in the camera.

Use the SetImageDataset () method in the Device object to acquire images from the camera, then 
call the Acquire () method of the same Device object.

ActiveX control API reference
AcquisitionControl provides the central interface for DotTwain ActiveX acquisition and the transfer 
of images.

Class API

void Initialize()

Initializes the control and begins the licensing process. This must be called before any other 
method. In most cases, the ideal place to call this from is your page's <body onload=""> event.

bool IsTwainAvailable()

true: if Twain is installed on the client system and at least one Twain device is present.

false: if Twain is not installed on the system or no Twain devices are found.

String[] GetAvailableDevices()

Returns an array of strings, each representing an installed Twain device.

void Scan( String deviceName )

Begins the scanning process with the specified Twain device. The passed deviceName must match a 
string returned from GetAvailableDevices exactly.

IJSDevice GetDevice( String deviceName )

Used for batch scanning. The passed deviceName must match a string returned from 
GetAvailableDevices exactly. Returns a queryable representation of a Twain device.

IJSBatch CreateNewBatch( IJSDevice device )

Used for batch scanning. Given an IJSDevice from the GetDevice method, creates a new IJSBatch 
which is a parameterized representation of the batch acquisition process.

void BatchScan( IJSBatch batch )

470



Atalasoft DotImage Developer's Guide

Used for batch scanning. Given an IJSBatch from the CreateNewBatch method, starts the Twain 
acquisition process.

Class events
ControlInitializing( JSControlInitializationStartingEventArgs args)

Occurs immediately after the Initialize() method is called.

ControlInitializationComplete( JSControlInitializationCompleteEventArgs args )

Occurs after the control has been successfully initialized and licensed.

BatchStarting( JSBatchStartingEventArgs args )

Occurs immediately after the Scan() or BatchScan() methods are called.

ImageAcquired( JSImageAcquiredEventArgs args )

Occurs after each Twain image acquisition.

TransferStarting( JSTransferStartingEventArgs args )

Occurs before the transfer of each image.

TransferComplete( JSTransferCompleteEventArgs args )

Occurs when the transfer of each image has completed.

BatchComplete( JSBatchCompleteEventArgs args )

Occurs when all Twain images have been acquired and all image transfers have completed or 
otherwise stopped.

ImageAcquisitionCancelled( JSImageAcquisitionCanceledEventArgs args )

Occurs when the user clicks the cancel button in the Twain driver UI.

Error( JSErrorEventArgs args )

Occurs when an internal exception has occurred in the AcquisitionControl.

Getting started

Add DotTwain to the toolbox
Add the Acquisition component to the toolbox.

1. On the Visual Studio .NET menu, click Tools > Customize Toolbox.

2. Make sure the .NET Framework Components tab is selected, and find the Atalasoft.Twain 
namespace.

471



Atalasoft DotImage Developer's Guide

3. Select the checkbox that corresponds to the Acquisition component.

4. Click OK.

Set application information
After you add the Acquisition control to your form, you should set the ApplicationIdentity properties 
which will be used by the TWAIN driver.

 If you do not set the ApplicationIdentity properties, default values are used.

Setting the following properties is optional but recommended:

• Country
• Info
• Language
• Manufacturer
• ProductFamily
• ProductName
• VersionMajor
• VersionMinor

A Parent property is used by TWAIN when displaying dialogs and acquiring images. You must set 
the Parent property to the parent form or control in order to acquire images.

Model acquisition
By default, the Acquire() method is asynchronous and returns before scanning is complete. This 
method can be made to work in a synchronous manner by using the Device object and setting its 
ModalAcquire property to true. The example below illustrates this technique.

C#
this.device = this.acquisition.Devices.Default;
this.device.ModalAcquire = true;
this.device.Acquire();

Set up events
You need to use events when acquiring images. When an image is acquired, the ImageAcquired 
event fires providing an AcquireEventArgs object containing the image. At the very least, the 
ImageAcquired event must be handled, but it is recommended that the AcquireCanceled and 
AcquireFinished events also be handled. The following code shows how the image is handled.

C#
this.acquisition.ImageAcquired += new ImageAcquiredEventHandler(OnImageAcquired);
private void OnImageAcquired(object sender, AcquireEventArgs e)
{ 
    // If the image exists, load it into a WorkspaceViewer control. 
 if (e.Image != null) 
    { 

472



Atalasoft DotImage Developer's Guide

        this.viewer.Images.Add(AtalaImage.FromBitmap(e.Image)); 
        e.Image.Dispose(); 
    }
}

Show the Select Source dialog
Your application should allow users to select which TWAIN device they want to use. This is 
accomplished by displaying the "Select Source" dialog using the ShowSelectSource() method. The 
code below assumes the Acquisition component is named acquisition.

Properties
To get or set a device property, you must open a connection to the device using the Open() 
method. Whenever the Open() method is invoked, the Close() method must be invoked to close the 
connection. Closing a connection resets all of the device properties to their default values. Because 
of this, it is best to close a device after the image, or all desired properties, are acquired.

 Open() and Close() only need to be used when getting or setting properties on the device.

The code below opens a connection to the device in order to retrieve the default Resolution and 
BitDepth values of the device, then closes the connection. This technique can be useful if you are 
looking for a device in the DeviceCollection with specific default properties or capabilities. See 
QueryCapability for more information.

C#
[C#]
device.Open();
ResolutionData res = device.Resolution;
int bitDepth = device.BitDepth;
device.Close();

Acquire an image
You can acquire an image through the Acquisition object or from a Device object. If you do not need 
to get or set any properties, the easiest to use the Acquire() method from the Acquisition object. 
This method uses the system default device, as shown here.

C#
this.acquisition.Acquire();

You can choose to hide the device interface and/or ask that the device save the acquired image 
directly to file.

Once the image has been acquired, the ImageAcquired event fires and provides an 
AcquireEventArgs object containing the image. If you invoked the Open() method in order to set 
properties before the acquire, invoke the Close() method in the AcquireFinished event to close the 
device.

473



Atalasoft DotImage Developer's Guide

Acquire images with TWAIN
Unless your documents are already stored digitally, the first step in any document imaging 
application is to acquire the images via a scanner. Atalasoft DotImage has a Microsoft .NET 
component called DotTwain, included in Atalasoft DotImage Document Imaging, that has advanced 
TWAIN acquisition features. Once the document is in digital form, the image can be cleaned-up, 
displayed, compressed, archived, and recognized using other third party systems.

DotTwain returns System.Drawing.Bitmap images that can easily be converted to Atalasoft 
DotImage AtalaImage objects.

Acquire a select region of the device
Some scanners allow you to select the rectangular region of the scanning bed you want to acquire. 
If you know that you only need a specific area or page size, setting a region can increase your 
scanning speed.

This region is represented by the Device object, Frame property. Alternatively you can use the 
ImageLayout property. In some cases a driver only supports one of these properties.

As Frame values are in Units, you need to know the value of the Units property before setting the 
Frame size.

The code example below assumes you have already opened a connection to the device by calling 
the Open() method. This example shows how to acquire a specific size while the second shows how 
to acquire any size and position.

Example: Acquire a specific region size
If you only need to specify a standard region size, you can use the FrameSize property as shown 
below.

C#
// Make sure the FrameSize property is supported by the device.
if (this.device.QueryCapability(DeviceCapability.FrameSize, true)
{ 
    // Get a list of supported frames and choose the one that fits your needs. 
    StaticFrameType[] frames = this.device.GetSupportedFrameSizes(); 
    foreach (StaticFrameType frame in frames) { 
        if (frame == StaticFrameType.LetterUS) 
        { 
            this.device.FrameSize = frame; 
            break; 
        } 
    }
}

Example: Acquire any size and position

If you need a more control over the size and position, or if the device does not support the 
FrameSize property, you can attempt to set the acquisition area using the Frame property.

C#
// Try to use Inches.

474



Atalasoft DotImage Developer's Guide

this.device.Units = UnitType.Inches;

if (this.device.Units != UnitType.Inches) return;
this.device.Frame = new System.Drawing.RectangleF(0, 0, 8.5, 11);

Acquire and save images directly to a file
Some devices allow to you acquire an image and save it directly to a file, instead of returning the 
image data. While the overall process is simple, there are some steps you must take:
• Check For Device Capabilities
• Set_Filenames
• Close_the_Connection

These are illustrated by the following example.

Example: Checking for device capabilities

Begin by testing the device to make sure it can save a file. If so, you then need to negotiate the type 
of file to save.

C#

// Open a connection to the device.
this.device.Open();
this.device.TransferMethod = TwainTransferMethod.TWSX_NATIVE;

// See if the device supports file transfer.
TwainTransferMethod[] methods = this.device.GetSupportedTransferMethods();
foreach (TwainTransferMethod method in methods)
{
if (method == TwainTransferMethod.TWSX_FILE2)
{
// Use TWSX_FILE2 when possible.
this.device.TransferMethod = method;
break;
}

if (method == TwainTransferMethod.TWSX_FILE)
this.device.TransferMethod = method;
}

// If it's not supported tell stop.
if (this.device.TransferMethod == TwainTransferMethod.TWSX_NATIVE)
{     
// Close the connection.     
this.device.Close();         
MessageBox.Show("The current device does not support saving directly to a file.");
return;
}  

// Find out which file types the device can save to.     
SourceImageFormat[] formats = this.device.GetSupportedImageFormats();         

// We want to save the image as a TIFF.     
foreach (SourceImageFormat format in formats)  
{         
if (format == SourceImageFormat.Tiff)         
{             
// TIFF is supported, so set the FileFormat.             
this.device.FileFormat = format;                         

475



Atalasoft DotImage Developer's Guide

// Now lets try to use Group4 or Group3 compression.             
// We could use GetSupportedCompressionModes, but we             
// will simply try setting the Compression property instead.             
this.device.Compression = CompressionMode.Group4;             
if (this.device.Compression != CompressionMode.Group4)                 
this.device.Compression = CompressionMode.Group3;  

break;
}     
}         

// Start the acquire process, using the device's interface.     
this.device.Acquire();   

Example: Set file names

During the acquire process, the FileTransfer event is raised just before each file is acquired. You 
need to set the FileName property of the FileTransferEventArgs object passed into the event. This 
tells the device where the file should be saved.

C#
private void OnFileTransfer(object sender, FileTransferEventArgs e)
{ 
    e.FileName = @"C:\TwainImages\whatever.tif";
}

Example: Close the connection

When all of the images have been acquired, the AcquireFinished event is raised. Close the 
connection here.

C#
private void OnAcquireFinished(object sender, System.EventArgs e)
{ 
    this.device.Close();
}

Detect a camera device
There are times when you only want to use a camera device. Unfortunately, TWAIN does not provide 
a direct way of knowing what type of device is being used. You can, however, do a little investigating 
to pick out a camera from a scanner.

Use the QueryCapability() method to find out if a device supports certain features that are normally 
only supported by camera devices. You can check the following capabilities:
• Flash
• Flash2
• ExposureTime
• BatteryMinutes
• BatteryPercentage
• CameraPreviewInterface
• PowerSupply

476



Atalasoft DotImage Developer's Guide

• ZoomFactor

Upload an image to a server
There may be times when you want to send an image to a server. The HttpPost class was written for 
this specific purpose.

Upload the image
The following example sends a single image, along with a user name and password to identify the 
sender, to a server.

Example
C#

private void UploadImage(Atalasoft.Imaging.AtalaImage image)
{
// Create an instance of HttpPost and use the default image encoder.
Atalasoft.Imaging.HttpPost post = new Atalasoft.Imaging.HttpPost();

// Add the image to the form data collection.
post.FormData.Add("image1", image, "filename.png");

// Add data to identify the user posting the image.
post.FormData.Add("username", user);
post.FormData.Add("password", password);

// Post the form data to the server and retrieve a return value.
string ret = post.PostData("http://www.website.com/postImage.aspx");
}

The first part of the code creates an instance of HttpPost and uses the default image format, which 
is PNG. The image format determines the file type of the image when saved on the server.

Then the image is added to FormDataCollection, which includes the field name, image and filename 
for the image. It is best to think of HttpPost as an HTML FORM object. The FormData represents the 
FORM elements; in this case a FILE input box. You can update multiple images by adding them to 
the collection; just be sure each has a unique field name.

Next, add the username and password of the person sending this image. In many cases, additional 
information needs to be sent with the image in order to perform a specific action on the server. In 
terms of an HTML FORM, this would be a TEXTBOX field.

Finally, the FormData is sent to the server using the PostData() method. The return value of 
PostData is a string that is sent back from the server. Normally this is used to confirm the success of 
the call.

Saving the image
Once the image has been sent, save it to the server using ASP.NET. If necessary, you can modify this 
code to store the image in a database instead.

477



Atalasoft DotImage Developer's Guide

Example
C#

private void Page_Load(object sender, System.EventArgs e)
{
if (Request.Files.Count == 0) return;

// Save the file to the server.
string fileName = System.IO.Path.GetFileName(Request.Files[0].FileName);
Request.Files[0].SaveAs(GetNewFileName(fileName));

// Return the path to this file.
Response.Clear();
Response.Write("success");
Response.End();
}

private string GetNewFileName(string fileName)
{
// Create a unique filename.
string path = Server.MapPath("./images") + "\\" + Session.SessionID + fileName;
return path;
} 

In the code above, the SaveAs() method saves the image to the server. Notice that the FileName 
property gets the name of the posted file. This is the same value that was passed to the 
FormData.Add() method when you added the image.

The data written to the Response object is returned by the PostData() method. It is a good idea to 
use the Response.Clear() method before adding your return value. This example simply returns 
success

Deploy DotTwain
To distribute DotTwain along with your .NET application, you need to include
Atalasoft.DotTwain.dll and Atalasoft.Shared.dll in the same folder as the assembly that 
references it.

Be sure that the .dll versions you provide match that used to compile the assembly.

Web-based deployment is not available.

478



Chapter 7

OCR engine

Atalasoft DotImage OCR is designed to easily interface with other aspects of your application. 
It is extensible with an event driven object-oriented object model. In just a few lines of code, a 
developer can recognize an image and output that image to a file, or enumerate its lines, words, 
and characters with confidence.

Data sources for the engine can be scanned images or files. The engine output consists of either a 
file or a class hierarchy. This model is illustrated below.

As OcrEngine object is abstract, you cannot create an instance of this object. Nevertheless, the 
object definition contains most of the necessary functionality needed for a concrete subclass to 
function with a minimum of extra code.

The OcrEngine object has five primary components as illustrated below:

• Preprocessing options
• Document translators
• Page element factory
• Font mapping
• Font building

479



Atalasoft DotImage Developer's Guide

Tesseract engine
The Tesseract OCR engine, which is presented by two classes, Tesseract3Engine and 
Tesseract5Engine, is an open source engine that we provide without charge to those who purchase 
the OCR Package. It is a commercial quality OCR engine originally developed at HP between 1985 
and 1995. HP and UNLV open-sourced this engine in 2005.

Features
The Tesseract OCR engine is fast and runtime royalty free although it is not quite as powerful as the 
other engines supported by Atalasoft DotImage. In particular, it lacks segmentation and it is not 
very good at recognizing low quality documents.

Supported languages
The Tesseract OCR engine supports the following languages:

• Dutch

480



Atalasoft DotImage Developer's Guide

• English
• French
• German
• Italian
• Norwegian
• Portuguese
• Spanish

Supported output formatters
The Tesseract OCR engine supports the following output formatters and provides a structure that 
allows you to build your own.

• Text
• PDF

Deployment
• The assemblies listed below are required for deployment.

• Atalasoft.dotImage.Ocr.Tesseract3 or Atalasoft.dotImage.Ocr.Tesseract5
• Atalasoft.dotImage
• Atalasoft.dotImage.Ocr
• Atalasoft.dotImage.Lib
• System
• System.Data
• System.Drawing

Additionally, the Tesseract language files must be accessible. These are automatically placed in the 
Atalasoft DotImage directory during toolkit installation. When deploying, you must either copy the 
OcrResources to your application directory or tell the engine their location explicitly by passing it 
into the Tesseract OCR engine constructor.

See the Tesseract3Engine or Atalasoft.dotImage.Ocr.Tesseract5 class documentation for additional 
information.

The Tesseract OCR engine is used in exactly the same way as the other OCR engines, all of which 
inherit from the same base class, Atalasoft.dotImage.OCR.

Special considerations
Once the Tesseract OCR engine is used and recognize is called with a language, you cannot change 
to an alternate language. The initialization happens the first time a document is recognized. 
Attempting to change the language at any time beyond that point results in an exception being 
thrown.

481


	Table of Contents
	Preface
	Related documentation
	Resources

	Atalasoft DotImage
	Atalasoft DotImage Photo
	Scenarios
	Sample code

	Atalasoft DotImage Photo Pro
	Scenarios

	Atalasoft DotImage Document Imaging
	Scenarios

	Atalasoft DotImage add-ons
	BarcodeReader
	Barcode Writing
	Deployment

	OCR
	Text translator
	PDF Translator
	PDF Reader
	JPEG2000 Codec
	DICOM Codec
	Advanced Document Cleanup
	ADC features

	Advanced Photo Effects
	DWG decoder
	Office Decoder
	OfficeAdapterDecoder
	OfficeSession

	Common Decoders
	Atalasoft DotImage ISIS


	Use Atalasoft DotImage
	Atalasoft DotImage documentation
	Atalasoft DotImage NuGet Packages
	Visual Studio Activation Wizard Extension

	Getting Started with Web Capture
	Atalasoft DotImage demos
	Set up a new project
	Add the Web Document Viewer handler
	Add the Web Capture handler
	Set up the scanning controls and viewer
	Wrap-up
	Deploy on multiuser environment
	Terminal server
	Citrix
	Installation
	Upgrade

	Configure Kofax Import Connector
	Required license
	Configure the service
	Configure the Electronic Documents plugin
	Test the configuration

	Upload sizes and limits
	Estimate upload sizes
	Adjust the IIS upload limit


	Document management
	Capture and view documents with a scanning client
	Create the Windows Forms project
	Design the user interface
	Add toolstrip controls
	Open a multipage document from a file
	Configure AutoZoom and image scaling
	Save a multipage document to a file
	Capture documents from a scanner
	Select a scanner
	Application source code
	Recommendations

	Submit captured documents to a central database repository
	Create the SQL database
	Create the data abstraction layer
	Create the service
	Connect the capture client to the service
	Creating the upload code
	Running the capture application

	Show progress while the document loads
	Add the background worker thread
	Modify the Upload code to use background worker and report progress
	Update the event handler
	Test your work


	View documents from a central database repository in a browser
	Configure a Web siteto use Atalasoft DotImage controls
	Add a WebThumbnailViewer and WebAnnotationsViewer to the form
	Setting the ThumbnailViewer properties
	Connecting the viewer with the thumbnails

	Use a Data-Bound drop-down to navigate documents stored in the database
	Load documents from database into the viewer
	Add No-Postback navigation controls to the viewer

	Collaborate on documents using AJAX-enabled annotations
	Configure the controls to draw and view annotations
	Configure the application to draw annotations
	Configure the SQL database to store annotations
	Store and load annotations from the database
	Store the annotations
	Load the annotations




	Program with Atalasoft DotImage
	Getting started
	Core Atalasoft DotImage editions
	Add-on modules
	.NET assemblies
	Create images
	Create an image from scratch
	Copying an image

	Open images
	Save images
	Process and clean up images
	Image controls for Windows Forms applications
	Image controls for web applications
	TWAIN scanning

	Imaging
	Dithering
	Compression
	Asynchronous image processing
	Resampling
	Morphology

	Best practices
	Memory management
	Pixel memory
	Memory layout
	Pixel access
	Direct memory access
	PixelMemory types
	Access pixel data
	Create custom PixelMemory
	Subclass PixelMemory
	Create a custom PixelAccessor
	Subclass ResidentPixelMemory


	Image Source
	Inside the ImageSource class
	Use an ImageSource
	Create a custom ImageSource
	Examples

	Unload an image
	Example

	Write an ImageSource cache
	Loop over images in a file system
	Create an ImageSource to accesses Windows AVI files


	Access images
	Read and write images to a database
	Access multipage images
	Add support for RAW images
	Get image information

	View images
	ASP.NET WebForm controls
	Server-side image viewing with ASP.NET
	Rubberbanding in ASP.NET
	Image cache
	How the cache works
	Server performance

	Web.config parameters
	Annotations in ASP.NET
	Add the control to a page
	Set up annotation defaults
	Load annotations from a file
	Allow the user to put a new annotation on the viewer

	Thumbnails in ASP.NET
	Create DotImage Server-side thumbnails
	Client-side thumbnails using WebThumbnailViewer and WebImageViewer

	ASP.NET
	Work with remote events
	Invoke ASP.NET page methods remotely
	Open images from browser
	Display image in the current output stream
	Print images in ASP.NET
	JavaScript printing
	PDF printing

	Stream directly to a browser

	Client-side scripting in ASP.NET
	Basic syntax
	Public functions
	OnPageLoad and using AtalaInitClientScript
	Objects
	Properties
	Events
	WebImageViewer
	AtalaWebImageViewer

	Web ThumbnailViewer
	atalaWeb ThumbnailViewer
	ThumbnailEvent
	ThumbnailDropEvent
	ThumbnailKeyEvent

	WebAnnotationViewer
	atalaWebAnnotationViewer
	AnnotationEvent
	AtalaLayer
	AtalaAnnotation

	ClientTools
	ClientTools objects
	ClientTools methods

	Enums
	Enumeration objects



	Windows form control
	Rubberbands and Selection
	Print images
	Use ImagePrintDocument
	Print multiple images
	Use ImageCompositePrintDocument
	Customize printing

	Use DotImage in Winform applications
	Add WorkspaceViewer control to the toolbox
	Control the WorkspaceViewer behavior
	Open and save images
	Add image processing
	Import namespaces

	Display thumbnails

	Work with WPF images
	Add the AtalaImageViewer control to a WPF windows application
	Use MouseTools

	Use ASP.NET WebForm controls
	Work with remote events
	Remote Invoke Event Arguments
	Parameters
	Write an event handler

	Remotely invoke ASP.NET page methods
	Terminology
	Prepare a server side method for remote invocation
	Call a method from JavaScript
	Get the return value from a RemoteInvoke
	Parameter type conversion
	Method identification
	Example

	Open images from a browser
	Load File. Save to Cache, and Load into Control
	Import namespaces


	Display image in the current output stream
	Use the class library
	WebControls
	File Cache
	Control the WebImageViewer behavior
	JavaScript with Atalasoft DotImage WebControls
	WebAnnotationViewer




	Image Capture
	Web scanning
	TWAIN scanning
	Getting started with DotTwain
	Add DotTwain to the toolbox
	Set application information
	Modal acquisition
	Set up events
	Show the Select Source dialog
	Get and set properties
	Acquire an image

	Acquire images with TWAIN
	Acquire a selection region of the device
	Acquire directly to a file
	Detect a camera device
	Upload an image to a server
	Upload the image
	Example

	Saving the image
	Example


	Deploy DotTwain

	ISIS scanning
	DotImage ISIS classes
	Add ISIS to the toolbox
	Set up events


	Image processing and cleanup
	Manipulate colors with Lookup Tables
	Invert the Alpha in an RGBA Image
	Example

	Creating a psychedelic effect

	Resize images
	Simple Resizing and Thumbnails
	Resizing Continuous Tone Images
	Resizing Palette Images
	Resizing Binary Images

	Process an image using a Workspace object
	Example
	Example

	Process an image using the Apply method
	Example

	Process a Bitmap image
	Extend ImageCommands
	SupportedPixelFormats
	Example

	VerifyProperties
	PerformActualCommand
	SimpleInversionCommand
	Writing complex commands
	ColorizeBlackCommand

	Upload an image to a server
	Upload the image
	Example

	Saving the image
	Example



	Annotations
	Annotations
	Features

	Import and export annotations
	Dual use objects
	Import annotations
	Write a custom AnnotationDataImporter
	Handle unknown annotation types
	Coordinate systems
	The PdfAnnotationDataImporter
	The XmpAnnotationDataImporter
	Export annotations
	Write a custom AnnotationDataExporter
	The PdfAnnotationDataExporter
	The PdfAnnotationDataConverter

	Create an annotation enabled control
	Integrate with Atalasoft DotImage
	Interactively create an annotation
	Create an annotation programmatically

	Annotation assemblies
	Create a template annotation
	Print annotations
	Using IAnnotate

	Serialize to XMP And WANG data
	WANG annotations
	Saving annotations
	Custom annotations
	Example

	Work with unit systems
	Example

	Render custom grips
	Overriding the RenderGrips method
	Example


	Respond to events
	Example

	Add a context menu to an annotation
	Example

	Highlight a document
	Work with layers and groups
	Layers
	Groups

	Create a custom annotation
	Example

	Password-based authentication
	Create a sticky note
	Work with unit systems
	Example

	Annotate multipage documents
	Handling multipage images using AnnotateViewer
	Handling multipage images using a custom viewer
	WANG annotations


	Metadata
	Supported metadata types
	Image formats supporting metadata
	IPTC metadata
	Read IPTC data
	Modify and saving IPTC data
	Lossless modification of IPTC data
	Example

	EXIF metadata
	Maker notes

	COM text
	Read COM text
	Modify and saving COM text

	TIFF tags
	TIFF tag structure
	TIFF tag ID's

	XMP
	Example
	Example

	Save metadata with an image
	Example

	Retrieve metadata from an image
	Example

	Set metadata values
	Example
	Control PDF output characteristics

	Attach metadata to objects
	Retrieve a document title
	Example

	Read EXIF information
	Example

	Read EXIF thumbnails
	Example

	Store EXIF information
	Add an object to document metadata
	Example
	Example

	Obtain DPI information from a .PSD File
	Example

	Losslessly copy metadata

	Document and image formats
	Introduction to PDF technology
	Multiprocessing for PDF documents
	Initializing PdfDecoder multiprocessing
	Using PdfDecoder multiprocessing in WebDocumentViewer
	Migrating existing processing to multiprocessing
	Setting the maximum number of pages to use multiprocessing

	Text extraction in PDF Reader
	Opening PDF's with a PdfTextDocument
	Reading text with a PdfTextReader
	Example

	Using a PdfTextPage to Extract Text
	Example

	Using a PdfTextPage to Search for Text

	Editing PDF documents
	Create searchable PDFs with OCR
	PDF file format
	PDF page coordinates
	PDF document objects
	PDF bookmarks
	View a PDF image
	Example

	Translate a set of images to searchable PDF
	Example

	Use advanced PdfTranslator controls
	Timing issues
	Example

	Add PdfTranslator to Engine's translator collection
	Example

	Manually generate PdfTranslator metadata
	Add support for reading PDFs
	Print a PDF image
	Create PDF/A documents
	Compressed Object and XRef streams
	Create PDF 2.0 documents
	Create an image only PDF document
	Convert AtalaImage coordinates to PDF coordinates
	Author PDF bookmarks
	Add bookmarks with the PDF encoder
	Add bookmarks with the PdfTranslator
	Combine PDF documents
	Encrypt a PDF document
	Decrypt a PDF document

	.TIF files
	TiffFile basics
	Read a TIFF file
	Edit a TIFF file
	Save a TIFF file
	Catch errors and warnings
	Multipage TIFF file
	Managed code
	TIFF file interfaces

	TIFF tools
	TiffDocument and TiffPage
	Work with TiffDocuments
	Determine if the pages of TIFF document are 1-bit black and white

	Read TIFF tags
	Write TIFF tags
	Save an image to a multipage TIFF file
	Join two TIFF streams
	Add an AtalaImage to a TIFF stream
	Remove pages from a multipage TIFF
	Merge two TIFF files
	Swap pages in a TIFF file
	Add arbitrary TIFF tags
	Delete a TIFF tag
	View all tags in a TIFF file
	Add a TIFF tag
	Add and retrieve binary TIFF tag
	Get All TIFF tags in image
	Convert between TIFF and JPEG
	Convert from JPEG to TIFF with EXIF
	Convert from TIFF to JPEG with EXIF

	Work with multipage TIFFs
	Open a multipage TIFF image
	Read each page in the TIFF
	Read each page in the TIFF using a FileSystemImageSource
	Read a single page in the TIFF
	Display and manipulate images in the ImageSource
	Change the current image to the second in the image source

	Replace the current image
	Add an image to the ImageCollection
	Save or append a multiple page TIFF image


	Save an image specifying compression type

	DICOM
	Extra classes for handling DICOM images
	DicomDataset
	DicomImage
	Use DicomDataset and DicomImage


	JPEG2000 - encoding images
	Encode tiled images
	Encode region of interest
	Baseline encoder properties
	Per tile encoder properties
	Per tile and per component properties
	Getting Started with JPEG2000
	Register the JPEG2000 codec in Atalasoft DotImage
	Use the JPEG2000 imaging codec

	Link to the license file
	Decode JPEG2000 images
	Get information from JPEG2000 images
	Get image information


	Deploy Atalasoft DotImage JPEG2000

	Introduction to JBIG2
	Product Features
	JBIG2 Compression
	JBIG2 Decompression

	Custom codecs - image codec
	Supported formats
	Create a decoder
	Required methods
	Additional methods and properties
	AtalaImage data format
	Palettes
	ImageData

	Create an encoder
	Required method for image encoder
	Additional methods and properties
	AtalaImage data format

	Extend a codec
	Decoder tutorial

	Adjust decoder properties
	Reset decoder properties

	Read a PPM image
	Reset decoder properties

	Save an AtalaImage to a PPM file
	Create custom image information
	The constructor



	Bar code reading
	Upgrade tips
	Use the BarcodeReader
	Reading a bar code

	Read a bar code with options set
	Render a bar code into an AtalaImage
	Verify a bar code can represent a string

	Barcode Writing
	Deployment
	Use the Barcode Writer
	Writing a raw data PDF417 bar code


	OCR document design considerations
	Use the factory property to construct a document
	Load OCR resources
	Initializing resources
	GlypthReaderLoader
	GlyphReader
	Tesseract
	Tesseract3Engine resource loading
	Tesseract5Engine resource loading

	OmniPageLoader
	OmniPage

	Stages in OCR translation
	Work of translation
	Preprocessing
	Recognition / Translation

	Translator types
	Native translators
	Text translator
	PDF translator

	Page region types
	Bounding boxes

	OCR engine
	GlyphReader engine
	Features
	Output formats
	Licensing
	Deployment

	Tesseract engine
	Features
	Supported languages
	Supported output formatters
	Deployment
	Special considerations


	OmniPage Engine
	Features
	Supported languages
	MICR E13B and CMC7 fonts support
	Output formats
	Deployment
	Special consideration

	Use an OCR engine
	Engine usage example

	Get and set engine options
	Get engine options
	Set engine options

	Determine if an engine supports a mime type
	Example

	Alter the interpretation of page elements
	Remove non-text regions

	Determine translation type
	Determine if native translator is in use

	Distinguish between OCR region types
	Color region's bounding box ot reflect region type

	Clean up after translation
	Example

	Traverse an OCR document
	Translate a document into plain text file using a stream

	Cancel OCR in progress
	Create OCR page progress handler
	Hook into an event handler

	Track page progress in a UI
	Translate the OcrPageStage information to a string
	Create the event handler

	Use page deskew events
	Deskew method

	Deploy an OCR engine
	Loading and locating folders
	Options for the developer

	Access document information properties
	Retrieve document information properties
	Access document information properties


	Color management
	Color profiles
	CMYK images

	Draw on the canvas
	The canvas
	Atalasoft DotImage drawing versus GDI+
	Draw text
	Draw primitives and text onto a workspace or WorkspaceViewer object

	Draw shapes
	Draw a rectangle using the rubber band selection mousetool

	Draw with rubber bands

	Interoperability - Work with GDI+ images
	Create a copy of the data
	Pass the data directly to the AtalaImage constructor
	Process a bitmap directly

	Interoperability - Work with WPF images
	Add the AtalaImageViewer control to a WPF windows application
	Use mouse tools


	Forms processing
	Align an image to a template
	Disable alignment rejection heuristics
	Use the OMR engine to recognize marks on a page
	Create and save an OMR template
	Perform additional preprocessing in the OMR engine
	Create an OmrImagePreprocessingEventArgs event handler

	Cancel OMR in progress
	Create an OMR page progress handler

	Track OMR engine page progress in a UI
	Translate the OmrPageStage information to a string


	Web Document Viewer

	Deploy Atalasoft DotImage
	Visual C++ Runtime dependencies
	Deploy Atalasoft DotImage in ASP.NET
	Dependencies using Atalasoft DotImage class library
	Dependencies using Atalasoft DotImage with WebControls

	Generating licenses

	Program with DotPdf
	Mathematical model
	Transformations
	PdfGeneratedDocument
	Pages
	Standard page sizes
	Create stationery
	Clipping
	Colors
	Rendering
	Resources
	Font resources
	Type 1 symbol font encoding
	Embed fonts
	Color space resources
	Image resources
	Template resources

	Shapes
	PdfPath
	PdfRectangle
	PdfRoundedRectangle
	PdfCircle
	PdfArc
	PdfImageShape
	PDF text shapes
	PdfTable
	PdfTemplateShape
	PostnetBarcodeShape
	GSave / GRestore
	Transform
	Marked content
	Make custom shapes

	Round trip documents
	Integrate with DotImage
	Actions
	PdfAction
	Go To View actions
	URI actions
	JavaScript actions
	Sound actions
	Show/Hide action
	Named actions
	Submit Form Actions
	Reset Form Action

	Annotations
	Properties common to all annotations
	Properties common to all mark up annotations
	Properties common to all widget annotations
	General annotations
	LinkAnnotation
	OpaqueAnnotation
	PopupAnnotation
	SoundAnnotation

	Markup annotations
	CalloutAnnotation
	CaretAnnotation
	EllipseAnnotation
	LineAnnotation
	PolygonAnnotation and PolylineAnnotation
	RectangleAnnotation
	RedactionProposalAnnotation
	RubberStampAnnotation
	StickyNoteAnnotation
	TextBoxAnnotation
	TextMarkupAnnotation
	TypeWriterAnnotation

	Widget annotations
	CheckboxWidgetAnnotation
	ChoiceWidgetAnnotation
	PushButtonWidgetAnnotation
	RadioButtonWidgetAnnotation
	SignatureWidgetAnnotation
	TextWidgetAnnotation


	Use annotations
	Place an annotation
	Create an annotation with a custom border
	Add a pop-up to a markup annotation
	Create an annotation with transparency
	Skin an annotation
	Make an annotation with a rollover appearance
	Make a sticky note annotation
	Add a review state to a sticky note
	Make a highlight annotation
	Make a bow tie annotation
	Show the underline location relative to a highlight annotation

	Set a redaction area
	Use JavaScript to calculate values

	PDF Forms
	PdfForm
	Node form fields
	Leaf form fields
	Visiting nodes
	Form actions

	Merge PDF forms
	Import pages
	Merge forms
	Default merging

	DotPdf repair
	DotPdf repair process
	Detect errors
	Repair errors
	Repair events
	Repair filtering
	Structure options
	Array options
	Property repair

	Digital signatures
	Certify documents
	Select PdfDocument or PdfGeneratedDocument for certification
	Controlling changes to certified documents

	Get signer information
	PdfSignatureInformation object
	PdfCertification and CmsInformation

	Document signing operations
	PdfDocumentSigner Object
	Use signatures and certifications

	Customize signature appearance
	Certify a document with PdfDocument
	Determine if a document is certified or signed
	Fill fields of a certified document
	Sign a document with an existing signature
	Add a signature to a document

	Linearized PDF
	PdfDocument and PdfGeneratedDocument integraton
	PdfEncoder integration

	PDF/A
	PDF/A in PdfDocument
	Saving a PDF/A document

	PDF/A data in PdfDocumentMetadata
	PDF/A in PdfGeneratedDocument
	Convert pages to images
	Color spaces
	Images
	Fonts
	Standard fonts
	Streamless fonts
	Encoding

	Transparency
	Annotations and Actions
	Merge PDF/A documents
	Error handling


	PDF 2.0
	Document upgrade to PDF 2.0


	DotTwain
	About DotTwain
	Acquire images
	Acquisition
	TwainController
	Device
	DeviceCollection

	Document feeder control
	Navigating files in a camera
	FileSystem


	ActiveX control API reference
	Class events

	Getting started
	Add DotTwain to the toolbox
	Set application information
	Model acquisition
	Set up events
	Show the Select Source dialog
	Properties
	Acquire an image
	Acquire images with TWAIN
	Acquire a select region of the device
	Acquire and save images directly to a file
	Detect a camera device
	Upload an image to a server
	Upload the image
	Example

	Saving the image
	Example


	Deploy DotTwain


	OCR engine
	Tesseract engine
	Features
	Supported languages
	Supported output formatters
	Deployment
	Special considerations




