
Kofax FraudOne
Common API Specifications for GIA Engines

Version: 4.6.0
Date: 2022-10-17

© 2022 Kofax. All rights reserved.

Kofax is a trademark of Kofax, Inc., registered in the U.S. and/or other countries. All other
trademarks are the property of their respective owners. No part of this publication may be
reproduced, stored, or transmitted in any form without the prior written permission of Kofax.

Table of Contents
Preface... 5

Related documentation.. 6
Training... 7
Getting help with Kofax products...7

Chapter 1: Common API interface for GIA Engines...8
General utilization... 8
Basics...8

Initialization and setup... 9
Memory handling...9
Function return value..10
Analysis setup principles.. 10
Reference and item data.. 10

Common definitions... 11
API logging levels.. 11
API error codes.. 11
Image types.. 12

Chapter 2: API calls..14
Initialization calls...14

Engine initialization principles... 14
Workspace creation... 14
Parameter reinitialization... 15
Workspace release...16

Version retrieval and information calls..16
Version retrieval... 16
Error retrieval... 17

Tracing calls..18
Tracing principles...18
Trace level setting..18
Tracing... 18

Engine setup calls... 19
Engine setup principles...19
Feature setup..19
Feature reset...20

Analysis setup calls - Item setup.. 20

3

Kofax FraudOne Common API Specifications for GIA Engines

Analysis setup principles.. 20
Item data setup..21
Item image setup.. 22
Item removal.. 22

Reference setup calls..23
Reference setup principles... 23
Global reference data setup...23
Reference setup... 24
Adding reference images... 25
Reference removal...25
Reference clearing... 26

Analysis execution calls..26
Analysis execution principles... 26
Analysis execution..27
Result clearance... 28

Calling sequences... 28
Result scores..29

4

Preface

APIA (Automatic Payment Image Analysis) refers to the usage of algorithms, or neural networks,
to extract information from images of payment transaction documents. An APIA engine is any
software component that provides the capability to analyze a transaction document image. The
FraudOne product utilizes image information to allow fully automated processing of large volumes
of check images. By correlating APIA results with other fraud detection technologies, a significant
reduction in fraud loss is achieved. The FraudOne platform is based on an open architecture that
enables different APIA engine vendors to be integrated.

GIA (General Image Analysis) refers to the integration of unlimited varieties of third-party engines
from the vast family of image processing engines that show benefits for image based payment
processing with FraudOne. GIA provides a standardized plug-in place that enables efficient
maintenance and cost effective usage of such engines for Kofax’s customers.

The image processing engines targeted with this API could refer to various needs in e.g. image
quality handling, in fraud detection, or in workflow automation that can be better satisfied by the
integrated rather than the external employment of such features in the items processing workflow
of banks.

GIA refers this broader approach of the current FraudOne release that has been derived from the
earlier experiences made with the original APIA approach that was focusing on image analysis
for fraud detection purposes only. Market observation and Customer feed back has proven the
herewith supplied benefit for bank’s item processing operations. The APIA naming convention
inside the API of this earlier approach will be continued for the GIA-API as it moves on to an even
broader scope in the future.

GIA Philosophy: The efficiency and effectiveness of a specific FraudOne deployment in a specific
market environment is not dependent on the quality of just one single image analysis engine but
rather on the right combination of the right engines in the right environment. Different customers
have different needs based on the character of their fraud exposure, their legal environment,
or their process boundary conditions. Kofax is committed to offering our customers varying
combinations of engine types supplied by different engine vendors based on their specific needs.
This GIA-API is designed to allow different vendors’ engines to be integrated into a single platform
in a way best fitting the needs of our customers.

Vendors wishing to integrate into Kofax's architecture are not required to implement all features
of the API. It is at the vendor's discretion to decide whether they would like to specialize on specific
GIA features (best of breed), or to provide the largest range features within one single engine.

This document describes Kofax's interface for integrating software engines that implement GIA
features into the FraudOne platform.

5

Kofax FraudOne Common API Specifications for GIA Engines

Related documentation
The full documentation set for Kofax FraudOne is available at the following location:

https://docshield.kofax.com/Portal/Products/FO/4.6.0-e4jy6kf7pr/FO.htm

In addition to this guide, the documentation set includes the following items:

Release notes
• Kofax FraudOne Release Notes

Technical specifications
• Kofax FraudOne Technical Specifications

Guides
• Kofax FraudOne Administrator's Guide
• Kofax FraudOne Archive Interface Server
• Kofax FraudOne ASV Blackbox
•
• Kofax FraudOne Data Warehouse Installation and Operation Guide
• Kofax FraudOne Extended Reporting Features and Statistics
• Kofax FraudOne Feature Codes
• Kofax FraudOne Global Fraud Signature Web Service Developer's Guide
• Kofax FraudOne Installation and Migration Guide
• Kofax FraudOne Java Client Customization Guide
• Kofax FraudOne Java Client Customization Layer
• Kofax FraudOne Report Component Installation Guide
• Kofax FraudOne Service Program Configuration
• Kofax FraudOne Service Program Interfaces
• Kofax FraudOne SignCheck Result Codes
• Kofax FraudOne Standard Reporting Features and Statistics
• Kofax FraudOne The Book on CRS
• Kofax FraudOne Thin Client Customization Guide
• Kofax FraudOne Variant Cleanup Utility

Help
• Kofax FraudOne Administration Client Help
• Kofax FraudOne Error Messages Help
• Kofax FraudOne Java Client Help
• Kofax FraudOne Server Monitor Help
• Kofax FraudOne Thin Client Help

6

https://docshield.kofax.com/Portal/Products/FO/4.6.0-e4jy6kf7pr/FO.htm

Kofax FraudOne Common API Specifications for GIA Engines

Training
Kofax offers both classroom and online training to help you make the most of your product. To
learn more about training courses and schedules, visit the Kofax Education Portal on the Kofax
website.

Getting help with Kofax products
The Kofax Knowledge Base repository contains articles that are updated on a regular basis to
keep you informed about Kofax products. We encourage you to use the Knowledge Base to obtain
answers to your product questions.

To access the Kofax Knowledge Base:

1. Go to the Kofax website home page and select Support.

2. When the Support page appears, select Customer Support > Knowledge Base.

 The Kofax Knowledge Base is optimized for use with Google Chrome, Mozilla Firefox or
Microsoft Edge.

The Kofax Knowledge Base provides:
• Powerful search capabilities to help you quickly locate the information you need.

Type your search terms or phrase into the Search box, and then click the search icon.
• Product information, configuration details and documentation, including release news.

Scroll through the Kofax Knowledge Base home page to locate a product family. Then click a
product family name to view a list of related articles. Please note that some product families
require a valid Kofax Portal login to view related articles.

From the Knowledge Base home page, you can:
• Access the Kofax Community (for all customers).

Click the Community link at the top of the page.
• Access the Kofax Customer Portal (for eligible customers).

Click the Support link at the top of the page. When the Customer & Partner Portals Overview
appears, click Log in to the Customer Portal.

• Access the Kofax Partner Portal (for eligible partners).
Click the Support link at the top of the page. When the Customer & Partner Portals Overview
appears, click Log in to the Partner Portal.

• Access Kofax support commitments, lifecycle policies, electronic fulfillment details, and self-
service tools.
Go to the General Support section, click Support Details, and then select the appropriate tab.

7

https://learn.kofax.com/
https://knowledge.kofax.com/
https://www.kofax.com/

Chapter 1

Common API interface for GIA Engines

General utilization
Based on past experience and future planning of Kofax’s large-bank customers there will be several
different areas for GIA feature utilization. The most common is the ‘batch-oriented’ processing for
back office purposes where GIA features will be integrated into the FraudOne application server and
load balancing architecture. The second most likely will be the ‘online-oriented’ processing of single
requests coming from a FraudOne Java Client environment.

The below described common API is meant to turn integration efforts into close-to-plug-and-play
efforts. This also allows easier version maintenance of engines for the vendor as well easier testing
and distribution to customer installations for Kofax. In order to provide such a common API plus the
necessary flexibility for features this API definition has the character of an integration framework.

The following API description defines one single common interface for all possible GIA features
provided through external engines. The vendor may chose to provide a single feature or a
multiple engine API. In all cases the calling layer of these engines need to follow the below defined
description.

Basics
The Vendor will provide a C-API for the engine that allows running multiple thread-safe instances
per process. A Kofax GIA verification client might utilize several instances of the same engine. There
may be several instances of a GIA verification client running on a single machine. Per instance there
will be one separate workspace under the responsibility of the engine.

One instance has a life cycle from GIA-client start through unlimited number of verification,
validation or detection cycles to GIA-client stop. Initialization elements that are independent on
reference image and verification item setups shall only be performed throughout initial start-up in
order to keep processing overhead low.

For the time being the FraudOne environment will only provide black and white TIFF images with
compression CCITT Group4 or no compression to the GIA engine. All images within those definition
boundaries can be handled through this API. This includes front and back of the check as well as
snippets of the check image if necessary.

Due to the typical constrains of large installations within typical lights-out environments of server
farms Kofax requests that engines do not require Windows registry entries, OCX registrations,

8

Kofax FraudOne Common API Specifications for GIA Engines

WIN-INI entries, separate installation routines or any kind of hardware (e.g. dongles) for license
maintenance purposes. Engines must be deployable as part of FraudOne file packages.

Initialization and setup
Most engines need certain configuration that defines the modus operandi, which might come along
as a set of configuration files or similar elements. Configuration files, if exist, need to be inside of a
logical black box together with the engine's DLL so that they can be deployed along with it.

For every engine there might be a set of necessary environmental setups that are variable to the
installation or the processing mode. In a stand-alone situation the vendor may opt for a local
binary parameter file or a WIN-INI type configuration file or a windows registry entry. The method
of deployment within the fully integrated FraudOne suite requires that such setup parameters
must be integrated into the FraudOne system settings environment. Therefore the API has to
provide external initialization, setup and configuration parameters that can be transmitted to their
engines through API calls by the calling GIA-client. All parameters should be stored by the FraudOne
system and handed over to the engine as ASCII name and value pairs. The vendor has to provide
specifications for such parameters so that they can be correctly integrated into the FraudOne
system configuration settings.

There are three different kinds of possible initialization and setup data:

Data to initialize an engine (DLL) on GIA start-up. The configuration settings are a part of the
vendor's 'black box'. FraudOne will not hand over configuration parameters for initialization; they
must be a part of the engines own environment. Optional parameters to be handed over in the
initialization call are possible though.

Data to initialize a sub-engine or feature within an engine (DLL). There are reasons for process
dependent configuration. Such configuration needs to be transparent to Kofax or even the bank
utilizing the system in order to make business driven adjustments. These configuration values will
reside within the FraudOne configuration layers and handed over to the engine with the setup call.
It must be possible to re-setup such configurations during life cycle.

Data to initialize a feature/sub-engine before verification execution. There are reasons
for process dependent setup parameters that can change between verification cycles. These
configuration values will reside within the FraudOne system in the applicable data or control layers
and handed over to the engine before a verification, validation or detection step.

Once an initialization or setup was performed, the corresponding configuration values must stay
set within the workspace until overridden or cleared in order to keep initialization overheads
low. Therefore engine or verification setup parameters will be set, overwritten or unset through
corresponding calls and otherwise be static within the workspace. The vendor also provides a
possibility to reset a feature/sub-engine parameter value to its default value.

Memory handling
In most of the cases memory allocation will be done by the calling application. The memory for
Images, reference data, parameters, etc. will be allocated before calling the respective function
call. Only result set allocation will be done by the engine. If the memory handed over by pointer to
the engine is not sufficient to fulfil the task the engine has to return the APIA_INSUFFICIENT_MEM

9

Kofax FraudOne Common API Specifications for GIA Engines

error code. This enables the calling application to retry the function after allocating the appropriate
amount of memory.

The time when the memory will be released can differ depending on the API function call. For
further details regarding memory allocation and how long this memory is valid please refer to the
detailed function call specification.

Function return value
If not described otherwise all function calls return APIA_OK if successful or an error code as defined
below. The calling system can call APIA_GetErrorText for further error details. Result values must be
provided by the engine through the parameter list.

Analysis setup principles
Corresponding with the modus operandi of FraudOne item processing the analysis has two
preparation steps.

The first step is always the handover of the item to-be-verified into the engines workspace. (This
could be the items image(s) or its data or both.)

The second step is related to the nature of the task. If the verification is dependent to account
profile references (check stock samples or any kind of parameter), then the second step will be the
transfer of such references or reference parameters to the engines workspace.

Basically, the modus operandi requests to running references against the item, rather then items
against a reference. (However, this is only a philosophical point!)

Based on the circumstances given in a specific project environment, the calling application needs
the flexibility to either request a single result for a one-to-one verification or to hand over multiple
references and retrieve a corresponding array of results.

Reference and item data
There are many different flavors of potential verification engines. Some verification types request
only the item’s image and some need reference images and/or data. Some engines provide an
independent set of logically connected calls. So a specific call could only invoke MICR information
and dependent on the validation outcome a second call with full blown reference images and data
will follow. In order to keep all possibilities open, while minimizing the complexity of the interface,
there are some necessary definitions.

Item side information such as the full item image OR any kind of snippet from the item image OR
the MICR information OR additional form-type information is considered 'item information' in the
following description.

All non-item information, whether account-related OR non account-related, is considered 'reference
information'. Examples of account related reference information are check-stock references,
positive payees from the account history, account type information or positive-pay etc. Examples of
non-account related reference information are market-type check-stocks (e.g. money orders), black-
listed payee names or bank-logo images etc.

10

Kofax FraudOne Common API Specifications for GIA Engines

Common definitions
These are the common definitions that the vendor's DLL has to implement. They will be provided
through a Kofax side c-Header file. It is possible that future versions of this document and
corresponding header-file will define additional elements to be implemented by the engine.

API logging levels
These are the common definitions of the logging level(s) used within the FraudOne system. It is
requested that an engine provides logging information to the calling application using a call-back
procedure. The logging levels are cumulative in a way that higher levels also include all of the
logging information of lower levels, e.g. the APIA_LOG_TRACE level includes Info, Warning and Error
levels).

Log definition Value Description

APIA_LOG_OFF 0 No trace file

APIA_LOG_CRITICAL 1 Log critical errors in trace file

APIA_LOG_ERROR 2 Log critical errors and errors

APIA_LOG_INFO 3 Log critical errors, errors and infos

APIA_LOG_TRACE 4 Log full trace (includes critical errors, errors and infos)

Engines are expected not to throw their own exceptions into the Windows environment. The
escalation of an error situation to the application exception logs remains a FraudOne domain.

API error codes
The API is designed in a way that each call will return a result code indicating the outcome of the
action. A return value of zero always means that the procedure has finished work properly while a
value below zero signals any kind of error listed below.

Engines may pass additional return codes to the calling application. These return codes can be
any positive value or negative values starting from -101. Please note that the range up to -100 is
reserved for the calling application only.

Additional return values provided by the call will passed via the parameter list.

Error code Value Description

APIA_OK 0

APIA_NO_ITEM_IMAGE 1 No item image available

APIA_NO_REF_IMAGE 32 No reference check image available

APIA_FORM_NOT_SUPPORT 44 Form type not supported

APIA_BAD_ITEM_IMAGE 50 Item image corrupt

APIA_TWO_ITEMS 51 Already one item loaded

11

Kofax FraudOne Common API Specifications for GIA Engines

Error code Value Description

APIA_NO_ITEM_DATA 52 No item data available

APIA_DATA_INCOMPLETE 53 Item data incomplete

APIA_NO_REF_DATA 54 No reference data available

APIA_NO_RESULT 55 No result retrievable

APIA_IMG_NOT_SUPPORT 56 Image format not supported

APIA_VALUE_NOT_DETECTED 60 Value was not found on check image

APIA_NOT_IMPLEMENTED 70 Invalid call or not implemented

APIA_ALREADY_INIT 71 API already initialized

APIA_NO_API_INIT 72 API not yet initialized

APIA_API_INIT_FAILED 73 API could not be initialized

APIA_NO_SETUP 74 Feature not yet initialized

APIA_ALREADY_SETUP 75 Feature already initialized

APIA_SETUP_FAILED 76 Feature could not be initialized

APIA_FEATURE_INVALID 77 Feature not implemented

APIA_NO_VER_INIT 78 Analysis not yet set up

APIA_VER_INIT_FAILED 79 Analysis could not be set up

APIA_ENGINE_ERR 80 Other error returned from engine

APIA_ERR_PAR 81 Parameter error

APIA_INSUFFICIENT_MEM 82 Not enough memory to fulfil task

Image types
There are several image types possible that need to be taken into account for different possible
evaluation features. This applies to item data and reference data as well. The major image types are
defined below.

Image type Value Description

APIA_IMG_FRONT 0 Front image of a check

APIA_IMG_BACK 1 Back image of a check

APIA_IMG_SNIPPET 2 Signature Snippet Image

APIA_IMG_BANKLOGO 3 Snippet Image of Bank Logo

APIA_IMG_ACCOUNTLOGO 4 Snippet Image of Account Holder
Logo

APIA_IMG_BARCODE 5 Snippet Image of Barcode

APIA_IMG_SERIAL 6 Snippet Image of Serial Number

APIA_IMG_CAR 7 Snippet Image of Courtesy Amount
Field

12

Kofax FraudOne Common API Specifications for GIA Engines

Image type Value Description

APIA_IMG_TEMPLATE_SINGLE 8 Template containing parameters for
one image only

APIA_IMG_TEMPLATE_MULTIPLE 9 Template containing parameters for a
number of images

13

Chapter 2

API calls

These are the definitions of the API calls to be implemented by an engine DLL.

Initialization calls
The first set of calls refers to the initialization of engine or engine feature.

Engine initialization principles
The initialization procedure calls should enable the calling application to minimize preparation-
overhead if necessary. Whatever is needed for all possible transactions and will not or should not be
changed through-out a configuration life-cycle, must not be done for every transaction but rather
once during initialization. The first call always might be a general environment initialization done
during workspace creation. Parameters passed during this call will overwrite the default parameters
of the engine read from property files or set by default. Further calls might change parameters for
dedicated features and/or analysis steps but after rest the workspace will be defaulted to the state
that was valid after workspace creation.

Workspace creation
Function call

__stdcall int APIA_Initialise(int * pnWorkspaceId, tAPIA_InitParms *
pInitialisationParameters)

Description

This is always the first call to the API. It initializes the environment and should only be called once.
The function checks for the presence of required files and if required, checks license clearance.
Parameters passed during this call will overwrite default settings of the engine and will be handled
as the new default after successful completion of this call. This could be important for parameter
resets after a processing action.

The function creates a unique workspace id into pWorkspaceId if successful. The environment and
the workspace will be cleared through APIA_Terminate(…).

Memory handling

Memory for the parameter is allocated by the calling application. The engine is supposed to make a
copy of the parameters for further usage. After function call return there is no guarantee that this
memory can be further accessed.

14

Kofax FraudOne Common API Specifications for GIA Engines

Parameter structures
typedef struct sAPIA_Parm {
 char * szParmName; /* Parameter Name */
 char * szParmString; /* Parameter Value*/
} tAPIA_Parm;

typedef struct sAPIA_InitParms {
void (__stdcall * callback)(DWORD nLevel, char *szMsg); /* callback function for
 tracing
int nParmNo; /* number of parameters */
tAPIA_Parm * pInitParms; /* Optional API Init Params, null for empty
 list */
int nFeatureParmNo; /* number of feature parameters */
tAPIA_FeatureParm * pInitFParms; /* Optional Feature Init Parameters that must
 be set once, null for empty list */
char * szLicenseKey; /* Opt. License Key String, empty string for no
 license information */
} tAPIA_InitParms;

Parameter specification

Name Type Description

pnWorkspaceId Out Pointer to an Integer value. The function is supposed to
return an Integer ID identifying the new workspace. This
ID will be used by the calling application for further access
to the workspace.

pInitialisationParameters In Pointer to tAPIA_InitParms structure that contains all
initialization parameters.

Parameter reinitialization
Function call

__stdcall int APIA_ResetParameters(int nWorkspaceId)

Description

This call reinitializes the environment. The function resets all API parameter to the default values
defined in configuration files or by the engine itself. This also includes resetting of all parameter
changes done for one or more features. Usually this function is called if the calling application
wants to reset parameters for a dedicated workspace to their default state.

Memory handling

Memory for the parameter is allocated by the calling application. The engine is supposed to make a
copy of the parameters for further usage. After function call return there is no guarantee that this
memory can be further accessed.

Parameter specification

Name Type Description

nWorkspaceId In Workspace identifier. Parameters of exactly this workspace must be
reset.

15

Kofax FraudOne Common API Specifications for GIA Engines

Workspace release
Function call

__stdcall void APIA_Terminate(int nWorkspaceId)

Description

This call terminates the API and releases allocated space. It must be the last call to the API.

Parameter specification

Name Type Description

nWorkspaceId In Workspace identifier of the workspace to be terminated.

Version retrieval and information calls
Version and other information about the engine need to be made available through the version
retrieval and information calls to enable the calling environment to provide information on the
current version and settings to tracing and monitoring modules.

Version retrieval
Function call

__stdcall int APIA_GetVersion(char * szAPI_Version, int * pnVersionLen ,int *
pnFeatureNo, tAPIA_FeatureDesc *pFeatures)

Description

This call returns the version description of the API in general and a version description of all
features the API implements.

Memory handling

The calling application allocates the memory for the version string and for a default number
of tAPIAFeatureDesc records as well. The actual number of allocated records is passed in the
pnFeatureNo field. The allocated length of the version string is passed in the pnVersionLen field.
If the number of allocated feature structures is insufficient to return all feature descriptions, the
engine returns the error code APIA_INSUFFICIENT_MEM. The number of feature descriptions
actually available is returned in the pnFeatureNo parameter.

If the allocated version string is insufficient to return the version information, the engine again
returns the error code APIA_INSUFFICIENT_MEM. The requested byte length of the version string is
returned in the pnVersionLen parameter (includes terminating zeros).

Parameter structures

typedef struct sAPIA_FeatureDesc {
int nFeatureId; /* Feature ID */

16

Kofax FraudOne Common API Specifications for GIA Engines

char szFeatureName[128]; /* Name of Feature */
char szFeatureType[128]; /* Type of Feature */
char szFeatureVersion[128]; /* Optional feature version string */
} tAPIA_FeatureDesc;

Name Type Description

szAPI_Version Out Pointer to a character string. The engine is supposed to copy the
version info into this string. The string has to be terminated by a
null character.

pnVersionLen In/Out Pointer to an Integer value that contains the allocated memory
for the ApiVersion string. If the engine wants to give back a larger
version string as allocated this parameter contains the required
length of the version string after function return. The calling
application can use this value to allocate the proper amount of
memory.

pnFeatureNo In/Out Pointer to an Integer value that contains the number of allocated
feature description records on input. If the engine wants to give
back more feature descriptions as allocated this parameter contains
the number of actually available features after function return. The
calling application can use this value to allocate the proper amount
of memory.

pFeatureDesc Out Pointer to an array of feature descriptions. The engine is supposed
to copy all relevant feature version information for each feature
into the allocated structures. Strings must be terminated by null
characters.

Error retrieval
Function Call

__stdcall int APIA_GetErrorText(int nError, char * szErrorTextString, int
*pnSize)

Description

This call returns the extended error information for the given error code. All available Error Codes
must be made public in the vendor’s specific APIA header file. The nErrrorTextSize parameter
contains the number of characters the calling application has allocated for the error message. The
engine has to copy the error text into the provided buffer.

This call returns APIA_OK if successful or a negative error code on failure as defined in header
file. If the error code is APIA_NO_MEMORY the engine is not able to return the complete message
because the calling application has not allocated enough memory. The text length is returned
again in parameter pnSize. In this case the calling application has to retry the call after allocation of
sufficient memory.

Memory handling

The calling application allocates a default size for the error string. This number is passed in the
pnSize field. If this size is less than the actual size of the error text the engine returns the error
code APIA_INSUFFICIENT_MEM. The actual text size is returned in the pnSize parameter. The calling
application has to retry the call after allocating sufficient memory.

17

Kofax FraudOne Common API Specifications for GIA Engines

Parameter specification

Name Type Description

nErrorNo In The error number returned by a previous function call.

szErrorTextString Out Pointer to a null terminated string that gives a textual description
of the error.

pnSize In/Out Pointer to an Integer value that contains the number of
characters the calling application has allocated on input. If this
is not sufficient memory to provide the complete error text the
parameter contains the actual size of the error message on
output.

Tracing calls

Tracing principles
In order to have a consolidated log that assures that all log information will be in correct time order
the calling application provides a call-back function that has to be called for each type of tracing
information the engine wants to write to the APIA log. The logging level will be set from the calling
application using either the initialization call or passing it to the engine with the APIA_SetTraceLevel
call. Each time the engine wants to write a trace message to the log the application has to call the
APIA_TracePrintf function passing the trace level and the trace information.

Trace level setting
Function call

__stdcall void APIA_SetTraceLLevel(int nLevel)

Description

This call notifies the engine about a change in the trace level. The engine has to provide tracing
information according to the level to the calling application via the APIA_TracePrintf call.

Parameter specification

Name Type Description

nLevel In Trace level as defined above

Tracing
Function Call

void (__stdcall * callback) (int nLevel, char *szMessage)

Description

18

Kofax FraudOne Common API Specifications for GIA Engines

To provide the possibility of having a consolidated trace the calling application provides a CALLBACK
function that has to be called for each type of tracing information the engine wants to write to the
APIA trace log. The address of the call-back function will be provided within APIA_Initialise() in the
init parameters.

Memory handling

Parameters are only valid within the function call.

Parameter specification

Name Type Description

nLevel In Trace severity level as defined above

szMessage In Message

Engine setup calls

Engine setup principles
Setup calls initialize the API environment for specific GIA features. I.e. initialization needs that are
not covered in the API initialization or needs the flexibility to be configured at process time, can be
performed through these calls. Setup calls allow the API to use different pre-processing sets for
different GIA features. It is also possible to change such setups for one feature during runtime.

Similar to the initialization procedure, the setup calls should enable the calling application to
minimize preparation-overhead if necessary. Whatever is needed for all transactions or may be
needed for at least multiple transactions in a row should not be done for every transaction but
rather fewer times, i.e. only with a setup call.

Preparations that are not really good for multiple transactions and/or with a necessity not easily
identified by the calling application, should not be within the setup since this could lead to the need
to call the setup for every transaction.

Feature setup
Function call

__stdcall int APIA_FeatureSetUp(int nWorkspaceId, int nFeatureNo,
tAPIA_FeatureParm * pFeatureParameters)

Description

This call loads setup parameters that are specific for the engine identified by the engine number
such as image pre-processing (like de-skew, reverse, clean …). This setup has the character of
initialization but can be changed during run time. It is the vendor’s choice to have a default setup to
fall back if setup is not performed. The number of allocated parameters is provided in nFeatureNo
parameter. It is up to the calling application to call this function for all features at once or to call it
for different features subsequently.

19

Kofax FraudOne Common API Specifications for GIA Engines

Memory handling

Memory for the parameter is allocated by the calling application. The engine is supposed to make a
copy of the parameters for further usage. After function call return there is no guarantee that this
memory can be further accessed.

Parameter structure

typedef struct sAPIA_FeatureParm{
int nFeatureId; /* Feature Id */
char * szParmName; /* Parameter Name */
char * szParmString; /* Parameter Value*/
} tAPIA_FeatureParm;

Parameter specification

Name Type Description

nWorkspaceId In Workspace identifier in which features will be set up

nFeatureNo In Number of features

pFeatureParameters In Pointer to an array of feature parameter structures

Feature reset
Function call

__stdcall int APIA_ResetFeature(int nWorkspaceId, int nFeatureId)

Description

This call resets all parameter done for the feature during previous APIA_FeatureSetup calls. All the
values are set to the default values defined in configuration files or by the engine itself.

Parameter specification

Name Type Description

nWorkspaceId In Workspace identifier in which features will be set up

nFeatureId In Identifier for the feature to reset

pFeatureParameters In Pointer to an array of feature parameter structures

Analysis setup calls - Item setup

Analysis setup principles
Before any image analysis steps can be performed there are certain preparation steps necessary.
The most important of course is the transfer of the image data of the item in question. Another call
must provide the transfer of reference images plus optional parameters that need to be considered
for a specific reference.

20

Kofax FraudOne Common API Specifications for GIA Engines

To simplify API calls it is assumed that there is only one item possible per workspace. Therefore
there will be no separate item setup calls for different features. Nevertheless, if a validation features
actually consists of a certain number of sequential sub-validation there might be a benefit of
initiating the item information in the workspace sub-sequentially. This could save costly image
transfers.

Item data setup
Function call

__stdcall int APIA_LoadItemData(int nWorkspaceId, tAPIA_Data * pItemData)

Description

This call is used to hand over additional data of the verification item to the engine’s workspace.

Memory handling

The calling application allocates memory for the data structure. This memory will remain valid until
the application calls APIA_ClearItem.

Parameter structure

The structure defined here is used for both, item information and reference information as well. In
case of detection results it contains all the findings an engine made for a feature. The fields within
this structure cover all fields having any value in fraud detection. Features may use only subsets
of the fields. Thus not all fields must be filled for each feature, each reference or item. All strings
referenced in the structure below must be null terminated.

typedef struct sAPIA_Data {
char szDocRefNo[30+1]; /* Bank number/Market-Code */
char szBNO[3+1]; /* Bank number/Market-Code */
char szAccountNo[34+1]; /* Account Number */
char szBranchNo[20+1]; /* Branch Number */
unsigned long ulAmount; /* Amount */
char szCurrency[3+1]; /* Check currency in ISO format*/
char szSerialNo[30+1]; /* Serial Number */
char szClearDate[10+1]; /* Clearing date in ISO format ‘YYYY-MM-DD’ */
char szRTN[10+1]; /* Route Transit Number */
char szFormtype[5+1]; /* Item Form type [e.g. IRD=4] */
char szBankName[100+1]; /* The name of the bank */
char szAccHolder[300+1]; /* Account Holder Name */
char szPayeeName[100+1]; /* Payee Name */
char * szFreeText; /* Unspecified Item Information, only applicable if
 structure is used as input parameter for to the verification engine, e.g a list of
 payee names */
} tAPIA_Data;

Parameter specification

Name Type Description

nWorkspaceId In Workspace Identifier

pItemData In Pointer to the data structure

21

Kofax FraudOne Common API Specifications for GIA Engines

Item image setup
Function call

__stdcall int APIA_AddItemImages(int nWorkspaceId, int nImageNo, tAPIA_Image *
pImages)

Description

This call is used to hand over the image(s) of the verification item to the engine’s workspace. The
images will be handed as Tiff images.

Additional images also can be added later to the structure to keep image transfer costs low. This is
meant to be a call to enable images only to be loaded if a corresponding validation step is possible.

Memory handling

The calling application allocates memory for the image structures. This memory will remain valid
until the application calls APIA_ClearItem.

Parameter structure

The structure defined here is used for item information and reference information as well.

typedef struct sAPIA_Image {
int nImageType; /* Image Type (front, back, snippet, etc.)*/
char szName[20+1]; /* optional image name/key */
int resolution /* Image resolution, can be used as additional information for to
 the verification process, 0 if not relevant */
int width /* Image width, can be used as additional information for to the
 verification process, 0 if not relevant */
int height /* Image height, can be used as additional information for to the
 verification process, 0 if not relevant */
int xPos /* horizontal position, can be used as additional information for to
 the verification process, 0 if not relevant */
int yPos /* vertical, can be used as additional information for to the
 verification process, 0 if not relevant */
int nImageBufferSize; /* size of image */
const BYTE * pImageBuffer; /* Image */
} tAPIA_Image;

Parameter specification

Name Type Description

nWorkspaceId In Workspace Identifier

nImageNo In Number of images

pImages In Pointer to the array of images

Item removal
Function call

__stdcall int APIA_ClearItem(int nWorkspaceId)

22

Kofax FraudOne Common API Specifications for GIA Engines

Description

This call provides the capability to remove a previously loaded item from the workspace. This
function has to be called before switching to a new item. This call is necessary to do a verification of
an item with reference data of previous verifications without reloading the reference data.

Memory handling

Memory allocated for this item will be released by the calling application after successful return of
this function call.

Parameter specification

Name Type Description

nWorkspaceId In Workspace Identifier

Reference setup calls

Reference setup principles
Comparisons can be done for one single reference or for a set of reference items as well.
References will be loaded subsequently by calling the APIA_LoadReference() function. A unique
identifier will be provided for each reference by the engine. This identifier can be used to load
further images to the reference for additional evaluation steps. With each reference setup call the
API provides the ability to pass additional reference data (e.g. the payees name, etc.) to the engine
if necessary. Furthermore it is possible to pass reference data that is valid for all references. This can
be done with the APIA_LoadRefernceData call.

Global reference data setup
Function call

__stdcall int APIA_LoadReferenceData(int nWorkspaceId, tAPIA_Data *
pReferenceData)

Description

This call is used to hand over reference data to the engine’s workspace that is valid for all references
that will be loaded in further processing steps. Data that is relevant for one reference only will
be handed over within the respective APIA_LoadReference call. This call is used to hand over
reference data to the engine’s workspace that is valid for all references that will be loaded in
further processing steps. Data that is relevant for one reference only will be handed over within the
respective APIA_LoadReference call.

Memory handling

The calling application allocates memory for the image structures. This memory will remain valid
until the application calls APIA_ClearReferences or APIA_ClearReference.

23

Kofax FraudOne Common API Specifications for GIA Engines

Parameter structure

See Item data setup.

Parameter specification

Name Type Description

nWorkspaceId In Workspace Identifier

pReferenceData In Pointer to the data structure

Reference setup
Function call

__stdcall int APIA_LoadReference(int nWorkspaceId, int * pnRefId, int
nImageNo, tAPIA_Image * pImages, tAPIA_Data * pReferenceData)

Description

This call is used to hand over the image(s) of the verification item to the engine's workspace. The
images will be handed as Tiff images.

This call is the first step for a reference item that involves the items image and can be contain
reference data as well. The here referred vector of images must only contain real images on the
places where it is necessary for the current verification status. Images can be added later to the
structure to keep image transfer costs low.

The function returns a reference identifier that can be used to add further images to the reference.
This identifier is also used to identify the verification result for a sole reference within a set of
results.

Memory handling

The calling application allocates memory for the image structures. This memory will remain
valid until the application calls either APIA_ClearReference for the respective reference or
APIA_ClearReferences to clear all references.

Parameter structure

See Item data setup and Item image setup.

Parameter specification

Name Type Description

nWorkspaceId In Workspace Identifier

pnRefId Out Identifier created for the reference by the engine after successful
return

nImageNo In Number of Ireference images

pImages In Pointer to an array of image structures

pReferenceData In Pointer to the data structure that belongs to this reference only

24

Kofax FraudOne Common API Specifications for GIA Engines

Adding reference images
Function call

__stdcall int APIA_AddReferenceImage(int nWorkspaceId, int nRefId, tAPIA_Image
* pImage)

Description

This call is used to hand over an additional image/snippet of the reference item to the engine’s
workspace for a specific place in the already existing image vector in the workspace. This is meant
to be a call to enable images only to be loaded if a corresponding validation step is possible.

This step requires the inauguration of a reference into the workspace via APIA_LoadReference. The
nRefId parameter is the identifier returned by the previous APIA_LoadReference call.

Memory handling

The calling application allocates memory for the image structure. This memory will remain
valid until the application calls either APIA_ClearReference for the respective reference or
APIA_ClearReferences to clear all references.

Parameter structure

See Item image setup.

Parameter specification

Name Type Description

nWorkspaceId In Workspace Identifier

nRefId In Identifier of the reference to which the image has the to be added

pImage In Pointer to the image structure

Reference removal
Function call

__stdcall int APIA_ClearReference(int nWorkspaceId, int nRefId)

Description

This call provides the capability to remove previously loaded reference image(s) and data belonging
to that reference. This function is for the special purpose to remove one dedicated reference from
the workspace. The nRefId parameter is the value returned from APIA_LoadReference when the
reference has been added to the workspace. To remove all references the APIA_ClearReferences call
has to be used.

Memory handling

25

Kofax FraudOne Common API Specifications for GIA Engines

After successful completion of this function the calling application does no longer guarantee the
validity of images and data structures allocated for this reference in previous verification steps.
Usually the calling application will release this memory.

Parameter specification

Name Type Description

nWorkspaceId In Workspace Identifier

nRefId In Identifier of the reference that has to be removed

Reference clearing
Function call

__stdcall int APIA_ClearReferences(int nWorkspaceId)

Description

This call provides the capability to remove all previously loaded reference images and data. This
includes data that belong to all references as well. This function usually has to be called before
switching to a new item. Exception could be if the new item has to be checked with exactly the same
references. In this case it will increase performance not to load references again.

Memory handling

After successful completion of this function the calling application does no longer guarantee the
validity of images and data structures of all references allocated in previous verification steps.
Usually the calling application will release this memory.

Parameter specification

Nam Type Description

nWorkspaceId In Workspace Identifier

Analysis execution calls

Analysis execution principles
Regarding analysis the API has to distinguish between two main feature types:
• Verification/validation features and
• Detection/recognition features

A verification feature does a comparison of items with references and provides verification results.
A detection feature searches for any data, e.g. the payee name, the address block or even a logo
or signature on a given item. The result of this search is provided within the result set. In case of
detection features either the field tAPIA_Data or tAPIA_Image must be populated depending on the
type of feature. In case of a verification feature these fields will remain empty.

26

Kofax FraudOne Common API Specifications for GIA Engines

The engine is responsible for memory handling of the respective result sets. The memory will be
allocated before result retrieval and has to be released first after the APIA_ClearResults call.

The result of a single engine within a highly integrated fraud detection environment is not a final
decision but a component of several findings, which will have to be evaluated in a holistic approach.
Therefore the engines are not called to simply return a PAY/No-PAY decision but rather a detailed
evaluation result. In case multiple references are made available to an engine, there has to be a
result array providing all corresponding results.

Analysis execution
Function call

__stdcall int APIA_PerformTest(int nWorkspaceId, int nFeatureNo, int
*pnFeatureId, int *pnResultNo, tAPIA_Result **ppResults)

Description

This call actually performs the test(s) for the requested features and with the references added to
the workspace.

Function returns APIA_OK if successful or an error code on failure. Failure in this sense is a complete
failure. If one of multiple verifications fails, such detailed error must be provided in the detailed
error code within the result set array returned by result retrieval functions. Both kinds of error
codes are defined in header file.

Memory handling

Memory for result structures will be allocated by the engine. This memory has to remain valid until
the application calls the APIA_ClearResults function to explicitly release this memory.

Parameter structure

typedef struct sAPIA_Result {
int nFeatureId; /* Feature Identifier */
int nRefId; /* Reference Identifier, if applicable */
int nRefIndex; /* Index pointing to matching image in multi-image-templates, if
 applicable */
int nConfLevel; /* Confidence Level */
int nErrorCode; /* Error code in case of error */
int nImageNo; /* Number of returned images, only for detection features */
tAPIA_Image * pImages; /* Images detected by the feature */
tAPIA_Data * pData; /* Data detected by the feature */
char* szComment; /* comment string, e.g. to return additional info */
} tAPIA_Result;

Parameter specification

Name Type Description

nWorkspaceId In Workspace Identifier

nFeatureNo In Number of features that have to be performed during this call

pnFeatureId In Pointer to an Integer array of the length as specified in nFeatureNo
whereby each value represents a feature ID

27

Kofax FraudOne Common API Specifications for GIA Engines

Name Type Description

pnResultNo Out Pointer to an integer. The engine has to return the number of
returned results (in fact the number of allocated result structures)
here.

ppResults Out Pointer to a pointer to an array of result structures. The engine has
to return all results here.

Result clearance
Function call

__stdcall void APIA_ClearResults(int nWorkspaceId)

Description

This call forces the engine to release all memory allocated for result passing. The calling application
has to make sure that this function is called first after all results have to be examined and probably
copied into the own workspace.

Memory handling

After successful completion of this function the engine has no longer to guarantee the validity
of result structures allocated in previous verification steps. Usually the engine will release this
memory.

Parameter specification

Name Type Description

nWorkspaceId In Workspace Identifier

Calling sequences
From the experience of Kofax in large projects there seem to be no case where multiple item data
sets were involved in a single verification step.

For every verification, validation or detection cycle there are three steps:

1. Verification preparation
Within this step optional setup or re-setup of verification with process configuration can
be done. Further verification is prepped with the corresponding reference information if
applicable.

2. Verification execution and result retrieval
This executes the verification, validation or detection together with handing over of item data.
Result data is allocated by the engine and handed over to the calling application.

3. Result set release
Call for clean up of result structures.

28

Kofax FraudOne Common API Specifications for GIA Engines

The vendor’s DLL must implement all different call types and utilise the invalid-call return code for
all calls that are not applicable in the specific case.

Result scores
For the raw engine results, the scores, the engines should provide a detailed match rate or
confidence level in the range of 0 to 100.

Kofax would like the vendors to adjust their engines to produce scores according to following
scheme:

Thresholds Detail result Rating Description

AA 100 Maximum Pass Maximum level of similarities found
based on the evaluated graphic features. /
Maximum level of confidence reached for
returned validation result or detected value.

A1 95-99

A2 90-94

A3 86-89

A4 82-85

A5 78-81

High Pass
-
Pass

High level of similarities found based on the
evaluated graphic features. / High level of
confidence reached for returned validation
result or detected value. Ratings are usually
defined acceptable if supported by other
features.

B1 74-77

B2 71-73

B3 68-70

B4 65-67

B5 62-64

Pass
-
Caution

Reasonable level of similarities found
based on the evaluated graphic features. /
Reasonable level of confidence reached
for returned validation result or detected
value. Attention should be administered
with ratings as the levels within this category
vary depending on the clients operating
environment. Ratings are generally acceptable,
lower grade can mostly be assigned to image
issues gather than fraud.

C1 60-61

C2 58-59

C3 56-57

C4 54-55

C5 52-53

Caution
-
Fail

Unacceptable levels of similarities found
based on the parameters extracted. /
Unacceptable low level of confidence
reached for returned validation result or
detected value. Ratings are never acceptable
even if the true reason is image quality unless
image quality issues can be automatically
detected.

50-51D1
-
F5 0-49

Fail Unacceptable levels of similarities found based
on the parameters extracted. / Unacceptable
low level of confidence reached for returned
validation result or detected value. Ratings
are never acceptable even if the true reason is
image quality unless image quality issues can
be automatically detected.

29

Kofax FraudOne Common API Specifications for GIA Engines

The above table is a sample. The vendor is free to provide a table according to the above scheme
with different levels and interpretation ranges as long as these can be somehow mapped into the
same threshold logic.

30

	Table of Contents
	Preface
	Related documentation
	Training
	Getting help with Kofax products

	Common API interface for GIA Engines
	General utilization
	Basics
	Initialization and setup
	Memory handling
	Function return value
	Analysis setup principles
	Reference and item data

	Common definitions
	API logging levels
	API error codes
	Image types

	API calls
	Initialization calls
	Engine initialization principles
	Workspace creation
	Parameter reinitialization
	Workspace release

	Version retrieval and information calls
	Version retrieval
	Error retrieval

	Tracing calls
	Tracing principles
	Trace level setting
	Tracing

	Engine setup calls
	Engine setup principles
	Feature setup
	Feature reset

	Analysis setup calls - Item setup
	Analysis setup principles
	Item data setup
	Item image setup
	Item removal

	Reference setup calls
	Reference setup principles
	Global reference data setup
	Reference setup
	Adding reference images
	Reference removal
	Reference clearing

	Analysis execution calls
	Analysis execution principles
	Analysis execution
	Result clearance

	Calling sequences
	Result scores

