Kofax Capture
Developer's Guide

Version: 11.1.0

Date: 2022-11-29

KOFAX

© 2022 Kofax. All rights reserved.

Kofax is a trademark of Kofax, Inc., registered in the U.S. and/or other countries. All other
trademarks are the property of their respective owners. No part of this publication may be
reproduced, stored, or transmitted in any form without the prior written permission of Kofax.

Table of Contents

o 1= - 1ol T 8
Related DOCUMENTALION.....c.cciiiriiiiiicicc et bbb 8
Kofax Capture INStAIAtION GUILE..............cccouevueeireriieietetitesenese sttt st st ees 8

Kofax Capture AdMINIStrator's GUIGE.............cceeerereeieieeierieneneeeeee ettt sttt 8

HEID fOr KOFAX COPTUIE.....vcveeiiiieeiriririeiesiesestese st sss st essessesae s e ssessas s e sessessessessessessssssensansensn 8

KOfaX COPLUIE API REFOIEICES.coueeueeieieieeienieeeetete ettt sttt sae s sttt sbenaeaes 8

Kofax Capture REIEASE NOTES..........cccoeeeeririreeteteseestesee ettt ettt et saesaes 9
TFAINMING ettt ettt et et st e sae et e et e sab e satesbaessesstesssesseessesssesasesseessasasesssesseensesnsesnsessaensanns 9
Getting Help With KOfaX ProdUCES........cociiiiiiiieniienieneeteteteeeese ettt ettt st et eee 9
CRAPLEE T: DVEIVIEW....cceiiiiiiiiiieiietetncet et saesessase e sastsssase s s ssasesesaessssasesessasesesassssesssssessssssases 11
Reasons to CusStomize KOfaX CaptUrE......cccecireririerieriereensesiesiesesesesseeseessensessesessessessssssessensessens 11
How to Customize KOfaX CAplUre......cciiriecieriireninieetetetesteste sttt ettt e s sae st ettt et snesnes 11
APT LIDIari@S. ettt ettt sttt s b e s b st eeneenne 12
Backward ComPatiDilify......cccvveeveiiinieninininiseseneeseesesese s se s seeseseessesressessessesseessessessens 14
Fluent User Interface (Fluent UI) CUStOMIZAtIONS.....ccoovuveeeiiieiereeeeeieeieeeeeeeesreeeeeesssnneeeees 15
AddItIONAl RESOUICES.....c.eiiiiieetieieeieete ettt ettt be s bt ettt et e sae b sbesneere et ene 16

How to Implement Your Custom Scripts and MOAUIES..........cccevvereneriinenienenneenieneneneseseeeenees 17
Chapter 2: Custom Script Creation Using VB.NET.........ccccccciiiiiniinrniiennniicnsssesssnsiessssssssnsssssssseses 18
SOFtWArE REQUINEMENTS.eiiiitietieiieeete ettt ettt st sb s bt ettt e e e b e sbesbesae e st et et eeenens 18
Validation Script Creation iN VB.NET.......ccccvviriniiniineneneseeniesiesesesesesssssessessessessessessessssssessensens 19
Selecting the Scripting LaNQUAage.....co.eveeieieierieniinieneetstet ettt sttt see st b saesneens 19

Kofax Capture .NET SCripting APL.....cccoiireeeeeerterene ettt 20
VB.NET Project File LOCAtiON.....ccocivirerinerinereetertesieniessesseseeseeeessessessessessessessessssssensensenns 20
Deployment of @ VB.NET ProjeCt.....cccoivirviriirrienienienienieeeeeeteteste e sie st et et saestessesaesneenees 21

Script PUblisShing ReQUIrEMIENTS......cc.ciiieiereriereeee ettt 21
Sample VB.NET Validation SCriPt.....cccccivvirriirienenineneneseseensessessessesessessssssessessessessessessesses 21
Sample Validation SCript COUE.....ou ittt ettt sttt ettt sbe s sae s eaeen 22
Testing VB.NET CUSTOM SCHIPTS...ccciiiiiiiiieiteentesiteie sttt sttt s st ae e s e e b sneene 23
Error Handling in VB.NET....cuiviiireiirtreeienieseneseseseeseseessestessessessessesssessessensessessessessessasssessensenses 24
FatalErTOrEXCEPLION. cueuiiitetetetert ettt ettt ettt sb e s b b s et ettt e besbesae et e e eneens 24
RejectAndSKipDOCUMENTEXCEPLION.ciiiiiertirteeeteeetete ettt 24
ValidatioNErTOrEXCEPTION. c..icvivtirieeireeterertesesrese st seseesessesaessessessesssessessessessessessessesseessessenes 24
Recognition Script Creation iN VB.NET ..ottt st see s e 25
Kofax Capture .NET SCripting APL.....cccoiiiiieieereesereseseete et 25

Kofax Capture Developer's Guide

Creating a Recognition Script UsSing VB.NET.....ccceciiiiiiiiinniineeneeeneee e 26
Debugging Your Settings with a VB.NET Recognition SCript.....c..cccvvveverrerenenienerieriennees 27
Sample VB.NET RECOGNItION SCriPt....ccirirrieiierierienienienintstet et ste sttt et essesaesnenn 27
Removing a RecoOgNitioN SCriPL.....cociiiiiiiiiiiiieeteerecee et 28

FIRIA SCIIPT.cuuiitiieiiiiirteiertese sttt sttt ettt e st e s e st st et e e e aesbesbessessesseeseeseessessessesbessesseessessensensenses 28
Sample VB.NET Field SCrPL. ..ottt ettt sttt sa e b s s s eeens 29
Chapter 3: Custom Script Creation Using Visual CH.......cccccerviveiiiiiinisseiinnsecnnsineinsnecsessnecsssaesenns 30
SOFEWAIrE REQUINEMENTS...c.eiviiiiieiiriieeetetetesiesesesesseeeseessessessessessessessesseessessensensessessessessesssessensensens 30
Validation Script Creation iN ViSUl CH......cccoiririririeieieteieiesesese ettt st see s 31
Selecting the Scripting LanQUAage.....coeeeeieieierenieieni ettt sse e 31

Kofax Capture Visual C# SCripting APL.......cociviiiinieninirnienenienenesesesssssessessessessessessessees 32
Creating a Custom Visual C# Validation SCriPL.....ccccvererireriinierierenieneneseeee et 33
Visual C# Project File LOCAtiON. ..ottt sttt 34
Deployment of @ Visual CH# ProjeCt......cccvivierriinierenineneneseseeseessesiessessessessssssessessessessesses 35

Script PUblishing ReQUIrEMENTS........cociiviiiiiiierieeereetetetee ettt s 35
Testing Visual C# CUSEOM SCIIPTS....c.eiiiiiieienereree ettt sttt sbe s sttt ee e 35
Error Handling in VISUAI CH........ocveviiiniiinerieieenenesese s ss e essessesaessessessesssessessensessessessessesssessens 36
FatalErTOrEXCEPLION. ceeuieiieteteterte ettt sttt ettt s be s st ettt et e besbesaesueenaentens 36
RejectANdSKipDOCUMENTEXCEPTLION. ..c.ciiiirierirteeiteee ettt 36
ValidatioNErTOrEXCEPTION. c..icviitirtereireeterteresestese st seeeesessestessessessesssessessessessessessessesseensensenes 36
Recognition Script Creation in ViSUal CH......coccoiiieiinenineeeeteteteiesese ettt 37
Kofax Capture Visual C# SCripting APL......cooioiiieteeeesteseneseeiee et 37
Creating a Recognition Script Using Visual C#.........cocvevivenviiiinenineneneseseeneessesiessesnens 38
Debugging Your Settings with a Visual C# Recognition SCript.......c.ccoceeververveenieneeneniennenn 39
Sample Visual C# ReCOgNition SCriPt......coiiiirerererenesenee ettt ettt 40
Removing @ RecoOgNitioN SCriPt.....cocieiirirniiriinientereerienieseeseesre st see e essesssessnesaeessesssesaees 40

FIRIA SCIIPTL. ettt ettt ettt b e s b s b s bt s bt et et e st e be st e sbesbesaeeatena et ensensenses 41
Sample Visual C# Field SCriPLe.....co ettt ettt see e 41
Chapter 4: Registration File Creation............iieeieircnerinnceiencnntiesseiesssnssessnsesssnsssssanssssssnsssssnsass 43
Format for the Registration File..........cooveriiiiniiiiieee ettt st ees 43
1L 0] L2 BTt o] o FO SRR 43

1Y LoTe [T L2 A o [L= Y=Yt] o TR 44
[WOrkflow AGeNnts] SECLION.....cceitivieietenierteee ettt sttt sttt ettt be s b b st et e e aeeennes 48
[Workflow Agent NOme] SECHION.......cceuiririeieteeneeter ettt sttt sre s 49

[Setup Programs] SECHION.......coovirrieriie ettt ettt ste e stessseessreesbe e see s seessseesaseesasessnees 49
[SELUPT SECLION.c. ittt ettt st s e st b e st st e s st e se st e s st e s st e beesesaeesntessesasesnnenns 50
[MENU] SECEION. ...ttt et e r e e e e eeeeseeesseessssssssssssssssssssssnrnreens 51
[MENU BOI] SECLION...uuteeiei ittt eseetbe e e e e ssabbe e s e sesaabsreeeessasseeesesssssseeesessnnres 52

Kofax Capture Developer's Guide

Sample ReGISration FileS.......co oottt 52
Using the Administration Module to Manage EXTENSIONS.......ccccvvivererierreenienienienesiesesssssensensens 56
Custom Module ManagemMeENnt.......ccceeirirriiirrterienene ettt sttt see e sbe b saesaeeaeen 56
Workflow Agent ManagemMeEnt.... ..ottt ettt see b et 57

Kofax Capture Extension Registration ULIlitY......cccvverviiriineniinieniineneneeeesnesenenesesesseseessessesses 58
CommMaANd LiNe PArameters......ccoireeviiieierierienieniese ettt sae s st s ettt sse b sae st e e e e nes 59

(g 10 | PP P RS RPRPRTPPROPRPRTON 61

L@ 1T o] U) SO PSRRI UR PPN 61
Chapter 5: Workflow Agent Creation...........iiiiiinnniiinneiiinntiensnsionssiisssnsisssssssessasssssssssssasssone 62
WOIKFIOW AQENT DESIGN..c.uiiuiiiiiiiiertineeitetetet ettt sie st ettt et e st s b st e st et et e aesbesbesbesbeese et eneeneens 62
Setup OCX IMPIEMENTATION....cciviriiriiirererteterere sttt eseseesse e sbesbesaessaesseseessessassessessessesseeseen 62
Writing the RUNTIME MOAUIE......oouiiiieieteteceeee ettt sttt ettt sbe s s ens 63
COUE ProJECt SETHINGS. .ccveruieeeeieeeeeete ettt sttt ettt e et sb e sbe st et e e e e eneen 63
WOrKflOW AQENT SAMPIE....iiiiiiiiiiiiiriitctererese ettt sre e e et esaessessesbessessassnennens 64
RegiStration File CreatioN. ...ttt sttt b e sttt et et aesaes 68
Registering the SEUP OCX. ..o ittt ettt see e s sae sttt aesbesb e s b st et e e e e e e nbesaes 70
Registering a Setup OCX Not Associated with a Custom EXtension..........cecceeevverevrvennnn. 70
Installing and Registering the Workflow AQent..........cooveviriiierenieneninenesteeeteeesee e 70
ReMOVING @ WOIKIIOW AGENT....cuiiieeeee ettt ettt sttt 71
Chapter 6: SetUpP OCX CreatiON.........ccceeeeerrercnerrescnniesssersessssssssnsesssansesssnssssssnssssssnsssssassssssnsssssansasssnns 72
SELUP OCX DESIGN..ciuuiiiireerieieeieeiestestesre et sstestesreesseseesaeesseessesssesasesaeesseessesasesseesseesseensesnsesseessenas 72
WIITING @ SETUP OCX ittt st st st b e s st b e s b sae e sreebesmaesnnas 72
COAE ProJECE SETLINGS..cvtvirererieeeierteseste st sesesee et estessessesressesseessessessassessessessessesssessensenses 73
Sample Setup OCX for the Custom WOrkflow Agent........ccccovererinenieninneenieriereneseseeee e 73
Setup OCX for the WOrkfIOW AGENT.... ..ottt 73
RegiStering the SETUP OCX.....civiririririeterrerienieseseseseeeessessessessessessesssessessessessessessessesssessessassesses 76
Registering a Setup OCX Not Associated with a Custom Extension..........ceccecevvevveeeeneene 76

Setup OCX REQISLIY ENTIIES. ..ottt st 76

TAD REGISTIY KEYS..oouviiiiiriirierirtntestentesesie s st st st et esse st essesbesbessessessasssessessessessessessesnsessensanses 78
LOAING the SELUP OCX.uuiiiriirirteteieteriesie sttt ettt et sttt st et et e sbe st e s b sae st et e s esaesbesbesaesneeneens 79
Unloading the SEtUP OCX.. ..ottt ettt st e b b s sttt se e b saesne s 80
SELUP OCX PaANEIS ..ttt sttt ste e st ste s e sie s e et eeessessassesbassessessssssensensessessessessessesssensensens 80
ENADIING PANEIS.....ooiiiiee ettt ettt et et sb s sttt 80
CONTEXE IMIBNUS.c..eiiiiiieitete ettt sttt e s e s bt e bt e b e s aa e s st e be e besaesmaesreesreeanesnnes 81
Enabling Context MENU IEEMIS....cciiiriiiiierierienesiseseseeeeseesse e ssesses e ssessessessessessessessesseens 81
RIDDON ..ttt ettt s b s sttt et st s b e s b et ettt et e b besaeeaeeaeeaes 81
CUSEOM TAD NAIMES ..ttt et b sttt ettt s b b st et et e e e ees 81
Enabling/Disabling CuStom COMMANGS.......ccoceverirreerierenenineneseseessessessessessessessessesssesses 82

Kofax Capture Developer's Guide

PANIS ettt bbb b h ettt e b b e e be bt e bt et et et et e nnenreae 82
Batch Class PUBIISNING.....cociiiiriiiiecrcceersescse e ss et sa e s b sbe e ssa e nes 82
Setup OCX DeVelOPMENT APL.......coiiirieeetet ettt sttt et sttt e e et e st e sbesbessesaeeaseneens 83
Chapter 7: Custom Panels and Applications.............oiiiiiiieiiiiniinisiiinnetnsecssecsesaecsesaeeeens 84
Programming in a High Availability ENVIFONMENT..........ccevvnirieninireenenenenesesesesseseessessessesses 84
User Interface Design and BENAVIOr........coiviiiirieninenininteteteteste ettt et st st eaesaens 84
CUSEOM PANEIS....eiieteetertee ettt ettt s b e st sttt e e b b s bt s bt et et e e enean 85
CUSEOM TADS ..ottt 86
Custom Panel INSTAllation.......ccoeriririririeieietereses ettt sttt sttt see b s b ens 87
Invoking Kofax Capture Commands from a Custom OCX Panel........ccceceveeveenienenenennene 90
SamMPIle CUSTOM PANELl...iiiiiriiiiriieieiirienienese sttt e see s sre s e s e s e e s essessesbessesssssseseessansansenses 92
Chapter 8: Custom Module CreatioN.........cccccciierrceiiereeiinnceiensnntienssstisssnsiessssssessssssssnssesssssossnsssessns 97
CUSEOM MOAUIES. ...ttt sttt ettt s bt s b ettt e e e b e s b e sbe s bt eme e e e e e e enee 97
High Availability ENVIFONMENTS......c.cciiriririrenirenteieriesenesesresesseeessessessessessessessesssessessessessessesses 97
Error Handling GUIAEIINES........coiiiiieieieiereee ettt sttt ettt sttt sae s 97
SAMPIE AP PIICATIONS ..ttt ettt s s b e s bt s b ettt e e e b e b e sbesbesae et et ens 99
Typical DevElOPMENT TASKS......coiiririreriiterieriestestsesesteseestessessesressessesseeseessessessessessessssssessensensessens 99
Design the CUSTOM MOAUIE......cc.oviriiiiieieeereet ettt et sttt ees 99
Create the SELUP OCX . ettt ettt ettt st sb e st sttt eesaeeaes 100

Write the RUNtIME APPlICatioN......cicviriiriinininirtceeteresenesese e s ae e e e 100
Create the Custom Module Registration File........cccoeverirenininnnniinereneseneeeeeeeeeenne 100
Register the CUStOM MOQUIE......cc.iiiiie ettt 101
Create an INStallation Programi ... cceiienineneneseereseseesiesessesesssessessessessessessessessees 101
DOCUMENT ROULING...citieiiiieiieeetesteie ettt sttt sttt et st st st e be st e saeesse e beessesaeesneessesnsenns 101
Document ROULING FUNCLIONS......cociiiiiiiiieireeeeeee et 101
About Document ROULING FEATUIES.......cocvvvirieriirienineneseeeeeesiessesiessessessesssessessessessessenses 103
Using Kofax Transformation MoOdUIES............cocuevievirenineninieteeeesese sttt 104

Using the Sample Custom ModUIe.........cocoiiiininneeeeeese et 104
Sample CUSTOM MOAUIE.....coiiiiieieieireercee et se e st e s sbesbesaessn s e e sasanes 104
Chapter 9: Creating an EXPOrt CONNECLOL.........cccciiiiiienietienseinisnstesssssessnstsssssssssssssessassssssnssssse 108
Kofax Capture EXPOrt TYPE LiDrary ...ttt sttt sne 108
Kofax Capture and the EXPOrt PrOCESS......viiiiriirireninesesestesesiessesiessessessesssessessessessessessessssnes 109
Requirements for the EXport CONNECLOr SELUP.....ccoviverirerririeierreriesesese ettt see e 109
Requirements for the EXPOrt CONNECLON.......coiiiririeteeeereenereee ettt 110
ReleaseSetupData and ReleaseData ODjJECES......ccccviviriererrerniinienienieneneseseeeeseessessessenns 110

COM Servers: IN-proc Or OUL-OFf-ProC2......cccuevievirierinerinieteteieste ettt 112
Registering Your EXPOrt CONNECLON......ciciiveriiiieiieiieneesiteiesee et st sneas 112
Scripting in a High Availability ENVIFONMENT........cccoiviirininieniieerenieneseneseseseessesseseens 113

Kofax Capture Developer's Guide

Chapter 10: Deploying CUStOMIZAtIONS.......c..uuiieieiiiiiiiiiiiinetecetccsecsc e sssaee s sae s saseseses 114
Installing the Customization DeploymeNnt SEIVICE.......covvirireririerrierieresenesese e seeseesaessessesees 114
ComMMANd LiNE PArameters......ccoiverirerieieteterieseesie st st sttt essestessesbesse st et esaessensessens 115
Setting Up a Customization DepPloyMENt......c.co ettt 115
Initiating @ CustomMization DEPIOYMENT.......ccccviriririirirerrereese et e s eseesse e e sressesseesaessenes 117
Viewing Customization Deployment StatUs.......ccoeeererirnierienienenesestete et st e e eees 118
Deploying Customizations While Applications Are RUNNING......ccceveviriieneneneneneeeeeeeeeeene 119
About the Customization DeploymeENT ProCESS......covivrvrerineniineneseeeesresiesesesesessessessessensens 120
AdMINISTIAtOr ACLIONS....ccvieiirieeieteteteree ettt st sttt et et bbbt et e e s e e esseee 120
Deployment SErviCe ACTIONS.coii ettt ettt sbe b b st ee 120

KON SEIVET ..ttt e 121
Appendix A: Custom Module SamPIle.........ciiiiiiiiiiiiiiniienetienstesesresssssessssessassssssnsssssens 122
[Tt =T 0171 o o PSPPSR PRTPPRUPRPRRPOOt 123
Kofax Capture Optimized Custom Module .NET Type Implementation Library.......cccccceeveuen. 123
Kofax Capture Document Access .NET Type Implementation Library.......c..ccccoeeveninenvnnennenne 124
Development ENVIFONMENT.......co ettt ettt ettt et saesbe s b bttt e e naeneen 125
SEEUP OCXuuiiiiiiiiiicicc bbbt 125
RUNEIME EXECULADIE.....cuiieitieeeeee ettt sttt sa b 125
Installing the Sample CuStomM MOAUIE.......cc.coiriririeeeee et 125
Registering the Sample CUStOM MOAUIE........coiviriririiieereeeereeeere s a e e e 126
Adding the Sample to the Batch Processing WOrkflow.........ccccoveververinneenienienienenencneeeeeeens 126
Using Batch Manager with a Custom MoOdUI.........ccoiiriririreeeeeeee e 127
Creating a Batch to Open in the Sample Custom Module.........ceeceirreerinenenienienenenreeneeneennes 127
Processing DY DOCUMENT.....cociiiiieriirietereetetet ettt sttt ettt et b e b st st s e et e b e besbesaesae et eaee 128
Setting the Batch Custom StOrage StriNg.......coceievrrieierenerene et 128
Getting the Batch CuStomM StOrage STriNG.....civiririnerieriereerrerresiesieseseseseesessessessessessessessesseens 129
XML TranSPOIt FIlES.....coiiiiieiirieeiieitetete ettt ettt et sae bttt et b e s bt sbe s st et et e b e s esseee 129
Copying the XML Files Back to Kofax Capture........ccevererenenenenceeeeenieneneseeeeee e 129
COMTUPTE XMLttt sttt st s be e sab e st e e st e ssaeseseesaneesaseesnnesaneesane 130
QU= = To <SPPSR 130
Appendix B: Workflow Agent Sample...........iiiiiiiniiiinieiinnnetinnneinsetsessecsssaesessasesessasesns 131
Installing the Sample WOrKflOW AQENT.......ciiiveririnininenineeeeriesieseseseseeseessessessessessessessseseens 131
Registering the Sample WOrkflow AQENT.........cociiiiiiviinieneneenteteeee ettt 132
Using the Sample WOrKfIOW AQENT......cccoviiiirireteeeteeresese ettt ettt eae e e 132

Preface

The Kofax Capture Developer’s Guide provides information for customizing your Kofax Capture
installation. This guide includes instructions for the following:

« Writing custom validation, recognition, and field scripts

+ Creating and registering custom extensions such as custom modules, custom panels, workflow
agents, and setup OCXs

+ Using the Kofax Capture API Library to create the custom extensions

Several custom script and extension samples are provided throughout this guide. This guide
assumes that you have an understanding of the Kofax Capture product and a working knowledge of
an object-oriented development tool such as Visual Studio.

Related Documentation

In addition to this guide, the Kofax Capture documentation set includes the following items.

Kofax Capture Installation Guide

The Kofax Capture Installation Guide contains essential information about installing Kofax Capture
and Kofax Capture Network Server (KCN Server).

This guide is for system administrators and developers who are installing Kofax Capture or KCN
Server, or who need a description of the installation procedures and requirements.

Kofax Capture Administrator's Guide

The Kofax Capture Administrator's Guide contains essential information about configuring Kofax
Capture and Kofax Capture Network Server (KCN Server).

Help for Kofax Capture

Kofax Capture online Help provides online assistance for system administrators and operators.

Kofax Capture API References

The Kofax Capture API Reference (APIRef.chm) is an online guide that provides the details of each
API library needed to customize Kofax Capture. The Kofax Capture Export Type Library API Reference
(APIRefExport.chm) gives details needed to customize an export connector. Both API References
are intended to be used alongside the Kofax Capture Developer’s Guide as a primary resource for
customizing Kofax Capture.

Kofax Capture Developer's Guide

You can access both API References in the following folder, which is available on your Kofax Capture
installation media:

Documentation\Help\APIRef

Kofax Capture Release Notes

Late-breaking product information is available from release notes. You should read the release
notes carefully, as they contain information that may not be included in other Kofax Capture
documentation.

Training

Kofax offers both classroom and computer-based training that will help you make the most of your
Kofax Capture solution. Visit the Kofax website at www.kofax.com for complete details about the
available training options and schedules.

Getting Help with Kofax Products

The Kofax Knowledge Base repository contains articles that are updated on a regular basis to
keep you informed about Kofax products. We encourage you to use the Knowledge Base to obtain
answers to your product questions.

To access the Kofax Knowledge Base, go to the Kofax website and select Support on the home
page.

O The Kofax Knowledge Base is optimized for use with Google Chrome, Mozilla Firefox or
Microsoft Edge.

The Kofax Knowledge Base provides:
« Powerful search capabilities to help you quickly locate the information you need.
Type your search terms or phrase into the Search box, and then click the search icon.
* Product information, configuration details and documentation, including release news.

Scroll through the Kofax Knowledge Base home page to locate a product family. Then click a
product family name to view a list of related articles. Please note that some product families
require a valid Kofax Portal login to view related articles.

+ Access to the Kofax Customer Portal (for eligible customers).

Click the Customer Support link at the top of the page, and then click Log in to the Customer
Portal.

+ Access to the Kofax Partner Portal (for eligible partners).

Click the Partner Support link at the top of the page, and then click Log in to the Partner
Portal.

+ Access to Kofax support commitments, lifecycle policies, electronic fulfillment details, and self-
service tools.

http://www.kofax.com
https://knowledge.kofax.com/
https://www.kofax.com/

Kofax Capture Developer's Guide

Scroll to the General Support section, click Support Details, and then select the appropriate tab.

10

Chapter 1

Overview

The Kofax Capture Developer's Guide contains information about customizing your Kofax Capture
installation, including the following:

* Reasons to customize Kofax Capture
* How to customize Kofax Capture
* How to implement your custom Kofax Capture components

This guide assumes that you have a good understanding of Kofax Capture, Visual Basic or Visual
Studio, and COM interface tools.

Reasons to Customize Kofax Capture

Kofax Capture provides the solution to your business needs for converting forms and data to a
more useful electronic medium for data processing and archiving. However, you may also want to
customize a Kofax Capture process for a specific business task.

Some reasons to customize Kofax Capture:

+ To streamline or bypass unnecessary processes. For example, there may be no need to validate
index data if the accuracy of the data exceeds a specified accuracy threshold defined by your
business policy.

+ To assert additional processes.

+ To customize the user interface for your business environment. For example, a validation
operator would need access only to certain functions or processes.

Because Kofax Capture is modular (composed of the Administration, Scan, Validation, Verification,
Quality Control, Export and other modules) you can customize a processing module using the Kofax
Capture API libraries provided with your product.

How to Customize Kofax Capture

To create and write custom applications and scripts for Kofax Capture, you can use tools such

as VB.NET, C++, or C#, which are included in all Visual Studio editions (Community, Express,
Professional, Ultimate, and Premium). You can use Visual Studio and VB.NET for creating custom
scripts.

API libraries, which are documented in the Kofax Capture API Reference and the Kofax Capture Export
Type Library API Reference, are available for you to create custom Kofax Capture extensions.

1

Kofax Capture Developer's Guide

You can access both API References in the following folder, which is available on your Kofax Capture
installation media:

Documentation\Help\APIRef

API Libraries

Kofax Capture includes several API libraries that you can use to customize Kofax Capture features or
behavior. Details on these libraries are provided in the Kofax Capture API Reference. Details about the
Kofax Capture Export Type Library are available separately, as noted in the table.

The Library Name column in the following table shows the library as it will be displayed in the
Visual Basic References window. The Object and File Names column shows the library as it will be
displayed in the Visual Basic Object Browser, followed by the name of the library file in parentheses.

The VB6 API libraries are deprecated and no longer used to develop new product features. For
information about compatibility with existing VB6 APIs used in earlier versions of Kofax Capture, see
Backward Compatibility.

Library Name Object and File Name Usage
Kofax Capture Module .NET | Kofax.Capture.CaptureModule Used to add custom panels, menu
Type Library (Kofax.Capture.CaptureModule.dIl) items, and import applications

to the Scan, Quality Control,
Validation, and / or Verification

modules.
Kofax Capture Administration | Kofax.Capture.AdminModule Used to create custom panels for
Module .NET Type Library (Kofax.Capture.AdminModule.dIl) the Administration module or

Setup OCXs for custom modules
or workflow agents.

Kofax Capture Custom Kofax.Capture.SDK.CustomModule Provides .NET type interfaces used
Module .NET Type Interface (Kofax.Capture.SDK.CustomModule.dlIl) to integrate a custom module into
Library your Kofax Capture installation.

Implementation of this interface
library is used with the Kofax
Capture Document Access .NET
Type Implementation.

Also referred to as the DBLite .NET
Interface Library.

12

Kofax Capture Developer's Guide

Library Name

Object and File Name

Usage

Kofax Capture Document
Access .NET Type
Implementation Library

Kofax.Capture.DBLite
(Kofax.DBLite.dll)

Used to integrate a custom
module into your Kofax Capture
installation.

Kofax Capture Document

Access .NET Type Implementation
makes it possible for the

custom module to access batch
information from Kofax Capture.
This library also allows your
custom module to relay batch
information from the custom
module to Kofax Capture.

Also referred to as the DBLite .NET
Implementation Library.

Kofax Capture Optimized
Custom Module .NET Type
Interface Library

Kofax.Capture.SDK.Data
(Kofax.Capture.SDK.Data.dll)

Provides .NET type interfaces used
for fast retrieval and selective
update of data.

Implementation of this
interface library is used with
the Kofax Capture Optimized
Custom Module .NET Type
Implementation Library.

Also referred to as the
DbLiteOpt .NET Interface Library.

Kofax Capture Optimized
Custom Module .NET Type
Implementation Library

Kofax.Capture.DBLiteOpt
(Kofax.DBLiteOpt.dll)

An easy-to-use custom module
interface used for fast retrieval
and selective update of data.

This API provides a mechanism
that allows use of the Kofax
Capture Document Access .NET
Type Implementation

Library dynamic-link library
(Kofax.DBLite.dll) to select and
open a batch.

Also referred to as the
DBLiteOpt .NET Implementation
Library.

Kofax Capture Custom
Workflow .NET Type Interface
Library

Kofax.Capture.SDK.Workflow
(Kofax.Capture.SDK.Workflow.dll)

Provides interfaces used by
workflow agents to close batches
by modules.

Implementation of this interface
library is used with the Kofax
Capture Custom Workflow .NET
Type Implementation Library.

Also referred to as the
Workflow .NET Interface Library.

13

Kofax Capture Developer's Guide

Library Name Object and File Name Usage

Kofax Capture Custom Kofax.Capture. ACWFlib An implementation of Kofax
Workflow .NET Type (Kofax.Capture. ACWFlib.dll) Capture Custom Workflow .NET
Implementation Library Type Interface Library.

Also referred to as the
Workflow .NET Implementation

Library.
Kofax Capture .NET Scripting | Scriptlnterface Used to create VB.NET custom
Library (ScriptInterface.dll) field, validation, and recognition
scripts.
Kofax Capture Export Type AscentRelease Used to create custom export
Library (AscRel.dll, Kofax.ReleaseLib.Interop.dll) | connectors. Written in C++

and documented separately

in APIRefExport.chm, which is
available on your Kofax Capture
installation media in the following
location:

Documentation\Help\APIRef

Backward Compatibility

New features in Kofax Capture do not use the VB6 public APIs, which are deprecated. However,
your existing customizations based on VB6 public APIs are supported for use with Kofax Capture
11.1.0 or later, provided that you perform the installation without excluding VB6 components. If you
specify the NoVB6 switch during the Kofax Capture installation, or your organization policy does not
allow installation of VB6 components, you cannot continue to use the customizations.

If you change your existing customizations based on existing VB6 public APIs, they should be
recompiled against VB6 APIs from previous versions of Kofax Capture. Another option is to convert
your project to Visual Studio 2015 or later, target the project to .NET 4.8, and then recompile using
either the VB6 public APIs provided with Kofax Capture 11.1.0 or later, or the .NET APIs described in
the Kofax Capture API Reference. The following table gives you information about specific versions.

If you need to refer to the VB6 API documentation, see the API Reference and Developer's Guide
provided with the Kofax Capture 10.1 or 10.2 product.

14

Kofax Capture Developer's Guide

Tool Compiles Against Compiles Description

VB6 and Interop Against .NET

Public APIs? Public APIs?

Kofax Capture Kofax Capture

Version Version
Microsoft Visual Studio | Yes Yes You can compile customizations
Express Community 8.0,9.0, 10.0, 10.1, 10.1,10.2, 11.0, against VB6/Interop Public APIs or .NET
2015, 2017 or 2019 10.2,11.0, 11.1 1.1 APIs, because both are available and
Microsoft Visual Studio valid with these Visual Studio versions.
Enterprise 2015, 2017 or
2019
Microsoft Visual Studio
Professional 2015, 2017
or 2019
Microsoft Visual Studio
Express 2015 for
Windows Desktop
Microsoft Visual Studio | Yes Yes You can compile customizations
Community 2013 8.0, 9.0, 10.0, 10.1, 10.1,10.2, 11.0, against VB6/Interop Public APIs or .NET
Microsoft Visual Studio | 10.2, 11.0, 11.1 1.1 APIs, because both are available and

Ultimate 2012 and 2013

Microsoft Visual Studio
Premium 2012 and 2013
Microsoft Visual Studio
Express 2012 and 2013
for Windows Desktop
Microsoft Visual Studio

Professional 2012 and
2013

valid with these Visual Studio versions.

For Kofax Capture 11.1, it is necessary
to install the Microsoft .NET Framework
4.8 Developer Pack and Language
Packs, as these Visual Studio versions
do not integrate with .NET Framework
4.8 by default.

Fluent User Interface (Fluent UI) Customizations

Some Kofax Capture modules use the Fluent U, similar to the user interface in recent versions
of Microsoft Office. The Fluent Ul is characterized by the use of a Ribbon, tabs, groups, and

commands. The Fluent UI also supports right-click (context) menus, which are unchanged from
prior interface approaches.

See the Kofax Capture Help for more information on the Kofax Capture user interface elements.

The following table shows differences between legacy terminology and the Fluent UI.

Legacy and Context Menu Fluent UI Comments
menu bar Ribbon An application window has only one Ribbon.
menu bar text /menu tab The Ribbon consists of a set of tabs.

The strMenuBarText parameters specify the label that
appears on the tab.

15

Kofax Capture Developer's Guide

Legacy and Context Menu Fluent UI Comments

group A"group" is an organizing container for commands
(menu items) that belong to a tab. A tab may consist
of many groups.

Groups perform a function similar to divider bars in
menus, but there is no programmatic mapping from a
menu based interface to groups.

When using older (unmodified) customizations,

a group called "Menu Items" is automatically
created. However, in the AddMenuEx method, the
strGroupName parameter specifies the text to be
used for the group name.

menu text/menu item command Commands can have downward pointing arrows that
reveal a window with additional related commands.
For example, the Paste command may open to show
several options for pasting content.

strMenuText parameters specify the label that
appears on the command button.

To maintain backward compatibility, the names and behaviors and documentation of existing
methods and other API and customization elements are unchanged.

For example, the description, behavior and syntax of the SelectMenultem method are unchanged.
With a tab on the Ribbon, it causes the command (menu item) with the specified resource ID to

be triggered. In a context menu, it causes the menu item with the specified resource ID to be
triggered.

As another example, the ShowMenu method shows or hides a tab on the Ribbon. In the context of
the Fluent UI, the strMenuBarText parameter specifies the label on the tab. The command label is
determined by the strMenuText parameter.

Note that unless a method or other API element is specifically restricted to context menus, its
documented functionality may apply to either the Fluent UI or a context menu (depending on the
context of the application code).

Several recently added methods directly support the capabilities of the Fluent UL See the Kofax
Capture API Reference for more information. We strongly recommend that you employ the newer
methods to create or update your customizations.

Additional Resources

Files that define the data layout used when accessing Kofax Capture data through custom modules
and workflow agents are provided. Both mechanisms utilize identical data layouts.

These data layout files (AcBatch.htm, AcDocs.htm, and AcSetup.htm) are installed with Kofax
Capture in your Kofax Capture installation folder.

The data layout is split into two files: AcSetup.htm defines setup information and AcBatch.htm
defines runtime information. The data is partitioned into elements. Each element describes a

specific kind of object and includes attributes and subelements. Attributes are properties that
describe an element.

16

Kofax Capture Developer's Guide

The file AcDocs.htm is a subset of AcBatch.htm and contains only the portion of AcBatch that relates
to the document structure.

© Prior to Kofax Capture 9, the product was named Ascent Capture. Although the product name
in most of the documentation has changed, some instances of the prior product name appear in
code snippets, file names, sample applications, API references, or references to prior versions of

Kofax Capture.

How to Implement Your Custom Scripts and Modules

Each chapter in this guide provides instructions and implementation details for creating custom
extensions, such as custom modules, panels, workflow agents, and setup OCXs.

O Kofax Capture 11.1.0 or later is based on Microsoft .NET Framework 4.8. To use Kofax Capture
11.1.0 or later successfully with custom modules, export connectors, OCX/custom panels,

or workflow agents based on .NET Framework versions earlier than 4.0, a special-purpose
configuration file is required. For details, see the Kofax Capture Installation Guide.

17

Chapter 2

Custom Script Creation Using VB.NET

Scripts are small programs used to perform specific tasks for associated Kofax Capture modules. In
the Administration module, you can set preferences for custom script creation.

This chapter explains how to create custom scripts using VB.NET as the script language and Visual
Studio Express 2015 for Windows Desktop as the script editor. The advantage of writing scripts in
VB.NET and the Microsoft Visual Studio development environment is support for Unicode, which
is essential for supporting multi-byte character sets. Also, a large knowledge base for the Visual
Studio development environment is available should you need additional coding assistance.

You should be familiar with programming concepts and the VB.NET programming language and
development environment for writing custom scripts. You can create the following types of custom
scripts in VB.NET:

+ Validation scripts validate data in the Kofax Capture Validation and Verification modules. For
example, you can write a validation script that queries a database to verify that data for an index
field matches the entered data. Document and folder validation scripts can be used to perform
validation on document class index fields and folder index fields, respectively.

+ Recognition scripts validate or modify data on results from the Recognition Server module. For
example, you can write a recognition script that retrieves zone snippets from each image in a
batch and determines if the zone meets a specific acceptance criteria.

+ Field scripts validate data in index fields. For example, your field script can validate that data
meets the criteria for a particular field type.

Software Requirements

The server and client workstations for Kofax Capture must meet the system requirements listed on
the Kofax Web site at http://www.kofax.com/support.

The server and client workstations for Kofax Capture must meet system requirements. For
information about supported operating systems and other system requirements for Kofax Capture,
contact Kofax at sales@ser.de.

Also, when creating a custom script in VB.NET, one of the following development environments
must be installed on your computer:

* Microsoft Visual Studio Enterprise 2015, 2017 or 2019

* Microsoft Visual Studio Professional 2015, 2017 or 2019

* Microsoft Visual Studio Community 2013, 2015, 2017 or 2019

+ Microsoft Visual Studio Express 2012, 2013 or 2015 for Windows Desktop
* Microsoft Visual Studio Ultimate 2012 or 2013

18

http://www.kofax.com/support

Kofax Capture Developer's Guide

* Microsoft Visual Studio Premium 2012 or 2013
* Microsoft Visual Studio Professional 2012 or 2013

You also need Microsoft .NET Framework 4.8 runtime installed in your development environment.
If not already installed, the .NET 4.8 runtime is installed either by Kofax Capture or by Visual Studio
2019.

Also, to compile against Kofax Capture 10.2 or 10.1 libraries that are targeted to .NET 4.0, you must
use Microsoft Visual Studio 2010. You can use Visual Studio 2008 to compile Kofax Capture 10.0, 9.0
and 8.0. See Backward Compatibility for more information.

© visual Studio Express and Visual Studio Community are free downloads from the Microsoft
Web site.

Validation Script Creation in VB.NET

Validation scripts are useful for verifying that data meets specific formatting criteria or for
validating database information for fields of a document class. You can perform these checks before
and after document processing (that is, DocumentPreProcessing and DocumentPostProcessing
events).

In this section, you will learn about:
+ How to select the kind of custom script to create using VB.NET

+ Objects, methods, and properties that are available for use from the Kofax Capture .NET Scripting
API

« VB.NET project location for your script
+ Deployment of the script’s Visual Basic project
+ Publishing requirements for the script

A sample validation script written in VB.NET is provided.

Selecting the Scripting Language

Although it is possible to create a custom script outside Kofax Capture using a supported Visual
Studio environment, you typically create a custom script from the Kofax Capture Administration
module. A document class must exist before you create a validation script.

1. On the Home tab, in the Document Class group, click Validation Script.
The Validation Script window appears.
2. Onthe Document classes list, select the document class for which you want to create a script.
On the Scripting language list, select VB.NET.
4. Click Create.

A VB.NET project is created for the script, and it opens in the code editor of your .NET
application. Add your code to create the custom script.

w

19

Kofax Capture Developer's Guide

Kofax Capture .NET Scripting API

Your document validation script project has access to the events and properties of the Kofax
Capture .NET Scripting library. Each script can consist of several events and event handlers. The
index fields that exist for the document class selected are included in the script code shell.

DocumentValidationScript Class

The DocumentValidationScript class contains the events that are available for use in a validation
script. You add code for a selected event to perform a custom data validation routine. The following
events, event arguments, and their associated properties can be used.

Validation Script Events

Events

Description

BatchLoading

Called when a batch is first opened in the Validation or
Verification module. If a batch has multiple document classes,
the function is called once per document class the first time a
document class is processed.

BatchUnloading

Called when a batch is closed.

DocumentPreProcessing

Called each time a new document is opened.

DocumentPostProcessing

Called after each document is closed.

PreDocumentEventArgs

This class represents the event arguments for the
DocumentValidationScript.DocumentPreProcessing event.

PostDocumentEventArgs

This class represents the event arguments for the
DocumentValidationScript.DocumentPostProcessing event.

Exceptions

To signal an error state, the VB.NET script can throw an exception during event handling. Three

types of exceptions are available:

+ FatalErrorException

* RejectAndSkipDocumentException
+ ValidationErrorException

For details about each event, event arguments, and properties, refer to the Kofax Capture API
Reference. For more information about exceptions, refer to Error Handling in VB.NET.

VB.NET Project File Location

The file name assigned to the script is shown in the title bar of the programming product. The
default location for each project is a numeric folder name under the ~AdminDB\Scripts folder.

Default location of the AdminDB folder:

* Server: \\<server name>\CaptureSV
+ Standalone: C:\Programbata\Kofax\Capture

20

Kofax Capture Developer's Guide

@ validation of a batch field and batch totals through VB.NET scripting is not supported.
However, batch fields are exposed through the Batch object, which can be accessed from the
parameter of the event handler.

You must compile the script and publish your batch class before the script can be used in batches.
Your script cannot be applied to a batch created before the new publication date. In addition, you
must republish if you make changes to the script.

Deployment of a VB.NET Project

VB.NET scripts have a folder of source files and a folder of executables. The entire VB.NET script
project is deployed to the Local\Scripts folder before the Validation or Recognition Server
module is launched for either a standalone or remote/central site environment.

The VB.NET script is opened each time a batch is opened (if the script is not already present) and a
new script ID folder is created for a published batch class. VB.NET scripts can include field scripts,
which are executed when there is no document/folder validation script.

Batches using VB.NET scripts are deployed automatically on standalone workstations and on Kofax
Capture Network Server remote sites through synchronization by the Remote Synchronization
Agent. Scripts are downloaded when the remote site synchronizes with the central site.

Script Publishing Requirements
A VB.NET script must be compiled before it can be published. Otherwise, an error occurs.

The publish check is performed only on a newly created VB.NET script. The publish check is not
performed on updated or changed scripts, and it is the responsibility of the script developer to
recompile scripts as needed. Also, a publish check is not performed on VB.NET scripts for imported
and exported batch classes.

Sample VB.NET Validation Script

This section describes how to create a sample VB.NET document validation script named
SampleScript, which contains the fields ClientName and SSN. The sample script is used in the next
section, which explains how to add custom code to validate a social security number.

O 10 use the sample, you need a database, which is used for the SSN value lookup. You will need
the database name, password, and host name for the location where the database resides.

1. Navigate to the Kofax Capture program folder and click Administration.

2. Create a document class with the name SampleScript.

3. Onthe Document class tree view, select SampleScript, right-click, and then click Properties.
The Document Class Properties window appears.

4. On the General tab, use New Index Field to add two fields with the following information:

a. Name: ClientName, Field Type: Alphanumeric_25, Default set to empty, Required set to
True.

21

Kofax Capture Developer's Guide

b. Name: SSN, Field Type: Alphanumeric_12, Default set as empty, Required set to True.

c. Save the changes and close the Document Class Properties window.
5. Verify that the SampleScript document class is selected.
On the Home tab, in the Document Class group, click Validation Script.

7. Onthe Document Validation Script window, on the Document classes list, select
SampleScript.

8. On the Scripting language list, select VB.NET.
9. Click Create.

o

Sample Validation Script Code

Using the sample validation script created in the previous section, you can add code that compares
and validates a social security number field from a scanned document to a social security number
that is already in the database for the client. The first function of the code is the FieldPostProcessing
event followed by helper functions.

After you add the following code, compile the script. When the script is successfully compiled,
publish the batch class by right-clicking the batch class and selecting Publish.

Imports System

Imports System.Collections.Generic

Imports System.Text

Imports Kofax.AscentCapture.NetScripting

Imports Kofax.Capture.CaptureModule.InteropServices
Imports Kofax.Capture.CaptureModule

Imports System.Data.SglClient

Namespace SampleScript
<SuppressFieldEventsOnDocClose (False)>
Public Class SampleScript

Inherits DocumentValidationScript

<IndexFieldVariableAttribute ("ClientName")>
Dim WithEvents ClientName As FieldScript

<IndexFieldVariableAttribute ("SSN") >
Dim WithEvents SSN As FieldScript

Private Sub SSN FieldPostProcessing (ByVal sender As Object, ByVal e As
Kofax.AscentCapture.NetScripting.PostFieldEventArgs) Handles SSN.FieldPostProcessing
Dim oConnection As IDbConnection
oConnection = OpenDatabaseConnection ()
Try
oConnection.Open ()
If (Not FindSsnInDatabase (oConnection, SSN.IndexField.Value)) Then
Throw New Kofax.AscentCapture.NetScripting.ValidationErrorException ("SSN missing
from the database.", SSN.IndexField)
End If
Finally
oConnection.Close ()
End Try
End Sub

Private Function OpenDatabaseConnection () As IDbConnection
Dim oConnectionStringBuilder As SglConnectionStringBuilder
oConnectionStringBuilder = New SglConnectionStringBuilder ()
oConnectionStringBuilder.DataSource = "DBServer00\SQL2005"

22

Kofax Capture Developer's Guide

'*** server name

oConnectionStringBuilder.UserID = "Userl" '*** uyser name
oConnectionStringBuilder.Password = "abcl23" '*** password
oConnectionStringBuilder.InitialCatalog = "SocialSecurityDB"

'*** database name

Dim oConnection As SglConnection

oConnection = New SglConnection

oConnection.ConnectionString = oConnectionStringBuilder.ConnectionString
Return oConnection
End Function

Private Function FindSsnInDatabase (ByVal oConnection As IDbConnection,
ByVal strSsn As String) As Boolean
Dim oCommand As IDbCommand
oCommand = oConnection.CreateCommand ()
'**%* The database has a "Customers" table with a column for SSN
oCommand.CommandText = String.Format ("SELECT SSN FROM Customers WHERE SSN=N'{O0O}'",
strSsn)
oCommand.CommandType = CommandType.Text
Dim oReader As IDataReader
oReader = oCommand.ExecuteReader ()
Dim bFound As Boolean
bFound = oReader.Read()
oReader.Close ()
Return bFound
End Function
End Class
End Namespace

Testing VB.NET Custom Scripts

You can test and debug a VB.NET custom validation script without republishing the associated
batch class. However, the batch class (with one or more associated VB.NET scripts) must have been
previously published and a batch must be ready to be processed.

When a VB.NET script is tested, the script in the Administration module is loaded instead of the
published script. In this case, the VB.NET script being debugged is the unpublished copy. However,
the batch class and script must be republished before changes can take effect.

O the ability to debug and modify the VB.NET script without republishing the batch class is not
supported in Visual Basic Express Edition. It is only supported in Visual Studio.

When debugging a validation script in VB.NET, if you stop the debugger while a batch is open, the
validation process is terminated and the batch is left in an "In progress" state. It may take time for
the batch to return to the "Ready" state.

Here is the typical process for testing and debugging a VB.NET document validation script:

1. Auser with administrator rights creates a VB.NET document validation script in the
Administration module and publishes a batch class.

A batch is created and processed through the Validation module.

The VB.NET script project is opened in Visual Studio.

Break points are set in the script, and changes are made to the script.

The validation script is run from Visual Studio, and the debugger stops at the first break point.

uvkwnN

23

Kofax Capture Developer's Guide

6. Testing and debugging continues until the script is ready to use.
7. The scriptis compiled, and the batch is published.

Error Handling in VB.NET

A VB.NET script uses an exception during event handling to signal an error state. The Kofax
Capture .NET Scripting API provides the following exceptions:

+ FatalErrorException
* RejectAndSkipDocumentException
* ValidationErrorException

FatalErrorException

Used to signal a fatal error, this exception can be used in validation, recognition, and field scripts.
When this exception is thrown, the error message is displayed in Validation or Verification, or
logged in the Recognition Server. The batch is set to an error state and sent to Quality Control.

Example:

Throw New FatalErrorException("Missing validation resource")

RejectAndSkipDocumentException

Used by the validation script to reject and skip a document and to advance to the next document,
this exception is thrown in document validation scripts only.

The FieldScript.FieldPreProcessing and FieldScript.FieldPostProcessing
events for any unvalidated fields in the document are skipped. However, the
DocumentValidationScript.DocumentPostProcessing event is called.

Example:

Throw New FatalErrorException("Missing validation resource")

ValidationErrorException

Used to signal a validation error, this exception is to be thrown in validation scripts only. If the
Recognition Server receives this exception, It is treated as a fatal error.

There are two versions of this exception:
+ ValidationErrorException (ErrMsg)
+ ValidationErrorException (ErrMsg, IndexField)

Kofax Capture Developer's Guide

ValidationErrorException (ErrMsq)

If this version is used, the error message is displayed in the status bar of the Validation or
Verification module and will not advance the focus to the next field. The focus remains on the last
field that is being validated.

Example:

Throw New ValidationErrorException ()

ValidationErrorException (ErrMsg, IndexField)

This version is similar to the previous version for ValidationErrorException, except that it allows the
developer to set the focus on a particular field. IndexField specifies the field to get the focus. If the
field does not exist or is null, then the last field being evaluated gets the focus.

For example, if cross-field validation is being performed in the
DocumentValidationScript.DocumentPostProcessing event and a computation routine determines
that the third field does not match the sum of the first and second fields, an exception is thrown
with the third field getting the focus.

Example:

Throw New ValidationErrorException ("Sum does not match",oIndexField)

i B ErrorMsg is empty, then the default error message is displayed.

Refer to the Kofax Capture API Reference for details about the syntax and parameters for these
exception classes.

Recognition Script Creation in VB.NET

Recognition scripts are useful for processing zone snippets with a custom recognition engine,
modifying the process of a Kofax recognition engine, or performing an offline recognition process.

In this section, you will learn about the following:
* How to select VB.NET as the scripting language for the recognition script.

+ Objects, methods, and properties that are available for use from the Kofax Capture .NET Scripting
APIL.

The VB.NET project location of your script, the script deployment, and publishing requirements are
the same as those for validation scripts.

Kofax Capture .NET Scripting API

Your recognition script project has access to the events and properties of the Kofax Capture .NET
Scripting library. Each script can consist of several events and event handlers.

25

Kofax Capture Developer's Guide

RecognitionScript Class

The RecognitionScript class contains the events that are available for use in a recognition script. You

add code for a selected event to perform a custom recognition routine. You can use the following

events, event arguments, and their associated properties.

Recognition Script Events

Events

Description

BatchLoading

Called when a batch is opened.

BatchUnloading

Called when a batch is closed.

RecognitionPreProcessing

Called before each zone snippet is processed.

RecognitionPostProcessing

Called after each zone snippet is processed.

PreRecognitionEventArgs

This class represents the event arguments for the
RecognitionScript.RecognitionPreProcessing event.

PostRecognitionEventArgs

This class represents the event arguments for the
RecognitionScript.RecognitionPostProcessing event.

Exceptions

To signal an error state, the VB.NET script can throw an exception during event handling. Three
types of exceptions are available:

+ FatalErrorException

* RejectAndSkipDocumentException

* ValidationErrorException

For details about each event, event arguments, and properties, refer to the Kofax Capture API
Reference. For more information about exceptions, refer to Error Handling in VB.NET.

Creating a Recognition Script Using VB.NET

You can use the Kofax Capture Administration module to create a recognition script. VB.NET

recognition scripts can be created for separator zones, form identification zones, or index zones.

© You can create scripts only for custom recognition profiles. You cannot create scripts for full
text OCR or page-level form identification profiles.

1. On the Tools tab, in the Recognition group, click Scripts.
The Recognition Script window appears.

2. On the Recognition profiles list, select the custom recognition profile for which you want to

Create a script.

3. In the Scripting language box, select the scripting language. In this case, select VB.NET.

4. Click Create.

26

Kofax Capture Developer's Guide

A new script is created and displayed in the VB.NET code editor. The file name assigned to the
script appears in the title bar.

5. When finished writing your code, compile the script, exit the editor, and close the Recognition
Script window.

You must compile the script and publish your batch class before the script can be used in batches.
Your script cannot be applied to a batch created before the new publication date. In addition, you
must republish if you make changes to the script.

Debugging Your Settings with a VB.NET Recognition Script

You can use a VB.NET recognition script to display the zone snippet when the batch is processed in
the Recognition Server module. This is a good way to test your settings.

1. In the Administration module, create a recognition profile for a zone.
2. Onthe Tools tab, in the Recognition group, click Scripts.
The Recognition Script window appears.
3. Select a profile from the list of Recognition profiles.
4. Select a scripting language from the list of Scripting languages. In this case, select VB.NET.
5. Select Create.
A new script appears in the VB.NET code editor.
Sample Code

Publish the batch class and process a test batch through the Recognition Server module. For
every zone to which the recognition profile is attached, a message displays the file name of the
zone snippet, the value, and the confidence. If you have access to a viewer, you can display the
zone snippet file to see the zone snippet image.

Private Sub CustomRecognitionProfile BatchLoading(ByVal sender As Object, ByRef
ImageFileRequired As Boolean) Handles Me.BatchLoading
'*** Enable the image file property when loading the batch.
ImageFileRequired = True
End Sub
Private Sub CustomRecognitionProfile RecognitionPostProcessing(ByVal
sender As Object,
ByVal e As Kofax.AscentCapture.NetScripting.PostRecognitionEventArgs) Handles
Me.RecognitionPostProcessing
'*** Display a message box with the image file, value, and confidence
'*** for each field.
MessageBox.Show (e.ImageFile + " " + e.Value + " " + e.Confidence.ToString())
End Sub

Sample VB.NET Recognition Script

The following recognition script demonstrates how to set recognition criteria to enhance a field that
may display poorly. The confidence level is set to 75%. If the confidence level for the field falls below
75%, the document is sent to the Quality Control module.

Private Sub ConfidenceScript RecognitionPostProcessing(_

ByVal sender As Object, ByVal e As
Kofax.AscentCapture.NetScripting.PostRecognitionEventArgs)
Handles Me.RecognitionPostProcessing
If (e.Confidence < 75) Then

Throw New Kofax.AscentCapture.NetScripting.FatalErrorException
("Confidence value was less than 75 percent.")

27

Kofax Capture Developer's Gu

End If
End Sub

ide

Removing a Recognition Script

You can remove a recog

nition script to restore the default recognition procedures.

Use the Administration module to remove recognition scripts. When you remove a recognition
script, the source code file is not deleted from the Scripts folder. Although you cannot select the file
to "reattach" it to a recognition profile, you can add the customizations to a new script. The easiest
way to do this is to create a new recognition script and open the old recognition script in a text

editor such as Notepad.

Then, you can copy code from the old script to the new script.

1. On the Tools tab, in the Recognition group, click Scripts.
The Recognition Script window appears.
2. On the Recognition profiles list, select the recognition profile for which you want to restore the

default processing.
3. Click Remove.

The script is no longer associated with the recognition profile.

Field script

A field script is a small program that can contain variables and functions needed for validating an
index field with an associated field type.

A field script is invoked when there is no document validation script for a document class, and the
field script can be referenced by other custom scripts for documents. A field script can have only
one script language defined.

A field script can contain field formatting functions and event arguments associated with each

event.

Field Script Events

Event

Description

FieldFormatting

Called for every field as every other field is exited. Allows the display of a field to
differ from the stored value.

FieldPreProcessing

Called as the field is entered. Set e.SkipMode = SaveAndSkipDocumentOrFolder
to save the field and move to the next document or folder. Set e.SkipMode =
SaveAndSkipField to save the field and move to the next field.

FieldPostProcessing

Called as the field is exited. Set e.SaveAndSkipDocument = true to save the field and
move to the next document.

FormatFieldEventArgs

This class represents the event arguments for the FieldScript.FieldFormatting event.

PreFieldEventArgs

This class represents the event arguments for the FieldScript.FieldPreProcessing
event.

PostFieldEventArgs

This class represents the event arguments for the FieldScript.FieldPostProcessing
event.

28

Kofax Capture Developer's Guide

For details about each event, event arguments, and properties, refer to the Kofax Capture API
Reference.

Sample VB.NET Field Script

When you create a new field script, a new class is derived from the FieldScript class of the Kofax
Capture NET Scripting APIL. The name of the class is based on the field type name (all non-
alphanumeric characters of the class name are replaced with underscore characters). The name
of the class can be changed; however, the changed name is not automatically updated in the
generated field script.

The following is a field script sample that changes all mixed case letters of a particular field to upper

case letters for reading clarity.

Imports System

Imports System.Collections.Generic

Imports System.Text

Imports Kofax.AscentCapture.NetScripting

Imports Kofax.Capture.CaptureModule.InteropServices

Namespace UppercaseField20

Public Class UppercaseField20
Inherits FieldScript

Private Sub UppercaseField20 FieldFormatting(ByVal sender As Object, ByVal e As
Kofax.AscentCapture.NetScripting.FormatFieldEventArgs) Handles Me.FieldFormatting
'**x Convert the string to upper case.
Dim strUpperCase As String
strUpperCase = Me.IndexField.Value.ToUpper ()
'*** Set the value to the uppercase string.
Me.IndexField.Value = strUpperCase
End Sub
End Class
End Namespace

29

Chapter 3

Custom Script Creation Using Visual C#

Scripts are small programs used to perform specific tasks for associated Kofax Capture modules. In
the Administration module, you can set preferences for custom script creation.

This chapter explains how to create custom scripts using C# as the script language and Visual
Studio Express 2015 for Windows Desktop as the script editor. The advantage of writing scripts in
Visual C# and the Microsoft Visual Studio development environment is support for Unicode, which
is essential for supporting multi-byte character sets. Also, a large knowledge base for the Visual
Studio development environment is available should you need additional coding assistance.

You should be familiar with programming concepts and the Visual C# programming language and
development environment for writing custom scripts. You can create the following types of custom
scripts in Visual C#:

+ Validation scripts validate data in the Kofax Capture Validation and Verification modules. For
example, you can write a validation script that queries a database to verify that data for an index
field matches the entered data. Document and folder validation scripts can be used to perform
validation on document class index fields and folder index fields, respectively.

+ Recognition scripts validate or modify data on results from the Recognition Server module. For
example, you can write a recognition script that retrieves zone snippets from each image in a
batch and determines if the zone meets a specific acceptance criteria.

+ Field scripts validate data in index fields. For example, your field script can validate that data
meets the criteria for a particular field type.

Software Requirements

The server and client workstations for Kofax Capture must meet the system requirements listed on
the Kofax Web site at http://www.kofax.com/support.

The server and client workstations for Kofax Capture must meet system requirements. For
information about supported operating systems and other system requirements for Kofax Capture,
contact Kofax at sales@ser.de.

Also, when creating a custom script in C#, one of the following development environments must be
installed on your computer:

* Microsoft Visual Studio Enterprise 2015 or 2017

* Microsoft Visual Studio Professional 2015 or 2017

+ Microsoft Visual Studio Community 2013, 2015, or 2017

* Microsoft Visual Studio Enterprise 2015 or 2017

* Microsoft Visual Studio Express 2012, 2013 or 2015 for Windows Desktop

30

http://www.kofax.com/support

Kofax Capture Developer's Guide

* Microsoft Visual Studio Ultimate 2012 or 2013
* Microsoft Visual Studio Premium 2012 or 2013
* Microsoft Visual Studio Professional 2012 or 2013

You also need Microsoft .NET Framework 4.6.1 runtime installed in your development environment.
If not already installed, the .NET 4.6.1 runtime is installed either by Kofax Capture or by Visual
Studio 2015 or 2017.

Also, to compile against Kofax Capture 10.2 or 10.1 libraries that are targeted to .NET 4.0, you must
use Microsoft Visual Studio 2010. You can use Visual Studio 2008 to compile Kofax Capture 10.0, 9.0
and 8.0. See Backward Compatibility for more information.

© visual studio Express and Visual Studio Community are free downloads from the Microsoft
Web site.

Validation Script Creation in Visual C#

Validation scripts are useful for verifying that data meets specific formatting criteria or for
validating database information for fields of a document class. You can perform these checks before
and after document processing (that is, DocumentPreProcessing and DocumentPostProcessing
events).

In this section, you will learn about:
* How to select the kind of custom script to create using Visual C#

+ Objects, methods, and properties that are available for use from the Kofax Capture .NET Scripting
API

+ Visual C# project location for your script
« Deployment of the script's Visual C# project
+ Publishing requirements for the script

A sample validation script written in Visual C# is provided.

Selecting the Scripting Language

Although it is possible to create a custom script outside Kofax Capture using a supported Visual
Studio environment, you typically create a custom script from the Kofax Capture Administration
module.

1. On the Home tab, in the Document Class group, click Validation Script.

The Validation Script window appears.

On the Document classes list, verify that the applicable document class is selected.
On the Scripting language list, select Visual C#.

In the Script name box, assign a name to the validation script.

Click Create.

A Visual C# project is created for the script, and Visual Studio is opened.

6. In Visual Studio, open the .cs file. which initially looks similar to the following sample.

uidwNn

31

Kofax Capture Developer's Guide

7.

using Kofax.AscentCapture.NetScripting;

using Kofax.Capture.CaptureModule.InteropServices;
using System;

using System.Collections.Generic;

using System.Text;

namespace TestDoc {

[SuppressFieldEventsOnDocClose (false)]
public class TestDoc : DocumentValidationScript ({

[IndexFieldVariableAttribute ("Name0")]
FieldScript NameO;

public TestDoc (bool bIsValidation, string strUserID, string strLocaleName)
: base(bIsValidation, strUserID, strLocaleName)
{}

}

}

Continue to Customize the Script.

Kofax Capture Visual C# Scripting API

Your document validation script project has access to the events and properties of the Kofax
Capture Visual C# Scripting library. Each script can consist of several events and event handlers. The
index fields that exist for the document class selected are included in the script code shell.

DocumentValidationScript Class

The DocumentValidationScript class contains the events that are available for use in a validation
script. You add code for a selected event to perform a custom data validation routine. The following
events, event arguments, and their associated properties can be used.

Validation Script Events

Events Description

BatchLoading Called when a batch is first opened in the Validation or

Verification module. If a batch has multiple document classes,
the function is called once per document class the first time a
document class is processed.

BatchUnloading Called when a batch is closed.

DocumentPreProcessing Called each time a new document is opened. Set e.SaveAndSkip
= true to save the field and move to the next document.

DocumentPostProcessing Called after each document is closed.

PreDocumentEventArgs This class represents the event arguments for the

DocumentValidationScript.DocumentPreProcessing event.

PostDocumentEventArgs This class represents the event arguments for the

DocumentValidationScript.DocumentPostProcessing event.

32

Kofax Capture Developer's Guide

Exceptions

To signal an error state, the Visual C# script can throw an exception during event handling. Three
types of exceptions are available:

+ FatalErrorException
* RejectAndSkipDocumentException
+ ValidationErrorException

For details about each event, event arguments, and properties, refer to the Kofax Capture API
Reference. For more information about exceptions, refer to Error Handling in Visual C#.

Creating a Custom Visual C# Validation Script
This section describes how to create a custom Visual C# document validation script named TestDoc.

When creating a new script, you are provided with one method that is the constructor for the
class, such as the “TestDoc" class in the following procedure. In this constructor, the BatchLoading
and BatchUnloading events need to be subscribed to, and the corresponding event method
implementations must be created.
1. Create the script as described in Selecting the Scripting Language.
2. Inthe script project window in Visual Studio, in the constructor method, type “this.” and select
BatchLoading.
3. Type “+=" and you will see a message such as:
TestDoc BatchLoading (Press TAB to insert)
4. Press the Tab key to automatically complete the declaration, and another message appears:
Press TAB to generate handler 'TestDoc BatchLoading' in this class
5. Press the Tab key again to automatically generate the BatchLoading event method in the class.
6. Repeat the same steps to generate the BatchUnloading event method.

7. The following exception code is automatically added to all event methods created in this
manner. Remove this line:

throw new NotImplementedException ()
8. Now, subscribe to the Document events. In the constructor of the class, type “this.”

Implement the Document PreProcessing and PostProcessing event methods in the same
manner described earlier.

© 10 have the DocumentPreProcessing and DocumentPostProcessing events fire on each
document, you must add the event handlers in the constructor of the script class (and

not in the BatchLoading event handler). This approach is similar to the one used with the
AddHandler and RemoveHandler functions for VB.NET.

9. Subscribe and implement the Index Field PreProcessing, PostProcessing and FieldFormatting
events, in the same manner described earlier. However, in this case, Field events need to be
subscribed to in the BatchLoading event method. Also, the Index Field name is used in the
declaration.

10. The following example shows the results for the constructor.

33

Kofax Capture Developer's Guide

11.
12.

public TestDoc (bool bIsValidation, string strUserID, string strLocaleName)
base (bIsValidation, strUserID, strLocaleName)

{

this.BatchLoading += TestDoc BatchLoading;

this.BatchUnloading += TestDoc BatchUnloading;

this.DocumentPreProcessing += TestDoc DocumentPreProcessing;

this.DocumentPostProcessing += TestDoc DocumentPostProcessing;

}
The final step is to unsubscribe from the events in the BatchUnloading event method.

Verify that the generated event methods are similar to the following example:

void TestDoc BatchLoading (object sender, BatchEventArgs e)

{

this.Name(.FieldPreProcessing += NameO FieldPreProcessing;
this.Name(O.FieldPostProcessing += Name(O FieldPostProcessing;
this.NameO.FieldFormatting += Name(O FieldFormatting;

}

void TestDoc BatchUnloading (object sender, BatchEventArgs e)
{

NameO.FieldFormatting -= NameO FieldFormatting;
Name(.FieldPostProcessing -= Name(O FieldPostProcessing;
NameO.FieldPreProcessing -= NameO FieldPreProcessing;
DocumentPostProcessing -= TestDoc DocumentPostProcessing;
DocumentPreProcessing -= TestDoc DocumentPreProcessing;
BatchLoading -= TestDoc BatchLoading;

BatchUnloading -= TestDoc BatchUnloading;

}

void TestDoc DocumentPreProcessing(object sender, PreDocumentEventArgs e)
{

}

void TestDoc DocumentPostProcessing(object sender, PostDocumentEventArgs e)
{

}

void NameO FieldPreProcessing(object sender, PreFieldEventArgs e)

{

}

void Name(O FieldPostProcessing(object sender, PostFieldEventArgs e)

{

}

void Name0O FieldFormatting(object sender, FormatFieldEventArgs e)

{

}

Visual C# Project File Location

The file name assigned to the script is shown in the title bar of the programming product. The

default location for each project is a numeric folder name under the ~AdminDB\Scripts folder.

Default location of the AdminDB folder:

* Server: \\<server name>\CaptureSV
+ Standalone: C:\Programbata\Kofax\Capture

© validation of a batch field and batch totals through Visual C# scripting is not supported.
However, batch fields are exposed through the Batch object, which can be accessed from the
parameter of the event handler.

34

Kofax Capture Developer's Guide

You must compile the script and publish your batch class before the script can be used in batches.
Your script cannot be applied to a batch created before the new publication date. In addition, you
must republish if you make changes to the script.

Deployment of a Visual C# Project

Visual C# scripts have a folder of source files and a folder of executables. The entire Visual C#
script project is deployed to the Local\Scripts folder before the Validation or Recognition Server
module is launched for either a standalone or remote/central site environment.

The Visual C# script is opened each time a batch is opened (if the script is not already present) and a
new script ID folder is created for a published batch class. Visual C# scripts can include field scripts,
which are executed when there is no document/folder validation script.

Batches using Visual C# scripts are deployed automatically on standalone workstations and on
Kofax Capture Network Server remote sites through synchronization by the Remote Synchronization
Agent. Scripts are downloaded when the remote site synchronizes with the central site.

Script Publishing Requirements

A Visual C# script must be compiled before it can be published. Otherwise, an error occurs.

The publish check is performed only on a newly created Visual C# script. The publish check is
not performed on updated or changed scripts, and it is the responsibility of the script developer
to recompile scripts as needed. Also, a publish check is not performed on Visual C# scripts for
imported and exported batch classes.

Testing Visual C# Custom Scripts

You can test and debug a Visual C# custom validation script without republishing the associated
batch class. However, the batch class (with one or more associated Visual C# scripts) must have
been previously published and a batch must be ready to be processed.

When a Visual C# script is tested, the script in the Administration module is loaded instead of
the published script. In this case, the Visual C# script being debugged is the unpublished copy.
However, the batch class and script must be republished before changes can take effect.

O the ability to debug and modify the Visual C# script without republishing the batch class is not
supported in Visual C# Express Edition. It is only supported in Visual Studio.

When debugging a validation script in Visual C#, if you stop the debugger while a batch is open, the
validation process is terminated and the batch is left in an "In progress" state. It may take time for
the batch to return to the "Ready" state.

Here is the typical process for testing and debugging a Visual C# document validation script:

1. A user with administrator rights creates a Visual C# document validation script in the
Administration module and publishes a batch class.

2. Abatchis created and processed through the Validation module.

35

Kofax Capture Developer's Guide

The Visual C# script project is opened in Visual Studio.
Break points are set in the script, and changes are made to the script.

Testing and debugging continues until the script is ready to use.
The script is compiled, and the batch is published.

Nouaw

Error Handling in Visual C#

A Visual C# script uses an exception during event handling to signal an error state. The Kofax
Capture .NET Scripting API provides the following exceptions:

+ FatalErrorException
* RejectAndSkipDocumentException
+ ValidationErrorException

FatalErrorException

Used to signal a fatal error, this exception can be used in validation, recognition, and field scripts.
When this exception is thrown, the error message is displayed in Validation or Verification, or
logged in the Recognition Server. The batch is set to an error state and sent to Quality Control.

Example:

throw new FatalErrorException("Missing validation resource")

RejectAndSkipDocumentException

Used by the validation script to reject and skip a document and to advance to the next document,
this exception is thrown in document validation scripts only.

The FieldScript.FieldPreProcessing and FieldScript.FieldPostProcessing
events for any unvalidated fields in the document are skipped. However, the
DocumentValidationScript.DocumentPostProcessing event is called.

Example:

throw new FatalErrorException("Missing validation resource")

ValidationErrorException

Used to signal a validation error, this exception is to be thrown in validation scripts only. If the
Recognition Server receives this exception, It is treated as a fatal error.

There are two versions of this exception:
+ ValidationErrorException (ErrMsg)
+ ValidationErrorException (ErrMsg, IndexField)

The validation script is run from Visual Studio, and the debugger stops at the first break point.

36

Kofax Capture Developer's Guide

ValidationErrorException (ErrMsq)

If this version is used, the error message is displayed in the status bar of the Validation or
Verification module and will not advance the focus to the next field. The focus remains on the last
field that is being validated.

Example:

throw new ValidationErrorException ()

ValidationErrorException (ErrMsg, IndexField)

This version is similar to the previous version for ValidationErrorException, except that it allows the
developer to set the focus on a particular field. IndexField specifies the field to get the focus. If the
field does not exist or is null, then the last field being evaluated gets the focus.

For example, if cross-field validation is being performed in the
DocumentValidationScript.DocumentPostProcessing event and a computation routine determines
that the third field does not match the sum of the first and second fields, an exception is thrown
with the third field getting the focus.

Example:

throw new ValidationErrorException ("Sum does not match",oIndexField)

i B ErrorMsg is empty, then the default error message is displayed.

Refer to the Kofax Capture API Reference for details about the syntax and parameters for these
exception classes.

Recognition Script Creation in Visual C#

Recognition scripts are useful for processing zone snippets with a custom recognition engine,
modifying the process of a Kofax recognition engine, or performing an offline recognition process.

In this section, you will learn about the following:
+ How to select Visual C# as the scripting language for the recognition script.

+ Objects, methods, and properties that are available for use from the Kofax Capture .NET Scripting
APIL.

The Visual C# project location of your script, the script deployment, and publishing requirements
are the same as those for validation scripts.

Kofax Capture Visual C# Scripting API

Your recognition script project has access to the events and properties of the Kofax Capture Visual
C# Scripting library. Each script can consist of several events and event handlers.

37

Kofax Capture Developer's Guide

RecognitionScript Class

The RecognitionScript class contains the events that are available for use in a recognition script. You
add code for a selected event to perform a custom recognition routine. You can use the following
events, event arguments, and their associated properties.

Recognition Script Events

Events

Description

BatchLoading

Called when a batch is opened.

BatchUnloading

Called when a batch is closed.

RecognitionPreProcessing

Called before each zone snippet is processed.

RecognitionPostProcessing

Called after each zone snippet is processed.

PreRecognitionEventArgs

This class represents the event arguments for the
RecognitionScript.RecognitionPreProcessing event.

PostRecognitionEventArgs

This class represents the event arguments for the
RecognitionScript.RecognitionPostProcessing event.

Exceptions

To signal an error state, the Visual C# script can throw an exception during event handling. Three
types of exceptions are available:

+ FatalErrorException

* RejectAndSkipDocumentException

* ValidationErrorException

For details about each event, event arguments, and properties, refer to the Kofax Capture API
Reference. For more information about exceptions, refer to Error Handling in Visual C#.

Creating a Recognition Script Using Visual C#

You can use the Kofax Capture Administration module to create a recognition script. Visual C#
recognition scripts can be created for separator zones, form identification zones, or index zones.

© You can create scripts only for custom recognition profiles. You cannot create scripts for full
text OCR or page-level form identification profiles.

1. On the Tools tab, in the Recognition group, click Scripts.
The Recognition Script window appears.
2. On the Recognition profiles list, select the custom recognition profile for which you want to

Create a script.

3. In the Scripting language box, select the scripting language. In this case, select Visual C#.

4. Click Create.

38

Kofax Capture Developer's Guide

A new script is created and displayed in the Visual C# code editor. The file name assigned to
the script appears in the title bar.

5. When finished writing your code, compile the script, exit the editor, and close the Recognition
Script window.

You must compile the script and publish your batch class before the script can be used in batches.
Your script cannot be applied to a batch created before the new publication date. In addition, you
must republish if you make changes to the script.

Debugging Your Settings with a Visual C# Recognition Script

You can use a Visual C# recognition script to display the zone snippet when the batch is processed
in the Recognition Server module. This is a good way to test your settings.

1. In the Administration module, create a recognition profile for a zone.
2. Onthe Tools tab, in the Recognition group, click Scripts.
The Recognition Script window appears.
3. Select a profile from the list of Recognition profiles.
Select a scripting language from the list of Scripting languages. In this case, select Visual C#.
5. Select Create.
A new script appears in the Visual C# code editor.
Sample Code

Publish the batch class and process a test batch through the Recognition Server module. For
every zone to which the recognition profile is attached, a message displays the file name of the
zone snippet, the value, and the confidence. If you have access to a viewer, you can display the
zone snippet file to see the zone snippet image.

»

using Kofax.AscentCapture.NetScripting;

using Kofax.Capture.CaptureModule.InteropServices;
using System;

using System.Collections.Generic;

using System.Text;

using System.Windows.Forms;

namespace Tutorial OMR
{
public class Tutorial OMR : RecognitionScript
{
public Tutorial OMR ()
: base ()
{
//*** Registers batch loading or unloading events
this.BatchLoading += Tutorial OMR BatchLoading;
this.BatchUnloading += Tutorial OMR BatchUnloading;
}

void Tutorial OMR RecognitionPostProcessing (object sender,
PostRecognitionEventArgs e)
{
//*** Display a message box with the image file, value and confidence
for each field
MessageBox.Show (e.ImageFile + " " + e.Value + " " +
e.Confidence.ToString()) ;
}

39

Kofax Capture Developer's Guide

void Tutorial OMR BatchUnloading (object sender)
{

//*** Un-Registers any extra recognition events and then batch
loading/unloading events
this.RecognitionPostProcessing —-=
Tutorial OMR RecognitionPostProcessing;
this.BatchUnloading -= Tutorial OMR BatchUnloading;
this.BatchLoading -= Tutorial OMR BatchLoading;

}

void Tutorial OMR BatchLoading (object sender, ref bool
ImageFileRequired)
{

// *** Registers RecognitionPostProcessing event to display the
recognition result for each recognition object
this.RecognitionPostProcessing +=
Tutorial OMR RecognitionPostProcessing;
ImageFileRequired = true;

}

Sample Visual C# Recognition Script

The following recognition script demonstrates how to set recognition criteria to enhance a field that
may display poorly. The confidence level is set to 75%. If the confidence level for the field falls below
75%, the document is sent to the Quality Control module.

void Tutorial OMR RecognitionPostProcessing (object sender, PostRecognitionEventArgs
@)

{

//*** Throws an exception if confidence was less than 75 percent
if (e.Confidence < 75)
{

throw new
Kofax.AscentCapture.NetScripting.FatalErrorException ("Confidence value was less than

75 percent.")
}
}

Removing a Recognition Script
You can remove a recognition script to restore the default recognition procedures.

Use the Administration module to remove recognition scripts. When you remove a recognition
script, the source code file is not deleted from the Scripts folder. Although you cannot select the file
to "reattach" it to a recognition profile, you can add the customizations to a new script. The easiest
way to do this is to create a new recognition script and open the old recognition script in a text
editor such as Notepad. Then, you can copy code from the old script to the new script.
1. On the Tools tab, in the Recognition group, click Scripts.
The Recognition Script window appears.
2. On the Recognition profiles list, select the recognition profile for which you want to restore the
default processing.
3. Click Remove.
The script is no longer associated with the recognition profile.

40

Kofax Capture Developer's Guide

Field script

A field script is a small program that can contain variables and functions needed for validating an
index field with an associated field type.

A field script is invoked when there is no document validation script for a document class, and the
field script can be referenced by other custom scripts for documents. A field script can have only
one script language defined.

A field script can contain field formatting functions and event arguments associated with each

event.

Field Script Events

Event

Description

FieldFormatting

FieldPreProcessing

Called for every field as every other field is exited. Allows the display of a field to
differ from the stored value.

Called as the field is entered. Set e.SkipMode = SaveAndSkipDocumentOrFolder
to save the field and move to the next document or folder. Set e.SkipMode =
SaveAndSkipField to save the field and move to the next field.

FieldPostProcessing

Called as the field is exited. Set e.SaveAndSkipDocument = true to save the field and
move to the next document.

FormatFieldEventArgs

This class represents the event arguments for the FieldScript.FieldFormatting event.

PreFieldEventArgs

This class represents the event arguments for the FieldScript.FieldPreProcessing
event.

PostFieldEventArgs

This class represents the event arguments for the FieldScript.FieldPostProcessing
event.

For details about each event, event arguments, and properties, refer to the Kofax Capture API

Reference.

Sample Visual C# Field Script

When you create a new field script, a new class is derived from the FieldScript class of the Kofax
Capture NET Scripting APIL. The name of the class is based on the field type name (all non-
alphanumeric characters of the class name are replaced with underscore characters). The name
of the class can be changed; however, the changed name is not automatically updated in the

generated field script.

The following is a field script sample that changes all mixed case letters of a particular field to upper
case letters for reading clarity.

using Kofax.AscentCapture.NetScripting;
using Kofax.Capture.CaptureModule.InteropServices;

using System;

using System.Collections.Generic;

using System.Text;

using System.Windows.Forms;

41

Kofax Capture Developer's Guide

42

Chapter 4

Registration File Creation

Custom extensions (custom modules, setup OCX programs, and workflow agents) must be
registered with Kofax Capture before they can be used. The registration process is necessary so that
Kofax Capture recognizes the custom extension as valid.

Custom extension registration is a two-part process that requires you to do the following:

+ Set up a registration file (.aex file) that defines the property settings for the custom extension.
See Format for the Registration File for more information about the registration file.
+ Register the custom extension using one of the following:
* Administration module. For details, see Using the Administration Module to Manage
Extensions.

+ Kofax Capture Extension Registration Utility, which is run from a command line. For details, see
Kofax Capture Extension Registration Utility.

Prior to registration, the custom extension registration file (the executable or DLL file), and the
optional setup OCX must be saved to <Kofax Capture installation folder>\Bin.

Export connectors and runtime OCXs cannot be registered using the methods described in this
chapter. For more information on export connectors, see Creating an Export Connector. For more
information on runtime OCXs, see Custom Panels and Applications.

Format for the Registration File

The format for the registration (.aex) file is similar to that of a standard Windows .ini file. See Sample
Registration Files for registration file samples.

Registration files offer great flexibility. You can have a single file that contains information for all
your custom modules, workflow agents, or setup OCXs. Alternatively, you can have separate files
for each custom extension. If you have a custom module or a workflow agent that requires a setup
OCX, you must put the setup OCX information in the same registration file as the extension that
uses it.

The registration file sections are described in the following sections.

[Modules] Section

To register one or more custom modules, the .aex file must contain a header section labeled
[Modules] that lists the display name of each custom module defined in the file. Custom module
display names cannot exceed 32 characters.

43

Kofax Capture Developer's Guide

(i) You can register items listed in the [Modules] section with the Custom Module Manager
available from the Administration module. Alternatively, you can register them with the Kofax
Capture Extension Registration Utility (RegAscEx.exe), which is available from the Kofax Capture

Bin folder.

[Module Name] Section

For each custom module listed in the [Modules] section, the .aex file must include a corresponding
[Module Name] section (labeled with the custom module name) that includes the property settings
required to register the module. Each [Module Name] section can include the keys listed in the

table. Note that some of the keys are required. If a required key is missing, an error occurs during

registration.

function must follow in the batch class workflow. The
following values are valid for the Follow key:

Scan (default value)
Document Separation
Form Identification
Automatic Index
Validation

Verification

Custom modules are not allowed to follow the Export
module.

To specify proper queue ordering, you can set values for
Follow and/or Precede or set a value for Function. If you
specify a value for Follow or Precede, do not set a value
for Function. If you do, errors occur when you attempt to
register a custom module.

Key Description Required
Description Description of the purpose of the custom module. The Yes
description displays in the Queues tab on the Create Batch
Class and Batch Class Properties windows for the selected
module. Maximum length is 250 characters.
Follow Indicates the processing function that the custom module

44

Kofax Capture Developer's Guide

Key

Description

Required

Function

Specifies the function to be performed by the custom
module. The defined function is used to perform publish
checks and to ensure proper queue ordering. One or more
of the following functions may be specified, delimited by
semicolons.

Document Separation
Page Registration
Form Identification
Automatic Index
Validation
Verification

OCR Full Text

Quality Control

Other (default value)

To specify proper queue ordering, you can set a value

for Function or set values for the Follow and/or Precede
keys. If you specify a value for Function, do not set Follow
or Precede. If you do, errors occur when you attempt to
register the custom module.

No

IconFile

Path to a file containing the icon associated with the
module name. A semicolon and the numeric index of the
desired icon in the file may optionally follow the path.

If this property is not specified, the default icon for the
RuntimeProgram file is used. If no icon is found in either
file, the module name appears without an icon. Maximum
length for the icon file and path is 250 characters.

No

ModulelD

Unique identifier for a custom module. Used to synchronize
information about custom modules when data is exported
and imported between databases. Maximum length is 250
characters.

This identifier must be unique across both custom modules
and workflow agents.

Yes

45

Kofax Capture Developer's Guide

Key

Description

Required

Precede

Indicates the processing function that the custom module
function must precede in the batch class workflow. These
Precede key values are valid:

Document Separation

Form Identification

Automatic Index

Validation

Verification

OCR Full Text

Export (default value)

Custom modules are not allowed to precede the Scan
module.

To specify proper queue ordering, you can set values for
Follow and/or Precede OR set a value for Function. If you
specify a value for Follow or Precede, do not set a value
for Function. If you do, errors occur when you attempt to
register a custom module.

No

Runtime Command Line

Specifies command line parameters that must be passed to
the custom module’s runtime program when it is invoked
from Batch Manager. Maximum length is 250 characters.

No

Runtime Program

The runtime executable for the custom module. This
executable is invoked when a batch in the ready state
is selected in Batch Manager. Maximum length is 250
characters.

For each workstation that will use it, the executable must
existin <Kofax Capture installation folder>\Bin.

Yes

SetupProgram

Specifies a [Setup] Section within the .aex file that defines
the properties of the setup module for a custom module.
The name of this section is also the display name of the
custom module. Maximum length is 250 characters. See the
[Setup] Section for more information.

No

SupportsNonImageFiles

Specifies whether the custom module supports non-image
files (eDocuments). Setting this key to True turns on non-
image file support for the custom module. Setting this key
to False or omitting the key turns off non-image file support
for the custom module.

No

SupportsTableFields

Specifies whether the customization supports tables.
Setting this key to True turns on table support for the
customization. Setting this key to False turns off table
support for the customization. If not specified, the default
setting is False.

No

SuppressBatchContents

Specifies whether the custom standard module includes the
Batch Contents panel. Setting this key to True removes the
panel. Setting this key to False, or omitting the key, causes
the Batch Contents panel to be available.

This key applies only to custom standard modules.

No

46

Kofax Capture Developer's Guide

Key

Description

Required

SuppressBatchFilters

Specifies whether the custom standard module includes the
Batch Filters toolbar. Setting this key to True removes the
toolbar. Setting this key to False, or omitting the key, causes
the Batch Filters toolbar to be available.

This key applies only to custom standard modules.

No

SuppressBatchNavigation

Specifies whether the custom standard module includes the
Batch Navigation toolbar. Setting this key to True removes
the toolbar. Setting this key to False, or omitting the key,
causes the Batch Navigation toolbar to be available.

This key applies only to custom standard modules.

No

SuppressBatchThumbnails

Specifies whether the custom standard module includes the
Batch Thumbnails panel. Setting this key to True removes
the panel. Setting this key to False, or omitting the key,
causes the Batch Thumbnails panel to be available.

This key applies only to custom standard modules.

No

SuppressBatchTools

Specifies whether the custom standard module includes the
Batch Tools toolbar. Setting this key to True removes the
toolbar. Setting this key to False, or omitting the key, causes
the Batch Tools toolbar to be available.

This key applies only to custom standard modules.

No

Suppress ImageTools

Specifies whether the custom standard module includes the
Image Tools toolbar. Setting this key to True removes the
panel. Setting this key to False, or omitting the key, causes
the Image Tools toolbar to be available.

This key applies only to custom standard modules.

No

Suppress ImageViewer

Specifies whether the custom standard module displays the
Kofax Capture Image Viewer. Setting this key to True hides
the image viewer. Setting this key to False, or omitting the
key, causes the image viewer to be visible.

This key applies only to custom standard modules.

No

Suppress Notes

Specifies whether the custom standard module includes
the Notes panel. Setting this key to True removes the panel.
Setting this key to False, or omitting the key, causes the
Notes panel to be available.

This key applies only to custom standard modules.

No

SuppressScanControls

Specifies whether the custom standard module includes the
Scan Controls panel. Setting this key to True removes the
panel. Setting this key to False, or omitting the key, causes
the Scan Controls panel to be available.

This key applies only to custom standard modules.

No

47

Kofax Capture Developer's Guide

Key

Description

Required

UsesExtendedRecognition Info

To enable communications between custom modules,

the Recognition Server is able to generate the extended
recognition data in the form of an XML string. By default,
the Recognition Server does not output this XML data
unless a custom module is registered to indicate otherwise.
Extended recognition data can be very large and have a
significant impact on performance and/or disk space.

If a batch class contains any custom module with this flag
set to true, extended recognition information is generated
in the Recognition Server.

Example:

[Sample]

RuntimeProgram=CMSample.EXE
ModuleID=Kofax.Sample

Description=This Sample module supports non-image files
Version=1.0

UsesExtendedRecognitionInfo=True

The default, if this value is not provided, is False.

A document-based custom storage string, named
Kofax.AC.ExtendedRecognitionInfo is used for the storage of
extended recognition data.

The Recognition Server generates values for the this custom
storage string whenever it produces an index field value
result generated by the Kofax High Performance OCR Zonal,
Kofax High Performance ICR Zonal, or the Kofax Advanced
OCR Zonal engines, and a custom module has registered
itself as using extended recognition information.

Index Fields with values assigned by other means (such
as OMR, or Kofax OCR) do not cause the generation of
ExtIndexField elements within the string.

The Recognition Server updates only those ExtIndexField
elements where the corresponding index field value is
updated.

The "Kofax.AC.ExtendedRecognitionInfo" custom storage
string is never cleared, even when the index value is
changed.

No

Version

Custom module version number assigned by the developer.
If this property is not specified, no version number appears.

No

[Workflow Agents] Section

To register one or more workflow agents, the .aex file must contain a header section labeled
[Workflow Agents] that lists the display name of each workflow agent. Workflow agent display names

cannot exceed 32 characters.

You can register the items listed in the [Workflow Agents] section with the Workflow Agent Manager

available from the Administration module, or with the Kofax Capture Extension Registration Utility

(RegAscEx.exe), which is available from the Kofax Capture Bin folder.

48

Kofax Capture Developer's Guide

[Workflow Agent Name] Section

For each workflow agent listed in the [Workflow Agents] section, the .aex file must include a
corresponding [Workflow Agent Name] section (labeled with the workflow agent name) that includes
the property settings required to register the agent. Each [Workflow Agent Name] section can include
the keys listed below. Note that some of the keys are required. If a required key is missing, an error
occurs during registration.

Key Description Required

Description Description of the purpose of the workflow agent. | Yes
Maximum length is 250 characters.

SetupProgram Specifies a [Setup] Section within the .aex file that No
defines the properties of the setup program for a
workflow agent. Maximum length is 250 characters.

Version Workflow agent version number assigned by the No
developer. If this property is not specified, no
version number appears.

WorkflowAgentFile .Dll that contains the Workflow Agent runtime COM | Yes
server.
WorkflowAgentID Value that indicates a unique identifier for the Yes

Workflow Agent. Maximum length is 250 characters.

This identifier must be unique across both Workflow
Agents and Custom Modules.

WorkflowAgentProgID The runtime COM ProgID of the Workflow Agent. Yes

WorkflowAgentSkipIfCantLoad By default, the system places the batch in error ifit |No
cannot load the runtime COM server on a particular
station. However, with this flag set, the system
does not place the batch in error if the Workflow
Agent does not exist, and instead continues with
the default batch workflow. To set this flag, include
WorkflowAgentSkipIfCantLoad=true in the .aex file.

[Setup Programs] Section

To register one or more setup OCXs, the .aex file must contain a [Setup Programs] section that lists
the names of all [Setup] sections defined in the file. See [Setup] Section for more information.

If a setup program is listed in [Setup Programs], but not defined in its own [Setup] section, an error
occurs during registration.

You must register Items listed in the [Setup Programs] section with the Kofax Capture Extension
Registration Utility (RegAscEx.exe) available from the Kofax Capture Bin folder. You cannot register
them from the Administration module.

49

Kofax Capture Developer's Guide

[Setup] Section

For each item listed in the [Setup Programs], [Module Name], or [Workflow Agent Name] sections,

the .aex file must include a corresponding [Setup] section (labeled with the item name) that defines

the setup program.

Each [Setup] section can include the keys listed below. Note that some of the keys are required. If a

required key is missing, an error occurs during registration.

Key Description Required
BatchClassMenus Names one or more [Menu] sections in No
the .aex file that define the menu items to be
added to the context menu for batch class
nodes. Multiple items must be delimited by
semicolons. The name of the section is also
the internal name of the menu (passed to the
OCX on ActionEvents). Maximum length is 250
characters.
DocumentClassMenus Same as BatchClassMenus, except that it No
defines menu items to add to the context menu
for document class nodes.
FieldTypeMenus No
FormIdZoneMenus No
FormTypeMenus No
IndexGroupMemberZoneMenus No
IndexGroupMemberZonesMenus No
IndexZoneMenus No
IndexZonesMenus No
InitSizeX The initial horizontal size of the panel in screen | No
resolution pixels. The default is 50.
InitSizeY The initial vertical size of the panel in screen No
resolution pixels. The default is 50.
ManagedApi Avalue of 1 indicates that the custom module | No
uses the Managed .NET APIs for Kofax Capture
10.1 or later; a value of 0 indicates that the
custom module uses VB6 Interop APIs.
MenuBarMenu Names one [Menu Bar] section that defines the | No
tab to add to the Ribbon. Multiple items are not
allowed. Maximum length is 250 characters.
MinSizeX The minimum horizontal size of the panel No
when undocked in screen resolution pixels. The
default is 50.
MinSizeY The minimum vertical size of the panel when No
undocked in screen resolution pixels. The
default is 50.

50

Kofax Capture Developer's Guide

Key Description Required

OCXFile Path, including the file name, of the Setup OCX | Yes
file. Maximum length is 250 characters.

If no path exists, <Kofax Capture
installation folder>\Bin is used.

PagelLevelBarcodeMenus Same as BatchClassMenus, except that it No
defines the menu items to add to the context
menu for page level bar code nodes.

PagelLevelBarcodesMenus Same as BatchClassMenus, except that it No
defines the menu items to add to the context
menu for page level bar code collection nodes.

ProgID The COM program ID of the module specified No
with the OCXFile key. Maximum length is 250
characters.

RegistrationZoneMenus Same as BatchClassMenus, except that it No

defines the menu items to add to the context
menu for registration zone nodes.

RegistrationZonesMenus Same as BatchClassMenus, except that it No
defines the menu items to add to the context
menu for registration zone collection nodes.

SamplePageMenus Same as BatchClassMenus, except that it No
defines the menu items to add to the context
menu for sample page nodes.

SeparationZoneMenus Same as BatchClassMenus, except that it No
defines the menu items to add to the context
menu for separation zone nodes.

Visible A value of 1 indicates visible; 0 indicates No
invisible. If set to 0, the panel is not initially
displayed and the DisplayName does not
appear. The default is 1.

This key is ignored when registering a custom
module from the command line.

[Menu] Section

A [Menu] section defines the text for a command listed in the [Menu Bar] and [Setup] sections. A
[Menu] section has one required key. If the key is missing, an error occurs during registration.

[Menu] Section Key

Key Description Required

MenuText Display text for the command. Yes

Kofax Capture Developer's Guide

[Menu Bar] Section

For each tab listed in a [Setup] section, the .aex file must include a corresponding [Menu Bar] section

(labeled with the tab name) that defines the tab. Each [Menu Bar] section must contain the keys

listed below. Note that all keys are required. If a key is missing, an error occurs during registration.

[Menu Bar] Section Keys

Key Description Required
MenuBarText Displays text for the tab. Yes
Menus Names one or more [Menu] Yes

sections that define the commands
to be added to this tab. Multiple
commands are delimited by
semicolons. The name of the
section is also the internal name
of the tab (passed to the OCX on
ActionEvents). Maximum length is
250 characters.

Sample Registration Files

This section contains several samples that show the file structure for registration files.

Sample 1: Registering Two Custom Modules

The sample registration file shown here specifies two custom modules: ABC Image Cleanup and
XYZ Index. ABC Image Cleanup does not have a custom setup module, but XYZ Index does. The
XYZ Index batch class context menu has two custom menu items: XYZ Properties and XYZ Reset to
Default. The Ribbon has a custom tab item, XYZ Index, with two commands: XYZ Item 1 and XYZ
Item 2. By default, the group is called "Menu Items."

Comments, which are shown in bold text, are not part of the registration file.

[Modules] - Modules Section

ABC Image Cleanup

XYZ Index

[ABC Image Cleanup] - Module Name Section

ModuleID=ABC.ImageCleanup

Version=1.0

RuntimeProgram=ABCImage.exe

Description=The ABC Image Cleanup module performs image enhancement

[XYZ Index] - Module Name Section

ModuleID=XYZ.Index

IconFile=XYZ.ico

RuntimeProgram=XYZIndex.exe

RuntimeCommandline=/k

SetupProgram=XYZ Setup

Description=The XYZ Index module automatically gathers index data
Function=Automatic Index

52

Kofax Capture Developer's Guide

[XYZ Setup] - Setup Section

OCXFile=XYZSetup.ocx

ProgID=XYZCorp.IndexSetup

InitSizeX=200

InitSizeY=100

Visible=1

BatchClassMenus=XYZ Batch Menu 1;XYZ Batch Menu 2
MenuBarMenu=XYZ Menu Bar

[XYZ Batch Menu 1] - Menu Section
MenuText=XYZ Properties

[XYZ Batch Menu 2] - Menu Section
MenuText=XYZ Reset to Default

[XYZ Menu Bar] - Menu Bar Section
MenuText=XYZ Index
Menus=XYZ Bar Menul;XYZ Bar Menu 2

[XYZ Bar Menu 1] - Menu Section
MenuText=XYZ Item 1

[XYZ Bar Menu 2] - Menu Section
MenuText=XYZ Item 2

Sample 2: Defining a Tab on the Ribbon

The following custom module registration file (.aex file) defines one tab on the Ribbon, including the
name of the tab and two commands.

Comments, which are shown in bold text, are not part of the registration file.
O the sample requires SmpSetUp.ocx to be located in the root folder of drive C.

[Setup Programs] - Setup Programs Section
Sample Setup

[Sample Setup] - Setup Section
OCXFile=c:\SmpSetUp.ocx
ProgID=SampleSetUp.SmpSetUp
Visible=1

MinSizeX=50

MinSizeY=50

InitSizeX=432

InitSizeY=351

MenuBarMenu=XYZ Menu Bar

[XYZ Menu Bar] - Menu Bar Section
MenuBarText=XYZ Index
Menus=XYZ Bar Menu 1;XYZ Bar Menu 2

[XYZ Bar Menu 1] - Menu Section
MenuText=XYZ menu item 1

[XYZ Bar Menu 2] - Menu Section
MenuText=XYZ menu item 2

53

Kofax Capture Developer's Guide

Sample 3: Defining Context Menu Items

The following custom module registration file defines custom context menu items for nodes in the
tree view available from the Administration module.

Comments, which are shown in bold text, are not part of the registration file.

[Setup Programs] - Setup Programs Section
Sample Setup

[Sample Setup] - Setup Section
OCXFile=c:\SmpSetUp.ocx
ProgID=SampleSetUp.SmpSetUp
Visible=1

MinSizeX=50

MinSizeY=50

InitSizeX=432

InitSize¥Y=351

MenuBarMenu=XYZ Menu Bar
BatchClassMenus=BatchClass 1
DocumentClassMenus=DocClass 1
FormTypeMenus=FormType 1
SamplePageMenus=SamplePage 1
SeparationZoneMenus=Separation 1
RegistrationZoneMenus=RegZone 1
IndexZoneMenus=IndexZone 1
FormIdZoneMenus=FormId 1
FieldTypeMenus=FieldType 1
PagelevelBarcodeMenus=PLB 1
IndexZonesMenus=Index Zones 1
PagelevelBarcodesMenus=PLBs 1
RegistrationZonesMenus=Regzones 1
IndexGroupMemberZoneMenus=GroupMember 1
IndexGroupMemberZonesMenus=GroupParent 1

[XYZ Menu Bar] - Menu Bar Section
MenuBarText=XYZ Index
Menus=XYZ Bar Menu 1;XYZ Bar Menu 2

[XYZ Bar Menu 1] - Menu Section
MenuText=XYZ menu item 1

[XYZ Bar Menu 2] - Menu Section
MenuText=XYZ menu item 2

[BatchClass 1] - Menu Section
MenuText=I show up on the &BatchClass tree node

[DocClass 1] - Menu Section
MenuText=I show up on the &DocClass tree node

[FormType 1] - Menu Section
MenuText=I show up on the &FormType tree node

[SamplePage 1] - Menu Section
MenuText=I show up on the &SamplePage tree node

[Separation 1] - Menu Section
MenuText=I show up on the Separation &Zones tree node

[RegZone 1] - Menu Section

54

Kofax Capture Developer's Guide

MenuText=I show up on the &Reg Zone tree node

[IndexZone 1] - Menu Section
MenuText=I show up on the &Index Zone tree node

[FormId 1] - Menu Section
MenuText=I show up on the Form&Id tree node

[FieldType 1] - Menu Section
MenuText=I show up on the &FieldType tree node

[PLB 1] - Menu Section
MenuText=I show up on the Page level bar code tree node

[Index Zones 1] - Menu Section
MenuText=I show up on the &Index Zones tree node

[PLBs 1] - Menu Section
MenuText=I show up on the Page level bar code parent tree node

[Regzones 1] - Menu Section
MenuText=I show up on the Regzones tree node

[GroupParent 1] - Menu Section
MenuText=I show up on the Group&Parent tree node

[GroupMember 1] - Menu Section
MenuText=I show up on the Group&Member tree node

Sample 4: Defining a Workflow Agent

The following workflow agent registration file defines a workflow agent with a custom context
menu item available from the Administration module.

Comments, which are shown in bold text, are not part of the registration file.

[Workflow Agents] — Workflow Agents Section
Validation Workflow Agent

[Validation Workflow Agent] - Workflow Agent Name Section
WorkflowAgentID=Kofax.AgentWithOCX
WorkflowAgentProgID=WFAgent.SampleWorkflowAgent
WorkflowAgentFile=WFAgent.dll

Description=This sample workflow agent is combined with a setup OCX.
Version=7.5

SupportsNonImageFiles=True

SetupProgram=Workflow Agent Setup

[Workflow Agent Setup] - Setup Section
OCXFile=SampleWorkflowOcx.ocx
ProgID=SampleWorkflowOcx.SampleWorkflow
Visible=0

MinSizeX=300

MinSizeY=150

BatchClassMenus=Workflow Agent Test Menu

[Workflow Agent Test Menu] - Menu Section
MenuText=Validation &Workflow Properties...

55

Kofax Capture Developer's Guide

Using the Administration Module to Manage Extensions

You can use the Administration module to register custom modules and workflow agents. You
can also use the command line registration utility, which is explained in Kofax Capture Extension
Registration Utility.

You cannot use the Administration module to register setup OCXs, you must use the Kofax Capture
Extension Registration Utility.

Custom Module Management

The following procedures cover registering and removing custom modules.

Registering a Custom Module

Before registration, make sure to place the following files in <kofax Capture installation
folder>\Bin:

+ Setup OCX for the custom extension (optional)
+ Executable for the custom extension
+ Registration (.aex) file for the custom extension

1. Start the Administration module.

2. Onthe Tools tab, in the System group, click Custom Modules.
The Custom Module Manager window appears.

3. On the Custom Module Manager window, click Add.

4. On the Open window, browse to <kKofax Capture installation folder>\Bin, and select
the .aex file associated with the custom module to register.

5. Click Open.
The custom modules listed in the [Modules] section of the .aex file appear in the Custom
Modules window.

6. Select the name of the modules to register and click Install.
A confirmation message appears to inform you when the registration is successful.

7. Click OK to clear the message, and then click Close to exit the Custom Modules window.

The name of each newly registered module appears in the Custom Module Manager window.
Also, each newly registered custom module is added to the list of Available Queues in the
Queues tab on the Create Batch Class and Batch Class Properties windows.

Viewing Properties for a Custom Module

The Custom Module Properties and Workflow Agent Properties windows list all the registered
settings for the selected application. The settings are based on the information defined in the .aex
file for the custom extension. The properties are listed for reference purposes only; you cannot edit
them.

1. On the Custom Module Manager window, select a custom module and click Properties.

56

Kofax Capture Developer's Guide

The Custom Module Properties window appears. On the General tab, you can view
information that describes the custom module.

Click the Programs tab.

On this tab, you can view the location of the runtime file for the module, along with the
location of the optional setup program.

Click the Advanced tab.

On this tab, you can view the functions defined for the custom module.

The Advanced tab also lists the valid processing order allowed for the custom module
function. The "Follow" entry lists the processing function that the custom module function
must follow. The "Precede" entry lists the function that the custom module must precede. The

selections for Follow/Precede affect the valid order that is allowed for the custom module on
the Queues tab on the Create Batch Class and Batch Class Properties windows.

Removing a Custom Module

You can use the Administration module to remove or "unregister" a custom module from Kofax
Capture. Before removing the custom module, you must ensure that it is not used in any published
batch class. Otherwise, Kofax Capture prevents you from removing it.

1.
2.

5.

Start the Administration module.

On the Tools tab, in the System group, click Custom Modules.
The Custom Module Manager window appears.

Select the name of the custom module to remove.

Click Remove.

If the selected custom module is not used in any published batch class, it is cleared from the
list. The Custom Module Manager does not allow you to remove a custom module that is used
by any batch classes.

Click Close.

Workflow Agent Management

The following procedures explain how to register and remove workflow agents.

Registering a Workflow Agent

Before registration, make sure that you have placed the following files in <kofax Capture
installation folder>\Bin:

+ Setup OCX for the custom extension (optional)
» Executable for the custom extension
+ Registration (.aex) file for the custom extension

1.

Start the Administration module.

2. On the Tools tab, in the System group, click Workflow Agents.

The Workflow Agent Manager window appears.

On the Workflow Agent Manager window, click Add.
On the Open window, browse to <Kofax Capture installation folder>\Bin, and select

the .aex file associated with the workflow agent to register.

57

Kofax Capture Developer's Guide

5. Click Open.

Each workflow agent listed in the [Workflow Agents] section of the .aex file appears in the
Workflow Agents window.

6. Select the name of each workflow agent to register and click Install.
A confirmation message appears to inform you when the registration is successful.
7. Click OK to clear the message, and then click Close to exit the Workflow Agents window.

The name of each newly registered agent appears in the Workflow Agents Manager window.
Also, each newly registered agent is added to the list of workflow agents in the Queues tab on
the Create Batch Class and Batch Class Properties windows.

Viewing Properties for a Workflow Agent

The Workflow Agent Properties windows list all of the registered settings for the selected workflow
agent. The settings are based on the information defined in the .aex file. The properties are listed
for reference purposes only; you cannot edit them.

1. On the Workflow Agent Manager window, select a Workflow Agent and click Properties.

The Workflow Agent Properties window appears. On the General tab, you can view
information that describes the Workflow Agent.

2. Click the Programs tab.

On this tab, you can view the location of the runtime file for the module, along with the
location of the optional setup program.

Removing a Workflow Agent

Use the Administration module to remove or "unregister" a workflow agent from Kofax Capture.
Before removing the workflow agent, you must ensure that it is not used in any published batch
class. Otherwise, Kofax Capture prevents you from removing it.

1. Start the Administration module.

2. Onthe Tools tab, in the System group, click Workflow Agents.
The Workflow Agents window appears.

3. Select the name of the workflow agent to remove.

4. Click Remove.

If the selected workflow agent is not used in any published batch class, it is cleared from the
list. The Workflow Agent Manager does not allow you to remove a workflow agent that is in
use by any batch classes.

5. Click Close.

Kofax Capture Extension Registration Utility

The Kofax Capture Extension Registration Utility (RegAscEx.exe) is a standalone console application
that registers and unregisters custom modules, workflow agents, and setup OCXs. For custom
modules and workflow agents, this utility is an alternative to the windows that are available from
the Administration module. With the registration utility, you also can incorporate the registration
process into the custom extension installation program. RegAscEx.exe resides in <Kofax Capture
installation folder>\Bin.

58

Kofax Capture Developer's Guide

The utility can be used to register:

+ Custom modules

+ Custom modules with setup OCXs
+ Setup OCXs

+ Workflow agents

+ Workflow agents with setup OCXs

The registration utility, which has no graphical user interface, is controlled completely via command
line parameters.

Prior to registration, you must save the .aex file, executable file, and the optional setup OCX to
<Kofax Capture installation folder>\Bin.

O The visible key available for [Setup] sections is ignored if you register a custom extension with
this utility prior to running the Administration module. This happens because the Administration
module hides the custom panel if it is launched after you register the custom panel. If you launch
the Administration module prior to using the command line to register the custom module, the
custom module should appear as expected.

Command Line Parameters

The utility supports several command line parameters to specify which custom extensions to
register or unregister, an output file, and silent mode operation. If any invalid or incomplete
parameters are specified, you are prompted with the correct usage, as shown in the figure.

Input File [/f {file name}]

You must specify a file that contains the registration settings for one or more custom extensions to
register or unregister in the Kofax Capture database. The /f flag is followed by the .aex file name, as
in the following examples:

RegAscEx /f custom.aex (for a custom module and/or workflow
agent)
RegAscEx /f SetupOCX.aex (for a setup program)

Every custom extension defined in the specified file is processed. Status messages are displayed to
the console for each application registered or unregistered. See Format for the Registration File for
more information.

Output File [/o {file name}]

You may optionally specify an output file where all messages and statuses are recorded. The
messages are output to the file and to the default display of the console. The /o flag is followed by
the output file name, as in the following example:

RegAscEx /f custom.aex /o output.log

Module Name [/m {module name}]

You may optionally specify a single custom module from the input file to register or unregister. Only
the specified custom module is processed, rather than the default behavior of processing all custom

59

Kofax Capture Developer's Guide

modules in the input file. The /m flag is followed by the custom module name enclosed in quotation
marks, as in the following example:

RegAscEx /f custom.aex /m “XYZ Image Processing"

Workflow Agent Name [/w {workflow agent name}]

You may optionally specify a single custom module from the input file to register or unregister. Only
the specified custom module is processed, rather than the default behavior of processing all custom
modules in the input file. The /m flag is followed by the custom module name enclosed in quotation
marks, as in the following example:

RegAscEx /f custom.aex /m “XYZ Image Processing"

Setup Programs [/x {setup program name}]

You may optionally specify a single setup program from the input file to register or unregister. Only
the specified setup program is processed, rather than the default behavior of processing all Kofax
Capture extensions in the input file. The /x flag is followed by the setup program name enclosed in
quotation marks, as in the following example:

RegAscEx /f SetupOCX.aex /x “Setup OCX"

Runtime Programs [/r {runtime program name}]

You may optionally specify a single runtime program from the input file to register or unregister.
Only the specified runtime program is processed, rather than the default behavior of processing
all Kofax Capture extensions in the input file. The /r flag is followed by the runtime program name
enclosed in quotation marks, as in the following example:

RegAscEx /f RuntimeOCX.aex /r “Runtime OCX"

Unregister [/u]

You may optionally use the /u flag to unregister one or more custom modules in the Kofax Capture
database, as in the following example:

RegAscEx /f custom.aex /u

If the /m parameter is also used, only the specified custom module is unregistered. If the /w
parameter is also used, only the specified workflow agent is unregistered. If the /x parameter is also
used, only the specified setup program is unregistered. Otherwise, all custom extensions specified
in the .aex file are unregistered. If any batch class is using a custom extension, the application
cannot be unregistered. A warning message is displayed, as follows:

<Application Name> is being used by the following batch
classes and cannot be removed.

This message is followed by a list of up to 10 batch classes that use the custom extension. If more
than 10 batch classes are detected, the first nine are listed, followed by the phrase "and more."

60

Kofax Capture Developer's Guide

Silent Mode [/s]

You may request that the registration utility operate without generating any output messages to
the console by adding the /s command line parameter, as in the following example:

RegAscEx /f custom.aex /s

If an output file is specified using the /o parameter, that file is still generated with all output
messages.

Usage [/7]

The " /?" parameter displays the proper usage of the registration utility to the console. It defines
each of the supported command line parameters and provides an example for formatting the
command line. For example, you can use the following to display information about proper usage:

RegAscEx /?

Input

The exact format of the .aex file is documented in Format for the Registration File. The file contains
a header section that lists the name of each custom extension to be defined. Subsequent sections
itemize the properties for each custom extension to be registered. The Kofax Capture Extension
Registration Utility verifies the values for the properties that are required in the .aex file.

Output

This section contains messages that may be displayed by the Kofax Capture Extension Registration
Utility. The following examples assume that silent mode operation (using the /s command line
parameter) has not been specified. Console messages also appear in the output file if they are
specified using the /o command line parameter.

Proper Usage

If you call the Kofax Capture Extension Registration Utility with the " /? " parameter or specify an
invalid command line parameter, the valid parameter information appears.

Error and Warning Messages
If the utility fails to register or unregister a custom extension, an error or warning message appears

to explain the problem. If an invalid parameter is specified or a required parameter is missing, the
proper usage prompt also appears.

61

Chapter 5

Workflow Agent Creation

A workflow agent is a custom application you can create to examine and modify batch data, change
the routing of a batch, restrict access to a batch in certain modules, and obtain the status of a batch.
Workflow agents are attached at the batch class level and invoked whenever a batch is closed from
a module.

This chapter describes how you can create, install, and register a workflow agent to customize your
Kofax Capture process. A sample workflow agent written in Visual Basic .NET is provided later in this
chapter.

In this chapter, you will learn to:

+ Design a workflow agent

+ Implement an optional setup OCX for the workflow agent
* Write the runtime module using Visual Basic .NET

+ Create the workflow agent registration file

+ Install and register the workflow agent

* Remove the workflow agent

Workflow Agent Design

The purpose of a custom workflow agent for an assigned batch class is to modify the typical
processing of a batch in Kofax Capture. When designing the workflow agent, consider the following
questions:

* What is the purpose of the workflow agent?
+ What functions should be performed by the workflow agent to carry out its purpose?
+ Will an administrator need to have configuration options? If so, a setup OCX is needed.

Setup OCX Implementation

A setup OCX for the workflow agent is optional, but if your workflow agent requires configuration
prior to running, a setup OCX should be considered. When creating the setup OCX, consider the
following:

+ What the setup OCX interface will look like
* Where the configuration settings will be stored
+ How the workflow agent is configured

62

Kofax Capture Developer's Guide

The setup OCX, which provides the configuration properties for the workflow agent through the
Administration module, can be displayed via toolbars, panels, or context menus. These properties
are available only for batch classes that are assigned the workflow agent.

See Setup OCX Creation for more information about coding a custom setup OCX.

Writing the Runtime Module

Now that you've determined the purpose of your custom workflow agent and defined its functions
and goals, you are ready to code your application. The sample workflow agent provided later in this
chapter is written in Visual Basic .NET.

You can write a workflow agent using any of the supported programming languages and
development environments:

* Microsoft Visual Studio version 2022 (Community, Professional, and Enterprise editions)
* Microsoft Visual Studio version 2019 (Community, Professional, and Enterprise editions)
* Microsoft Visual Studio version 2017 (Community, Professional, and Enterprise editions)
+ Microsoft Visual Studio version 2015 (Community, Professional, and Enterprise editions)
* Microsoft Visual Studio version 2013 (Express, Professional, and Enterprise editions)
+ Microsoft Visual Studio version 2012 (Express, Professional, and Enterprise editions)

You also need the .NET Framework 4.8 Developer Pack installed in your development environment.
If it is not already installed, the .NET Framework 4.8 Developer Pack can be installed via Visual
Studio 2022 or separately by downloading it from Microsoft site.

Also, you must use one of the development environments above to compile against Kofax Capture
11.1 libraries, which are targeted to .NET 4.8. See Backward Compatibility for more information.

Code Project Settings

When generating your Visual Basic project, the following must be set:
+ Workflow agent must be a registered COM server.

+ Code project must reference the Kofax Capture Custom Workflow .NET Type Interface Library and
the Kofax Capture Custom Workflow .NET Type Implementation Library

+ Workflow agent COM class must implement the IACWorkFlowAgent interface.

The workflow agent application named DeletePageWFA is used as a sample later in this chapter,
and sections of the code that perform certain functions are described. The sample application:

+ Ensures that only even-numbered pages are deleted. If odd-numbered pages are marked for
deletion, the batch is sent to Quality Control.

+ References a setup OCX, which adds a new menu item to the Batch Class context menu. This
menu item gives the administrator the ability to specify whether the workflow agent will check for
even-numbered page deletion. The sample code for the setup OCX is provided and described in
Setup OCX.

63

Kofax Capture Developer's Guide

Kofax Capture API Library References

The sample custom workflow agent uses the objects, methods, and properties defined in the
following API libraries:

+ Kofax Capture Custom Workflow .NET Type Interface Library (Kofax.Capture.SDK.Workflow.dll)
+ Kofax Capture Custom Workflow .NET Type Implementation Library (Kofax.Capture. ACWFLib.dlIl)

+ Kofax Capture Optimized Custom Module .NET Type Interface Library
(Kofax.Capture.SDK.Data.dll)

+ Kofax Capture Optimized Custom Module .NET Type Implementation Library (Kofax.DBLiteOpt.dll)
Set your Visual Basic project to reference these libraries.

For more information about the Kofax Capture Custom Workflow .NET Type Interface Library (and
the Kofax Capture Optimized Custom Module .NET Type Interface Library), see the Kofax Capture API
Reference in the Documentation\Help\APIRef folder, which is available from your Kofax Capture
installation media.

Project Property Settings

Set your Visual Basic project properties to the following:
+ Unattended Execution
* Retained in Memory

Workflow Agent Sample

The sample workflow agent is part of a more comprehensive sample that includes a custom
workflow agent, custom setup OCX for the workflow agent, custom panel, and custom module.

Comprehensive sample:

1. Uses a workflow agent setup OCX that gives the administrator the ability to decide whether to
remove even-numbered pages for a specified batch class.

2. Has a batch for the batch class created and scanned.
3. Provides a custom panel that the operator uses to mark even-numbered pages for deletion.

4. Has the workflow agent check the pages of the batch for odd-numbered pages that were
incorrectly marked for deletion. These incorrectly marked pages are reset, and a page note is
added indicating that the page should not have been marked for deletion.

5. Runs the custom module, which deletes the even-numbered pages marked for deletion.

6. Displays the Quality Control module, which shows that the pages were reset.

The code for the sample workflow agent is provided in this section; however, the code for the setup
OCX, custom panel, and the custom module are provided and described in Setup OCX Creation,
Custom Panels and Applications, and Custom Module Creation, respectively.

64

Kofax Capture Developer's Guide

Workflow Agent Program

The purpose of the sample custom workflow agent is to ensure that only even-numbered pages are
marked for deletion. Odd-numbered pages that are marked for deletion are reset, sent to Quality
Control, and flagged with a page note indicating that the page is not to be deleted.

The workflow agent application (DeletePageWFA) includes the major functions outlined below.

Inherit the IACWorkflowAgent Interface

Make sure that you have the line of code in your custom application that implements the
IACWorkflowAgent interface. This line of code (shown in bold below) should be placed near the
beginning of the DeletePageWFA application.

Imports System

Imports System.Runtime.InteropServices

Imports Kofax.Capture.SDK.Workflow

Imports Kofax.Capture.ACWFLib

Imports Kofax.Capture.DBLiteOpt

Imports Kofax.Capture.SDK.Data
Imports System.Windows.Forms

'***% You must generate a GUID and replace the GUID below

'*** Also, it is recommended that the PROGID be explicitly set
<GuidAttribute ("6874CD00-1F18-4A7D-8F76-1F555E1F0F87"),
ClassInterface (ClassInterfaceType.None),

ProgId ("VBNet.WFAgent"),
CLSCompliant (False)>

Public Class VBNetWFAgent

Implements Kofax.Capture.SDK.Workflow.IACWorkflowAgent
Private m oSetupDataElement As ACDataElement = Nothing

Private strBatchClassName As String

End Class

ProcessWorkflow Function

The ProcessWorkflow function is the main method for the custom workflow agent. This subroutine
is called whenever a batch is closed, rejected, or suspended. This implementation of the
ProcessWorkflow function performs several functions:

+ Checks if the batch is leaving the Scan module
+ Extracts the runtime and setup data information

+ Iterates through the pages and checks whether the page marked for deletion should indeed be
deleted (that is, it is an even-numbered page)

Check if the Batch is Leaving the Scan Module

The ProcessWorkflow function checks if the batch is leaving the Scan module. If it isn't, the
subroutine is exited. A check is also made to determine whether the batch is being suspended or if
the batch is in error. If so, the subroutine is exited.

65

Kofax Capture Developer's Guide

Extract the Runtime and Setup Data

A segment of the code extracts data from the following elements in preparation for reading each

item:

Setup ACDataElement
Runtime ACDataElement
Batch ACDataElement
BatchClass ACDataElement
Pages ACDataElement

Iterate Through the Documents

A segment of the code:
+ Determines whether the pages should be checked (depending on whether the "Delete Even Page

Setup" menu item is selected from the setup OCX context menu for the batch).

Cycles through each page and increments the page count.
The ProcessWorkflow function code segment follows:

Public Sub ProcessWorkflow (ByRef oWorkflowData As
Kofax.Capture.SDK.Workflow.IACWorkflowData Implements
Kofax.Capture.SDK.Workflow.IACWorkflowAgent.ProcessWorkflow

'*** Tet's make sure we are leaving Scan
If oWorkflowData.CurrentModule.Name = "Scan" Then

'*x* Extract the Runtime DataElement
Dim oRTElem As ACDataElement
OoRTElem = oWorkflowData.ExtractRuntimeACDataElement (0)

'*** Extract the Setup DataElement
m oSetupDataElement =
oWorkflowData.ExtractSetupACDataElement (0)

'*** Get the Batch element
Dim oBatchElem As ACDataElement
oBatchElem = oRTElem.FindChildElementByName ("Batch")

'*** Set the Batch Class Name
m strBatchClassName =
oBatchElem.AttributeValue ("BatchClassName")

'*** Get the Pages elem
Dim oPagesElem As ACDataElement
oPagesElem = oBatchElem.FindChildElementByName ("Pages")

'*xx Keep track of the Page count
Dim lngPageCount As Long = 0

'**%* Check if we should check the pages
If IsCheckPagesEnabled() Then

'**%* Tterate through each Page element

Dim oPageElem As ACDataElement

For Each oPageElem In
oPagesElem.FindChildElementsByName ("Page")

'*** Tncrement the Page count

66

Kofax Capture Developer's Guide

lngPageCount = lngPageCount + 1

'*** Check the page to make sure it should be deleted
CheckPage (oPageElem, lngPageCount)

Next oPageElem
End If
End If

End Sub

IsCheckPagesEnabled Function

The IsCheckPagesEnabled function determines whether the workflow agent should look for pages
marked for deletion through the setup OCX. That is, did the administrator select the "Flag Page for
Deletion" option from the Batch Class context menu? This Boolean value is stored in the Batch Class
custom storage string.

Private Function IsCheckPagesEnabled() As Boolean
Try

'*** Get the BatchClasses element

Dim oBatchClassesElem As ACDataElement

oBatchClassesElem =

m oSetupDataElement.FindChildElementByName ("BatchClasses")

'**%* Get the BatchClass element

Dim oBatchClassElem As ACDataElement

oBatchClassElem =
oBatchClassesElem.FindChildElementByAttribute ("BatchClass",
"Name", m strBatchClassName)

'*** Get the BatchClassCustomStorageStrings
Dim oBatchClassCSSs As ACDataElement
oBatchClassCSSs =
oBatchClassElem.FindChildElementByName
("BatchClassCustomStorage Strings")

'*** Get the CheckEvenPageDelete custom storage string
Dim oCheckEvenPageCSS As ACDataElement

oCheckEvenPageCSS =
oBatchClassCSSs.FindChildElementByAttribute
("BatchClassCustomStorageString", "Name",
"CheckEvenPageDelete")

'*** Make sure we have a reference
If Not oCheckEvenPageCSS Is Nothing Then

'*** Check the value
Return (oCheckEvenPageCSS.AttributeValue ("Value") = "True")

End If
Catch ex As Exception

'**% Just return false
Return False

End Try

67

Kofax Capture Developer's Guide

End Function

CheckPage Subroutine

The CheckPage subroutine checks if a page is odd-numbered and marked for deletion. If so, the
value is reset to "False," and a page note is added to indicate that the page should not be deleted
because it is an odd-numbered page.

Compile the entire workflow agent code and register it as instructed in the next section.

Private Sub CheckPage (ByRef oPageElem As ACDataElement,
ByVal lngPageNumber As Long)

'***% Check if this is an odd page
If (lngPageNumber Mod 2) = 1 Then

'**x Check if we have the DeletePage CSS

Dim oDeletePageCSS As ACDataElement

oDeletePageCSS = oPageElem.FindChildElementByName
("PageCustomStorageStrings") .FindChildElementByAttribute
("PageCustomStorageString", "Name", "DeletePage")

'**%* Make sure we have a reference
If Not oDeletePageCSS Is Nothing Then

'*** We don't want to delete odd pages. Clear the value.
oDeletePageCSS.AttributeValue ("Value") = "False"

'*** Set the Page Note to say that we reset the flag
oPageElem.AttributeValue ("Note") = "The DeletePage flag
was reset...you're not supposed to do that!"

End If
End If

End Sub

Registration File Creation

A workflow agent must be registered with Kofax Capture before it can be used. Once registered,
the workflow agent is recognized as valid for a processing queue and can be attached to any Kofax
Capture batch class.

Workflow agent registration is a two-part process that requires you to do the following:

+ Set up a workflow agent registration (.aex) file that defines the property settings for the workflow
agent.

+ Save the registration file and the optional setup OCX to <Kofax Capture installation
folder>\Bin.

* Register the workflow agent through one of the following:
+ Administration module
+ Kofax Capture Extension Registration Utility

If you are customizing Kofax Capture, you must have Administrator privileges to install files to the
Kofax Capture installation folder.

Kofax Capture Developer's Guide

Registration File Format
The format for the registration (.aex) file is similar to that of a standard Windows .ini file.

If you have a workflow agent that uses a setup OCX, you must put the setup OCX information
in the same registration file as the extension that uses it. The following is the registration file
(DeletePageWFA.aex) for the sample workflow agent program.

[Workflow Agents]

Delete Page Workflow Agent

[Delete Page Workflow Agent]

WorkflowAgentID=KPSG.DeletePageWFA
WorkflowAgentProgID=DeletePageWFA.Agent
WorkflowAgentFile=DeletePageWFA.dll

Description=This workflow agent makes sure that odd pages are not deleted.
Version=8.0

SupportsNonImageFiles=True

SetupProgram=Delete Even Page Setup

[Delete Even Page Setup]

OCXFile=DeleteEvenPageSetup.dll
ProgID=DeleteEvenPageSetup.SetupControl

Visible=0

The registration file (DeletePageWFA.aex) contains:

+ Alist of workflow agents (identified under the heading [Workflow Agents])

+ The workflow agent name (identified under the heading [Delete Page Workflow Agent]) and the
following information

+ Workflow ID
* ProgID of the workflow agent
+ Library (.dll) file name

+ The setup OCX for the workflow agent (identified under the heading [Delete Even Page Setup])
and the following information:

+ Setup OCX file name
* ProgID of the setup OCX

For more information about the registration file, read Registration File Creation.

Registering the Workflow Agent from the Administration Module
1. In the Administration module, on the Tools tab, in the System group, click Workflow Agents.
The Workflow Agent Manager window appears.
2. On the Workflow Agent Manager window, click Add.

3. From the Open window, browse to the <Kofax Capture installation folder>\Bin and select the .aex
file associated with the workflow agent to register.

4. Click Open.

The workflow agent listed in the Workflow Agents section of the .aex file appears in the
Workflow Agents window.

5. Select the name of the workflow agent to register and click Install.
A confirmation message appears when the registration is successful.

69

Kofax Capture Developer's Guide

6. Click OK to clear the confirmation message, and then click Close to exit the Workflow Agent
Manager window.

The newly registered workflow agent is also added to the list of workflow agents available on the
Workflow Agents tab of the Create Batch Class and Batch Class Properties windows.

Registering the Setup OCX

Having a setup OCX for your workflow agent is optional; however, if a setup OCX is implemented, it
must be registered before it can be used.

Refer to Registration File Creation for details about creating the registration (.aex) file and using the
Kofax Capture Extension Registration utility.

i B you are customizing Kofax Capture, you must have Administrator privileges to install files to
the Kofax Capture installation folder.

Because the sample setup OCX is associated with a workflow agent, the registration file for the
workflow agent is also used to register the setup OCX. Note the listing of the OCX file and ProgID in
the workflow agent registration file in Format of the Registration File.

1. Copy the setup OCX, custom extension files, and registration (.aex) file to <Kkofax Capture
installation folder>\Bin on each workstation that runs the Administration module or
the custom extension.

2. Register the setup OCX with the Custom Module Manager or Workflow Agent Manager
available from the Administration module. (Alternatively, you can use the Kofax Capture
Extension Registration Utility.)

Registering a Setup OCX Not Associated with a Custom Extension

1. Copy the registration (.aex) file to <Kofax Capture installation folder>\Bin.
2. Copy the setup OCX to the location specified by the .aex file.

3. Register the setup OCX with the Kofax Capture Extension Registration Utility by opening the
Command Prompt in elevated mode and executing the following command:

RegAscEx /f <registration file name.aex>

Installing and Registering the Workflow Agent

This section gives instructions for installing and registering a workflow agent. Before registration,
make sure that you have copied the appropriate files to <Kofax Capture installation
folder>\Bin.

If you are customizing Kofax Capture, you must have Administration privileges to install files to the
Kofax Capture installation folder.

1. In the Administration module, on the Tools tab, in the System group, click Workflow Agents.
2. Browse to the . aex file for the custom workflow agent, select the file, and click Open.

70

Kofax Capture Developer's Guide

On the Workflow Agents window, select the workflow agent and click Install.
The "Registration complete" message appears if the registration is successful.
Click OK.

The workflow agent appears in the Workflow Agent Manager window.

Click Close.

On the Batch Class Properties - Workflow Agent tab, select a workflow agent and click Add.

The workflow agent is added to the Selected Workflow Agents list.
Click OK to save your changes and exit the Batch Class Properties window.

Removing a Workflow Agent

Use the Administration module to remove or "unregister" a workflow agent from Kofax Capture.
Before removing the workflow agent, you must ensure that it is not used in any published batch
class. Otherwise, Kofax Capture prevents you from removing it.

1.
2.

Start the Administration module.

On the Tools tab, in the System group, click Workflow Agents.
The Workflow Agents window appears.

Select the name of the workflow agent to remove.

Click Remove.

If the selected workflow agent is not used in any published batch class, it is cleared from the
list. The Workflow Agent Manager does not allow you to remove a workflow agent that is in
use by any batch classes.

Click Close.

71

Chapter 6

Setup OCX Creation

You can implement a setup OCX to customize batch class setup options. With a setup OCX, you can
define custom tabs, configuration settings, and publish checks.

This chapter describes how to design, create, and register a setup OCX, how a setup OCX is loaded
and unloaded with the Administration module, and the behavior of setup OCX panels and tabs.

A sample setup OCX associated with the custom workflow agent described in Workflow Agent
Creation is provided and its functionality described later in this chapter.

Setup OCX Design

Determine whether a setup OCX is necessary for your custom extension. A setup OCX can be
associated with a custom extension (such as a custom module or custom workflow agent), or
designed without a custom extension:

* You can use a setup OCX with an associated custom module to customize the batch class setup
process for batch classes that contain the custom module as part of their workflow. The user
interface and commands defined in the setup OCX are available only for batch classes that
contain the custom module.

* You can use a setup OCX with an associated workflow agent to create custom user interfaces
to configure any runtime parameters that the workflow agent may require. The user interface
and commands defined in the setup OCX are available only for batch classes that contain the
workflow agent.

* You can use a setup OCX without an associated custom extension to customize the batch class
setup process for all batch classes. Items defined in the setup OCX are available for all batch
classes.

While it is possible to use the standard configuration settings and publish checks available from the
Administration module with a custom extension, it is likely that you will want to use a custom setup

OCX.

Writing a Setup OCX

The supported programming languages and development environment for creating a setup OCX
are the same as for workflow agents. See the topic Writing the Runtime Module for the supported
development environments.

72

Kofax Capture Developer's Guide

The sample setup OCX provided in this chapter is written in VB.NET and associated with the
sample workflow agent provided in Workflow Agent Creation. The sample setup OCX is part of the
comprehensive sample for this guide.

The sample setup OCX provides the configuration properties for the workflow agent, and it is
available through a context menu for a batch class in the Administration module. Details about the
sample setup OCX are provided later in this chapter in Sample Setup OCX for the Custom Workflow
Agent.

Code Project Settings

To generate the VB.NET project for the setup OCX, ensure that the following library is
referenced in your Visual Basic project: Kofax Capture Administration Module .NET Type Library
(Kofax.Capture.AdminModule.dll).

Sample Setup OCX for the Custom Workflow Agent

The sample setup OCX is part of the comprehensive custom extension sample. This setup OCX
for the custom workflow agent, which is described in Workflow Agent Creation, enables the
administrator to determine whether a check for even-numbered page deletion is to be enforced
and to configure that option through the Batch Class context menu.

Setup OCX for the Workflow Agent

The workflow agent setup OCX (DeleteEvenPageSetup) is written in VB.NET. This custom setup OCX
consists of the following code:

+ SetupControl is the control code that handles Kofax Capture events and triggers the setup OCX
and setup window.

+ SetupForm is the code for the Delete Even Page Setup window that appears when you select
"Delete Even Page Setup" from the batch class context menu. The administrator uses this code to
enable the workflow agent to check for even-numbered page deletion.

Right-click the batch class in the Batch tree view tab to view the context menu associated with the
workflow agent setup OCX.

When you select DeleteEvenPage from the batch class context menu, a Delete Even Page Setup
window appears. The setup OCX generates the context menu.

The code segments are listed here:

SetupControl

Imports Kofax.SDK.CaptureInfo
Imports Kofax.Capture.AdminModule.InteropServices
Imports Kofax.Capture.AdminModule
Imports System.Runtime.InteropServices
<ProgId ("VBNET.SetUpControl")>
<Guid ("08FB952B-69AE-3A90-88C4-268EB2372DD0") >
Public Class SetUpControl
Inherits System.Windows.Forms.UserControl

73

Kofax Capture Developer's Guide

#Region "Windows Form Designer generated code "
#End Region

Private Const cm strDEPSetup As String = "DEPSetup"
Private Const cm strDEPSetupText As String = "Delete Even Page Setup"

'*** Reference to the AdminApplication object
Private m oAdminApplication As InteropServices.AdminApplication

Public WriteOnly Property Application() As InteropServices.AdminApplication
Set (ByVal Value As InteropServices.AdminApplication)
'*** Cache the object
m oAdminApplication = Value
'*x*% Tnitialize the menu
InitializeMenu ()
End Set
End Property

Vhhkhkhkhkhhkhhkrhhhhhkrhhkhkhhkhkhk A hkkhkhkhkrhkhkhkhhkhkhkrkhkxkkrxkhkkkkkx

'**% Function: ActionEvent

'*** Purpose: Receive each action event

'**x*% Tnput: nEventNumber - number assigned to event
'*%% Qutput: vArgument - currently NOT used

Tk oKk pnCancel - Response to the event.

'*** Return: None.

Trxkhkhkhhkhkhkhhhhkhkhkrhhkhhhkhhkhhkhkrhkhkrhkhkhkhhkhhkrhkkrhkhkrxkkhkkhxx*k

Public Sub ActionEvent (ByVal nEventNumber As Integer, ByRef oArgument As Object, ByRef
nCancel As Integer)

'*** Check the event number to see if the application is about to exit,
'x***% if so, clean up m oAdminApplication's unmanaged resources

If nEventNumber = InteropServices.KfxOcxEvent.KfxOcxEventLoggedOut Then

Using oAdminWrapper As New ApiObjectWrapper (Of InteropServices.AdminApplication)
(m_oAdminApplication)

Debug.WriteLine ("Cleans up unmanaged resources handled by m oAdminApplication")

End Using

m_oApp = Nothing

End If

'*** Check the event number
If nEventNumber = InteropServices.KfxOcxEvent.KfxOcxEventMenuClicked Then
'*** Check the menu text
If CStr(oArgument) = cm strDEPSetup Then
'*** Wraps m oAdminApplication.ActiveBatchClass property in an instance of
'*** ApiObjectWrapper, so that unmanaged objects used by
'*** m oAdminApplication.ActiveBatchClass property are released properly
Using oActiveBatchClassWrapper As New ApiObjectWrapper (Of
InteropServices.BatchClass) (m_oAdminApplication.ActiveBatchClass)
If Not oActiveBatchClassWrapper.IsNull Then
'*** Show the Setup Dialog
Dim oSetupForm As LoginForm = New SetupForm
'*** Call the Setup Function with the wrapped of ActiveBatchClass
oSetupForm.ShowSetupDialog (oActiveBatchClassWrapper.WrappedObject)
'*** Unload the Form
oSetupForm = Nothing
End If
End Using ' Releasing unmanaged resources used by
m oAdminApplication.ActiveBatchClass
End If
End If
End Sub

Private Sub InitializeMenu ()
' Adds the Delete Even Page Setup to the batch class context menu

74

Kofax Capture Developer's Guide

m_oAdminApplication.AddMenu (cm strDEPSetup, cm strDEPSetupText, "BatchClass")
End Sub

End Class

SetupForm

Imports Kofax.Capture.AdminModule.InteropServices
Imports Kofax.Capture.AdminModule
Imports System.Runtime.InteropServices

Public Class SetupForm

Private Const cm strCheckEvenPageDeleteCSS As String = "CheckEvenPageDelete"
Private m oBatchClass As InteropServices.BatchClass
#Region "Windows Form Designer generated code"

#End Region

Public Sub ShowSetupDialog (ByRef oBatchClass As InteropServices.BatchClass)
'*** Cache the reference

m oBatchClass = oBatchClass
'*** Tnitialize the form
chkCheckPages.Checked = IsCheckEvenPageEnabled ()
'*** Show the dialog (modal)
Me.ShowDialog ()
'*** Save the settings
SetEvenPageEnabled (chkCheckPages.Checked)
End Sub

Private Function IsCheckEvenPageEnabled() As Boolean
'*** Check the BatchClassCustomStorageString
Dim strBCCSS As String = GetBatchClassCSSSafe (cm_ strCheckEvenPageDeleteCSS)

Return "True".Equals (strBCCSS, StringComparison.OrdinalIgnoreCase)
End Function

Private Sub SetEvenPageEnabled (ByVal blnEnabled As Boolean)
'*** Set the value

m oBatchClass.CustomStorageString (cm strCheckEvenPageDeleteCSS) = IIf (blnEnabled,
"True", "False")
End Sub

Private Function GetBatchClassCSSSafe (ByVal strName As String)
Dim strBatchClassCSS As String = String.Empty
Try
strBatchClassCSS = m oBatchClass.CustomStorageString (strName)
Catch ex As Exception
strBatchClassCSS = ""
End Try
Return strBatchClassCSS
End Function

As String

Private Sub cmdOK Click() Handles cmdOK.Click
'***% Simply hide the form
Me.Hide ()
End Sub
End Class

Kofax Capture Developer's Guide

Registering the Setup OCX

Having a setup OCX for your workflow agent is optional; however, if a setup OCX is implemented, it
must be registered before it can be used.

Refer to Registration File Creation for details about creating the registration (.aex) file and using the
Kofax Capture Extension Registration utility.

i B you are customizing Kofax Capture, you must have Administrator privileges to install files to
the Kofax Capture installation folder.

Because the sample setup OCX is associated with a workflow agent, the registration file for the
workflow agent is also used to register the setup OCX. Note the listing of the OCX file and ProgID in
the workflow agent registration file in Format of the Registration File.

1. Copy the setup OCX, custom extension files, and registration (.aex) file to <kofax Capture
installation folder>\Bin on each workstation that runs the Administration module or
the custom extension.

2. Register the setup OCX with the Custom Module Manager or Workflow Agent Manager
available from the Administration module. (Alternatively, you can use the Kofax Capture
Extension Registration Utility.)

Registering a Setup OCX Not Associated with a Custom Extension

1. Copy the registration (.aex) file to <kofax Capture installation folder>\Bin.
2. Copy the setup OCX to the location specified by the .aex file.

3. Register the setup OCX with the Kofax Capture Extension Registration Utility by opening the
Command Prompt in elevated mode and executing the following command:

RegAscEx /f <registration file name.aex>

Setup OCX Registry Entries

After a setup OCX is installed on a client computer, registry keys must be created on that computer
to inform the Administration module how the OCX is loaded, and what tabs should be created.
Registry keys that define the Administration module setup OCX are automatically created under the
following path during the registration process:

HKEY LOCAL MACHINE\Software\Kofax Image Products\Ascent Capture\3.0\Ascent
Capture - Administration\User Panels\

The setup OCX registry key values are listed in the following table.

76

Kofax Capture Developer's Guide

Value Required Type Description

DisplayName Yes String The display name of

the panel. This name is
displayed on the View tab
in the Panels group, and
it also appears when the
panel is undocked. The
Visible value determines
whether or not the
DisplayName appears.

InitSizeX No DWORD The initial horizontal size
of the panel in screen
resolution pixels. The
default is 50.

InitSizeY No DWORD The initial vertical size
of the panel in screen
resolution pixels. The
default is 50.

MinSizeX No DWORD Minimum horizontal
size of the panel when
undocked in screen
resolution pixels. The
default is 50.

MinSizeY No DWORD Minimum vertical size of
the panel when undocked
in screen resolution
pixels. The default is 50.

ProgID Yes String COM ProgID of the OCX.

Type Yes DWORD 0 (zero) indicates the
setup OCX is used by

a custom extension; 1
indicates the setup OCX
is not used by a custom
extension. The default is
0.

Visible No DWORD 1 indicates visible, 0 (zero)
indicates not visible. If set
to 0, the panel will not be
initially displayed and the
DisplayName does not
appear. The defaultis 1.

If any of the required registry values are omitted when the Administration module attempts to load
a setup OCX, the following error is reported:

User defined OCX {User Defined Key} contains an invalid
registry value for {Value Name}.

where:

{User Defined Key} is the registry key under "User Panels" causing the error.

77

Kofax Capture Developer's Guide

{Value Name} is the name of the key value that was omitted.
The application will shut down in this case.

If any of the DWORD values are out of range, the Administration module reports the following error:

{Value Name} for user defined OCX {DisplayName} is out of
range.

Where:

{Value Name} is the name of the value.

{DisplayName} is the value data for the DisplayName value.
The value is ignored, and program execution will continue.

If a registry key is properly constructed, but the OCX cannot be loaded for some reason, the
Administration module will report the following error:

Unable to create user defined OCX
{DisplayName} ({Details}) .

Where:
{DisplayName} is the value data for the DisplayName value.

{Details} indicates the error number or error description.

Tab Registry Keys

Each panel registry key should have a key entitled "Menus" under it. The keys registered under
"Menus" define the tabs for that OCX. Keys defined directly under "Menus" dictate the location of a
command. The following key names are valid.

To add a command to a tree node:
+ BatchClass

+ DocumentClass

+ FieldType

« FormlIdZone

* FormType

+ IndexGroupMemberZone

+ IndexGroupZoneCollection
+ IndexZone

+ PagelevelBarcode

+ PagelevelBarcodeCollection
* RegistrationZone

+ RegistrationZoneCollection
+ SamplePage

* SeparationZone

78

Kofax Capture Developer's Guide

To add a tab to the Ribbon:
* MenuBar

Commands are created by adding keys under the keys that are listed above. The name of the key is
the internal name for that command. Also, you can specify the value listed in the table.

Tab Registry Key Value

Value Required Type Description
Text Yes String Display name of the
command

If this value is omitted, the command is not added.

The MenuBar key is a special case, such that it requires the value listed in the preceding table. If this
value is omitted, the tab does not appear.

MenuBar Registry Key Value

Value Required Type Description

Text Yes String Display name of the tab

Loading the Setup OCX

A setup OCX is loaded with the Administration module as follows:
+ If the setup OCX is associated with a custom extension, the OCX is loaded:
* When the Administration module is launched, and if the setup OCX has been registered.

+ While the Administration module is running, if the setup OCX is registered from the
Administration module. If the setup OCX is registered with the Kofax Capture Extension
Registration utility, the setup OCX will load the next time the Administration module is
launched.

+ If the setup OCXis not associated with a custom extension, the OCX is loaded:

* When the Administration module is launched, if the setup OCX has been registered. A setup
OCX that is not associated with a custom extension must be registered with the Kofax Capture
Extension Registration utility. If you register the setup OCX while the Administration module is
running, the setup OCX will load the next time the Administration module is launched.

Refer to Registration File Creation for more information about registering custom extensions and
setup OCXs.

The first time the setup OCX is loaded, it appears undocked with other display characteristics as
defined in the registry settings for the OCX. When a setup OCX is loaded again, it assumes the same
location, size, docking status, and visibility used in the previous instance of the Administration
module. For details, see Setup OCX Registry Entries.

Note that if your setup OCX is associated with a custom extension, and the setup OCX files are not
available in the Kofax Capture Bin folder when the Administration module launches, a message

79

Kofax Capture Developer's Guide

specifying the name of the custom module that must be registered is displayed. You are prompted
to open the Custom Module Manager to register the setup OCX.

If this kind of message displays, make certain that your setup OCX is installed to <Kofax Capture
installation folder>\Bin. Then, click OK to register the missing setup OCX.

Setup OCXs that are not associated with a custom extension must reside in the location specified in
the .aex file used for registration.

Unloading the Setup OCX

A setup OCX is unloaded from the Administration module as follows:
+ If the setup OCX is associated with a custom extension, the OCX is unloaded:
* When the Administration module is shut down

+ While the Administration module is running, if the custom extension is unregistered from
within the Administration module

+ If the setup OCXis not associated with a custom extension, the OCX is unloaded when the
Administration module is shut down

When a setup OCX is unloaded, its panel and all associated tabs are removed from the
Administration module.

Setup OCX Panels

At the discretion of the setup OCX developer, the Administration module can display a panel for
each setup OCX. This panel may be resized and moved just like any other panel.

Enabling Panels

Setup OCX panels are enabled as follows:

+ If the setup OCX is associated with a custom extension, the panel is enabled when both of the
following are true:

+ "Batch class" tab on the Definitions panel is active.

« Current selection is either a batch class with the custom extension in its workflow, or a
component of such a batch class.

+ If the setup OCXis not associated with a custom extension, the panel is enabled when the
Administration module is launched.

When a panel is disabled, the panel itself remains visible, but the user interface elements of the
setup OCX are hidden.

80

Kofax Capture Developer's Guide

Context Menus

A setup OCX may add one or more menu items to the context menus available from the nodes in
the Batch class Definitions panel available in the Administration module. All of the custom menu
items are grouped together via separator bars.

The menus can be added programmatically, or they can be specified in the . aex file required for
custom extension registration. Selecting one of these menu items sends an ActionEvent to the OCX,
identifying the particular menu selected.

See Registration File Creation for more information about registering custom extensions.

Enabling Context Menu Items

+ The behavior of the context menu items defined with a setup OCX are as follows:
+ Batch class tab of the Definitions panel is active.

+ Current selection is either a batch class with the custom extension, or a component of such a
batch class.

+ If the setup OCXis not associated with a custom extension, the menu items are always enabled.

When setup OCX menu items are disabled, they are grayed.

Ribbon

A setup OCX can add one or more tabs to the Ribbon in the Administration module and define
commands for the tab groups. Selecting one of the custom commands sends an ActionEvent to the
setup OCX, identifying the particular command selected.

Custom Tab Names

Custom tab names defined by a setup OCX must be different from the standard tab names provided
on the Ribbon in the Administration module. If you attempt to create a custom tab with the same
name as an existing tab, the following error will occur when the setup OCX is loaded:

Cannot create {DisplayName} menu for the user-defined queue
setup module {ProgID}.

Where:
{DisplayName} is the display name of the tab to be added.
{ProgID} is the COM prog ID for the OCX.

For this case, the tab is not added, but program execution is continued.

81

Kofax Capture Developer's Guide

Enabling/Disabling Custom Commands

« If the setup OCX is associated with a custom extension, the commands are enabled when
both of the following are true:

+ "Batch class" tab on the Definitions panel is active.

+ Current selection is either a batch class with the custom extension, or a component of such a
batch class.

+ If the setup OCXis not associated with a custom extension, the commands are always
enabled.

As an example, a custom tab can be added to the Administration module Ribbon. For this case, the
setup OCX that defines the custom tab is associated with a custom extension, and the batch class
that contains the custom extension is selected from the Batch class tab of the Definitions panel. The
custom tab is then enabled.

When the batch class that contains the custom extension is not selected, the tab name "Sample
Index" is available, but the commands associated with it are unavailable.

Panels

Each panel created by a setup OCX will be listed on the tab that appears when you select the View
tab and look in the Panels group. Selecting a panel will show or hide the panel, depending on its
current state.

i I panel being shown or hidden has nothing to do with it being enabled or disabled. It is
possible to show a panel that is disabled. When a disabled panel is shown, the panel elements are
not displayed.

It is possible to specify in the registry settings that a panel will always be hidden (see "Visible" key
value in the table that appears in Setup OCX Registry Entries). In that case, that panel will always be
omitted from the Panels group.

Batch Class Publishing

A setup OCX can define publish checks to be used by the Administration module when batch classes
are published. Note the following:

+ If the setup OCX is associated with a custom extension, the publish checks defined by the OCX
are used when batch classes that contain the custom extension are published.

+ If the setup OCXis not associated with a custom extension, the publish checks are used when
any batch class is published.

No new user elements for publishing can be exposed with a setup OCX; however, changes to the
publishing functionality can be defined. When a batch class is published, each queue performs
its own publish checks, according to the queue order listed in the workflow. For example, if the

82

Kofax Capture Developer's Guide

workflow includes a custom extension that uses custom property settings, they are published
along with the other property settings for the batch class. Any warnings associated with the custom
extension are displayed in the Results list when you publish the batch class.

If all publish checks succeed, the batch class is published. When a batch class is published, the
custom properties for each custom extension are also published. If you change any custom
properties, they are not reflected in the batch class until you publish it again.

Setup OCX Development API

The complete API for the Kofax Capture Administration Module .NET Type Library, including
properties and methods, is documented in the Kofax Capture API Reference. The properties and
methods are associated with setup OCX applications. All properties and methods are defined using
Visual Basic syntax.

1. Onyour Kofax Capture installation media, navigate to the following location:
Documentation\Help\APIRef

2. Double-click APIRef.chm.
The Kofax Capture API Reference appears in a browser window.

3. On the Contents tab, click Kofax.Capture.AdminModule Namespace.

83

Chapter 7

Custom Panels and Applications

With the Kofax Capture Module Type Library, you can add the following custom elements to the
Scan, Quality Control, Validation, and/or Verification modules:

+ Custom panels. You can add up to 20 custom panels to a standard Kofax Capture module.
Each panel must be developed as an OCX. You can use different panels for each module to be
customized.

+ Custom commands. In conjunction with a custom panel, you can implement custom commands.

In addition, by taking advantage of the extended features of the Kofax Capture Module Type
Library, you can create standalone custom applications that act as input scripts. This feature (Import
Controller) supports virtually any type of custom import application you might care to create.

These custom applications can be run from command lines and can also have their own interfaces
that are entirely separate from Kofax Capture. These choices are entirely up to you.

This chapter describes the following:
+ User interface design and behavior
+ Custom applications

A sample custom panel associated with the custom module is described in Custom Module Creation
later in this guide.

Programming in a High Availability Environment

When customizing Kofax Capture in a high availability environment, you should observe the
error handling guidelines in High Availability Environments. The guidelines help ensure that your
applications take full advantage of Kofax Capture’s high availability features.

For more information on high availability, refer to the Kofax Capture Installation Guide.

User Interface Design and Behavior

The following sections describe the user interface design and behavior of custom panels and
commands, which may be added to the Scan, Quality Control, Validation, and/or Verification
modules. Each panel contains a user-defined OCX.

New or modified customizations can take advantage of the Fluent UI in the Kofax Capture modules
on the preceding list.

84

Kofax Capture Developer's Guide

Custom Panels

As an example, for a custom panel in the Validation module, the user OCX is contained completely
within a new user interface panel. This panel may be resized and moved just like any standard
panel. The OCX panel sends resizing events to the child OCX whenever the panel itself is resized.

The OCX may display any desired graphical objects on the panel.

The outside edge of the panel (about 4 pixels) is used for panel operations (listed below). Any panel
clicks outside this margin area are passed to the OCX. If the OCX obtains focus, then keyboard
events are also sent to it.

Standard panels and new OCX panels support the following operations:
+ Saving the panel size, state (floating/docked), and position between application invocations.

+ Clicking and dragging the top edge of a panel causes the panel to move to a new location on the
frame. If the panel is dragged off the frame, it becomes a distinct, floating window.

+ Double-clicking the top edge of a docked panel changes that panel into a floating window.
(Double-clicking the top edge of the panel toggles between a docked/undocked state.)

+ Resizing a floating window. The panel has a minimum size (which is 50,50 for default panels).

+ Hiding a floating window by clicking its Close box. The panel can be restored by selecting it from
the View tab in the Panels group.

+ Dragging a floating window back to the frame to redock the panel to the frame.
© The OCX cannot programmatically resize its parent window.

A panel may receive several resize events just after creation. An initial resize of size 0,0 occurs
when the OCX is first built. Windows may send other events, depending on the screen resolution
configuration.

Any changes to data made by the OCX (field content, field data, reject flag, note information) are
reflected by all standard Kofax Capture controls, including the image viewer, the tree view, the data
entry panel, and the thumbnail view.

Note the following:

+ Panels without windows: A "visible" flag in the registry determines if a panel is displayed in the
Panel group on the View tab. If a panel is not visible, it never appears in the Panel group. The OCX
has an API called ShowWindow(), which allows it to display itself.

If the panel has the visible flag = 0 in the registry, it does not appear in the Panel group. It can
still be displayed via command selections. If the panel is visible when the application closes, it is
visible when the application opens.

As a workaround, don't display the panel. Instead, the OCX can display a modal window. Or, you
can hide the panel after opening the application.

+ Panels hidden by the OCX: The application API allows the panel to hide/show itself.

85

Kofax Capture Developer's Guide

Custom Panels in the Fluent User Interface

Updated or new custom panels may take advantage of the Fluent User Interface (UI). The method
AddMenuEx is provided explicitly for this purpose. This method functions exactly like the older
AddMenu method, but with several new parameters geared toward the Fluent UL

See the Kofax Capture API Reference for details.

Themes in the Fluent User Interface

The look and feel for legacy custom panels may not conform to the look and feel of Kofax Capture
with the Fluent UL By default, the panels appear in their native Windows style. The only way to
provide a matching look and feel is to change the Kofax Capture theme to match the style of the
custom panel.

An event and APIs have been provided to allow modified or new customizations to work properly
with themes.

Custom Tabs

The View tab contains a Panels group that allows hiding/showing the user panel. The User Panel
Name in the group is configurable.

In addition, each OCX can add a tab to the Ribbon. The name of the new tab must be different from
any existing tab text. Duplicates are not added. If you attempt to add duplicate text, an error is
generated.

The Ribbon text and tab items can be read from the registry. The registry supports one Ribbon per
panel. Multiple Ribbons may be defined programmatically.

When more than one OCX (user-defined panel) exists in the registry, they are added in the order
they are loaded. The registry alphabetizes its entries. If added programmatically, the tabs are
inserted in the order that the panels are loaded.

Commands such as Show Me, Hide Me, and Show window can be defined as part of your OCX, as
shown in the sample OCX provided in your installation folder. See Sample Custom Panel for more
information about installing and registering the samples.

Scan, Quality Control, Validation, and Verification Tree Node (Context)
Menus

Each OCX may add one or more items to the tree nodes displayed in the Batch Contents panel.
The menu text, accelerator, and tree nodes are specified in the registry or you can add them

programmatically. Selecting one of these menu items sends an action event to the OCX. The action
event identifies the menu item selected.

© the ocx developer is responsible for accelerator key uniqueness.

86

Kofax Capture Developer's Guide

Tabs Can Be Added, Removed, and Edited at Runtime

The AddMenu() API allows the addition of commands by the OCX while loading or running. A
ShowMenu() API allows a user-defined command to be shown or hidden. Refer to the Kofax Capture
API Reference for details about AddMenu() and ShowMenu().

Regqistry Entries for Tabs

Each user-defined panel has a Menus key under it. The Menus key has subkeys for each tab that
allows the insertion of commands. Each tab has a name and properties. Currently, the only property

is the tab text.

The table describes the Menus registry keys.

Registry Keys

Key Entries Description

Menus This key indicates that tabs will follow. The locations are under the tabs.
Batch Locations for tabs to appear.

Document The following sample code shows the tab location names.

MenuBar '"*** Possible locations for user-defined

Page '*** menus for Scan, Quality Control,

'**%* Validation, and Verification

m_RuntimeMenuLocationKeys (0) = “MenuBar”
m_RuntimeMenuLocationKeys (1) = “Batch”

m_ RuntimeMenuLocationKeys (2) = “Document”
m_RuntimeMenuLocationKeys (3) = “Page”

The Ribbon contains one additional text key from the Ribbon to identify
the text displayed on the frame.

Batch Menu Sel

Tab event text, supplied by the developer. This is the text to be returned
to the OCX when the command is selected. This text is passed back as
part of the MenuClicked() action event.

Text "&Pick me..."

"Text" is the non-localized value that contains the text to be displayed.
This contains the accelerator key ("&" on the "P").

For example, Menubar: "&Sample OCX" is the Ribbon text added from a registry entry. A tab entry"
&0OCXTest" was added by calling AddMenu() within the OCX.

The MenuBar entry contains one string value; it is the tab text for the Ribbon with the accelerator.
You can programmatically add multiple tabs using AddMenu().

O 1he ocx developer is responsible for keytip uniqueness.

Custom Panel Installation

To install a custom panel, you must copy and register the OCX on each client computer in any folder
location. Also, you must install any required customer DLLs (if applicable).

87

Kofax Capture Developer's Guide

O custom panels are not included as part of the standard Kofax Capture installation. However,
sample custom panels are available in your Kofax Capture installation folder (a VB.NET sample
is located in source\Sample Projects\StdCust). For more information, see Sample Custom
Panel.

Next, some registry entries (on each client computer) must be created under the following path:

HKEY LOCAL MACHINE\Software\Kofax Image Products\Ascent Capture\3.0\{module
name } \User Panels\{User-Defined-Key}\

The "local machine" area is utilized since such a configuration is more likely to be based on the
computer than on the user. The {<module name>} must be replaced with one of the following
names:

Ascent Capture - Scan

Ascent Capture - Quality Control
Ascent Capture - Validation
Ascent Capture - Verification
Ascent Capture - Administration

Although you may be working with a more recent Kofax Capture installation, notice that the registry
entry is created under a path that intentionally includes a reference to "3.0."

Within the User Panels path, the {User-defined Key} key is any valid registry key. If more than 20 keys
exist in this folder, then subsequent keys are ignored.

Value Required? Value Type Notes

DisplayName Yes String The name may appear

in the title bar of the
undocked panel or in the
Panels group. The Panels
group is available on the
View tab. Currently, this
tab contains the name of
a user-defined OCX and
the end user is allowed to
turn the panel on and off.
The OCX has no control
over this functionality.
The Visible value setting
determines whether

or not the panel name
appears in the Panels
group.

InitSizeX No DWORD The initial horizontal OCX
size in screen resolution
pixels. The default is 50.

88

Kofax Capture Developer's Guide

Value

Required?

Value Type

Notes

InitSizeY

No

DWORD

The initial vertical OCX
size in screen resolution
pixels. The default is 50.

MinSizex'

No

DWORD

The minimum undocked
horizontal OCX size in
screen resolution pixels.
The default is 50.

MinSizeY'

No

DWORD

The minimum undocked
vertical OCX size in screen
resolution pixels. The
default is 50.

ProgID

Yes

String

The COM program ID of
the OCX.

ReplacesIndexFieldsPanel

No

DWORD

This applies to the
Validation and Verification
modules only.

When enabled, the Index
Fields panel and its View,
Toolbars, and Index Fields
commands are hidden.
Additionally, its context
menu does not show the
Index Fields menu item.

When an eDocument is
displayed, the internal
Windows Explorer

panel takes focus

after displaying the
eDocument. If the OCX
has registered itself as
ReplacesIndexFieldsPanel,
it will receive a new event
(KfxOcxEventResetFocus)
indicating that focus has
been returned to the
OCX. In such cases, Kofax
Capture gives focus to
the "outer" OCX panel.
However, you may want
to set focus to some
subcontrol. To do this,
catch the new event and
set focus as desired.

Only one OCX can

register itself as
ReplacesIndexFieldsPanel.

Note that the panel works
best when it is docked.

89

Kofax Capture Developer's Guide

Value Required? Value Type Notes

Visible No DWORD Determines if the panel
is displayed in the Panels
group. If the panel is

not visible, it can still be
displayed via commands.
Defaults to 1 (visible); 0 is
not visible.

! The minimum size parameters affect only the undocked minimum size. There is no support for
minimum docked size.

My Computer HGEY_LoCAL 4 t Capture - ser o

Registry Values for the {User-Defined Key}

The initial docking location is always at the upper left of the client area.

If any required values are missing, the application displays the following error message and then
shuts down:

User—-defined OCX “{User-defined Key}” contains any invalid registry values for
{Key Name}.

Because the OCX is an integral part of the application, the user is not allowed to run the application
unless the OCX is properly set up. If absolutely necessary, the user may completely remove the OCX
registry key and the software will run. However, this is not recommended as invalid data may occur
(assuming the OCX is performing the necessary tasks).

If any size parameter is out of range, the following message appears:
{parameter} for user-defined OCX {DisplayName} is out of range.

The "{parameter}" string is one of the values shown in the preceding table. If all parameters are
read and valid, but the OCX cannot be created for some reason, the following message appears:

Unable to create user-defined OCX {DisplayName} ({details})
Where:

{details} indicates the error number and/or description.

Invoking Kofax Capture Commands from a Custom OCX Panel

You can use a custom OCX panel to invoke Kofax Capture commands in the Administration, Scan,
Quality Control, Validation, and/or Verification modules through the SelectMenultem function.

20

Kofax Capture Developer's Guide

SelectMenultem Function

Function

Arguments

Description

SelectMenultem

Returns: Boolean
Parameters:
IResourcelD [ByVal; Long]

bSendImmediate [ByVal Optional
Default to FALSE]

Sends a selected command to a
Kofax Capture module.

Resource ID of command.

If successful, SelectMenultem returns a nonzero value. In the case of an unexpected system error, it
returns a value of zero. SelectMenultem throws an error if any of the following are true:

* You specify an invalid resource ID for the command
« Itemis currently grayed in the target module
* You execute an exit command immediately (bSendImmediate is True)

+ Application is busy

The bSendImmediate parameter is optional, and it can be set to True or False.

+ If True, bSendImmediate invokes the Windows API call "SendMessage," which executes the
command instantly and fails if the module is processing another event.

+ If False, bSendiImmediate invokes the Windows API call "PostMessage," which posts the

command so it is executed when other events are completed.

Passing a Command to the Scan Module

The following sample passes a command from a custom OCX to the Scan module. The command

shown here displays the last page in a batch.

Private Sub ScanStopped ()

Dim bResult As Boolean = False
Dim lMenuResourceNumber As Integer =

InteropServices.KfxApiScanMenultems.KfxScanMenuPagelast
Dim bSendImmediate As Boolean =

Try

False

bResult = m oApp.SelectMenultem (1MenuResourceNumber, bSendImmediate)

Catch ex As Exception

MessageBox.Show (String.Format ("Unable to select menu:

End Try
End Sub

OCX Tab Selection

{or",

ex.ToString()))

In the following code, the OCX Tab Selection invokes the selection of About Kofax Capture in the

Administration module.

Dim bResult As Boolean =
Dim bSendImmediate As Boolean

'*** Display the about box

False

= False

bResult = m oApp.SelectMenultem (InteropServices.KfxApiAdminMenultems.
KfxAdminMenuHelpAboutAscentCapture, bSendImmediate)

91

Kofax Capture Developer's Guide

In the preceding sample, KfixAdminMenuHelpAboutAscentCapture is the item for the About Kofax
Capture command in the Administration module. A separate set of commands is available for each
Kofax Capture module.

Sample Custom Panel

A sample custom panel is provided as part of your Kofax Capture installation. The sample is
installed to the following folder:

* <Kofax Capture installation folder>\Source\Sample Projects\StdCust

Two subfolders are included:

* OCxPanel (or OCXPanel .NET): This folder contains Visual Basic source code for a sample OCX.

* OCXReg (Oor OCXReg.NET): This folder contains Visual Basic source code for a sample registration
utility.

The source code in the preceding folders is provided in Visual Basic .NET. The sample OCX is
provided to give you a sample of a simple custom OCX. The sample registration utility demonstrates
the type of utility you might provide to customers for installing and registering your sample OCX for
use with Kofax Capture.

Sample Custom Panel Registration

Custom panel registration is a two-part process, requiring you to do the following:

+ Use a utility (such as the sample utility provided in your OCXReg folder) to register the custom
sample panel with Kofax Capture.

+ For COM components, use RegSvr32.exe to register a custom panel in the Windows Registry.
For .NET components, use RegAsm.exe to register a .NET custom panel for COM Interop with the
Windows Registry and the .NET Framework.

The procedure explains how to use the sample registration utility to register the sample OCX panel
for use with Kofax Capture.

Registering the Sample Custom Panel with Kofax Capture

The procedure explains how to use the sample registration utility to register the sample OCX panel
for use with Kofax Capture.

1. Start Windows Explorer and browse to the following folder:

C:\Program Files (x86)\Kofax\Source\Sample Projects\StdCust\OCXPanel\
2. Copy SampleOCX.dll to the \Bin folder.
3. Browse to the following folder:

C:\Program Files (x86)\Kofax\Source\Sample Projects\StdCust\OCXReg\
4. Start the User Panel Registration Tool (PanelReg.exe), shown in the figure.

922

Kofax Capture Developer's Guide

8.

-

a5 User Panel Registration Tool l = | |_ﬂh

Modules Required

[[] Scan FPanel Name Sample OCX

[C] Quality Control DisplayMame Sample OCX Title

[C] Validation ProglD Kofax. SampleUserControl

[[] Verification MenuBar &Sample OCX

Reference @ .MET 4P| (™) WBE Interop AP
Menu (eave text blank to ignore)
Text: Event Text: Location:
&MenuBar Menu Menu Bar [MenuEar v]
&Batch Menu Batch Menu [Bmch v]
&Document Menu Document Menu [Ducument v]
&Page Menu Page Menu [Page *]
Optional {eave blank to ignore) []]
Save Bt
MinSizeX 50 InitSizex. 50 Visible
MinSizeY 50 InitSizeY 50 Remave

-,

Registering a Custom Panel

In the Modules group, select the modules in which you want to enable the sample OCX panel.
In the Required group, in the ProgID box, replace the default SampleOCX.SampleUserControl

with Kofax.SampleUserControl.

You do not need to change the other default settings, unless you are working with custom

panels carried over from previous versions. In that case, you would select VB6 Interop API as

the Reference setting.
Click Save.

Registering the Sample Custom Panel in the Windows Registry

The procedure explains how to use the sample registration utility to register the sample OCX panel

in the Windows Registry.

After the registration process, the custom panel is available in each module for which it was

registered with Kofax Capture. For details about typical custom panel behavior, see User Interface

Design and Behavior.
1. On the Windows Start menu, click Run.
In the Run window, type the following:

2.

<pathl>RegSvr32.exe

<path2>0Ocxname.ocx

93

Kofax Capture Developer's Guide

Where:

<path1>is the full path to the RegSvr32 application.
<path2>is the full path to Ocxname.ocx.
Ocxname.ocx is the name of your custom panel OCX.

Registering the Sample Custom Panel

1.

On the Windows Start menu, click Run.

2. In the Run window, browse to the OCXPanel folder included in your Kofax Capture installation

and type the following:

<pathl>RegSvr32.exe
<pathZ2>Smplocx.ocx

Where:

<path1>is the full path to the RegSvr32 application.

<path2>is the full path to Smplocx.ocx.

Smplocx.ocx is the name of the custom panel OCX provided with Kofax Capture.

Registering the Sample .NET Custom Panel

1.
2.

On the Windows Start menu, click Run.

In the Run window, browse to the OCXPanel folder included in your Kofax Capture installation
and type the following:

<pathl>RegAsm.exe
<path2>0CXname.dll

Where:

<pathl> is the full path to the latest .NET Framework:
C:\WINDOWS\Microsoft.NET\Framework\<version>\

<path2> is the full path to 0CXname.d11.

OCxXname.d11 is the name of the sample .NET custom panel OCX provided with Kofax Capture.

Sample Custom Panel in VB.NET

The following sample custom panel named "DelPagePanel" has no user interface but enables an
operator to flag a page for deletion. This custom panel uses a context menu accessible from a batch
to mark pages for deletion.

When you right-click the page to delete, a context menu appears, and you can use it to mark the
page for deletion.

The following is the code for the custom panel (DelPagePanel).

Imports Kofax.SDK.CaptureInfo

Imports Kofax.Capture.CaptureModule.InteropServices
Imports Kofax.Capture.CaptureModule

Imports System.Runtime.InteropServices

<ProgId ("VBNET.DelPagePanel")>

<Guid ("O08FB952B-69AE-3A90-88C4-268EB2372DD1") >
Public Class DelPagePanel

Inherits System.Windows.Forms.UserControl

#Region "Windows Form Designer generated code "

94

Kofax Capture Developer's Guide

#End Region

Private Const cm strDeletePageMenu As String = "DeletePageMenu"
Private Const cm strDeletePageMenuText As String = "Flag Page for Deletion"
Private Const cm strPageCSSName As String = "DeletedPage"

'*** Reference to the Application object
Private m oApplication As InteropServices.Application

Public WriteOnly Property Application() As InteropServices.Application
Set (ByVal Value As InteropServices.Application)
'*** Cache the object
m oApplication = Value
'*** Tnitialize the menu
InitializeMenu ()
End Set
End Property

VA A AR AR A AR AR A AR A KRR AR A AR AR A AR AR A AR A AR AR A AR A AR Ak kA Ak kK

'***x Function: ActionEvent

'***x Pyurpose: Receive each action event

VSR IAPUIE 8 nEventNumber - number assigned to event
'**% OQutput: vArgument - currently NOT used

Tk K pnCancel - Response to the event.

VAR R@Euiem ¢ None.

Thhkhkkhkrhkkhhkhkhkrhhkhkhkhhkhkhkrhkhkrhhkhkrhkhkhkhhkhkhkrhkhkrkhkhkrhkkhkhkrkhxkkx

Public Sub ActionEvent (ByVal nEventNumber As Integer, ByRef oArgument As Object, ByRef

nCancel As Integer)
'*** Check the event number to see if the application is about to exit,
'*** if so, clean up m oApplication's unmanaged resources
If nEventNumber = InteropServices.KfxOcxEvent.KfxOcxEventLoggedOut Then
Using oAdminWrapper As New ApiObjectWrapper (Of InteropServices.Application)
(m_oApplication)
Debug.WritelLine ("Cleans up unmanaged resources handled by m oApplication")

End Using

m oApplication = Nothing
End If

'*** Check the event number
If nEventNumber = InteropServices.KfxOcxEvent.KfxOcxEventMenuClicked Then
'*** Check the menu text to make sure we got the right menu

If CStr (oArgument) = cm strDeletePageMenu Then

'+%* Flag the page for deletion by setting the Page Custom Storage String

'**x First, wraps m oApplication.ActiveBatch property in an instance of
'*** ApiObjectWrapper, so that unmanaged objects used by
'*** m oApplication.ActiveBatch property are released properly

Using oActiveBatchWrapper As New ApiObjectWrapper (Of InteropServices.Batch)
(m_oApplication.ActiveBatch)

If Not oActiveBatchWrapper.IsNull Then
'*** Then flag the page for deletion by setting the
'*** Page Custom Storage String
Using oActivePageWrapper As New ApiObjectWrapper (Of InteropServices.Page)
(oActiveBatchWrapper.WrappedObject.ActivePage)
If Not oActivePageWrapper.IsNull Then
oActivePageWrapper.WrappedObject.CustomStorageString (cm strPageCSSName) = "True"

End If

End Using ' Releasing unmanaged resources used by ActiveBatch.ActivePage

End If
End Using ' Releasing unmanaged resources used by m oApplication.ActiveBatchClass
End If

95

Kofax Capture Developer's Guide

96

Chapter 8

Custom Module Creation

You can create a custom module to perform tasks such as document separation, page registration,
form identification, automatic or manual indexing, verification, or full text OCR. Custom modules
can also perform unique functions suited to your business needs. For example, you can write a
custom OCR module that uses an engine other than the engines provided with Kofax Capture. Or,
the custom module might perform a special type of image processing, such as bar code recognition
on color images or form identification using a custom algorithm.

This chapter gives an overview of the development process for creating a custom module for
Kofax Capture. A sample custom module, which is part of the comprehensive example of a custom
workflow agent, setup OCX, and custom panel, is also provided in this chapter.

Custom Modules

You can implement a custom module alongside the standard set of Kofax Capture processing
modules, or you can use it to replace a standard module. Once you create the custom module,
it must be registered for use with Kofax Capture and added to the batch class workflow (which
must include the standard Scan module to introduce a batch into the Kofax Capture processing
environment, as well as the standard Export module as the final processing module).

© The Kofax Capture installation process may require that an interactive custom module be shut
down before installation continues. Therefore, custom modules should properly handle Microsoft
Windows close messages. If a custom module does not properly handle close messages sent to
terminate its process, Kofax Capture upgrade installations may fail.

High Availability Environments

When customizing Kofax Capture in a high availability environment, you should observe the
following error handling guidelines. The guidelines help ensure that your applications take full
advantage of the Kofax Capture high availability features.

For more information on high availability, refer to the Kofax Capture Installation Guide.

Error Handling Guidelines
Any component of a highly available system is subject to failure at any time. To meet high

availability requirements, design your Kofax Capture customizations to detect and recover from
errors during operations that require access to a remote computer.

97

Kofax Capture Developer's Guide

These errors can be grouped into the following categories:
+ Database Operations

+ File System Operations

+ Client / Server Operations

« Third-Party Operations

Database Operations

Any customization that accesses a database on another computer may encounter errors. If the
customization accesses a database on a cluster server, the database will be off-line for a short
period of time during a failover. Database errors can occur due to a variety of issues including, but
not limited to, intermittent network failures and cluster failover.

To ensure high availability, your application must check for errors on every database operation. If an
error occurs, the application must reconnect to the database and retry the operation if necessary.

Even if an error occurs, it is possible that the database operation succeeded but a network failure
prevented the successful result from reaching your application. Therefore, if it is important that the
failed operation be executed exactly once. You must determine if it succeeded or failed to know if
the operation should be retried.

Since it takes a period of time for the database to failover, applications should continue to retry for
at least 2 minutes.

File System Operations

Any customization that accesses files on another computer may encounter errors. If the
customization accesses a file system on a cluster server, then during a failover, the file system is off-
line for a short period of time. File access errors can occur due to a variety of issues including, but
not limited to, intermittent network failures, contention, and cluster failover.

To ensure high availability, your application must check for errors on every file operation. If an error
occurs, it must retry the operation. Note that when an operation returns an error, it is possible that
the file operation started, but did not complete. Therefore, when retrying, you must take care to
determine if the same parameters can be used or if the failed operation changed the state of the
system.

Since it takes a period of time for the file system to failover, applications should continue to retry for
at least 2 minutes.

Client / Server Operations

Any customization that accesses a third-party server application on another computer may
encounter errors. The client/server application might be "cluster-aware" and be deployed on the
cluster server, or it may provide some other mechanism to make the server highly available. In any
case, it is up to the client/server application utilized by the Kofax Capture customization to provide
high availability in some way.

98

Kofax Capture Developer's Guide

Third-Party Operations

Any third-party function utilized by a Kofax Capture customization might access a remote computer.

To ensure high availability, your application must check for errors after every function call. If an
error occurs, the application must determine if a retry is needed.

Sample Applications

A custom module sample named "DeleteEvenPage," which is part of the comprehensive VB.NET
example, is used to demonstrate the design and implementation of a custom module. The code for
this custom module is provided later in this chapter.

Kofax Capture also ships with a sample custom module that is provided as part of your Kofax
Capture installation. This Visual Basic .NET program is located here:

<Kofax Capture installation folder>\Source\Sample Projects\CustMod\Generic

The folder contains the files necessary to register a custom module named "Sample." The
sample includes a generic example of a custom module, which you can install and register for
demonstration purposes. For details about the sample custom module, see Custom Module
Sample.

Typical Development Tasks

The typical custom extension development process includes the tasks outlined in this section. You
may decide to perform some tasks in a different order.

+ Design the custom extension
+ Configure the setup OCX to store properties and add publish checks

+ Write the runtime application (use Kofax Capture Document Access API library elements to create
an application to interact with Kofax Capture)

+ Create the custom extension registration file
* Register the custom extension
+ Create the installation program

Design the Custom Module

As with any development project, the success of the custom module implementation process
requires careful planning and analysis. Before starting any development, consider how your custom
module will augment the standard Kofax Capture functionality.

For example, be sure to take into account the characteristics of the forms you expect to process
with the custom module. Then decide whether to make the custom module available in addition to,
or in place of, existing Kofax Capture functions.

929

Kofax Capture Developer's Guide

Additionally, you need to determine if it would be appropriate to add custom configuration settings
to support the new functionality. Then decide where (tabs or user interface panels) it would be
appropriate to make the custom settings available to the user. You should produce specifications
that define the design, functionality, and scope for the custom extension.

Create the Setup OCX

You will probably want to develop a setup OCX in the Administration module to store configuration
properties and publish checks associated with the custom extension. The setup OCX is optional,
because you could potentially use the standard Help for Kofax Capture settings. For example, if
you developed a custom module to replace the standard Validation module, you might be able to
use the standard settings and publish checks. However, it is likely that most custom extensions will
require unique configuration properties and publish checks. For details, see Setup OCX Creation.

Write the Runtime Application

Use the Kofax Capture Document Access API library to integrate the application into your Kofax
Capture installation. You can present a list of batches to the user, or you can opt to have the custom
module automatically process batches as they become available. Develop the custom module to
meet your specifications.

Kofax Capture Document Access also allows XML batch information to pass between Kofax Capture
and the custom module. As the custom module receives a batch, it performs any custom functions,
and then sends the batch back to Kofax Capture.

© vour xmL transport files need to follow the format required for compatibility with Kofax
Capture. Sample Document Type Definition (DTD) files required for custom module XML files are
provided with Kofax Capture and installed with the program.

Create the Custom Module Registration File

You must create a registration file that defines the property settings for the custom module. The file
must be in place before you register the custom module.

The following is the registration file (DeleteEvenPage.aex) for the sample custom module:
[Modules]
Delete Even Page CM

[Delete Even Page CM]

RuntimeProgram=DeleteEvenPage.exe

ModuleID=DeleteEvenPage.exe

Description=This module deletes even pages...a very useful tool
Version=8.0

SupportsTableFields=True

SupportsNonImageFiles=True

The registration file (DeleteEvenPage . aex) contains the following:

+ Name of the custom module (identified under the heading [Modules])

+ Custom module name (identified under the heading [Delete Even Page CM])
* Runtime executable for the custom module

100

Kofax Capture Developer's Guide

* Module ID
* ProgID of the custom module

For more information about the registration file, read Registration File Creation.

Register the Custom Module

Once the registration file is in place, you register the custom module so that Kofax Capture will
recognize it. After registration, you can also test the setup OCX to verify its validity. For details on
registering custom extensions, see Registration File Creation.

After registration, you can add the custom extension to the batch class so you can test it. Once you
are satisfied with the preliminary tests, you can proceed to create an installation program.

Create an Installation Program

If you plan to distribute the custom module, you need to write a program to add the application
to your Kofax Capture installation. You can optionally incorporate the registration process into
the installation program. You need to install the custom extension setup OCX, custom extension
runtime, and registration file to <kofax Capture installation folder>\Bin for every
workstation where you want the custom extension to be available. You can also add a custom
extension icon to the Kofax Capture program group.

Document Routing

As a custom module developer, you can use the Document Routing feature to divide a batch into
multiple batches. You do this by opening the parent batch and then creating a child batch. You
can move pages and documents between the two open parent and child batches. You can divide
batches based on any programmable criteria such as form type.

Document Routing Functions

The batch create, move, and close operations are performed by the following functions:
* ChildBatchCreate (DBLite)

* MoveElementToBatch (DBLiteOpt)

* BatchCloseWithModuleID (DBLite)

ChildBatchCreate

ChildBatchCreate creates a child batch based on an existing open parent batch. Each child batch
uses the same published batch class as the parent batch. Batch classes are copied as well.

The following portion of code taken from the CMSplit sample custom module creates a child batch
based on a parent batch which, in this example, is passed to the SplitDocuments subroutine.

Private Sub SplitDocuments(_
ByVal oBatch As Kofax.Capture.SDK.CustomModule.IBatch,
ByVal oList As List (Of Kofax.Capture.SDK.Data.IACDataElement))

101

Kofax Capture Developer's Guide

If oList IsNot Nothing AndAlso oList.Count > 0 Then

'*** Create the child batch
Dim oChildBatch As Kofax.Capture.SDK.CustomModule.IBatch = oBatch.ChildBatchCreate ()

End If
End Sub

Only a single child batch can be open at the same time as a parent batch. A custom module must
close a child batch before it can create another one from the same parent. If your module closes
both parent and child batches, it can then reopen the child batch, making it a parent, and then
create a child batch based on it.

Naming a Child Batch

When your custom module creates a child batch, you can add code that names the batch. If you do
not provide naming code, the default child batch name is the parent batch name appended with the
date and time.

Closing Batches

A custom module cannot close a parent batch until it first closes the child batch, with the following
exception: If you exit a custom module, causing the module to close, Kofax Capture suspends both
parent and child batches.

If a batch fails to close, it throws an error, allowing you to add appropriate error handling. If, for
example, a custom module passes valid closing parameters to a function, and then fails to close,
your error handling code can attempt to close the batch again. For more information about error
codes, see the Kofax Capture API Reference.

MoveElementToBatch

MoveElementToBatch moves an ACDataElement (page or document) from one open batch to
another. MoveElementToBatch automatically deletes the ACDataElement from the source batch.

The following code moves a document from oDocElement to oChildDocsElement (both of type
ACDataElement).

'*** Split this current document into the child batch
oChildDocsElement.MoveElementToBatch (oDocElement)

MoveElementToBatch returns a new object from the destination batch containing the object that
was moved.

Also, note the following:

+ A custom module cannot move an element (document or page) to a specific location in the
destination batch. If necessary, a custom module can modify an element after it has been moved.

+ If the source page is the last page in a document or batch, you must delete the parent document
or batch. Similarly, if the source document is the last document, you must delete the parent
batch.

102

Kofax Capture Developer's Guide

©® when your custom module moves pages or documents using the Document Routing feature,
there is no licensing charge.

BatchCloseWithModuleID

BatchCloseWithModuleID closes and unlocks a batch to be routed to a specified module.

BatchCloseWithModuleID Parameters

Input Parameter | Description

eNewState Specifies the new state of the batch once it is unlocked.

strModuleID A unique ID (such as ocr.exe) that specifies the module where the batch is routed.

About Document Routing Features

Document Routing includes the features described in this section.

Document GUID

When a custom module moves a document, its DocumentGUID is not changed, but its Page ID is
changed.

Tracking Statistics

As a custom module moves pages or documents from a parent batch to a child batch, user tracking
statistics data reflects the page movement from both the source and destination batch.

Reference Batch ID

When a batch is created, the Kofax Capture system assigns it a Reference Batch ID. The Reference
Batch ID is a GUID for each originally created batch. However, it has the same value for all batches
created by calling CreateChildBatch from a parent batch.

This value is used to track the original batch and all child batches through the system. You can use
this value as a batch field, index field (for a document or folder), export, or PDF header value.

Kofax Capture also adds the Reference Batch ID as a column in the StatsBatch table.

You can also use batch-specific Kofax Capture values as endorser values. In this case, the Reference
Batch ID is available, but it is not expanded.

Unsupported Features

The Document Routing feature does not support:
+ Batch totals

+ Partial batch export

+ Folders

103

Kofax Capture Developer's Guide

Using Kofax Transformation Modules

You can use the Document Routing feature as follows:
+ Inyour own custom module, independent of Kofax Transformation Modules.
+ Using only the Kofax Transformation Modules implementation of Document Routing.

© Kofax Transformation Modules stores data in its own external files. Using your own custom
module in conjunction with the Kofax Transformation Modules implementation may have
unpredictable results.

Using the Sample Custom Module

This section explains how to use the provided sample custom module (CMSplit), which
demonstrates the use of the Document Routing feature.

The sample custom module divides a batch based on form type. It creates new batches for each
form type except for the first form type identified. For example, if a batch contains scanned
documents based on three form types, the sample custom module divides the existing batch into
two additional batches. The original batch contains documents based only on the first identified
form type. If the original batch contains only one page or document, no child batches are created.

In the workflow, the sample custom module is typically placed after the Recognition Server module.

The sample custom module contains a single-form user interface that displays status only as it
processes batches (similar to the Separate sample custom module).

The sample custom module is located here:
<Kofax Capture Installation Folder>\Capture\Sample Projects\CustMod\CMSplit
CMSplit is written in VB.NET using .NET 4.0. The CMSplit sample shares code with the Kofax Capture

Separation Module sample (separate.exe).

Sample Custom Module

The sample program named DeleteEvenPage is an unattended module that is designed to run after
the Scan module. It checks that the pages marked for deletion are removed from the batch.

The following is the code for the custom module named DeleteEvenPage. This class definition
makes up the blueprint for the custom module. In the Initialize function, we log into Kofax Capture
and cache the appropriate data structures.

DeleteEvenPage Module

Imports Kofax.Capture.DBLite
Imports Kofax.Capture.SDK.CustomModule
Imports Kofax.Capture.SDK.Data

Public Class Driver
'*** Reference to the Login object

104

Kofax Capture Developer's Guide

Private m oLogin As Kofax.Capture.DBLite.Login

'**x Reference to the RuntimeSession object
Private WithEvents m oRuntimeSession As Kofax.Capture.SDK.CustomModule.IRuntimeSession

'*** Reference to the Active Batch
Private m oActiveBatch As Kofax.Capture.SDK.CustomModule.IBatch

'**%* Create a mutex to protect calls to ProcessBatch

Private m oMutex As Threading.Mutex

'**x We will fire this event when we want to log something to the window
Public Event StatusMessage (ByVal Message As String)

Public Sub Initialize()
Try
'*** Tnitialize the Mutex
m oMutex = New Threading.Mutex

'*** Create the Login object

m oLogin = New Kofax.Capture.DBLite.Login

'*** Log into Kofax Capture

m_oLogin.Login ()

'*** Set the App name and version

m oLogin.ApplicationName = "DeleteEventPage CM"

m oLogin.Version = "1.0"

'**% Validate the User

m oLogin.ValidateUser ("DeleteEvenPage.exe", True)

RaiseEvent StatusMessage ("Logged into Kofax Capture")

'*** Cache the Runtime Session

m oRuntimeSession = m oLogin.RuntimeSession

'*** Add a handler function to handle Batch available event
AddHandler m oRuntimeSession.BatchAvailable, AddressOf RuntimeSession BatchAvailable

Catch ex As Exception
RaiseEvent StatusMessage ("An error occurred: " & ex.Message)
End Try

End Sub

End Class

PageMarkedForDeletion Function

The PageMarkedForDeletion function returns a flag that indicates that the scan operator selected
the page to be deleted. This flag is stored in a page-level custom storage string file.

Private Function PageMarkedForDeletion (ByRef oPageElem As
Kofax.Capture.SDK.Data.IACDataElement) As Boolean

'*** Get the Page Custom Storage Strings

Dim oPageCSSs As Kofax.Capture.SDK.Data.IACDataElement

oPageCSSs = oPageElem.FindChildElementByName ("PageCustomStorageStrings")
'*** Get the Page Custom Storage String by element

Dim oPageDeleteCSS As Kofax.Capture.SDK.Data.IACDataElement

oPageDeleteCSS = oPageCSSs.FindChildElementByAttribute ("PageCustomStorageString",
"Name", "DeletePage")
'**%* Make sure we have a reference
If Not oPageDeleteCSS Is Nothing Then
'**%* Check the value
If oPageDeleteCSS.AttributeValue ("Value") = "True" Then
Return True
End If
End If
Return False
End Function

105

Kofax Capture Developer's Guide

RuntimeSession_BatchAvailable Subroutine

This function handles the BatchAvailable event from Kofax Capture. This handler attempts to

process as many batches as possible. A mutex is implemented to ensure that this logic is processed
by only one thread at a time.

Private Sub RuntimeSession BatchAvailable ()
'*** Tock access to this call
m oMutex.WaitOne ()
Try
'**%* Process a new Batch
While ProcessNewBatch ()
RaiseEvent StatusMessage ("Process Batch Completed")
End While
Catch ex As Exception
RaiseEvent StatusMessage ("An error occurred: " & ex.Message)
Finally
'**%* Release the mutex
m oMutex.ReleaseMutex ()
End Try
End Sub

ProcessNewBatch Function

The ProcessNewBatch function attempts to open the next available batch for this module. If it is

able to open a batch, the batch is processed by removing the pages that the scan operator marked
for deletion.

'*** This function returns True if we successfully process a Batch.
'*** Otherwise, we will return False (i.e. No Batches Available)
Private Function ProcessNewBatch () As Boolean
Dim bResult As Boolean = False
Try
'*** Get the new Batch
m oActiveBatch = m oRuntimeSession.NextBatchGet (m oLogin.ProcessID,
KfxDbFilter.KfxDbFilterOnProcess Or KfxDbFilter.KfxDbFilterOnStates Or
KfxDbFilter.KfxDbSortOnPriorityDescending,
KfxDbState.KfxDbBatchReady Or KfxDbState.KfxDbBatchSuspended)
'*** Make sure we have a reference
If Not m oActiveBatch Is Nothing Then
RaiseEvent StatusMessage ("Opened Batch: " & m oActiveBatch.Name)
'*** Extract the RuntimeDataElement
Dim oRuntimeDataElement As Kofax.Capture.SDK.Data.IACDataElement = Nothing
oRuntimeDataElement = m oActiveBatch.ExtractRuntimeACDataElement (0)
'**%* Get the Batch element
Dim oBatchElem As Kofax.Capture.SDK.Data.IACDataElement = Nothing
oBatchElem = oRuntimeDataElement.FindChildElementByName ("Batch")
'*** Get the Pages element
Dim oPagesElem As Kofax.Capture.SDK.Data.IACDataElement = Nothing
oPagesElem = oBatchElem.FindChildElementByName ("Pages")
'*** Keep track of the Page Count
Dim lngCount As Long = 0
'*** Tterate through the Page elements
Dim oPageElem As Kofax.Capture.SDK.Data.IACDataElement
For Each oPageElem In oPagesElem.FindChildElementsByName ("Page")
'*** Tncrement our counter
IngCount = IlngCount + 1
'***% Check if we should delete this page
If PageMarkedForDeletion (oPageElem) Then
'**x Delete it!

106

Kofax Capture Developer's Guide

107

Chapter 9

Creating an Export Connector

Export is the process of exporting images and data to long-term storage after all Kofax Capture
processing is finished. An export connector consists of two COM components that configure and
execute this process. These two components could be in one or two .dll or .exe files.

Kofax Capture includes the following standard export connectors:

+ A database export connector that exports document index data to a Microsoft Access 97 or later,
or an ODBC-compliant database. Source code for this export connector is installed to <Kofax
Capture installation folder>\Source\Export Connectors\Database.

+ Atext export connector that exports document index data to an ASCII text file. Source code
for this export connector is installed to <Kofax Capture installation folder>\Source
\Export Connectors\KCEC-Text.

Both of these connectors export images, full text OCR files, and PDF files to the standard file system.

These export connectors are provided in Microsoft Visual Basic .NET. The source code for these
export connectors is installed with Kofax Capture. If you need to export document index data or
files to other sources, you can modify one of the supplied connectors, create an entirely new one, or
purchase one from Kofax or other third-party entities.

A wide variety of export connectors are available from Kofax for use with applications developed
by Documentum, IBM FileNet, SharePoint, and others. Contact your Certified Solutions Provider for
details on availability.

Export connectors are typically written in Visual Basic .NET, but they can also be written with any
tool that supports the development of COM servers.

Kofax Capture Export Type Library

The export connector API library is documented in the Kofax Capture Export Type Library API
Reference.

1. On your Kofax Capture 10.2 installation media, navigate to the following location:
Documentation\Help\APIRef

2. Double-click APIRefExport.chm.
The Kofax Capture Export Type Library API Reference appears in a browser window.

O 1 the AP Reference does not display properly, copy APIRefExport.chm to a local drive.

108

Kofax Capture Developer's Guide

Kofax Capture and the Export Process

The Kofax Capture Administration module manages the Export Setup process. It loads the export
connector setup when the system administrator selects an export connector for a document class/
batch class pair. The export connector setup must implement the KfxReleaseSetupScript COM
interface required by the Administration module.

Similarly, the Kofax Capture Export module manages the export process. It loads the appropriate
export connector when the batch enters the Export queue. The export connector must implement
the KfxReleaseScript COM interface required by the Export module.

The Database and the Text export connectors include the KfxReleaseSetupScript and
KfxReleaseScript COM components in the ActiveX DLL.

When writing an export connector, you must provide two basic functions:

+ Export connector setup, which is the user interface for configuring the export process within the
Administration module. The export connector setup is called by the Administration module when
the user selects an export connector to configure.

« Export, which performs the actual export of images and data to long-term storage. The export
portion of the export connector is called by the Export module when it is exporting batches.

Requirements for the Export Connector Setup

The export connector setup component must define the KfxReleaseSetupScript COM interface.

The KfxReleaseSetupScript interface must include the following:

* One public object variable declared as ReleaseSetupData. The Administration module uses this
variable to expose and update export configuration for the document class.

+ Four methods called OpenScript, RunUI, ActionEvent, and CloseScript, which the Administration
program calls to perform the various stages of the export setup process.

When you use the Administration program to select and configure an export connector the first
time, it loads the export connector setup and does the following:

1. Fills in the document class properties in the ReleaseSetupData variable. These properties
include the available document class index fields, batch class fields, and image file formats.

2. Calls the OpenScript method. You should use this method to perform any initialization required
for the connector.

3. Calls the RunUI method. You should use this method to load a form or window that allows the
user to configure the export process. For example, the database export connector displays
a form that allows setup of database links, image formats, file folders, and so forth. When
the user is finished with setup, you store the user’s choices in the ReleaseSetupData variable
and call the ReleaseSetupData.Apply method to save them permanently to the Administration
database.

4. Calls the CloseScript method after the RunUI method is completed and the connector is
about to be unloaded. You should use this method to perform any cleanup required for the
connector.

109

Kofax Capture Developer's Guide

If you make a change to the document class after the initial export setup process, the
Administration program performs the same series of steps as before, with one exception: instead
of calling the RunUI method, it calls the ActionEvent method with a set of parameters that indicate
why it is being called. You should use this method to determine whether the change in the
document class requires a change in the export setup process. For example, if a new index field is
added, you might want to call the RunUI method to provide an opportunity to save this new data in
the external database.

Requirements for the Export Connector

The Export module uses a COM interface called KfxReleaseScript to communicate with the
export connector. The standard Text and Database export connectors define this interface in the
Release.cls code module.

The KfxReleaseScript interface must include the following:

* One public object variable declared as ReleaseData. The Export module uses this variable to
expose export data for the export process.

+ Three methods called OpenScript, ReleaseDoc, and CloseScript, which the Export module calls to
perform the various stages of the export process.

When a batch containing documents of a given class enters the Export module, it loads the export
connector and does the following:

1. Fills in the general batch class and document class properties in the ReleaseData variable.

2. Calls the OpenScript method. You should use this method to perform any initialization required
for the connector. The detail of the error occurring in the Export Connector, if any, is displayed
in the batch history and the Kofax Capture error log.

3. Fillsin the properties specific to the first document to be exported in the ReleaseData variable
and calls the ReleaseDoc method for the document. You should use this method to save the
document data in the external database and copy the image files and full text OCR files to the
selected export folders.

4. Repeats the process described in Step 3 for each remaining document to be exported.

5. Calls the CloseScript method after the last ReleaseDoc method is completed and the connector
is about to be unloaded. You should use this method to perform any cleanup required for the
connector. The detail of the error occurring in the Export Connector, if any, is displayed in the
batch history and the Kofax Capture error log.

Note that you cannot provide your own user interface for the export process. The Export module
has its own user interface. The various methods listed earlier provide data to update the Export
module user interface as documents and batches complete the export process. The export process
is designed to run unattended.

ReleaseSetupData and ReleaseData Objects
The database export connector and text export connector support a wide variety of features, and

both contain a long list of functions and subroutines. These functions are documented in the Kofax
Capture Export Type Library API Reference.

110

Kofax Capture Developer's Guide

Writing an export connector is not actually as complex as you may think. Most of the required
work is confined to specific locations in the connector. The code involves use of the methods and
properties for the ReleaseSetupData and ReleaseData objects. Understanding these two objects is
key to writing an export connector.

Export Connector Setup

There are only two places in the export connector setup where you have to write a substantial
amount of code:

* The RunUI event should load a form that presents a user interface. This form can be as simple or
as complex as you wish.

* When the user clicks OK to finish export connector setup, you must save the user’s settings in the
Kofax Capture database. To do this, you must set up a links collection that specifies which index
fields should be exported and then copy other settings as necessary into the ReleaseSetupData
object. When this is finished, call the Apply method to save your changes.

ReleaseSetupData Object

The ReleaseSetupData object is a top-level object used by both the Kofax Capture Administration
module and the export connector setup to define the export process for a document class.

Some properties of this object are set up by the Administration module when the ReleaseSetupData
object is created. For example, the available batch fields, index fields, image types, and storage
types are set when the connector is loaded. The properties set up by the Administration module are
read-only.

The connector must set the properties that identify the external data repository and the target
export folders. It must also set the properties that establish the links between the available data
fields and the fields or columns in the external data repository that will receive the document data
during the subsequent export process. The properties will be available to the export connector.

Refer to the Kofax Capture Export Type Library API Reference for details on the specific properties and
methods available in the ReleaseSetupData object.

Export Connector

There is only one place in the export connector where you need to write a significant amount of
code. The ReleaseDoc method is called every time the Export module is ready to export a new
document. To export a document, you need to add code to this method that calls the following
methods:

1. ReleaseData.ImageFiles.Copy copies the images to a location specified by the ReleaseData
object.

2. ReleaseData.TextFiles.Copy copies the full text OCR files (if any) to a location specified by the
ReleaseData object.

The index data must be exported last. The ReleaseData.Values collection contains values for
all the index fields specified in the links collection during export connector setup, but there is
no method provided for exporting index data, since the process varies widely from connector
to connector. You are responsible for writing the proper code to export your index data to the
appropriate repository.

111

Kofax Capture Developer's Guide

3. ReleaseData.CopyKofaxPDFFile copies the PDF file that belongs to a document into the export
PDF path that is defined during export connector setup.

ReleaseData.CopyKofaxPDFFile copies the PDF file that belongs to a document into the export PDF
path that is defined during export connector setup.

ReleaseData Object

The ReleaseData object is a top-level object used by both the Kofax Capture Export module and
the export connector to access the batch and document class information and perform the actual
document export.

All properties of this object are set up by the Export module. The properties that are common to all
documents in the batch are set up when the ReleaseData object is initialized. Properties specific to
an individual document are set up before the Export module calls the ReleaseDoc method for that
document.

The connector must use the ReleaseDoc method to read the properties and save the index data and
related document information in the external data repository. Then, the connector must copy the
image files, any Kofax PDF files, and any full text OCR files to the target file system.

Refer to the Kofax Capture Export Type Library API Reference for details on the specific properties and
methods available in the ReleaseData object.

COM Servers: In-proc or Out-of-proc?

Export connectors can be developed using any language and tool that can create COM components.
If you are working with a 32-bit development environment, COM components for both export
connector setup and export can be designed as in-process servers (ActiveX DLLs) or as out-of-
process servers (ActiveX EXEs).

Registering Your Export Connector
After completing your export connector, you must register it. Registration is a two-part process.

The .inf file, which should be located in the same folder as your compiled export connector, has a
format similar to that of an .ini file. A sample .inf file is shown here.

[Scripts]

Custom Script

[Custom Script]
SetupModule=Custom.dll
SetupProgID=Custom.kfxreleasesetupscript
SetupVersion=1.0
ReleaseModule=Custom.dll
ReleaseProgID=Custom.kfxreleasescript
ReleaseVersion=1.0
SupportsNonImageFiles=True
RemainlLoaded=True
SupportsKofaxPDF=True
SupportsOriginalFileName=True
SupportsMultipleInstances=False

112

Kofax Capture Developer's Guide

The .inf file must contain a [Scripts] section that includes the name (up to 255 characters) of
each connector you are registering. For each entry in the [Scripts] section, you must have a
corresponding section with the entries listed in the table.

Inf File Entries

Inf File Entry

Description

ReleaseModule

Name of the compiled .exe or .dll containing the export COM component.

ReleaseProgID

Name of the export connector COM component. You can explicitly set the
ProgID of your object using the ProgID Attribute. A ProgID is a unique
identifier for every control, constructed through the combination of the
control's project and object name (ProjectName.ObjectName).

ReleaseVersion

Version number assigned to the export connector COM component.

RemainLoaded

If True, the export connector remains loaded until processing is complete.

SetupModule

Name of the compiled .exe or .dll containing the export connector setup COM
component.

SetupProgID

Name of the export connector setup COM component. You can explicitly set
the ProgID of your object using the ProgID Attribute. A ProgID is a unique
identifier for every control, constructed through the combination of the
control's project and object name (ProjectName.ObjectName).

SetupVersion

Version number assigned to the export connector setup COM component.

SupportsKofaxPDF

If True, the export connector supports the output of Kofax PDF files.

SupportsNonImageFiles

If True, the export connector supports eDocuments (non-image files).

SupportsOriginalFileName

If True, the export connector supports the use of the original name of the file.

SupportsMultipleInstances

If True, the export connector supports multiple instances of the Export
service. Note that the Multiple Instance Support feature is only available for
Kofax Capture Enterprise users.

NouswWwNdN-=

Create an .inf file for your export connector.

In the Administration module, on the Tools tab, in the System group, click Export Connectors.
On the Export Connector Manager window, select the connector to register.

Click Add, browse to your .inf file, and click Open.

Select the connector to use and click Install.

Click OK, and your export connector is registered.

Close all windows to complete the process.

Scripting in a High Availability Environment

When writing connectors for Kofax Capture in a high availability environment, you should observe
the error handling guidelines found in High Availability Environments.

For more information on high availability, refer to the Kofax Capture Installation Guide.

113

Chapter 10

Deploying Customizations

As a developer, you can use the Kofax Capture Deployment Service to easily and automatically
deploy customizations throughout the entire Kofax Capture installation. Kofax Capture
customizations include:

+ Workflow agents
+ Custom panels

+ Custom modules
+ Export connectors

The Kofax Capture Deployment Service deploys Kofax Capture customizations to any client
workstation that is connected to a server with the service installed and enabled.

You can develop and test a customization on one node of the Kofax Capture system and then
enable the deployment and registration to other client workstations and remote sites.

Once you configure a customization update on a Kofax Capture server, it can be automatically
downloaded and installed to client workstations connected to that server. Also, by deploying a
customization update to a Kofax Capture Network Server central site, the RSA agent automatically
updates remote servers from a single source on the central site.

Deploying customization updates does not force operators to stop work. If an operator is using
Kofax applications that require a customization update, a message displays indicating that updates
are available. Operators can decide when to reboot and automatically trigger the update.

Also, workstations installed after an initial deployment can obtain posted customizations. The
service provides a comprehensive log of all deployment activity.

The Kofax Capture Deployment Service does not:
+ Automatically delete customizations from workstations.

+ Automatically deploy customizations before a batch needs it; deployments are set up by central
site administrators.

+ Deploy other types of Kofax software such as export connectors or Kofax Transformation
Modules.

+ Deploy other types of generic software; it deploys only Kofax Capture customized software.

Installing the Customization Deployment Service

For any workstation that requires customization deployment, you must manually install the
provided Administration service named "KCDeploymentService.exe." Run this service as a user with

114

Kofax Capture Developer's Guide

read-write access to the Customization Deployment folder on the server and with administrator
rights to allow files to be copied and replaced in <administration installation folder>\Bin.

The service installation starts a background program that, if necessary, alerts users to restart their
computer so that a customization deployment can finish. The background program displays an icon
in the Windows notification area.

1. At a command prompt, run the Microsoft installation utility (InstallUtil.exe) with the Kofax
Deployment Service as a parameter. If you installed Administration in the default location, type
the following and press Enter:

C:\Windows\Microsoft .NET\Framework\v4.0.30319\InstallUtil.exe “C:\Program
Files (x86)\Kofax\Capture\Bin\KCDeploymentService.exe”

The Enable Kofax Capture Deployment Service window appears.
2. Click OK.

Command Line Parameters

The Kofax Capture Deployment Service supports the following command line parameters.

© when using command line parameters, the name of the service (KCDeploymentService.exe)
must be the last parameter on the command line.

/username="[user name]”

You can specify the Windows account to be used to run the service with the username parameter,
along with the password, as shown in the following example:

InstallUtil.exe /username="<MyDomain>\<MyName>" /password=xj987L2
KCDeploymentService.exe

/password=[password]

Use this parameter to specify the password for the user account.

/unattended

Use this parameter to suppress the Enable Kofax Capture Deployment Service window.

/u or /uninstall
Use this parameter to remove the Kofax Capture Deployment Service.

Setting Up a Customization Deployment

Setting up a customization deployment involves creating subfolders in a server’s Capturesv folder,
placing your customization files in appropriate subfolders, and creating a time file, as explained in
the following procedure.

1. On a server, create the following folder:
\\<server name>\CaptureSV\Customization Deployment

2. Inthe Customization Deployment folder, create a folder for the customization files to
deploy. For example, you might create a folder named MyCustomModule.

115

Kofax Capture Developer's Guide

This folder should contain the executables and dlls to deploy to multiple workstations. The
following shows how one folder might contain both Custom.exe and Custom.dll.

\\<server name>\CaptureSV\Customization Deployment\<MyModule>\Custom.exe
\\<server name>\CaptureSV\Customization Deployment\<MyModule>\Custom.dll

You can create more than one folder for deployment. For example, you might create three
folders containing different customization files.

\\<server name>\CaptureSV\Customization Deployment\<MyCustomModule 1>\
\\<server name>\CaptureSV\Customization Deployment\<MyCustomModule 2>\
\\<server name>\CaptureSV\Customization Deployment\<MyWorkflowAgent 1>\

3. If any of your customization files require registration, you must create a batch file named
"Registration.cmd" in your customization folder. The batch file contains any scripting needed to
register your files.

Registration may include both Windows components and Kofax files. Therefore, if Microsoft
registration utilities (Regasm.exe or Regsvr32.exe) or the Kofax Capture Extension Registration
Utility (RegAscEx.exe) are required, they must be available on the target system. Or, you may
want to include them in the deployment so that availability and system paths are not factors.
call regsvr32.exe /s "C:\Program Files (x86)\Kofax\Capture\Bin
\SampleWorkflowOcx.ocx"

if errorlevel 1 exit errorlevel

call regsvr32.exe /s "C:\Program Files (x86)\Kofax\Capture\Bin\WFAgent.dl1l"

if errorlevel 1 exit errorlevel

call RegAscEx.exe /f "C:\Program Files (x86)\Kofax\Capture\Bin
\WorkflowAgentWithOCX.AEX"

if errorlevel 1009 exit errorlevel
if errorlevel 1008 exit O

You should write the script so that a successful exit returns a zero. Any exit failure should
return a non-zero value.

During the deployment process, a registration script has 25 seconds to finish. If it does
not finish, the deployment process fails. The deployment service does not terminate any
registration script process, so if a registration script unintentionally creates an endless loop,
you must manually stop it.

4. Create a file named "time.txt" in the Customization Deployment folder. The first line must
contain a string that specifies the local time to deploy the customizations. String format:

hh:mm

The "hh" is the number of complete hours that have passed since midnight, and "mm" is the
number of complete minutes since the start of the hour. The "hh" must be a value from 00 to
23, and "mm" must be a value from 00 to 59. If the time file does not follow the correct format,
no deployments occur.

The specified time is an approximate time for deployment. The deployment occurs the first
time the deployment service checks the folders after the specified time.

This time applies to all customizations across all sites. Each deployment service running at each
workstation deploys the customizations at the specified local time.

If the time.txt file does not exist, no deployments occur.

116

Kofax Capture Developer's Guide

Initiating a Customization Deployment

When your customization files are in place, you are ready to initiate the deployment. Initiating the
deployment involves creating a version file (Version.txt) and placing it in the customization folder, as
explained below.

1. When you are ready for workstations to deploy a customization, create a file named
"Version.txt" and enter a version indicator on the first line.

The Administration Deployment Service uses the first line of this file to uniquely identify the
customization during status logging. Any additional lines are ignored. Use the version string
to specify a version of the customization files so that you can distinguish one update from
another. The version string can be empty or lengthy. Its length is not checked or truncated.

When you create or modify this file, it signals to the deployment service that all files are in
place and ready to be deployed. The Administration Deployment Service uses the time stamp
of this file to coordinate deployments and prevent customizations from being repeatedly
deployed.

2. Perform one of the following:

+ For afirst time deployment, place a separate Version.txt file in each of your customization
folders.

+ For subsequent deployments, open Version.txt, update the version string, and save the file.
This gives the file a new time stamp and signals to the service that an updated deployment is
ready.

The following figure shows the contents of a sample Customization Deployment folder.

117

Kofax Capture Developer's Guide

= [} Capturesy
(I Cuskamization Deployment
=1 deploymentsno, bxt
=] Time. kxt
|Z) Logs
|2 My Customiodule L

Zuskarmization_1.aex
j Zuskomization_1.exe
j Regasm,exe
Fregistration.cmd
EJI Version, bxk

|2 My CustamiModule_2

Cuskomization_2,aex
" customization_z .exe
Tregasm.exe
Flregistration.cmd

'.éel Version, bxk

Sample Customization Deployment Folder

Viewing Customization Deployment Status

When a customization is deployed to a workstation, the deployment service adds a status entry to a
log file named "deployedMMYY.txt" in the Customization Deployment\Logs folder on the server.
MMYY is the two-digit month and year. The service automatically creates a new file at the beginning

of each month.

Each entry in the file is a single line with the following comma-separated values:

<Station ID>,<deployment name>,<deployment version string>,<status>

Use the comma-separated values to import the file into Excel or another spreadsheet application for
sorting or other analysis. The Status Values table describes each value.

O 1fthe \\<server name>\CaptureSV\Customization Deployment\Logs folderis
inaccessible, the deployment service writes to a local log file at <Application Data>\Kofax
\Capture\Local\Customization Deployment\Logs.

Status Values

Value

Description

Station ID

Station ID of the workstation where the deployment
was attempted.

Deployment name

Customization deployment folder name.

118

Kofax Capture Developer's Guide

Value Description

Deployment version string First line from the version.txt file in the customization
deployment folder.

Status Completed <date/time>
Pending reboot <date/time>
Failed <date/time>: <error>

Where <error> is the error string returned when the
file deployment fails.

Deploying Customizations While Applications Are Running

When the deployment service detects that customization files on a workstation are in use, it
attempts to determine if they are locked only by service processes, or if they are locked by some
combination of services and interactive applications such as Administration or Validation.

If customization files are only locked by services, the deployment service will temporarily stop
the services, deploy the customization, and restart the stopped services once the deployment is
complete.

If the deployment service detects that customization files are locked by interactive applications, it
does not stop any processes. Instead, the completion of the deployment and the final move of the
locked files take place on the next system restart.

In this case, the following actions occur on the workstation where the restart is required:

The deployment service:

+ Sets any service that is currently locking customization files to manual startup but leaves it
running.

« Adds an entry to the deployment log file on the server with status indicating that deployment will
complete pending a reboot.

Schedules the customization files to be moved on the next reboot (when the deployment service
starts up).

The customization deployment background program in the Windows notification area:

+ Displays a message to the user indicating that updates are ready and a system reboot is
necessary. The notification message displays once every 24 hours.

The user can:

+ Ignore the update message. If the user ignores the notification, the background program
continues to run and displays the message 24 hours later.

+ Close the background program. If the user closes the background program, it no longer displays
an update message, but it runs again at system startup.

+ Reboot the system. If the user reboots the system, the updates take place.

119

Kofax Capture Developer's Guide

© When a user reboots a workstation, the deployment service only deploys customizations
that were pending a reboot or that failed on the last deployment attempt.

About the Customization Deployment Process

This section explains the basics of the customization deployment process for system administrators.

Administrator Actions

The following actions are performed by a system administrator on the server.

+ To prepare for a deployment, an administrator creates and populates the required files in \
\<server name>\CaptureSV\Customization Deployment.

+ Toinitiate a deployment, an administrator creates or updates one or more Version.txt files.

Deployment Service Actions

The following actions are performed by the Kofax Capture Deployment Service.

+ On the server, the Kofax Capture Deployment Service copies each customization folder that
contains a version file in \\<server name>\CaptureSV\Customization Deployment to a
corresponding folder on each workstation in <Application Data>\Kofax\Capture\Local
\Customization Deployment.

+ On each workstation, the Kofax Capture Deployment Service copies customization files from
<Application Data>\Kofax\Capture\Local\Customization Deployment to the
workstation's Kofax Capture Bin folder (<kkofax Capture installation folder>\Bin)and
executes the registration scripts.

+ Locally, on each workstation, at various steps in the deployment process, the deployment service
writes to a file called "DeploymentStatus.txt" in <Application Data>\Kofax\Capture\Local
\Customization Deployment on the client station. This file contains a value that corresponds
to one of the following status values.

Value Description

0 Customization has not been deployed.

1 Customization was or is in the process of deployment.
2 Customization requires a system reboot to complete.
3 Customization has successfully been deployed.

4 Customization has failed to deploy.

© po not modify the contents of DeploymentStatus.txt. The deployment service uses this file
to determine at what stage the deployment is in the process.

120

Kofax Capture Developer's Guide

« After the deployment, the Kofax Capture Deployment Service reports status to a log file
on the server named "deploymentsMMDD.txt" located in <server name>\CaptureSV
\Customization Deployment\Logs.

KCN Server

When synchronization occurs between the central site and remote sites, deployment files are
copied to the KCN Server folder at remote sites. Customization files then become accessible to
remote workstations. A synchronization does not result in immediate deployments. The time that a
customization is deployed is still determined by the time file.

Status

Each remote site’s deployment log will update to the central site as needed. When status is returned
from the remote sites to a central site, the following folder convention is used:

\\<server name>\CaptureSV\Customization Deployment\Logs\<Site name><Site GUID>
\deployedMMYY.txt

121

Appendix A

Custom Module Sample

This appendix walks you through the process of installing, registering, and launching the sample
custom module provided in your Kofax Capture product. Kofax Capture includes a module similar to
Quality Control for use as a starting point for a custom module. By using this module as a starting
point, the task of creating a custom module is greatly simplified. You can take advantage of the
existing panel, menus, and other features of the standard module to create your own module.

The standard module also includes support for scanning, which is normally a difficult feature to
implement.

This generic sample module is intended to demonstrate some simple options for opening and
closing a batch. The sample module does not perform any batch processing functions. Files for this
feature (CustomStandard.exe, CustomStandard.aex, and Online Help IDs.doc) are located in <Kofax
Capture Installation folder>\Source\Sample Projects\CustMod\CustomStandard.

The folder contains the files necessary to register a custom module named "Sample." The sample
gives a generic example of a custom module, which you can install and register for demonstration
purposes.

The differences between using a custom standard module and using the generic custom module
interface are listed in the table.

Difference Between Custom Standard Module and Custom Module

Custom Standard Module Custom Module

Starting Point To create a custom standard module, first A custom module is created
copy the Kofax Capture CustomStandard.exe |as a new project and written
to a unique name. There is no need to create |in Visual Basic .NET.

a Visual Basic .NET project and start from

scratch.
Data Access Kofax Capture Module .NET Type Library Kofax Capture Document
(Kofax.Capture.CaptureModule.dll) Access .NET Type

Implementation Library
(Kofax.DBLite.dll)

Kofax Capture Optimized
Custom Module .NET Type
Implementation Library
(Kofax.DBLiteOpt.dll)
Runtime XML - read/write

Setup XML - read-only

122

Kofax Capture Developer's Guide

Custom Standard Module

Custom Module

User Interface

Any Kofax Capture interface elements in the

custom standard module can be suppressed.

The following UI elements are included.

Image Viewer

Image Tools Toolbar
Batch Contents Panel
Batch Thumbnails Panel
Scan Controls Panel
Notes Panel

Batch Tools Toolbar
Batch Navigation Toolbar
Batch Navigation Toolbar
Batch Filters Toolbar

Customizations are done using OCXs.

User interface is entirely
written by the developer.

Advantages

Starting with a Kofax Capture module
provides:

Batch editing and scanning
An image viewer

Batch selection
Scan/import

The module is designed
and implemented by the
developer.

Disadvantages

All added code must use the OCX interface.

The developer must write the
entire application.

Registration in Kofax Capture
is the same for both.

RegAscEx.exe registers the .exe as a custom
module.

RegAscEx.exe registers
the .exe as a custom module.

Licensing A Concurrent Station License is required only | A Concurrent Station license
if pages are added. is required only if pages are
added.
Licensing

Custom standard modules use the Kofax Capture licensing mechanism; a Concurrent Station

License is required.

Kofax Capture Optimized Custom Module .NET Type
Implementation Library

The Kofax Capture Optimized Custom Module .NET Type Implementation Library is an easy-to-
use custom module interface that supports fast retrieval and selective update of data. This library
provides a mechanism for using the Kofax Capture Document Access .NET Type Implementation

123

Kofax Capture Developer's Guide

Library (Kofax.Capture.DBLite) to select and open a batch. However, once open, it is not necessary to
export the data to XML.

Instead, the code can retrieve an API object that emulates an XML element, but without XML. The
code can selectively extract and update Kofax Capture data through this API. Because the data is
processed selectively, execution is faster than XML import and export. The actual organization of
Kofax Capture data (the element and attribute structure) is identical between the XML and this new
APL.

The Kofax Capture Optimized Custom Module .NET Type Implementation Library is intended for use
with both custom modules and workflow agents. Because of the performance overhead with XML,
we suggest that you use the optimized API whenever possible.

Kofax Capture continues to support XML, which may still be better for developers with applications
that are well-suited to an XML interface.

The Kofax Capture Optimized Custom Module .NET Type Implementation Library is
implemented in the Kofax Capture Optimized Custom Module .NET Type Implementation Library
(Kofax.DBLiteOpt.dll).

The complete API for the Kofax Capture Optimized Custom Module .NET Type Implementation
Library is documented in the Kofax Capture API Reference, which is available from the
Documentation\Help\APIRef folder on your Kofax Capture installation media.

Kofax Capture Document Access .NET Type Implementation
Library

This section gives you information about Kofax Capture Document Access .NET Type
Implementation Library, the component that offers the ability to integrate a custom module into
your Kofax Capture installation. Kofax Capture Document Access .NET Type Implementation Library
makes it possible for the custom module to access batch information from Kofax Capture. Likewise,
your custom module can relay batch information to Kofax Capture. The Kofax Capture Document
Access .NET Type Implementation Library, Kofax.DBLite.dll, is available from <kofax Capture
installation>\Bin.

Kofax Capture Document Access .NET Type Implementation Library gives you the ability to do the
following:

* Route a Kofax Capture batch to a custom module for processing.

+ Use XML transport files to export/import batch information between Kofax Capture and a custom
module.

+ Close a batch from a custom module and route it to the next module in the Kofax Capture
workflow.

Although it is possible to access and modify batch data using Kofax Capture Document Access .NET
Type Implementation Library and XML, we recommend that you use the Kofax Capture Optimized
Custom Module .NET Type Interface Library because it provides a more efficient mechanism to
selectively retrieve and manipulate data. A degradation in performance could occur when using
XML to import and export data.

124

Kofax Capture Developer's Guide

The complete API for the Kofax Capture Optimized Custom Module .NET Type Implementation
Library is documented in the Kofax Capture API Reference, which is available from the
Documentation\Help\APIRef folder on your Kofax Capture installation media.

© some API methods and properties are reserved for exclusive use by Kofax. These APIs are not
documented and their use is not supported. These items are not displayed when browsing the API
definitions.

Development Environment

To develop a custom module that is compatible with Kofax Capture, you need the following tools for
the setup OCX (optional) and runtime executable.

Setup OCX

+ Tool such as Visual Basic .NET that allows you to implement a COM interface. Custom module
testing with Kofax Capture has been certified with Visual Basic .NET.

+ Kofax Capture Administration module type library. Located in <Kofax Capture installation
folder>\Bin, the file is Kofax.Capture.AdminModule.dll.

Runtime Executable

+ Tool such as Visual Basic .NET to create an instance of a COM interface. Custom module testing
with Kofax Capture has been certified with Visual Basic .NET.

+ Kofax Capture Document Access .NET Type Implementation Library, the COM object that allows
your custom module to access batch information from Kofax Capture, also allows your custom
module to relay information about batches to Kofax Capture. The Kofax Capture Document
Access .NET Type Implementation Library, Kofax.DBLite.dll, is available from <Kofax Capture
installation>\Bin.

+ Kofax Capture Optimized Custom Module .NET Type Implementation Library, the API that
allows your custom module to selectively and quickly retrieve data from Kofax Capture. This API
provides the mechanism to use the Kofax Capture Document Access .NET Type Implementation
Library used to select and open a batch. The Kofax Capture Optimized Custom Module .NET
Type Implementation Library, Kofax.DBLiteOpt.dll, is available from <kofax Capture
installation>\Bin.

Although is it possible to access and modify batch data using Kofax Capture Document Access .NET
Type Implementation Library and XML, we recommend that you use the Kofax Capture Optimized
Custom Module .NET Type Implementation Library, because it provides a more efficient mechanism
to selectively retrieve and manipulate data. A degradation in performance could occur when using
XML to import and export data.

Installing the Sample Custom Module

This section explains how to install the files required to register and run the sample custom module.

125

Kofax Capture Developer's Guide

To customize Kofax Capture, you must have Administrator privileges to install files to the Kofax
Capture installation folder.

1. Start Windows Explorer and browse to <Kofax Capture installation folder>\Source
\Sample Projects\CustMod\Generic.

2. Display the contents of the Generic folder.

3. Copy the following files to <Kofax Capture installation folder>\Bin:
+ CMSample.aex
+ CMSample.exe

Registering the Sample Custom Module

This section explains how to use the Custom Module Manager to register the sample custom
module, so you can use it as an Kofax Capture processing queue.

© vou can also register custom modules with the Kofax Capture Extension Registration Utility.

After completing the registration process, you can view the properties for the custom module
sample. The properties are defined in the registration file (CMSample.aex), which you copied
earlier to the Bin folder. For detailed information about the format for the registration file, see
Registration File Creation.

1. In the Administration module, on the Tools tab, in the System group, click Custom Modules.
The Custom Module Manager window appears.
2. On the Custom Module Manager window, click Add.
The Open window appears.
3. Onthe Open window, browse to the Bin folder, select CMSample.aex, and click Open.
The Custom Modules window appears.
4. On the Custom Modules window, select Sample and click Install.
A message appears to confirm that the registration process is complete.
5. Click OK to clear the confirmation message.
6. Click Close to exit the Custom Modules window.

The name of the newly registered custom module "Sample" appears on the Custom Module
Manager window.

Adding the Sample to the Batch Processing Workflow

Once a custom module is successfully registered, it is available for selection as a batch class
processing queue from the Create Batch Class and Batch Class Properties windows.

You can select it as a processing queue for a batch class, just like any other processing queue. Just
select the custom module from the list of Available Queues and click Add.

When you move the custom module to the list of Selected Queues, it is inserted according to the
valid processing order, according to its processing function. The valid processing order is defined by

126

Kofax Capture Developer's Guide

the Follow and Precede entries that appear on the Custom Module Properties Advanced tab (see the
preceding section).

For example, the Sample custom module is defined to follow Scan and precede Export. Therefore,
you can move it to any position within the list of Selected Queues after Scan and before Export.

When you publish the batch class with the custom module in its workflow, check the results log on
the Publish window. Be sure that no errors or warnings are associated with the custom module.

1. Use the Administration module to create or open the batch class to include the sample custom
module in its workflow.

2. Select the batch class name on the Definitions panel and right-click to open the Properties
Queues tab.
Notice that "Sample" appears on the list of Available Queues.

3. Verify that Scan appears on the Selected Queues list, and then add Sample to the list. Click OK
to close the window.

4. Publish the batch class.

Using Batch Manager with a Custom Module

From Batch Manager, you can view the status of any batch, including a batch that includes a custom
module in its workflow. You can launch the custom module and process the batch from Batch
Manager.

In addition, the custom module is available from the list of queues for batches that have the custom
module defined as part of their workflow. You can optionally redirect a batch to a custom module
from Batch Manager.

Creating a Batch to Open in the Sample Custom Module

This section explains how to create a batch to be routed to the sample custom module.

1. Start the Scan module and create a batch based on the batch class you published.

2. Scan the batch and close it.

3. Do one of the following to start the sample module:
* Double-click CMSample.exe in <Kofax Capture installation folder>\Bin.
+ Start Batch Manager, select the batch that is ready to open in the sample custom module,

and on the Home tab, in the Batch group, click Process Batch.

The Sample custom module starts and appears on the desktop. If you use Batch Manager to
start the custom module, the options for opening a batch are slightly different.

4. Optionally select the Include Setup Data check box to import the batch class setup data, along
with the batch data.
The setup data includes information about the batch class properties, including export
connectors, image cleanup, recognition profiles, and more. For this demonstration, the setup
data includes the standard administrative data. Your implementation will probably include a

127

Kofax Capture Developer's Guide

setup OCX to provide batch class configuration settings and publish checks associated with a
custom module.

5. Select By Batch as the process mode. For information about the "By Document" process mode,
see Processing by Document.

6. If you launched the sample from Batch Manager, click Open Batch # (where # is the
incremental batch identification number) to open the batch.

If you did not launch the sample from Batch Manager, do one of the following:
+ Click Open Next Batch to open the next available batch.

+ Click Select Batch to display the Open Batch window where you can select a batch, and click
OK.

Processing by Document

The previous section explained how to open a batch in the Sample custom module using the By
Batch process mode. You can also process a batch with the By Document process mode. Use this
mode to open a specific range of documents in a batch, rather than the entire batch.

1. Inthe Scan module, create a batch as described in Creating a Batch to Open in the Sample
Custom Module. Be sure that the batch includes documents.

2. Start the sample custom module as described in Creating a Batch to Open in the Sample
Custom Module.

3. When the sample module window appears, select By Document as the process mode and
select the Include Setup data check box.

4. Select the option to open the batch.
5. At "Open documents," select a range of documents to process in the sample custom module.

If the batch has no documents, the options for selecting and opening a range of documents
are grayed on the window.

6. Click Open Documents.

7. Under Process Documents, click Copy XML or Corrupt XML. For more information, see XML
Transport Files.

8. Click Close Documents.
9. Under Process Batch, click Copy XML or Corrupt XML.
10. Click Close Batch.

Setting the Batch Custom Storage String

Use the fields in the Batch Custom Storage String area to read or write the batch custom storage
string when a batch is opened. If the batch is closed, you can only read the value.

1. In Batch Manager, process a batch that uses the CMSample custom module.
2. Open the batch using the Sample window, using the "Open Batch n" button.
3. Type a name and a value in the appropriate fields.

4. Click Set.

128

Kofax Capture Developer's Guide

The name and value are set in the batch.

Getting the Batch Custom Storage String

In Batch Manager, process a batch that uses the CMSample custom module.
Open the batch using the Sample window, using the "Open Batch n" button.
Type the name of the batch custom storage string in the name field.

Click Get.

The value appears.

HwWwh =

XML Transport Files

XML transport files are used to relay batch class (setup/administration) and batch (runtime)
information between Kofax Capture and the custom module. For example, the sample custom
module uses a runtime XML file called RTExport.xml to list Kofax Capture database information
that the custom module uses. When batch information is imported back to the database after
processing in the custom module, another XML file called RTImport.xml is used. Any modifications
that you make to the XML format are validated by Kofax Capture to ensure compatibility.

The sample module uses the standard Kofax Capture configuration settings. You will probably
implement a setup OCX to define additional custom configuration and property settings associated
with custom module functionality. The configuration information is relayed between Kofax Capture
and the custom module via files called SUExport.xml and SUImport.xml.

Once the batch is open, the following files are generated in ProgrambData\Kofax\Capture\Local

\Kofax.Sample.

+ RtExport.xml: Contains Kofax Capture database information related to the current batch. When
the “By Batch” process mode is enabled, RtExport.xml includes data related to all the documents
in the batch. When the "By Document" process mode is enabled, a separate file (DcExport.xml) is
generated with the document information.

+ SuExport.xml: Contains configuration settings and publish checks associated with the custom
module. This file is generated if you selected the “Include Setup data” check box before opening
the batch.

+ DcExport.xml: Contains Kofax Capture database information related to selected documents in
the batch. This file is generated only if you select the "By Document" process mode.

A set of Document Type Definition (DTD) files is also generated. The DTD files list the required XML
format that Kofax Capture requires: AcBatch.dtd, AcDocs.dtd, and AcSetup.dtd. (AcDocs.dtd is
generated only if you opened the batch in "By Document" mode.)

The .dtd files appear in the Kofax Capture installation folder. To examine these DTD files in detail,
open them in any text editor.

Copying the XML Files Back to Kofax Capture
1. Click the Copy XML button.

129

Kofax Capture Developer's Guide

Notice that additional import files are generated in the Kofax.Sample folder: DcImport.xml,
RtImport.xml, and Sulmport.xml. These files are used to import batch information to Kofax

Capture from the sample module.
2. Optionally, select a state (Ready, Suspended, Error) in which the batch should be closed.

3. Click the Close Batch button. The batch is routed to the next module in the Kofax Capture
workflow, unless it is suspended or closed in error.

Corrupt XML

Even if the XML format is technically valid and well-formed, the content may not be compatible
with Kofax Capture. The Sample custom module includes a mechanism to demonstrate the effect
of XML content that is incompatible with Kofax Capture. You can click the Corrupt XML button to
intentionally insert an incompatible text string in one of the XML import files.

If you are processing in the By Document mode, you can click the Corrupt XML button to insert an
incompatible text string in DcImport.xml. If you are processing in By Batch mode, click the Corrupt
XML button to insert a similar string in the RtImport.xml file.

When you select Corrupt XML, the batch is suspended when you close it. A message appears
with text explaining that the error is related to the import process, the KofaxCaptureRuntime root
element, and the first batch element.

When the XML format is not compatible with Kofax Capture, the batch is not routed to the next
queue in the Kofax Capture processing workflow.

Create Page

Use the Create Page button to create a page or a new document. To create a page or a document,
the Process mode must be set to "by Batch."

Clicking the Create Page button adds a new page to the XML file. If "Create page in new document"
is selected, a document and page are added to the XML file.

You can open RtImport.xml in the Kofax.Sample folder to see the added lines.

130

Appendix B

Workflow Agent Sample

This appendix walks you through the process of installing, registering, and using the sample
workflow agent provided in your Kofax Capture product package. The name of this sample is
"Validation Workflow Agent."

A workflow agent is a custom application that has the ability to examine and modify batch data, as
well as change the routing (next module) and status for the batch. Workflow agents are invoked
whenever a batch is closed from any module.

Workflow agents consist of a runtime module and optional setup program. Prior to using a
workflow agent, you must write the necessary code, and then register the agent.

You can find the sample workflow agent application in \Kofax\Capture\Source\Sample
Projects\Workflow\WFSample. This folder contains a Visual Basic .NET Project for both a
Workflow Agent and Setup OCX. This folder also contains a compiled version of this Project, and the
associated sample Kofax Capture Registration File (.aex).

The sample supports a setup OCX that adds a new menu item (Validation Workflow Properties) to
the Batch Class context menu.

At runtime, the Validation Workflow Agent skips validation for a document if all index fields in

that document are automatically recognized with at least a user-specified confidence level. You
can specify the confidence level with extensions added by the Workflow Agent setup OCX. If all
documents in a batch meet the confidence level, the Validation module (and Verification module, if
applicable) is skipped.

O workflow agents are very similar to custom modules, and the windows for registering
workflow agents are nearly identical to those for custom modules.

Installing the Sample Workflow Agent

This section explains how to install the files required to register and run the sample workflow agent.

If you are customizing Kofax Capture, you must have Administrator privileges to install files to the
Kofax Capture installation folder.

1. Start Windows Explorer and browse to Kofax\Capture\Source\Sample Projects
\Workflow\WFSample.

2. Display the contents of the Wrsample folder.

131

Kofax Capture Developer's Guide

3. Copy the following files from the WFSample folder to <Kofax Capture installation

folder>\Bin:

+ WorkflowAgentSample.net.aex
+ SampleWorkflowSetup.net.dll
+ WFAgent.net.dll

Registering the Sample Workflow Agent

This section explains how to use the Workflow Agent Manager to register the sample workflow
agent, so you can use it in Kofax Capture.

© vou can also register workflow agents with the Kofax Capture Extension Registration Utility.

. In the Administration module, on the Tools tab, in the System group, click Workflow Agents.

The Workflow Agent Manager window appears.

On the Workflow Agent Manager window, click Add.

The Open window appears.

On the Open window, browse to the Bin folder, select WorkflowAgentSample.net.aex, and click
Open.

The Workflow Agents window appears.

On the Workflow Agents window, select Validation Workflow Agent and click Install.

A message appears to confirm that the registration process is complete.

Click OK to clear the confirmation message.

Click Close to exit the Workflow Agents window.

The name of the newly registered Validation Workflow Agent appears in the Workflow
Agent Manager window.

You can now view the properties for the registered workflow agent. The properties are defined
in the registration file (WorkflowAgentSample.net.aex), which you copied earlier to <kofax
Capture installation folder>\Bin.

Click Properties to open the Workflow Agents Properties window - General tab.

Click the General and Programs tabs to familiarize yourself with the other properties for the
sample workflow agent, and then click Close.

Click Close again from the Workflow Agent Manager window.

Using the Sample Workflow Agent

This section explains how to use the sample workflow agent in a batch class.

1.

2.

In the Administration module, create or open a batch class for which you want to include the
sample workflow agent.

Select the batch class name from the Definitions panel and right-click to open the Batch Class
Properties window - Queues tab.

132

Kofax Capture Developer's Guide

10.

Ensure that Scan, Validation, and other modules appear as applicable on the Selected Queues
list.

On the Batch Class Properties window - Workflow Agents tab, select Validation Workflow
Agent and click Add to move it to the Selected Workflow Agents list.

Click OK to close the Batch Class Properties window.

On the Definitions panel, right-click to display the context menu, and then click Validation
Workflow Properties.

The Validation Workflow Properties window appears.
Select Skip validation if the confidence for all fields is at least.

Move the slider to the desired confidence level. If the confidence level for all the documents in
your batch meets or exceeds this setting, the Validation module (and Verification module if it is
part of the batch class) is skipped.

Click OK.
Publish the batch class.

133

	Table of Contents
	Preface
	Related Documentation
	Kofax Capture Installation Guide
	Kofax Capture Administrator's Guide
	Help for Kofax Capture
	Kofax Capture API References
	Kofax Capture Release Notes

	Training
	Getting Help with Kofax Products

	Overview
	Reasons to Customize Kofax Capture
	How to Customize Kofax Capture
	API Libraries
	Backward Compatibility
	Fluent User Interface (Fluent UI) Customizations
	Additional Resources

	How to Implement Your Custom Scripts and Modules

	Custom Script Creation Using VB.NET
	Software Requirements
	Validation Script Creation in VB.NET
	Selecting the Scripting Language
	Kofax Capture .NET Scripting API
	DocumentValidationScript Class
	Exceptions

	VB.NET Project File Location
	Deployment of a VB.NET Project
	Script Publishing Requirements
	Sample VB.NET Validation Script
	Sample Validation Script Code

	Testing VB.NET Custom Scripts
	Error Handling in VB.NET
	FatalErrorException
	RejectAndSkipDocumentException
	ValidationErrorException
	ValidationErrorException (ErrMsg)
	ValidationErrorException (ErrMsg, IndexField)

	Recognition Script Creation in VB.NET
	Kofax Capture .NET Scripting API
	RecognitionScript Class
	Exceptions

	Creating a Recognition Script Using VB.NET
	Debugging Your Settings with a VB.NET Recognition Script
	Sample VB.NET Recognition Script
	Removing a Recognition Script

	Field script
	Sample VB.NET Field Script

	Custom Script Creation Using Visual C#
	Software Requirements
	Validation Script Creation in Visual C#
	Selecting the Scripting Language
	Kofax Capture Visual C# Scripting API
	DocumentValidationScript Class
	Exceptions

	Creating a Custom Visual C# Validation Script
	Visual C# Project File Location
	Deployment of a Visual C# Project
	Script Publishing Requirements

	Testing Visual C# Custom Scripts
	Error Handling in Visual C#
	FatalErrorException
	RejectAndSkipDocumentException
	ValidationErrorException
	ValidationErrorException (ErrMsg)
	ValidationErrorException (ErrMsg, IndexField)

	Recognition Script Creation in Visual C#
	Kofax Capture Visual C# Scripting API
	RecognitionScript Class
	Exceptions

	Creating a Recognition Script Using Visual C#
	Debugging Your Settings with a Visual C# Recognition Script
	Sample Visual C# Recognition Script
	Removing a Recognition Script

	Field script
	Sample Visual C# Field Script

	Registration File Creation
	Format for the Registration File
	[Modules] Section
	[Module Name] Section
	[Workflow Agents] Section
	[Workflow Agent Name] Section
	[Setup Programs] Section
	[Setup] Section
	[Menu] Section
	[Menu Bar] Section
	Sample Registration Files
	Sample 1: Registering Two Custom Modules
	Sample 2: Defining a Tab on the Ribbon
	Sample 3: Defining Context Menu Items
	Sample 4: Defining a Workflow Agent

	Using the Administration Module to Manage Extensions
	Custom Module Management
	Registering a Custom Module
	Viewing Properties for a Custom Module
	Removing a Custom Module

	Workflow Agent Management
	Registering a Workflow Agent
	Viewing Properties for a Workflow Agent
	Removing a Workflow Agent

	Kofax Capture Extension Registration Utility
	Command Line Parameters
	Input File [/f {file name}]
	Output File [/o {file name}]
	Module Name [/m {module name}]
	Workflow Agent Name [/w {workflow agent name}]
	Setup Programs [/x {setup program name}]
	Runtime Programs [/r {runtime program name}]
	Unregister [/u]
	Silent Mode [/s]
	Usage [/?]

	Input
	Output
	Proper Usage
	Error and Warning Messages

	Workflow Agent Creation
	Workflow Agent Design
	Setup OCX Implementation
	Writing the Runtime Module
	Code Project Settings
	Kofax Capture API Library References
	Project Property Settings

	Workflow Agent Sample
	Workflow Agent Program
	Inherit the IACWorkflowAgent Interface
	ProcessWorkflow Function
	Check if the Batch is Leaving the Scan Module
	Extract the Runtime and Setup Data
	Iterate Through the Documents

	IsCheckPagesEnabled Function
	CheckPage Subroutine

	Registration File Creation
	Registration File Format
	Registering the Workflow Agent from the Administration Module

	Registering the Setup OCX
	Registering a Setup OCX Not Associated with a Custom Extension

	Installing and Registering the Workflow Agent
	Removing a Workflow Agent

	Setup OCX Creation
	Setup OCX Design
	Writing a Setup OCX
	Code Project Settings

	Sample Setup OCX for the Custom Workflow Agent
	Setup OCX for the Workflow Agent
	SetupControl
	SetupForm

	Registering the Setup OCX
	Registering a Setup OCX Not Associated with a Custom Extension
	Setup OCX Registry Entries
	Tab Registry Keys

	Loading the Setup OCX
	Unloading the Setup OCX

	Setup OCX Panels
	Enabling Panels

	Context Menus
	Enabling Context Menu Items

	Ribbon
	Custom Tab Names
	Enabling/Disabling Custom Commands

	Panels
	Batch Class Publishing
	Setup OCX Development API

	Custom Panels and Applications
	Programming in a High Availability Environment
	User Interface Design and Behavior
	Custom Panels
	Custom Panels in the Fluent User Interface
	Themes in the Fluent User Interface

	Custom Tabs
	Scan, Quality Control, Validation, and Verification Tree Node (Context) Menus
	Tabs Can Be Added, Removed, and Edited at Runtime
	Registry Entries for Tabs

	Custom Panel Installation
	Invoking Kofax Capture Commands from a Custom OCX Panel
	Passing a Command to the Scan Module
	OCX Tab Selection

	Sample Custom Panel
	Sample Custom Panel Registration
	Registering the Sample Custom Panel with Kofax Capture
	Registering the Sample Custom Panel in the Windows Registry
	Registering the Sample Custom Panel
	Registering the Sample .NET Custom Panel

	Sample Custom Panel in VB.NET

	Custom Module Creation
	Custom Modules
	High Availability Environments
	Error Handling Guidelines
	Database Operations
	File System Operations
	Client / Server Operations
	Third-Party Operations

	Sample Applications
	Typical Development Tasks
	Design the Custom Module
	Create the Setup OCX
	Write the Runtime Application
	Create the Custom Module Registration File
	Register the Custom Module
	Create an Installation Program

	Document Routing
	Document Routing Functions
	ChildBatchCreate
	Naming a Child Batch
	Closing Batches

	MoveElementToBatch
	BatchCloseWithModuleID

	About Document Routing Features
	Document GUID
	Tracking Statistics
	Reference Batch ID
	Unsupported Features

	Using Kofax Transformation Modules
	Using the Sample Custom Module
	Sample Custom Module
	DeleteEvenPage Module
	PageMarkedForDeletion Function
	RuntimeSession_BatchAvailable Subroutine
	ProcessNewBatch Function

	Creating an Export Connector
	Kofax Capture Export Type Library
	Kofax Capture and the Export Process
	Requirements for the Export Connector Setup
	Requirements for the Export Connector
	ReleaseSetupData and ReleaseData Objects
	Export Connector Setup
	ReleaseSetupData Object

	Export Connector
	ReleaseData Object

	COM Servers: In-proc or Out-of-proc?
	Registering Your Export Connector
	Scripting in a High Availability Environment

	Deploying Customizations
	Installing the Customization Deployment Service
	Command Line Parameters

	Setting Up a Customization Deployment
	Initiating a Customization Deployment
	Viewing Customization Deployment Status
	Deploying Customizations While Applications Are Running
	About the Customization Deployment Process
	Administrator Actions
	Deployment Service Actions
	KCN Server
	Status

	Custom Module Sample
	Licensing
	Kofax Capture Optimized Custom Module .NET Type Implementation Library
	Kofax Capture Document Access .NET Type Implementation Library
	Development Environment
	Setup OCX
	Runtime Executable

	Installing the Sample Custom Module
	Registering the Sample Custom Module
	Adding the Sample to the Batch Processing Workflow
	Using Batch Manager with a Custom Module
	Creating a Batch to Open in the Sample Custom Module
	Processing by Document
	Setting the Batch Custom Storage String
	Getting the Batch Custom Storage String
	XML Transport Files
	Copying the XML Files Back to Kofax Capture
	Corrupt XML

	Create Page

	Workflow Agent Sample
	Installing the Sample Workflow Agent
	Registering the Sample Workflow Agent
	Using the Sample Workflow Agent

