
Kofax Mobile Capture SDK
Developer's Guide

Version: 3.8.0
Date: 2023-01-23

© 2022 Kofax. All rights reserved.

Kofax is a trademark of Kofax, Inc., registered in the U.S. and/or other countries. All other
trademarks are the property of their respective owners. No part of this publication may be
reproduced, stored, or transmitted in any form without the prior written permission of Kofax.

Table of Contents
Preface... 7

System requirements..7
Getting help with Kofax products...7
Product documentation..8

Default online documentation... 8
Configure offline documentation.. 8

Chapter 1: Introduction to the Kofax Mobile Capture SDK..9
Product overview...9

Chapter 2: Conceptual overview..11
Guidelines for improving image capture.. 12
Capturing an image..12
Auto-Capture..14
Image processing recommendations.. 14
Submitting an image to the Kofax Mobile Frameworks..15
Flash capture... 15
NFC support... 15
NFC certificate validation... 16
Kofax Mobile Bill Pay..16
Check capture.. 17
Kofax Mobile ID Capture... 17
HTML5 Capture..17

Chapter 3: Getting started with the SDK... 18
Setting up for localization... 18

iOS.. 18
Android.. 18

Using the SDK with iOS..18
Creating a Swift package for Kofax Mobile Capture SDK...21
Sample iOS projects.. 21

Using the SDK with Android..24
Selecting Camera or CameraX... 25
Component names and descriptions for the Android SDK..26
Required libraries for Kofax Mobile Capture SDK functionality...28
Android APK split mechanism..29
Sample Android projects...30

3

Kofax Mobile Capture SDK Developer's Guide

Obfuscating applications with ProGuard...33
Chapter 4: In-depth look at the SDK...34

Native interface object types.. 34
Capture objects.. 34
UI control objects.. 34
Engine objects.. 34
Logistics objects... 35
Utility objects.. 35
Capturing images overview..35

Image Capture Control object.. 36
Set camera resolution... 37
Camera LED lamp.. 37
Get/Set focus area... 38
Set camera type... 39
Real-Time video feed...39
Check Capture Experience..40
Document Capture Experience.. 41
Passport Capture Experience...41
Fixed Aspect Ratio Capture Experience.. 42
Selfie Capture Experience...43
Packaged Capture Experience... 44
Stability delay... 48

Image Capture Frame object.. 49
Portrait target frame... 50

Image Review and Edit control...50
Transform an image.. 51
Highlight extracted data...51
Indicating the crop area... 52

Image object..53
Recommended mime types... 53
Date and time stamps.. 54
Memory management.. 54
Retain image option..55

Glare remover..56
Image Processor object... 56

Image Processor Configuration...57
BasicSettingsProfile..58
ImagePerfectionProfile..58

4

Kofax Mobile Capture SDK Developer's Guide

Image processing: date and time stamps... 73
DPI estimation..73
Process progress feedback...74
Cancel image processing..74
Queue management... 74
Final_Image scaling and resolution...75
MICR Recognition and hand print detection... 75
Target frame cropping.. 87
QuickAnalysisFeedback object... 87

OpenCV... 88
Android.. 88
iOS.. 88

Server objects.. 89
Capture Server..90
Server extraction objects.. 94
Kofax Front Office Server logon.. 96
TotalAgility Server logon...96
TotalAgility Server interface... 96
Logging into a server..96

DocumentType object...98
Document object..99
Page object... 101
FieldType object... 101

BarCodeCaptureControl object... 102
Supported bar codes for BarCodeCaptureControl object..103
Reading techniques... 104
BarcodeReader object... 105
Guideline feature... 107

License capture control object..107
Credit card capture...108
SDK Version object..108

Version object...109
App Statistics overview.. 109

General requirements for how to use app stats...110
Recording App Statistics sessions... 113
Check capture example.. 113
SQL database schema...118
Session Event table..125

5

Kofax Mobile Capture SDK Developer's Guide

Exporting data..125
About hybrid apps using PhoneGap..131
Kofax mobile plugin for Kofax TotalAgility..131
Serialization and deserialization... 131

Serializable classes.. 132
Serialization hierarchy...132
Serialization of images..133
Conditions and limitations... 134
Android specifics..134
iOS Specifics..136

Licensing...137
Licensing object... 138
kfxEVRS_License.h.. 139

Driver license classifier.. 139
Before classifying a driver license image...140
Initialize the classifier..140
Classification results..140

On-Device Extraction.. 141
Using On-Device Extraction..141
Optical Character Recognition engines.. 145

Diagnostics and error codes... 146
Enabling diagnostics in the capture experience... 146
Error code strings..148

About the Kofax mobile demo application... 148
Kofax server support...148
Check capture...149
Pay bills... 150
ID card...151
Credit Card..152
Passport...152
Custom Component.. 153
Adding the license... 153

Chapter 5: Security model.. 155

6

Preface

This guide includes the information you need to successfully integrate Kofax Mobile Capture SDK
components into your mobile application.

For additional details on API library properties and settings, refer to the Kofax Mobile Capture SDK
API Reference Guides.

System requirements
Software requirements for Kofax Mobile Capture SDK are listed in the Technical Specifications
document, which is available from the Kofax Knowledge Base on the Kofax website. The document
is updated regularly, and we recommend that you review it carefully before installing your product.

 A customer portal login is necessary to access the Kofax Knowledge Base.

Getting help with Kofax products
The Kofax Knowledge Base repository contains articles that are updated on a regular basis to
keep you informed about Kofax products. We encourage you to use the Knowledge Base to obtain
answers to your product questions.

To access the Kofax Knowledge Base:

1. Go to the Kofax website home page and select Support.

2. When the Support page appears, select Customer Support > Knowledge Base.

 The Kofax Knowledge Base is optimized for use with Google Chrome, Mozilla Firefox or
Microsoft Edge.

The Kofax Knowledge Base provides:
• Powerful search capabilities to help you quickly locate the information you need.

Type your search terms or phrase into the Search box, and then click the search icon.
• Product information, configuration details and documentation, including release news.

Scroll through the Kofax Knowledge Base home page to locate a product family. Then click a
product family name to view a list of related articles. Please note that some product families
require a valid Kofax Portal login to view related articles.

7

https://knowledge.kofax.com/?_ga=2.226434462.585614167.1574102583-1143517021.1563918505
https://knowledge.kofax.com/
https://www.kofax.com/

Kofax Mobile Capture SDK Developer's Guide

From the Knowledge Base home page, you can:
• Access the Kofax Community (for all customers).

Click the Community link at the top of the page.
• Access the Kofax Customer Portal (for eligible customers).

Click the Support link at the top of the page. When the Customer & Partner Portals Overview
appears, click Log in to the Customer Portal.

• Access the Kofax Partner Portal (for eligible partners).
Click the Support link at the top of the page. When the Customer & Partner Portals Overview
appears, click Log in to the Partner Portal.

• Access Kofax support commitments, lifecycle policies, electronic fulfillment details, and self-
service tools.
Go to the General Support section, click Support Details, and then select the appropriate tab.

Product documentation
By default, the Kofax Mobile Capture SDK documentation is available online. However, if necessary,
you can also download the documentation to use offline.

Default online documentation
The product documentation for Kofax Mobile Capture SDK 3.8.0 is available at the following
location.

https://docshield.kofax.com/Portal/Products/en_US/KMC/3.8.0-hyeayhcnoo/SDK.htm

Configure offline documentation
To access the documentation offline, download
KofaxMobileCaptureSDKDocumentation-3.8.0_EN.zip from the Kofax Fulfillment Site and extract it
on a local drive available to your users.

The compressed file includes both help and print folders. The print folder contains all guides,
such as the Installation Guide and the Administrator's Guide. The help folder contains APIs and
other references.

8

https://docshield.kofax.com/Portal/Products/en_US/KMC/3.8.0-hyeayhcnoo/SDK.htm
https://delivery.kofax.com/

Chapter 1

Introduction to the Kofax Mobile Capture
SDK

Kofax Mobile Capture SDK is designed to make it simple for you to build mobile applications that
can extract information from images of documents such as: checks, bills, and IDs such as driver
licenses and passports.

The image capture features improve the quality of captured images, such as stability delay, camera
orientation, flash support, and image frame guidelines. The image processing features provide
access to a patented processing technology that includes capabilities specific to images obtained
from mobile device cameras.

 Check capture is not supported for mobile check deposit use cases. It may be used for other
uses such as to validate the information on a check to some other document (such as an invoice).

Product overview
The Kofax Mobile Capture SDK provides libraries, headers, code samples, documentation, and a
help system that developers use to create mobile applications such as those that require image
processing or connection to other systems for image capture.

This SDK is distributed as a zip file, which includes all development environments. The SDK libraries
cannot be used without a license. Once you unzip the SDK, install the license within your own
application or within the source code for the sample apps. The license key can be added either
manually at run-time, or programmatically at build time.

The zip file contains several main folders:

Folder Purpose

Android Contains documentation, libraries and sample applications specifically
for mobile devices using Android. The documentation folder contains a
welcome page that launches the HTML help for the SDK API, including detailed
information about all the SDK classes.

9

Kofax Mobile Capture SDK Developer's Guide

Folder Purpose

Hybrid It contains three folders.
PhoneGap Plugin: This folder contains PhoneGap Plugin,documentation, and
sample applications. The documentation folder contains an index.html page
that launches the HTML help for the plugin, including detailed information
about all the plugin classes.
HTML5 SDK: This folder contains HTML5 SDK, documentation and sample
applications. The documentation folder contains an index.html page that
launches the HTML help for the HTML5 SDK, including detailed information
about all the HTML5 SDK classes.

iOS Contains documentation, frameworks and sample apps specifically for
Apple mobile devices running iOS. The documentation folder contains a
welcome page that launches the HTML help for the SDK API, including detailed
information about all the SDK classes. The welcome page includes links to
more SDK details and provides information about the major grouping of SDK
classes.

AppStats Contains a sample Microsoft SQL Server create script for the App Statistics
database schema.

10

Chapter 2

Conceptual overview

The Kofax Mobile Capture SDK includes separate libraries to integrate with applications designed to
run on Android and iOS mobile devices.

In addition to the image capture and processing functions already mentioned, the SDK also allows
interface exchanges and integration with the Kofax Front Office Server (KFS) and Kofax TotalAgility
servers.

All methods are synchronous, unless otherwise specified. For asynchronous methods, the
application level is notified by library events when operations are complete. The event design is
OS-specific. The iOS library uses delegates, and Android uses callback methods and associated
indications. The application displays all error messages as needed. Most methods include an error
value that can be accessed when the event fires to indicate why a method failed.

 For Android, there is a class called AppContextProvider that must be initialized by the
application before using the mobile SDK API.
/**
* This class keeps a reference of the application context.
* In order to use the Mobile SDK, you must first set
* a valid application context.
* Alternately, you can specify the AppContextProvider class
* in your application's Manifest, as an attribute of the
* <application/> element:
*
 * <application \n
* android:icon="@drawable/ic_launcher" \n
* android:name="com.kofax.kmc.kut.utilities.AppContextProvider" \n
* android:label="@string/app_name" \n
* android:theme="@style/AppTheme" >
* </application>
*/

 For iOS, most class methods return error code enumeration values. The error enumerations
are included in an error info header file. You can use methods in the error class to obtain a
description of the error, and recommended corrective actions to prevent the error, if applicable.

The Kofax Mobile Capture SDK is designed to make it simple for you to build mobile applications
that can extract information from images of documents such as: checks, bills, and IDs such as driver
licenses and passports.

Extracting information from an image using the SDK consists of three steps: (1) Capturing an image
(2) Perfecting the image (3) Submitting it to one of the Kofax Mobile Frameworks such as: Kofax
Mobile Bill Pay, and Kofax Mobile ID Capture.

11

Kofax Mobile Capture SDK Developer's Guide

Guidelines for improving image capture
While using the library to perform camera-based image processing, the results are dependent
upon the quality of the original photograph. The Kofax Mobile Capture SDK has tools built into
the solution to help the end user capture a quality image such as the guided capture experience,
auto capture, and the quick analyzer. Keep the following guidelines in mind when developing an
application using the Kofax Mobile Capture SDK.
• Use the highest resolution available for the device's camera. This should be no less than 5

megapixels for ID cards or 8 megapixels for larger documents.
• Disable digital and optical zoom on devices that support it. Images should be taken at 1X zoom.
• Check the lighting before capturing the image. You can prompt users to adjust lighting if the

image will come out too dark or too light.
• Maximize the area within the image frame for the document, but leave a small margin of

background to detect document borders. You can prompt the user to move the device closer or
further away until the document is properly in the frame.

• If available, use the touch focus feature to focus on the center of the document or the area with
the information to capture (like a bar code).

• Use the keystone correction features if the user shoots the document at an angle to avoid
shadows. However, the angle should not be so large that the limited depth of field and keystone
distortions cannot be corrected. You can prompt users to adjust the shooting angle to avoid
distortions. Blurriness in the image may occur if the difference between the distance between the
most distant point and closest point exceeds the depth of field for the device.

Users can ensure optimal results by doing a few simple things. You can provide this guidance
through screen prompts and user documentation.
• Place the document on a flat surface that has a contrasting color from the document and little

variation and texture. Desk surface texture is OK. Avoid sharp colors and brightness differences.
• Flatten wrinkled pages or upturned corners, even if they do not include data.
• Avoid shadows.
• Provide adequate lighting so the image is readable.
• Do not turn on the flash feature manually.

Capturing an image
The first step in accurately extracting data from an image is to take a high quality image. But what
does high-quality mean in the context of data extraction? A high-quality image in this context must
be well-focused, well-lit, well-centered, and have a high-resolution. This cannot be emphasized
enough. The key to having a high rate of extraction accuracy is to start with a high-quality image.

General recommendations
As a general rule, do not attempt to capture documents that have been placed on a surface with
complex patterns, shapes, or colors. A plain, contrasting surface is recommended. For best image
capture results, start with the following suggested resolutions and if necessary make appropriate
adjustments.

12

Kofax Mobile Capture SDK Developer's Guide

Focus
The image capture software on most phones has built in auto-focus capability. However some
devices are better than others at maintaining focus.
In general, iPhone devices of all generations are very good at focus and Android devices vary widely.
The SDK contains tools (for example, Quick Analysis) that allow you to test an image after it has
been captured to determine whether it is well-focused. Lighting and focus are related in that
cameras generally take longer to focus in poor light and so an image taken in poor light is also
more likely to be blurry.
Another problem that can impact focus and lead to blurry images is a lack of contrast on a page. An
example of a document that can sometimes lack adequate contrast is the back of a check. There is
usually very little machine-printed text on the back of a check and the only item on the check that
might show some contrast is the endorsement. The Mobile Capture SDK includes a SetFocusArea
method that allows an application to define the exact area that the camera should "look at" as it
attempts to focus.

Capturing a well-lit image
It is best to capture an image in a well-lit area. Diffused light that does not cause a lot of glare is
best. But if this is not possible, the SDK does allow you to turn on your smart phone's lamp if it is
equipped with one.

Well-centered image
Most people are able to take a well-centered image, but the SDK allows you to show frames of
various sizes and aspect ratios on the screen that guide the user to center the document in the view
finder.

Undistorted image
If the device is not held parallel to the document, various types of perspective distortions will
appear in the captured image. To help minimize these distortions the SDK allows you to show
guidance on the screen that helps the user hold the camera parallel to the document.

Diagnostic information
Diagnostic information can be displayed at the top of the image capture screen for both iOS and
Android. This includes the following information:
• If the image is focused.
• Stability status, including value and threshold.
• Camera resolution.
• If the camera is level.
• Pitch and roll, including the threshold for each.

Enable diagnostic information to appear before you begin the image capture. Do the following:

1. At the screen where you initiate the capture (such as ID Card), tap Settings in the upper right
corner.

2. Tap Camera Settings (iOS) or Camera (Android).

3. Turn on Diagnostics.

4. Go back to the screen where you initiate the capture and tap the button to capture the image.
The diagnostic information appears at the top of the screen.

13

Kofax Mobile Capture SDK Developer's Guide

Auto-Capture
There is a tension between usability (the desire of the user to be able to capture an image with a
minimum amount of instruction) and the need to capture a good image. The goal of auto-capture is
to guide the user to position the device to capture a well-centered and focused image that occupies
the greatest possible area on the screen so the resolution of the document within the image (the
dpi value) is maximized.

The SDK supports both auto-capture and manual capture. In manual capture, your application
simply displays a guide on the screen indicating how the user should position the document and
provides them with a button that they need to press to take the picture. Even if auto-capture is
used, the capture experience will switch to manual capture if the user is not able to capture with
a configurable length of time. In general, auto-capture is preferred and will lead to a better image
most of the time.

Image processing recommendations
The SDK has a robust set of image perfection/processing features. This section provides an
overview and explains the most commonly used image processing parameters.

In general it is impossible for the user to create a perfect image, and so the SDK provides an Image
Processing object that provides tools that the user can use to "perfect" their images. The image
processing object allows you to: crop, deskew, and binarize the image. In most cases (with the
exception of IDs and driver licenses) you will always want to crop and deskew the image.

Because image processing can be slow on some devices you may also want to convert to gray scale
first before performing additional processing. This will speed up processing on slower devices and
is better than down-scaling (which is another way to improve performance on slower/older devices)
because it does not incur any loss of data.

Typically devices that are the slowest also have the lowest resolution which means that down-
scaling can be problematic, especially if one is capturing a larger document.

Following are some suggestions for modifying the image processing string.
• Document images will come from phone cameras: this warrants adding _DeviceType_2.
• Documents are letter-size - this allows adding _DocDimLarge_11.0_DocDimSmall_8.5_.
• Content is parallel to document edges: this warrants adding _DoSkewCorrectionPage_ and
DoCropCorrection in order to deskew and crop them.

• The images sent to OCR should be binarized: this means adding _DoBinarization_.
• As long as binarization is necessary it makes sense to auto-orient them - this means adding
_Do90DegreeRotation_4.

• The text of interest is black against bright backgrounds: this warrants adding
LoadSetting<Property Name="CSkewDetect.convert_to_gray.Bool" Value="1" />_
because this will speed up processing without any degradation of binary images.

• Assuming reasonable lighting conditions, binarization should work fine even without
normalization of illumination: this warrants adding _LoadSetting_<Property

14

Kofax Mobile Capture SDK Developer's Guide

Name="CSkewDetect.correct_illumination.Bool" Value = "0"/>"; however, while this
setting will save processing time there is a slim chance of OCR degradation, so it may be useful to
try with and without this setting

Submitting an image to the Kofax Mobile Frameworks
The Kofax Mobile Frameworks are a set of server-based business process components that run
within the Kofax Transformation Module (KTM) and are exposed via a RESTFUL Web service (mobile
and internet friendly) called the Kofax Real-Time Transformation Interface. The following business
processes are offered:
• Kofax Mobile Bill Pay
• Kofax Mobile ID Capture

Flash capture
For optimal results, ID Verification needs two images of the same document: a standard document
image and an image captured with flash on. The two images are captured as fast as possible with
the image without flash followed immediately by one with flash. Both images are sent to Authentic
ID. This feature provides better test results for both paper and screen photo detection.

This flash image feature is available for the following capture experiences:
• ID (Fixed Aspect Ratio)
• Passport

The user can select the option through your solution. It can be used for automatic and manual
capture. In manual capture, the user calls the force capture API to capture images with and without
flash.

NFC support
The Kofax Mobile Capture SDK supports using NFC and Basic Access Control to read data from
passports. This feature is supported on the following devices:
• iOS: iPhone 7 and newer devices running iOS 13 or later that support ISO 14443 tag reading .
• Android: Modern devices with NFC support.

The data is read from the Electronic Machine Readable Travel Document (eMRTD) chip embedded in
the passport. The location of the chip varies by country. In some cases, the passport may need to be
open for the chip to be unshielded for reading.

The MRZ key is read from the passport, which contains the passport number, date of birth, expiry
date, and checksums. NFC data may also contain the facial identification photo and Document
Security Object (EF.SOD). Passport data is structured according to International Civil Aviation
Organization (ICAO) Doc 9303.

15

Kofax Mobile Capture SDK Developer's Guide

The Kofax Mobile Capture SDK provides a sample application for reading passport data using NFC.
The sample application provides guidance to the user on where to locate the eMRTD chip.

NFC certificate validation
During NFC certificate validation, the document signer certificate is read from the ePassport and is
validated with the country signing CA certificate (CSCA) using the master list provided by the user.
Depending on the device, the user needs to provide the following file:
• iOS: masterList.pem
• Android: masterList.ml

Validation fails in the following cases:
• The document signing certificate is not available.
• The certificate in the ePassport has expired.
• The document signing certificate is not matched with the list of CSCA certificates in the master

list.

The Kofax Mobile Capture SDK provides a sample application that demonstrates how to validate the
certificate.

Kofax Mobile Bill Pay
The Kofax Mobile Bill Pay framework enables banks to better engage consumers via their mobile
device, and by empowering customers to easily and effectively capture bills and add payees.
Utilizing their smart phone or tablet, customers simply snap a picture of their bill, and then the data
is extracted, corrected, and perfected by Kofax technology. Finally, the information is automatically
presented to the user for easy bill payment.

These frameworks expose a RESTFUL API which is a Web service that is accessible via a URL and
standard HTTP protocols. The frameworks return their data as JSON. The code to create an HTTP
request sends it to one of the mobile frameworks and then processes the request, as shown below.
protected String doInBackground(String... arg0) {
 {
 Create an httpClient object
 Create a ResponseHandler object
 Convert the image you are passing to RTTI to an array of bytes
 Create a requestEntity object passing in the array of bytes

 Within the appropriate error handling
 {
 Setup an HTTPPut or Post request
 Add parameters and a header
 Set the entity equal to the requestEntity object created above
 Call the execute method on the httpClient object passing in the
 BasicResponseHandler
 Receive and process the JSON response
 }

}

16

Kofax Mobile Capture SDK Developer's Guide

This pseudo code is based on Java.

Check capture
Check capture provides banking customers with high-quality check image capture capabilities via
Kofax software installed and executed on their mobile device to ensure images are acceptable for
downstream processing.

This process is delivered quickly and easily without the need for specialized application developers,
resulting in a faster ROI for financial institutions. Patented image perfection technology ensures the
accurate capture of checks, with no manual entry required, resulting in a better user experience.

Kofax Mobile ID Capture
The Kofax Mobile ID Capture framework enables organizations to quickly and easily provide
the ability for customers to take a picture of a driver license or other forms of ID, and have the
information extracted and populated into a mobile application.

HTML5 Capture
The mobile capture SDK is implemented as a native code library for iOS and Android. As such,
it requires the end user to install an application on their device before they can use any of the
functionality it offers. However there are some use cases where you may wish to leverage some
of the functionality offered in the Kofax Mobile Capture platform without requiring the user to
download and install an application on their mobile device. To support these use cases, the Kofax
Mobile Capture SDK includes tools that make it easy for you to build thin-client, HTML5 applications.

Refer to the Kofax HTML5 SDK Developer's Guide for details.

17

Chapter 3

Getting started with the SDK

The following sections provide information on getting started with the Kofax Mobile Capture SDK.

Setting up for localization
The SDK supports localization for 5 non-English languages: Brazilian Portugese, French, German,
Italian and Spanish. The Kofax Mobile Capture SDK is fully localized and supports the following
configurations: iOS and Android. The following information describes the requirements to build a
localized native Android application using the SDK. However, this information is not intended to
provide a full tutorial on developing a localized application.

iOS
The strings required for a localized SDK are packaged in the SDKStrings.bundle file, which is
delivered as part of the Mobile SDK release contents. This file must be included as part of the
application project. If the application is then built for the non-English languages supported by the
MobileSDK , SDK strings will be displayed in the chosen language. The application can then be
localized independently from the SDK localization.

Android
In order to support localization, an Android application must create string resource files to contain
the localized versions of strings. In order to build an application using the Kofax Mobile Capture
SDK, the SDK strings must be merged with the application resources. When using Android Studio,
the SDK strings are included in the SDK AAR files, and the resource merge is automatic. If not using
Android Studio, the SDK strings must be manually merged. The Android application can be localized
without regard to the number or contents of SDK strings.

Using the SDK with iOS
To build iOS applications with the Kofax Mobile Capture SDK, use versions of Xcode and iOS that
meet the minimum requirements specified in the Kofax Mobile Capture SDK Technical Specifications.
In Xcode, set up your project by following these steps. See the Xcode help if you need more
information.

1. Create a new iOS project.

18

Kofax Mobile Capture SDK Developer's Guide

2. In the iOS/Frameworks folder, extract MobileSDK.zip. You will see the following files and
folders:

Name Description

MobileSDK_Combined Consolidates SDK libraries and other supporting
files into a single MobileSDK.frameworks file.

MobileSDK_segregated Includes most SDK libraries in the
MobileSDK.frameworks file and enables you to
add libcrypto.a, libssl.a, and opencv2.framework
separately.

MobileSDK_XC_Combined Consolidates SDK libraries and other supporting
files into a single MobileSDK.xcframeworks file that
you can add to the project or use to create a Swift
package.

MobileSDK_XC_segregated Includes most SDK libraries in the
MobileSDK.xcframeworks file that you can
add to the project or use to create a Swift
package. You can add libcrypto.a, libssl.a, and
opencv2.framework separately.

SDKStrings.bundle Includes localizable strings needed for the SDK.

uiimages.bundle Includes images needed for the SDK.

The different MobileSDK folders enable you to select the framework and setup that works best
for your development environment.

3. In the Project navigator, select the target for your project and add the frameworks, libraries,
and embedded content for building a Kofax Mobile Capture SDK project.

a. Go to the MobileSDK folder with the framework and setup you need.

b. Add MobileSDK.framework or MobileSDK.xcframework. If you are using a segregated
folder, also add libcrypto.a, libssl.a, and opencv2.framework as needed.

c. Add the following iOS native frameworks and libraries:
• Accelerate.framework
• AudioToolbox.framework
• AVFoundation.framework
• CoreMedia.framework
• CoreMotion.framework
• libc++.tbd
• libsqlite3.tbd
• libxml2.tbd
• libz.tbd
• MobileCoreServices.framework
• SystemConfiguration.framework

d. Add the following bundles by selecting Add Files in the Project navigator:
• SDKStrings.bundle
• uiimages.bundle

19

Kofax Mobile Capture SDK Developer's Guide

 Do not use Link Binary with Libraries to add these bundles on the Build Phases tab,
even though they can be added from there. If the files are not explicitly added to the
project, the build will silently fail.

e. To confirm all of frameworks, libraries, and bundles have been added correctly, expand
Frameworks in the Project navigator.

4. If you are using an M1 or later Mac, exclude arm64 simulator support:

a. On the Build Settings tab, select All and Combined to view all settings.

b. Under Architectures, expand Excluded Architectures.

c. For both Debug and Release, add the following:
• In the left column, select: Any iOS Simulator SDK
• In the right column, enter: arm64

: arm64

5. In Header Search Paths, add the Headers folder for both Debug and Release. Depending on
which framework you use, enter the following path:
• For MobileSDK.framework, enter the full path to MobileSDK.framework/Headers.
• For MobileSDK.xcframework, enter $(BUILT_PRODUCTS_DIR)/MobileSDK.framework/
Headers.

If you are prompted to select an architecture. select Any Architecture | Any SDK.

6. Add the necessary code to apply your valid Kofax Mobile Capture SDK license and the Utilities
framework..

a. Add the following lines to the Swift project.
let license = kfxKUTLicensing()
let errorCode = license.setMobileSDKLicense("<LicenseString>")

Where <LicenseString> is the string provided with the Kofax Mobile Capture SDK.

b. In the AppDelegate.swift file, add the following lines to the top. If the project does not
have an AppDelegate.swift file, add the lines before any file that calls SDK API functions.
#import "kfxEVRS_License.h"
#import "kfxLibUtilities/kfxUtilities.h"
Somewhere in the initialization of your application, such as in your
 AppDelegate's "didFinishLaunchingWithOptions" method, make the following
 call:

kfxKUTLicensing *licenseConfig = [[kfxKUTLicensing alloc] init];
 if([licenseConfig setMobileSDKLicense: PROCESS_PAGE_SDK_LICENSE] ==
 KMC_SUCCESS)
{
 // License is valid
}

Create an AppDelegate file if your project does not already have one. Add the following lines to
the top to include

20

Kofax Mobile Capture SDK Developer's Guide

7. Depending on the features of your app, additional steps are required:

a. If the app connects to a server, review Apple's documentation regarding App Transport
Security.

b. If the app needs access the camera, extend your app's info.plist file with
NSCameraUsageDescription. See Apple’s documentation regarding Cocoa Keys.

c. If the app needs access to the Photos app, extend your app's info.plist file with
NSPhotoLibraryUsageDescription. See Apple’s documentation regarding Cocoa Keys.

Now that the basic project has been set up, you can begin developing your application and
incorporating other SDK elements.

Creating a Swift package for Kofax Mobile Capture SDK
If you want to create a Swift package to host the Kofax Mobile Capture SDK in your own
environment, use the package.swift and MobileSDK.xcframework files provided in this path, iOS/
Frameworks/MobileSDK/MobileSDK_XC_Combined/, and follow these instructions to add a local
Swift package in Xcode.

1. In the XCode project, select File > Add Packages > Add Local.

2. Select the Kofax Mobile Capture SDK package.

 To add the MobileSDK libraries, use Link binary with libraries in build phases.

3. In the header search path, add the following:
$(BUILT_PRODUCTS_DIR)/MobileSDK.framework/Headers

For more information, see the Xcode help.

Sample iOS projects
These sample projects guide you through the basic steps for capturing an image, reviewing and
performing image processing operations, sending the image to a server for data extraction,
and finally displaying the results. They are shipped with the product and can be found in iOS/
SampleApps/Native/SampleAppsX.X_iOS.zip

The following sample projects are included with the Kofax Mobile Capture SDK. In addition to these
sample projects, the Kofax Mobile Demo is listed near the end of this document.

To build these projects, use the version of Xcode specified in the Kofax Mobile Capture SDK Technical
Specifications.

Sample Project Description

CheckAnimation Demonstrates capturing an image with the Check
Experience. This sample shows how to initialize
the kfxKUIImageCaptureControl and set up
kfxKUICheckCaptureExperience with custom
configurations, and display a captured image with
kfxKUIImageReviewAndEdit.

21

Kofax Mobile Capture SDK Developer's Guide

Sample Project Description

DocumentGuides Demonstrates capturing an image with the
Document Experience. This sample shows how to
initialize kfxKUIImageCaptureControl and set up
kfxKUIDocumentCaptureExperience with custom
configurations, and display a captured image with
kfxKUIImageReviewAndEdit.

ImageProcessor

SwiftImageProcessor

Demonstrates image processing with the perfection
profile. This sample shows how to initialize and
set up kfxKENImageProcessor along with
kfxKEDImagePerfectionProfile, and display a
processed image with kfxKUIImageReviewAndEdit .

ServerAPI Demonstrates data extraction with the server API.
This sample shows how to send a processed image
to a server for data extraction and how to handle the
response.

OnDeviceExtractionSample

SwiftOnDeviceExtractionSample

ODECustomProviderSample

Demonstrates On-Device Extraction API for ID
documents. The sample shows how to initialize and
set up kfxKOEIDExtractor with server asset files and
display extracted fields.

BillCaptureSample

CheckCaptureSample

SwiftCheckCaptureSample

CreditCardCaptureSample

IDCaptureSample

PassportCaptureSample

Demonstrates capturing, image processing, and
extraction of corresponding documents with Packaged
Capture Experience.

PassportGuides

SwiftPassportGuides

Demonstrates capturing an image with the Passport
Experience. This sample shows how to initialize
the kfxKUIImageCaptureControl and set up
KFXPassportCaptureExperience with custom
configurations, and display a captured image with
kfxKUIImageReviewAndEdit.

IDVerification Demonstrates the mobile SDK's ID verification features
integrated with On Device ID Extraction. See the Kofax
Mobile ID Verification Administrator's Guide for more
details.

FixedAspectRatioGuides Demonstrates capturing an image with the Fixed
Aspect Ratio Experience. This sample shows how to
initialize kfxKUIImageCaptureControl and set up
KFXFixedAspectRatioCaptureExperience with
custom configurations, and display a captured image
with kfxKUIImageReviewAndEdit.

FixedAspectRatioWithFlash Captures an image with and without flash.

QuickExtractor Captures an image and reads data from the bar code and
MRZ.

QuickExtractorAgent Reads data from the bar code and MRZ.

22

Kofax Mobile Capture SDK Developer's Guide

Sample Project Description

NFCDemo Demonstrates scanning and reading data and validating
the certificate from an NFC-enabled passport.

The samples presented in the above table are recommended as a starting point for becoming
familiar with using the Kofax Mobile Capture SDK. These start from the bottom, where you will learn
how to capture an image with the set of available experiences, display the captured image in the UI
for review, process the image, and extract OCR data from a server.

 For information about setting up the SampleApps project in Xcode, see README.txt in the root
of SampleAppsX.X_iOS.zip.

Set up licensing
The first step is to set up the licensing information for the Kofax Mobile Capture SDK. Replace the
licensing string in the viewDidLoad method in CaptureViewController.m with the one provided
to you when you purchased the Kofax Mobile Capture SDK.

When the capture view controller is loaded, the licensing information is included. The view
controller sets itself as a delegate for getting messages from the kfxKUIImageCaptureControl
object.

Image capture
After the CaptureViewController has been fully created, an instance of the appropriate
capture experience (kfxKUICheckCaptureExperience, kfxKUIDocumentCaptureExperience,
or KFXPassportCaptureExperience, depending on the sample) is created with
imageCaptureControl and its criteria as parameters. The capture experience object provides an
interface that sets up a set of frames and messages that will help guide the user.

For example, you may want to define a smaller frame for capturing smaller documents such as a
business card or a credit card. The experience object also enforces constraints for taking the image,
which are specified through the criteria object. Some examples of the constraints are document
page detect, thresholds for stability, and pitch and roll. Only when the constraints are met will the
picture be taken. There is a way to ignore the constraints and force the application to take a picture
via a camera button in the toolbar.

Image review
Once the image has been taken, it will be available through the
imageCaptureControl:imageCapturedEvent delegate method. The image is retrieved and
passed to the ReviewViewController, which displays the object on the screen. This object also
provides an interface to crop the image. The user can return to the capture screen by pressing the
Close button.

The ImageProcessor and ServerAPI samples also provide functionality to pick a photo from the
gallery and use it as a captured image for review. They also perform image processing operations in
viewDidLoad from ReviewVewController.m.

23

Kofax Mobile Capture SDK Developer's Guide

Image processing
The captured image is provided to the image processing object along with the image perfection
profile. The image perfection profile provides an option to apply advanced image processing
options, which can be specified through a string or a file.

Once the image processing is completed, the processed image is provided through the delegate
method imageOut:withMsg:andOutputImage:. Then, the processed image is passed on for
review, instead of the captured image.

The ServerAPI sample passes a processed image to the Kofax Real-Time Transformation Interface
server for data extraction.

Data extraction
The processed image is sent to the Kofax Real-Time Transformation Interface server over an HTTP
connection. The Kofax Real-Time Transformation Interface server will have different URLs for
specific document types.

For example, the URL used for a Bill Pay document will be different than the URL used for a check
capture type document. The Kofax Real-Time Transformation Interface server extracts the relevant
data from the image.

For example, when a check image is sent, the Kofax Real-Time Transformation Interface server
will extract check-specific information such as the routing number, account number, and amount.
Similarly when a bill is sent, the Kofax Real-Time Transformation Interface server will extract bill
specific information such as biller name, address, account number, and amount due.

Results
The Kofax Real-Time Transformation Interface server sends the response in JSON format. The
sample application extracts the key/value pair from the JSON string and displays the result in a text
view.

Using the SDK with Android
Set up your Android project by following these steps. For more information, see the help that comes
with your Android development environment.

1. Go to the MobileSDK_Libs/aar/ folder and copy all of the contents into the libs/ folder for
your project.

2. In your project, insert the following lines into dependencies{} as shown:
repositories {
 flatDir {
 dirs 'libs'
 }
}
compile(name:'sdk-release', ext:'aar')

24

Kofax Mobile Capture SDK Developer's Guide

This code adds the libs as a flat file dependency and a reference to the SDK for compiling.

3. Add the following compile options to the application gradle file to enable Java 8 support, if
required by the application.
compileOptions {
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
}

4. If Android Studio is not used to build the application, merge the SDK strings and drawables
with the application Resources.

5. Open the gradle.properties file and make sure it has the following line:
android.useAndroidX=true

If the line does not exist or is set to false, add or change the line.

6. Update the application gradle file to support AndroidX and CameraX.

 Android Support Libraries are no longer supported. CameraX cannot be used along with
Camera.

Follow these steps:

a. Add the following line to support AndroidX in the dependencies{} section.
implementation "androidx.appcompat:appcompat:X.X.X"

Replace X.X.X with the version number of the library. The minimum version of AndroidX is
1.3.0.

b. If you are using CameraX, add the following lines:
//CameraX dependencies
 def camerax_version = "x.x.x"
 implementation "androidx.camera:camera-camera2:${camerax_version}"
 implementation "androidx.camera:camera-lifecycle:${camerax_version}"
 implementation "androidx.camera:camera-view:${camerax_version}"

The minimum version of CameraX is 1.1.0.

7. If you want to use the optional libraries for x86_64, do the following:

a. Remove the arm64-v8a and armeabi-v7a folders from the application libs folder.

b. Copy the x86_64 folder from the optional folder in the SDK to the application libs
folder

Now the basic project has been set up, so you can begin developing your application and
incorporating other SDK elements.

Selecting Camera or CameraX
Camera is used by default, and it is recommended as the most complete implementation.

You also have the option to use CameraX, but note the following limitations:
• The CameraX implementation in the SDK does not support Fragments. To display
ImageCaptureView, use AppCompactActivity.

25

Kofax Mobile Capture SDK Developer's Guide

• The activity that uses CameraX must have the orientation locked.
• Glare detection does not work with CameraX.
• CameraX cannot be used for selfie verification because it does not work with front/selfie capture.

To use CameraX, modify the XML file for your project by doing the following:

1. Locate the following declaration in your file:
<com.kofax.kmc.kui.uicontrols.ImageCaptureView
 android:id="@+id/icv_capture"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

</com.kofax.kmc.kui.uicontrols.ImageCaptureView>

If it is not in the file, add it.

2. Add the following lines (shown in bold) to the declaration.
<com.kofax.kmc.kui.uicontrols.ImageCaptureView
 xmlns:customtag="http://schemas.android.com/apk/lib/com.kofax.imagecaptureview"
 android:id="@+id/icv_capture"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 customtag:useCameraX="true">

 <androidx.camera.view.PreviewView
 android:id="@+id/kfx_camerax_preview"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>

</com.kofax.kmc.kui.uicontrols.ImageCaptureView

3. Save the file.

When you build the app, CameraX is used to render images and send preview frames for detection,
processing, and other imaging tasks.

Component names and descriptions for the Android SDK
Name Description

android-database-sqlcipher-x.x.x.jar
sqlite-2.0.1

SQLCipher for Android is a plugin to SQLite that provides full database
encryption.

bcpkix-jdk15to18-x.xx.jar The Bouncy Castle Java APIs for CMS, PKCS, EAC, TSP, CMP, CRMF, OCSP,
and certificate generation.

bcprov-jdk15to18-x.xx.jar The Bouncy Castle Crypto package is a Java implementation of
cryptographic algorithms.

bolts-android-x.x.x.jar
bolts-applinks-x.x.x.jar
bolts-tasks-x.x.x.jar

Library for work with asynchronous tasks used by many features.

card.io-x.x.x.x.jar Library for Credit Card capturing and extraction. Not needed if app
does not require Credit Card support.

commonextractionengine-
x.x.x.x.x.xxx.jar

OCR engine wrapper library for On-Device Extraction feature.

26

Kofax Mobile Capture SDK Developer's Guide

Name Description

commons-io-x.x.jar Library used for file copying by On-Device Extraction feature and SDK
sample apps.

commons-lang3-x.x.jar Apache library provides helper utilities for the java.lang API. It is used
by many features.

okhttp-x.x.x.jar
okio-x.x.x.jar

Libraries used for network connection by On-Device Extraction feature.

dagger-x.x.jar
javax.inject-x.jar

Framework for Dependency Injection to Android. It is used by many
features.

gson-x.x.x.jar Library for work with JSON format and used by Extraction feature.

isg-x.x.x.x.x.xxx.jar Library for image processing and edge detection. Used by capture,
image classification and document detection features.

jp2-android-x.x.jar JPEG-2000 image encoder and decoder for Android.

manatee-x.x.x.x.x.xxx.jar Library for Barcode capture, used in many features:
BarcodeCaptureVIew, On-Device Extraction, License capture.

mobilebarcodeparser-
x.x.x.x.x.xxx.jar

Library for On Device Extraction feature only.

otto-x.x.x.jar Library provides event bus functionality. Used by Image Capture View.
Needed if application requires capture feature.

sdk-release.aar AAR encapsulates all SDK features: the capture feature with guidance,
view controller for displaying an image, classes for bar code and
credit card capturing, image processing, classification, and document
detection, data extraction. It also contains utility classes for error
handling, working with licensing and for AppStats etc.

tesseract-x.x.x.x.jar Wrapper library for Tesseract OCR engine used for non-Latin characters
by the On-Device Extraction feature.

xvrs-x.x.x.x.x.xxx.jar New image processing and cropping library. Required for Fixed aspect
ratio experience and Image processor.

Removing optional libraries
If desired, the Kofax Mobile Capture SDK can be used without some libraries if corresponding
functionality is not required.
For example, the user may delete the Card IO native libraries (libcardioRecognizer.so,
libcardioRecognizer_tegra2.so, libcardioDecider.so) and card.io-x.x.x.x.jar if the Credit Card
Extraction feature is not used.
Also, the user may delete the libAtalaBar.so library if the BarCodeReader API and On-Device
Extraction (ODE) features are not used.
The user may also choose to delete the libBarcodeScannerLib.so library if the
BarCodeCaptureView LicenseCaptureView APIs, and On-Device Extraction features are not
used.
If non-Latin characters extraction for On-Device Extraction feature is not required, tesseract-
x.x.x.x.jar, libtess.so, and liblept.so can be deleted.

27

Kofax Mobile Capture SDK Developer's Guide

 KofaxMobileDemo app is not updated to have extra UI notifications, in case it is compiled
without the libAtalabar.so\libBarcodeReaderLib.so\libcardio*.so libraries.

Required libraries for Kofax Mobile Capture SDK functionality
Functionality Required .Jar files Required SOs

Capture Experience android-database-sqlcipher-X.X.X
commons-io-X.X
commons-lang3-X.X
dagger-X.XX
isg-X.X.X.X.X.XXX
javax.inject-1
otto-X.X.X
sqlite-X.X.X
xvrs-X.X.X.X.X.XXXX
sdk-release.aar or sdk-release.jar

libc++_shared
libdetection_based_tracker
libEvrsJniWrapper
libKfxEVRS
libopencv_java4
libopenjpeg
libsqlcipher
libXVrs
libsol_isg_mobile

IDVerification/
OnDeviceExtraction

android-database-sqlcipher-X.X.X
commonextractionengine-X.X.X.X.X.XXX
commons-io-X.X
commons-lang3-X.X
dagger-X.XX
gson-X.X.X
isg-X.X.X.X.X.XXX
javax.inject-1
manatee-X.X.X.X.X.XX.jar
mobilebarcodeparser-X.X.X.X.X.XX
sqlite-X.X.X
xvrs-X.X.X.X.X.XXXX
bolts-tasks-X.X.X
bolts-android-X.X.X
otto-X.X.X
sdk-release.aar or sdk-release.jar

libc++_shared
libdetection_based_tracker
libEvrsJniWrapper
libKfxEVRS
libopencv_java4
libopenjpeg
libsqlcipher
libbarcode_parser
libcommonextractionengine
libsol_isg_mobile
libXVrs

ImageProcessor android-database-sqlcipher-X.X.X
commons-io-X.X
commons-lang3-X.X
dagger-X.XX
javax.inject-1
sqlite-X.X.X
otto-X.X.X
xvrs-X.X.X.X.X.XXXX
sdk-release.aar or sdk-release.jar

libc++_shared
libdetection_based_tracker
libEvrsJniWrapper
libKfxEVRS
libopencv_java4
libopenjpeg
libsqlcipher
libsol_isg_mobile
libXVrs

28

Kofax Mobile Capture SDK Developer's Guide

Functionality Required .Jar files Required SOs

NFC bcpkix-jdk15to18-X.XX
bcprov-jdk15to18-X.XX
JP2ForAndroid-X.X.X
kofax-nfc-release
android-database-sqlcipher-X.X.X
commonextractionengine-X.X.X.X.X.XXX
bolts-tasks-X.X.X
bolts-android-X.X.X
commons-io-X.X
commons-lang3-X.X
dagger-X.XX
gson-X.X.X
javax.inject-1
sqlite-X.X.X
otto-X.X.X
xvrs-X.X.X.X.X.XXXX
isg-X.X.X.X.X.XXX
mobilebarcodeparser-X.X.X.X.X.XX
manatee-X.X.X.X.X.XX
sdk-release.aar or sdk-release.jar

libc++_shared
libdetection_based_tracker
libEvrsJniWrapper
libKfxEVRS
libopencv_java4
libopenjpeg
libsqlcipher
libbarcode_parser
libsol_isg_mobile
libXVrs

QuickExtraction android-database-sqlcipher-X.X.X
commonextractionengine-X.X.X.X.X.XXX
bolts-tasks-X.X.X
bolts-android-X.X.X
commons-io-X.X
commons-lang3-X.X
dagger-X.XX
gson-X.X.X
javax.inject-1
sqlite-X.X.X
xvrs-X.X.X.X.X.XXXX
manatee-X.X.X.X.X.XX
mobilebarcodeparser-X.X.X.X.X.XX
isg-X.X.X.X.X.XXX
sdk-release.aar or sdk-release.jar

libc++_shared
libdetection_based_tracker
libEvrsJniWrapper
libKfxEVRS
libopencv_java4
libopenjpeg
libsqlcipher
libbarcode_parser
libcommonextractionengine
libcommonextractionengine_tess
libsol_isg_mobile
libXVrs

Android APK split mechanism
Google supports publishing multiple APKs for a single application that are each targeted to different
device configurations. This is the best way to reduce the size of your application when using the
Kofax Mobile Capture SDK. The final application size will decrease by approximately 15 - 18 MB
(depending on architecture).

29

Kofax Mobile Capture SDK Developer's Guide

For example, if the universal APK is 21.3 MB, the sizes of the split APKs are 11.4 MB for arm64-v8a
and 11.8 MB for armeabi-v7a.

To enable the ABIs Splits mechanism, extend your gradle configuration with the following splits{}
closure inside the android{} closure in your build.gradle file:
android {
 ...
 splits {
 abi {
 enable true
 reset()
 include 'armeabi-v7a', 'arm64-v8a'
 universalApk true
 }
 }
}

Sample Android projects
These sample projects guide you through the basic steps for capturing an image, reviewing and
performing image processing operations, sending the image to a server for data extraction, and
finally displaying the results. They are shipped with the product and can be found in Android
\SampleApps\Native\SampleAppsX.X_Android.zip.

The following sample applications are included with the Kofax Mobile Capture SDK.

 The sample apps are here, and the Kofax Mobile Demo is near the end of this document.

Sample Project Description

CheckAnimation Demonstrates capturing an image with the
Check Experience. This sample shows how
to initialize the ImageCaptureView and set
up CheckCaptureExperience with custom
configurations, and display a captured image with
ImgReviewEditCntrl.

DocumentGuides Demonstrates capturing an image with the
document experience. This sample shows how
to initialize ImageCaptureView and set up
DocumentCaptureExperience with custom
configurations, and display a captured image with
ImgReviewEditCntrl.

ImageProcessor Demonstrates image processing with the
perfection profile. This sample shows how to
initialize and set up ImageProcessor along with
ImagePerfectionProfile, and display a processed
image with ImgReviewEditCntrl .

ServerAPI Demonstrates data extraction with the server API. This
sample shows how to send a processed image to a server
for data extraction and how to handle the response.

30

Kofax Mobile Capture SDK Developer's Guide

Sample Project Description

OnDeviceExtraction Demonstrates the On-Device Extraction API for ID
documents. The sample shows how to initialize and set
up OnDeviceIdExtractor with local asset files, and how
to display extracted fields.

ODEOverride Demonstrates how to customize On-Device Extraction.
This sample shows how to adapt the project providers,
and implement a cache.

PassportGuides Demonstrates capturing an image with the
passport experience. This sample shows how
to initialize ImageCaptureView and set up
PassportCaptureExperience with custom
configurations, and display a captured image with
ImgReviewEditCntrl.

IDVerification Demonstrates the mobile SDK's ID verification features
integrated with On Device ID Extraction. See the Kofax
Mobile ID Verification Administrator's Guide for more
details.

FixedAspectRatioGuides Demonstrates capturing an image with the Fixed
Aspect Ratio experience. This sample shows
how to initialize ImageCaptureView and set up
FixedAspectRatioCaptureExperience with custom
configurations, and display a captured image with
ImgReviewEditCntrl.

FixedAspectRatioWithFlash Captures an image with and without flash.

QuickExtractor Captures an image and reads data from the bar code and
MRZ.

QuickExtractorAgent Reads data from the bar code and MRZ.

NFCDemo Demonstrates scanning and reading data and validating
the certificate from an NFC-enabled passport.

DocumentGuidesCameraX Demonstrates capturing an image with CameraX
using the document experience. This sample shows
how to initialize ImageCaptureView with CameraX,
set up DocumentCaptureExperience with custom
configurations, and display a captured image with
ImgReviewEditCntrl.

The samples presented in the above table are recommended as a starting point for becoming
familiar with using the Kofax Mobile Capture SDK. These start from the bottom, where you will learn
how to capture an image with the set of available experiences, display the captured image in the UI
for review, process the image, and extract OCR data from a server.

Note the following:
• For details about setup of the SampleApps project in Android Studio please see the README.txt

file in the root of SampleAppsx.x_Android.zip.
• For configuration changes in building the sample apps, QuickExtractor, QuickExtractorAgent, and

IDVerification, see Integration of face detection.

31

Kofax Mobile Capture SDK Developer's Guide

Set up licensing
The first step is to set up the licensing info for the Kofax Mobile Capture SDK. Replace the licensing
string in the onCreate method in the main activity of the sample with the one provided to you
when you purchased the SDK.

Image capture
After the ImageCaptureView has been fully created, an instance of the appropriate
capture experience (CheckCaptureExperience, DocumentCaptureExperience, or
PassportCaptureExperience, depending on the sample) is created with imageCaptureControl
and its criteria as parameters. The capture experience object provides an interface that sets up a set
of frames and messages that will help guide the user.

For example, you may want to define a smaller frame for capturing smaller documents such as a
business card or a credit card. The experience object also enforces constraints for taking the image,
which are specified through the criteria object. Some examples of the constraints are document
page detection, thresholds for stability, and pitch and roll. Only when the constraints are met will
the picture be taken. There is a way to ignore the constraints and force the application to take a
picture via a camera button in the UI.

Image review
Once the image has been taken, it will be available through the listener that was set up with the
ImageCapturedEventListener method through addOnImageCapturedEventListener on
CaptureExperience object.

The image is retrieved and passed to the ImgReviewEditCntrl, which displays the object on the
screen. This object also provides an interface to crop the image. The user can return to the capture
screen by pressing the Back button.

The ImageProcessor and ServerAPI samples also provide functionality to pick a photo from the
gallery and use it as a captured image for review. They also perform image processing operations
upon pressing the Process button.

Image processing
The captured image is provided to the image processing object along with the image perfection
profile. The image perfection profile provides an option to apply advanced image processing
options, which can be specified through a string or a file.

Once the image processing is completed, the processed image is provided to the imageOut method
of the listener that was set up with the addImageOutEventListener from ImageProcessor.

Then, the processed image is passed on for review, instead of the captured image.

The ServerAPI sample passes a processed image to the Kofax Real-Time Transformation Interface
server for data extraction upon pressing the Send button.

32

Kofax Mobile Capture SDK Developer's Guide

Data extraction
The processed image is sent to the Kofax Real-Time Transformation Interface server over an HTTP
connection. The Kofax Real-Time Transformation Interface server will have different URLs for
specific document types.

For example, the URL used for a Bill Pay document will be different than the URL used for a check
capture type document. The Kofax Real-Time Transformation Interface server extracts the relevant
data from the image.

For example, when a check image is sent, the Kofax Real-Time Transformation Interface server
will extract check-specific information such as the routing number, account number, and amount.
Similarly when a bill is sent, the Kofax Real-Time Transformation Interface server will extract bill
specific information such as biller name, address, account number, and amount due.

Results
The Kofax Real-Time Transformation Interface server sends the response in JSON format. The
sample application extracts the key/value pair from the JSON string and displays the result in a text
view.

Obfuscating applications with ProGuard
Here are our recommendations for obfuscating SDK apps using ProGuard . The following options
need to be added to a ProGuard config file:
SDK specific rules
-dontwarn java.nio.**
-dontwarn org.codehaus.mojo.**
-dontwarn java.lang.reflect.**
-dontwarn java.lang.invoke.**
-dontwarn com.kofax.**
-keep class com.kofax.** { *; }
-keep enum com.kofax.** { *; }
-keep interface com.kofax.** { *; }
-dontwarn io.card.**
-keep class io.card.** { *; }

Gson specific rules
-keep class sun.misc.Unsafe { *; }
-keep class com.google.gson.examples.android.model.** { *; }
-keep class * implements com.google.gson.TypeAdapterFactory
-keep class * implements com.google.gson.JsonSerializer
-keep class * implements com.google.gson.JsonDeserializer

OkHttp3 specific rules
-dontwarn okhttp3.**
-dontwarn okio.**
-keep class okhttp3.** { *; }
-keep interface okhttp3.* { *; }

33

Chapter 4

In-depth look at the SDK

The following sections provide an in-depth look at the structure, organization, and capabilities of
the SDK. For details on the classes, methods, parameters, and so on, refer to the reference guide
that ships with the SDK.

Native interface object types
The native interface uses the following object types:
• Capture objects
• UI Control objects
• Engine objects
• Logistic objects
• Utility objects

Capture objects
Capture objects are containers for settings, preferences, results, and image data associated with
image capture and related data (such as index field or bar code data).

UI control objects
UI Control objects are the only objects in the library that display a user interface screen, and they
all involve an image display, either static or dynamic. These objects support capturing images,
reviewing images, or capturing bar code images and data.

UI Control objects do not represent an entire screen, but instead are intended as a view contained
within an application user interface screen. As such, these sizable objects can be controlled by
other UI elements (for example, buttons, sliders), which are external to the UI Control objects and
provided by the application.

Engine objects
Engine objects exist for image processing and classification. Each Engine object takes a single
image and outputs images or associated data.

34

Kofax Mobile Capture SDK Developer's Guide

Logistics objects
Logistics objects represent a means of accessing raw input resources from an external source (such
as a server) and submitting finished resources back to the same external source. An example would
be downloading document types through a Logistics object, and then using one of them to create
a document, add images and index fields to it, and then submit the finished document back to the
server.

 The logistics library can be used to connect to a Kofax TotalAgility server in the Kofax Azure
environment so you can, for example, retrieve document types, submit images, login, and so forth

Utility objects
These are miscellaneous objects that don't belong in the other object categories. Utility objects
include version objects to find the software version of individual libraries. You also use a License
object to set your usage license.

Capturing images overview
In order to add an image to a document, it is necessary to use a previously initialized Document
object. However, you can use capture images without associating those images with a document.

The Image Capture UI Control object provides an optimized means of capturing documents for
subsequent image processing operations. You can also pass in feedback settings so that the Page
Capture process displays an ImageCaptureFrame in a preferred orientation. The feedback helps
ensure quality pictures with the native camera. This object returns only unprocessed images.

When you call the takePicture method on the Image Capture object, the library will display a view
image screen of the specified size, in a rectangle of sufficient size to capture the image and still
leave room for buttons you may want in the application.

The library will capture the image and return the Image object with an event when all the enabled
feedback constraints are met, such as the camera is stable enough, level enough and oriented
correctly. Upon getting the Image Taken event, the application can associate that image with
any page of any Document object. The application must manage the images in a document. The
returned image is an unprocessed raw image.

Library feedback and controls
When the library first opens the view, it displays an image capture frame that is designed to
represent the form factor of the targeted document type. For instance, if the document type is for a
5 by 7 picture, the frame would have the same form factor, with the longest side along the longest
side of the view rectangle. This gives the user a visual cue of how to frame the picture. The library
uses the Image Capture Frame property of the Document type object associated with the Document
object that is passed into Image Capture.

The application can set the color and line attributes of this frame.

35

Kofax Mobile Capture SDK Developer's Guide

The application can also specify landscape or portrait orientation, and a threshold to specify how
close the image must be to that orientation. If the orientation is within this tolerance, the picture is
allowed to be taken. If the preferred orientation is portrait, the longest side of the document type
frame is shown on the shortest side of the view rectangle, to indicate that the user should hold the
device in the portrait orientation. If the preferred orientation is landscape, then the longest side of
the reference frame is shown on the longest side of the view rectangle, with the frame rectangle
aspect ratio expanded to fit within the view rectangle.

Also, the application can specify a stability setting such that the higher the value between 1 and
100, the more stable the camera must be held to take a picture.

Another type of feedback is camera levelness. The application can specify how level the camera
must be in relation to the work surface to help user to keep the camera at a certain angle when
taking a picture. You can set a threshold that specifies a plus/minus range around the preferred
angle. For instance if all pictures are taken from a drafting table at +30 degrees, the application
could set the preferred angle to +30, and the tolerance to +/- 5 degrees. If the pitch is within this
tolerance, the picture can be taken.

Levelness is measured on two axes, pitch and roll. Pitch is rotation about the short axis, roll is
rotation about the long axis, regardless of the orientation of the device.

Page detection
When using Page Detection, there is a noticeable amount of space needed around a sheet in order
for page detection to work properly (find the page). You can use the image frame to help ensure
that the user leaves an adequate margin.

If the frame is sized to be somewhat smaller than the image viewer, when capturing an image
the user will then naturally attempt to fit the sheet within the frame, thus helping to ensure an
adequate margin around the edges of the sheet.

 This only applies when using page detection. If pageDetect is set to False (iOS) or the
setPageDetectMode(PageDetectMode.OFF) method is called (Android), this margin is not
required.

Image Capture Control object
Can be found in UIControls.

The Image Capture Control object is a smart camera view that takes pictures in single-shot or
continuous mode. Features include user feedback cues to control levelness, camera shake, and
framing. In continuous mode, users can take pictures of multiple documents automatically without
explicitly tapping a "take photo" button in the application. Other properties of this object set the
location and size of the control within the app's user interface. All the UI controls necessary to
activate methods on the Image Capture control are provided by the application and are not part
of the SDK. Gestures are provided and available to the application through native device platform
events documented in the Android and iOS system API guides. The application is responsible for
creating and displaying any screen overlays that offer user feedback, such as "hold camera still."

36

Kofax Mobile Capture SDK Developer's Guide

Image Capture Control Object Diagram

Set camera resolution
Camera resolution can be set automatically by the SDK, or the application can choose from a list
of supported resolutions. This may be useful if the mobile devices has a higher resolution than
needed. By selecting a lower resolution the application can conserve memory, and process the
image faster. Additionally, bandwidth use will be reduced if the image is transferred via WiFi or the
cellular network.

This is controlled by the Resolution property in the Image Capture Control. The default value for
this property is automatic.

Camera LED lamp
The Image Capture View includes an API for controlling the camera's lamp. This allows the user of a
device to more easily capture a quality image in low light conditions.

When the lamp is used to constantly emit light, it is referred to as a torch. This is in contrast to the
momentary intense light emitted by a standard camera flash. The torch will be set through the
existing flash properties on the Image Capture View by using a torch value in the corresponding
enumerations. If the torch is unsupported on a particular device, an appropriate error will be raised.

For iOS
Use the flash kfxKUIFlashSetting enumeration.
typedef enum {
 ...
 kfxKUITorch = 3
} kfxKUIFlashSetting;

For Android
Use the Flash enumeration
public enum Flash {
 ...
 TORCH

37

Kofax Mobile Capture SDK Developer's Guide

}

 On some Android devices, when the torch is used, the device is slow to perform exposure
adjustments. If the image is taken before the exposure is set, it will appear washed out. This is
particularly true when moving from a dark to a light area with continuous capture enabled.

Auto-Torch
The Auto-Torch feature forces the camera to automatically engage the flash LED when the detected
luminance levels are too low. Therefore, if the user is pointing the camera at a poorly lit document,
it will detect that it needs to turn on the torch. This improves the odds of capturing a good image
even when lighting conditions are poor. The torch must be manually turned off.

The Flash enumeration includes an "AutoTorch" option that can be set in the ImageCaptureView.

 If the camera does not support Flash, an exception will be thrown.

Get/Set focus area
The Image Capture View includes an API for controlling the size and location of the area in the view
used for focusing the camera.

Device cameras typically focus by examining a small area of the image preview for contrasting
detail. By default, this area is usually in the center of the preview.

If there is insufficient contrasting detail in this center, then the camera is unable to accurately focus,
or in the worst case even be able to focus at all. Since some capture scenarios will result in a blank
area in the default focus area, the developer needs to be able to specify an alternate focus area
within the view.

Because the underlying capabilities of iOS and Android are very different, the Image Capture View
exposes different APIs for them. The following API properties are included:
• defaultFocusPoint (iOS)
• canSetFocusPoint (iOS)
• focusPoint (iOS)
• maxFocusAreas (Android)
• focusAreas (Android)

For iOS
@interface kfxKUIImageCaptureControl : NSObject
 @property (readonly) CGPoint defaultFocusPoint;
 @property (readonly) BOOL canSetFocusPoint;
 @property (nonatomic) CGPoint focusPoint;
@end

For Android
public class ImageCaptureView extends RelativeLayout {
 public int getMaxFocusAreas ();
 public List<Rect> getFocusAreas ();

38

Kofax Mobile Capture SDK Developer's Guide

 public void setFocusAreas (List<Rect> areas);
}

Set camera type
For devices with multiple cameras, the cameraLensType in the kfxKUIImageCaptureControl class
enables you to select the lens for capturing images. You can set one of the following options:

• kfxKUIDefaultCamera
• kfxKUIUltraWideCamera
• kfxKUIBuiltInTripleCamera

The kfxKUIBuiltInTripleCamera or kfxKUIUltraWideCamera value is recommended to capture ID-
sized documents.

The kfxKUIDefaultCamera value is recommended to capture other than ID sized documents.

If the device does not have triple or ultra-wide lenses, Kofax Mobile Capture SDK uses the default
camera.

The canSetCameraLens method, in the kfxKUIImageCaptureControl class, detects whether selected
camera lens is available on the device.

 If you use kfxKUIDefaultCamera to capture ID-sized documents, use portrait capture with
iPhone 13 (not the Pro and Pro Max models).

Real-Time video feed
PreviewFrameEvent gives the developer access to video frames in near real-time. This makes it
possible to perform application level logic on the contents of the video frame such as OCR or MICR
data processing on each frame. The event is fired when a preview frame is ready from the camera.
The event data includes the image data, and enough information to decode the data as a bitmap.

The real-time video feed capability also supports the following:
• CheckDetector class: This class, in the Engines suite of classes, is used to perform check

detection. The class accepts an image and returns a CheckDetectionResult object with
properties for the following:
• Original image
• Enum indicating check detection status (values for None, CheckFrontDetected, and
CheckBackDetected)

• Coordinates of the detected check in the original image
• Subsampled image containing only the detected check image

The returned object also contain check capture guidance: zoom, horizontal/vertical movement,
and rotation.

• MICR parser: This class is in the Utilities suite of classes that extracts segments from a check
MICR after check detection. The class accepts MICR extraction results from one of the algorithms
used for check detection, and conditionally extracts the routing number, account number, and
check number. A method in the Image object searches the image processing metadata for

39

Kofax Mobile Capture SDK Developer's Guide

MICR data obtained by processing a check image. It returns the MICR data line as a string. MICR
detection only applies to the front side of the check.

Check Capture Experience
The CheckCaptureExperience is an interface that provides user guidance to aid the user in
capturing a quality image of a check. During use, the user is guided to take a picture of a check with
a series of text messages that pop up on the screen. There are several properties to allow the user
to customize the experience, including:
• Capture messages

• userInstruction: Displayed when the camera is first launched, instructing the user on how
best to capture the check.

• holdSteadyMessage: Displayed to the user to hold the device steady if the device is almost
ready to capture an image.

• centerMessage: Displayed when the check is off center in the view finder.
• zoomOutMessage: Displayed to the user if the check is too close to the camera.
• zoomInMessage: Displayed to the user if the check is too far from the camera.
• capturedMessage: Displayed to the user after a check is successfully captured.
• holdParallelMessage: Displayed to the user when the device is not held level.
• rotateMessage: Displayed to the user when the check is rotated in the view finder.

There are also several properties that allow the user to customize the appearance of each capture
message.

• Booleans
• vibrationEnabled: A settable property to enable or disable haptic feedback when an image

has been captured.
• tutorialEnabled: A settable property to enable or disable the capture demonstration (visual

demo that displays where the check should ideally be placed in the screen).
• Images

• tutorialSampleImage: The sample image displayed when the capture demonstration is
enabled

• Colors
• outerViewFinderColor: a property that sets the color of the outer rectangle (the border).

Essentially, this is the part that isn't the check.
• Other Properties

• checkSide: A settable property to enable detection of either the front or back side of a check.
• checkDetectionSettings: Contains the criteria that must be met for the detected check to

be captured. The user can change these settings to make the check easier or harder to capture.

 Devices that do not support 1080p or greater should use the Document Capture Experience
for checks instead of the Check Capture Experience. The Check Capture Experience requires 1080p
or greater for accurate check detection.

40

Kofax Mobile Capture SDK Developer's Guide

Document Capture Experience
The Document Capture Experience is an interface that displays messages to guide the user
to capture a quality image of a document. It is designed to behave just like the Check Capture
Experience, but is generalized to work for many document types.

The Document Capture Experience has most of the same properties as the Check Capture
Experience, and can be configured identically. In addition, the Document Capture Experience
includes the longAxisThreshold and shortAxisThreshold, which can be used to further specify
how the document should fit within the frame and the Document Capture Experience.

The DocumentCaptureExperience is a subclass of the DocumentBaseCaptureExperience,
which is also the superclass of the CheckCaptureExperience.

Passport Capture Experience
The Passport Capture Experience is an interface that displays messages to guide the user to capture
a quality image of a passport. It is designed to behave just like the Check and Document Capture
Experience, but is based on the real-time extraction of MRZ (Machine Readable Zone) lines.

The Passport Capture Experience has most of the same properties as Check Capture Experience,
and can be configured identically. In addition, the Passport Capture Experience includes
aspectRatioTolerance, which can be used to specify an acceptable window for aspect ratio of
the passport.

The PassportCaptureExperience is a subclass of the DocumentBaseCaptureExperience.

 We do not recommend using the torch or flash when capturing passports, since passports
usually have laminated pages. The developer needs to set the Mobile SDK autotorch and flash
APIs to OFF while using the Passport Capture Experience.

Flash capture for the Passport Capture Experience
Flash capture can be used with the Passport Capture Experience. Create an
instance of KFXFixedAspectRatioCaptureExperienceCriteriaHolder (iOS) or
FixedAspectRatioExperienceCriteriaHolder (Android) and use the following code to enable
the feature:

iOS
KFXPassportCaptureExperienceCriteriaHolder *criteria =
 [[KFXPassportCaptureExperienceCriteriaHolder alloc] init];
 criteria.flashCaptureEnabled = YES;

Android
PassportCaptureExperienceCriteriaHolder criteriaHolder = new
 PassportCaptureExperienceCriteriaHolder();
 criteriaHolder.setFlashCaptureEnabled(true);

41

Kofax Mobile Capture SDK Developer's Guide

Fixed Aspect Ratio Capture Experience
The FixedAspectRatioCaptureExperience is an interface that displays messages to guide
the user to capture a quality image of any document with a known aspect ratio. It will provide
"Hold Steady" guidance only when the aspect ratio of the document and target frame are defined,
such as when capturing credit cards or ID cards. The document is detected when it matches the
target frame, or its sides, with a defined tolerance. The target frame sides are highlighted when
it matches the document edges to provide intermediate user guidance. Once the document is
detected (all four target frame sides are highlighted and document corners are found) the "Hold
Steady" guidance will be displayed. This also includes the ability to take a picture of any document
by holding it in hand until document edges are strong enough for detection.

The Fixed Aspect Ratio Capture Experience has most of the same properties as the Document
Capture Experience, and can be configured identically. The exception is that the following messages
are not supported for this experience: centerMessage, zoomOutMessage, zoomInMessage, and
rotateMessage. By default all guidance messages are set to portrait orientation.

The FixedAspectRatioCaptureExperience is a subclass of the
DocumentBaseCaptureExperience.

Glare reduction for the Fixed Aspect Ratio Capture Experience
The Fixed Aspect Ratio Capture Experience can remove glare by using these properties:
• glareDetectionEnabled: Enables glare detection and launches tilted experience when there is

glare on the image.
• launchGlareRemoverExperience: Launches the experience so that the user must capture at

two different angles.
• tiltAngle: Angle to which device should be tilted in order to capture second image.
• tiltDeviceUpMessage: Message to prompt the user to tilt the device up.
• tiltDeviceForwardMessage: Message to prompt the user to tilt the device forward.

Flash capture for the Fixed Aspect Ratio Capture Experience
Flash capture can be used with the Fixed Aspect Ratio Capture Experience. Create an
instance of KFXFixedAspectRatioCaptureExperienceCriteriaHolder (iOS) or
FixedAspectRatioExperienceCriteriaHolder (Android) and use the following code to enable
the feature:

iOS
KFXFixedAspectRatioCaptureExperienceCriteriaHolder* criteria =
 [[KFXFixedAspectRatioCaptureExperienceCriteriaHolder alloc] init];
 criteria.flashCaptureEnabled = YES;

Android
FixedAspectRatioExperienceCriteriaHolder criteriaHolder = new
 FixedAspectRatioExperienceCriteriaHolder();
 criteriaHolder.setFlashCaptureEnabled(true);

42

Kofax Mobile Capture SDK Developer's Guide

Selfie Capture Experience
The Selfie Capture Experience is an interface that displays messages to guide the user to take a
intelligible Selfie. It is designed to perform a liveness check by looking for eye blinks.

During use, the user is guided by a series of text messages that pop up on the screen. There are
several properties that allow the user to customize the experience, including:
• UserInstructionMessage: Displayed when the camera is first launched, instructing the user on

how best to capture the selfie.
• BlinkMessage: Displayed after the user properly aligns his face in the target frame, instructing

the user to blink his eyes.
• capturedMessage: Displayed to the user after a selfie is successfully captured.
• outerViewFinderColor: A property that sets the color of the target frame outer view.
• frameColor: A property that sets the color of the target frame border.
• TaptoCaptureMessage: Displayed after the user's face is properly aligned in the target frame.

The message instructs the user to tap the screen to capture.

The Selfie Capture Experience has configurable selfie detection properties, which include
MinimumFaceSize, CenterPoint, TargetFrameAspectRatio, PaddingPercent
and FaceAngleTolerance. The SelfieCaptureExperience is a subclass of the
SelfieBaseCaptureExperience.

The Selfie Capture Experience has been extended to support near and far manual capture of selfie
for better liveness detection.

Integration of face detection
The Selfie Capture Experience has a dependency on the MLKIT. There are two ways to integrate face
detection:
• A bundled model which is part of your app.
• An unbundled model that depends on Google Play Services.

The two models are the same. If you select the unbundled model, the app will be smaller.

Bundled model
Models are statically linked to your app at build time. Add the following code to the build.gradle file:
dependencies {
// Use this dependency to bundle the model with your app
implementation 'com.google.mlkit:face-detection:16.1.2'
}

Unbundled model
The unbundled model is dynamically downloaded via Google Play Services while installing the
application.

1. Add the following code to the build.gradle file:
dependencies {

43

Kofax Mobile Capture SDK Developer's Guide

 //Use this dependency to use dynamically downloaded model in Google Play
 Service
 implementation 'com.google.android.gms:play-services-mlkit-face-
detection:16.2.0'
}

2. If you choose to use Google Play Service way, you can configure your application to
automatically download the model to the device after your application is installed from the Play
Store. To do so, add the following declaration to your app's AndroidManifest.xml file:
<application ...>
...
 <meta-data
 android:name="com.google.mlkit.vision.DEPENDENCIES"
 android:value="face" />
 <!-- To use multiple models: android:value="face,model2,model3" -->
</application>

Required code changes
The following changes need to be made to the code for these apps:

1. In the gradle.properties file, add AndroidX support with the following code:
android.useAndroidX=true

2. Update supporting libraries with AndroidX dependencies.

3. Add this code snippet to ignore Kofax libraries:
dependencies {
implementation fileTree(dir: '../libs', exclude: ['javax.inject-1.jar' ,
'okhttp-3.10.0.jar' , 'okio-1.14.0.jar'], include: ['*.jar'])
}

4. Exclude the following text file:
packagingOptions {
 exclude 'androidsupportmultidexversion.txt'
}

Packaged Capture Experience
A suite of Activities (Android) and View-Controllers (iOS) is exposed as part of the SDK to aid with the
development of end-to-end capture experiences. The SDK API design is based on the Model-View-
Controller pattern.

An application passes control of the entire screen while invoking the appropriate Capture View-
Controller. The capture View-Controller encapsulates image capture, including user interface
elements and settings specific to image processing and data extraction for each situation.

Once the image is captured, processed, and extracted, the result will be returned to the calling
application as an appropriate Data Model class .

To configure the capture experience before starting it, an application needs to use a Parameters
object from the Model. For example, setting the front or back of the check before calling the
CheckCaptureViewController should be done using the CheckCaptureParameters class.

44

Kofax Mobile Capture SDK Developer's Guide

 For iPhone, the Packaged Capture Experience is only supported on iOS 13 and above.

Activities and view controllers
This experience is based on the Model-View-Controller pattern. The following View- Controllers
(Activities) implement the necessary capture experiences:

iOS
• kfxCheckCaptureViewController
• kfxBillCaptureViewController
• kfxIdCaptureViewController
• kfxPassportCaptureViewController
• kfxCreditCardViewController

Android
• CheckWorkflowActivity
• BillWorkflowActivity
• IdWorkflowActivity
• CreditCardWorkflowActivity
• PassportWorkflowActivity

The application will pass control of the entire screen while invoking the appropriate Capture View-
Controller. The capture View-Controller encapsulates image capture, as well as UI elements and
settings specific to image processing and data extraction for each situation.

Once the image has been captured, processed, and extracted, the result will be returned as an
appropriate Data Model class to the calling application. To configure the capture experience before
starting it, the application needs to use a Parameters object from the Model. For example, setting
the front or back of the check before calling CheckCaptureViewController should be done using
the CheckCaptureParameters class.

When referencing the JAR file format from the Kofax distribution (as opposed to the AAR file
format), you will need to add a number of Activity declarations to the <Application> node in your
application's AndroidManifest.xml before using the Packaged Capture Experiences.

Also, because the views associated with these Activities are designed to work in a specific
orientation, do not change the extra orientation attributes in the XML, as doing so will affect their
performance. The activity declarations are as follows:

<activity
 android:name="com.kofax.mobile.sdk.capture.check.CheckExtractActivity"
 android:configChanges="keyboardHidden|orientation|screenSize"
 android:screenOrientation="landscape" />
<activity
 android:name="com.kofax.mobile.sdk.capture.check.CheckCaptureActivity"
 android:configChanges="keyboardHidden|orientation|screenSize"
 android:screenOrientation="landscape" />
<activity

45

Kofax Mobile Capture SDK Developer's Guide

 android:name="com.kofax.mobile.sdk.capture.check.CheckWorkflowActivity"
 android:configChanges="keyboardHidden|orientation|screenSize"
 android:screenOrientation="landscape" />
<activity
 android:name="com.kofax.mobile.sdk.capture.ImageReviewActivity"
 android:configChanges="keyboardHidden|orientation|screenSize"
 android:screenOrientation="portrait" />
<activity
 android:name="com.kofax.mobile.sdk.capture.ProcessActivity"
 android:configChanges="keyboardHidden|orientation|screenSize"
 android:screenOrientation="landscape" />
<activity
 android:name="com.kofax.mobile.sdk.capture.bill.BillExtractActivity"
 android:configChanges="keyboardHidden|orientation|screenSize"
 android:screenOrientation="landscape" />
<activity
 android:name="com.kofax.mobile.sdk.capture.bill.BillCaptureActivity"
 android:configChanges="keyboardHidden|orientation|screenSize"
 android:screenOrientation="landscape" />
<activity
 android:name="com.kofax.mobile.sdk.capture.bill.BillWorkflowActivity"
 android:configChanges="keyboardHidden|orientation|screenSize"
 android:screenOrientation="landscape" />
<activity
 android:name="com.kofax.mobile.sdk.capture.id.IdExtractActivity"
 android:configChanges="keyboardHidden|orientation|screenSize"
 android:screenOrientation="landscape" />
<activity
 android:name="com.kofax.mobile.sdk.capture.id.IdCaptureActivity"
 android:configChanges="keyboardHidden|orientation|screenSize"
 android:screenOrientation="landscape" />
<activity
 android:name="com.kofax.mobile.sdk.capture.id.IdCaptureBackActivity"
 android:configChanges="keyboardHidden|orientation|screenSize"
 android:screenOrientation="landscape" />
<activity
 android:name="com.kofax.mobile.sdk.capture.id.IdWorkflowActivity"
 android:configChanges="keyboardHidden|orientation|screenSize"
 android:screenOrientation="landscape" />
<activity
 android:name="com.kofax.mobile.sdk.capture.passport.PassportExtractActivity"
 android:configChanges="keyboardHidden|orientation|screenSize"
 android:screenOrientation="landscape" />
<activity
 android:name="com.kofax.mobile.sdk.capture.passport.PassportCaptureActivity"
 android:configChanges="keyboardHidden|orientation|screenSize"
 android:screenOrientation="landscape" />
<activity
 android:name="com.kofax.mobile.sdk.capture.passport.PassportWorkflowActivity"
 android:configChanges="keyboardHidden|orientation|screenSize"
 android:screenOrientation="landscape" />
<activity
 android:name="com.kofax.mobile.sdk.capture.creditcard.CreditCardWorkflowActivity"
 android:configChanges="keyboardHidden|orientation|screenSize"
 android:screenOrientation="landscape" />
<activity
 android:name="io.card.payment.CardIOActivity"
 android:configChanges="orientation" />
<activity
 android:name="com.kofax.mobile.sdk.capture.creditcard.CardIoWrapperActivity" />

46

Kofax Mobile Capture SDK Developer's Guide

 When using the Android Package Capture Experience to capture documents, the default
implementation for the IImageStorage -- used to transfer bitmaps between activities -- is the
ContextImageStorage. ContextImageStorage uses a static HashMap to store images by ID.
It's important that captured images are removed and recycled by your application as soon as you
are done using them, otherwise memory leaks will occur. Removing images and recycling can be
done by calling removeImage(String id); on the IImageStorage instance with the ID of the
image you'd like to remove. Subsequently calling recycle() on the returned bitmap is required to
release the bitmap data in memory immediately. Once all references to the bitmap are cleared,
the bitmap will be eligible for garbage collection, avoiding leaks.

 To be clear: io.card.payment.CardIOActivity does not support non-embossed cards.

Model classes
iOS
• kfxCaptureData (Image data includes captured image and processed image)
• kfxCheckData : kfxCaptureData

• kfxCheckIQAData

• kfxCheckUsabilityData

• kfxBillData : kfxCaptureData

• kfxIDData : kfxCaptureData

• kfxPassportData : kfxCaptureData

• kfxCreditCardData : kfxCaptureData

Android
• Bill

• Check

• CheckIQAData

• CheckUsabilityData

• ID

• Passport

• IImageStorage for captured and processed images

Capturing both sides of a document
Some documents have important information on both sides, such as checks and IDs. In such
cases, both sides of the document may need to be captured. For improved accuracy, data
extraction should be performed for both sides during the same session. To support this case, the
corresponding document parameters will expose an API to set up processing an image for the
other side of the document.

1. Set up a document capture ViewController/Activity for one side with extraction turned off.

47

Kofax Mobile Capture SDK Developer's Guide

2. Store a processed image with document data that will be available when the ViewController/
Activity delegate/listener gets called.

3. Set up a second document capture ViewController/Activity for the other side of the document
with extraction enabled. Set the appropriate image processing parameters for each image and
process both of them.

Stability delay
The application can specify a stability threshold between 0 and 100. The higher the threshold, the
more steady the camera must be held. If phone jitter is less than or equal to the stability threshold,
the picture can be taken. This has the effect of delaying the image capture until the camera is
sufficiently stable.

A value of zero turns the stability delay function off.

Once the threshold is set, the application calls enableEvents, which returns events with raw
information about camera stability (as well as position and orientation). When all criteria are met,
the application can call the takePicture method.

If the thresholds are easily met, the library takes a picture and sends an image captured event
almost immediately.

To give the library more control over taking an image, set the thresholds to a narrower range.
For example, if the stability threshold is set to 100, the image cannot be taken until the camera is
perfectly steady. The library monitors all enabled feedback thresholds and does not allow the image
to be taken until all criteria are satisfied.

Optionally, the application may still enable the feedback events, so that text cues ("such as hold the
camera still ") can be presented to the user. The cues disappear when the feedback events indicate
the criteria are met.

The application specifies how often (such as every 200 milliseconds) the library generates feedback
events.

iOS

@interface kfxKUICaptureExperienceCriteriaHolder : NSObject
@property (nonatomic) BOOL stabilityThresholdEnabled;
@property (nonatomic) int stabilityThreshold;
@end

Android

public class CaptureExperienceCriteriaHolder {
 public boolean isStabilityThresholdEnabled();
 public void setStabilityThresholdEnabled(boolean stabilityThresholdEnabled);
 public int getStabilityThreshold();
 public void setStabilityThreshold(int stabilityThreshold);
}

48

Kofax Mobile Capture SDK Developer's Guide

Page detection mode
When capturing images (not bar codes), you can call the setPageDetectMode method to:
• Disable page detection
• Enable page detection only when stability and levelness thresholds are met.
• Enable page detection regardless of thresholds

When one of the second two modes is enabled, page detection events will be fired. The second
mode will not allow a user to make any decisions about acceptability in the handler. In "automatic"
mode, the control is already in the middle of a taking picture call when the event is raised.

However, when the third mode is enabled, the application can determine if it is OK to take a picture
based on the page fully using the frame.

The PageDetected event (Android) or delegate (iOS) is raised when a page is detected in the
camera preview frame. The detected page coordinates, as well as the preview image used for page
detection, are passed to the event handler.

You can use the setPageDetectMode method (Android) or the pageDetect property (iOS) alone
or in combination with the other feedback criteria such as levelness and focus. There are some
limitations, see the API Reference guide.

You can also choose to use preview images from the video stream instead of taking discrete images.
useVideoFrame is a property of the image capture control which determines if the preview image
is passed directly to the imageCaptured event handler, or if a higher-resolution image is captured
first before being passed to those handlers.

Image Capture Frame object
Can be found in UIControls.

The Image Capture Frame object contains properties that define a camera preview frame that
serves as a guide for users taking pictures of documents. Much like a picture frame for the
document in the viewer window, the guide helps ensure that all page edges are included in the
frame. A border is left around the page edges in the final image, which assists image processing.
The application can specify certain characteristics of the frame.

The frame generated by this object can be used to represent the aspect ratio of the target
document. For instance, if the document type is for a 5 by 7 page, the frame would have the same
form factor, with its longest side parallel to the longest side of the view rectangle.

This gives the user a visual cue of how to frame the picture. The library uses the Image Capture
Frame property of the Document type object associated with the Document object passed into
Image Capture. The application can also set the color and line attributes of this frame.

The application can also specify a way to make sure the image is taken in a particular landscape or
portrait orientation, and a threshold to specify how close to that orientation the camera must be
held. If the orientation is within this tolerance, the picture can be taken.

49

Kofax Mobile Capture SDK Developer's Guide

Portrait target frame
There are two ways that the SDK capture experience works with the target frame, depending on the
document type:

For generic document types, the SDK supports portrait target frame mode.
DocumentCaptureExperience and DocumentDetector are set up for this purpose. This allows the
camera preview to be displayed on the device in Portrait mode, and at the same time, the Target
Frame to be displayed in a Landscape mode (for example; when capturing Credit Cards while
holding the phone in a Portrait orientation).

If the aspect ratio is greater than 1.0, the long edge of the target frame will align with the long
edge of the camera preview or image. If the aspect ratio is less than 1.0, the SDK will NOT invert the
aspect ratio value. When the aspect ratio is less than 1.0, the long edge of the target frame will align
with the short edge of the camera preview or image.

For check and passport documents types, the SDK does not support portrait target frame mode. In
other words the SDK does not support an aspect ratio of less than 1.0.

If the aspect ratio is less than 1.0, it will be inverted. Meaning that the long edge of the target frame
will always be aligned with the long edge of the camera preview or image.

To set the aspect ratio:

iOS: Set the targetFrameAspectRatio property of kfxKEDCheckDetectionSettings,
kfxKEDDocumentDetectionSettings, or KFXPassportDetectionSettings.

Android: Set the setTargetFrameAspectRatio property of CheckDetectionSettings,
DocumentDetectionSettings, or PassportDetectionSettings

The following detection settings for the portrait target frame mode are recommended:
• MinFillFraction = 0.65
• MaxFillFraction = 1.1
• ToleranceFraction = 0.07
• MaxSkewAngle = 10

Image Review and Edit control
Can be found in UIControls.

The Image Review and Edit Control object provides a means for the application to display an
image (processed or unprocessed) to the user for review or edit. The application explicitly calls the
ImageProcessing object to perform the actual image processing operation according to the user’s
preferences.

The two main features are Zoom and Set Page Boundaries. Zoom allows the user, via platform
specific gestures, to magnify the image to see more detail. Set Page Boundaries provides a UI
control for setting the boundaries of a selection area (typically the page boundaries) for subsequent
cropping and rectangularization by the application.

50

Kofax Mobile Capture SDK Developer's Guide

 The application is responsible for creating and displaying any screen overlays that offer user
feedback, such as "image blurry."

Image Review and Edit Control Object Diagram

The Image Review and Edit Control object shows a view of an image to crop. The library provides
this object to view and define cropping points, but it doesn't actually crop the image. To actually
crop the image, call the Image Processor.

The Review and Edit object can optionally show a cropping tetragon. The user can move the sides
and corners independently to set page boundaries within the image.

Transform an image
In most cases the captured image of a rectangular object will not be rectangular in the image
viewer because the camera will not be perfectly parallel to the object being imaged. In some cases
the induced perspective may make the image unusable.

In other cases the image may be too large or small.

These issues can be corrected or mitigated by displaying a tetragon shape around the object on
the screen using the cropTetragon property of the Image Review and Edit control. The application
reads out the cropTetragon property to retrieve the final corners as adjusted by the user. Then the
application supplies the cropTetragon via a BasicSettingsProfile to the Image Processor, and
finally calls the processImage to crop and correct the shape of the distorted image.

Highlight extracted data
In order to provide a better user experience, the displayed data can be marked with a highlight in
the image preview once the returned coordinates of the extracted data have been used to specify
the location and display the highlight in your own application.

The highlights can be invoked by calling showHighLights (BoundingRect) after the bitmap or
image file path of a processed image has been set in the ImgReviewEditCntrl class

51

Kofax Mobile Capture SDK Developer's Guide

Call the clearHighlights() method to remove highlights.

 The highlight feature can only be used on a processed image. It will not work with a raw
image.

The showHighlights method is invoked from an application to pass an array of BoundingRect.
This array consists of set of coordinates where the highlights are to be drawn.

The default highlight color of highlight is yellow, and is configurable. Whenever a new color is set,
the view is redrawn to reflect that color in the highlights.

 This feature is not supported on devices with 512 MB of RAM or less. The highlights may not
display on such devices.

Indicating the crop area
Indicate the crop area by touching and dragging the edges or corner points of the tetragon.

When the control displays a view of an image, you can adjust the desired crop area by touching
a horizontal edge and dragging it vertically to a new position, or by touching a vertical edge and
dragging it horizontally up or down to a new position. The library prevents you from dragging an
edge beyond the opposite edge. As long as you do not touch and drag the corners, you can adjust
the crop area without changing the corner angles.

You can also crop by touching a corner and dragging it to a new position. Corners cannot be
dragged across or overlap a side. After dragging corners, the result would be a tetragon, most likely
with nonparallel opposite sides.

The result is a set of four point coordinates in pixels. The control stores this data in the Image object
as the image is edited. The application uses buttons or some other mechanism to indicate when the
user is done manipulating the cropping frame. For instance, if you have a crop button, the button
action in the application accesses the point coordinates in the Image object and destroys the view,
and then the application decides what to do next.

The application logic can then perform image processing to crop the image. You can decide what
the application should do with these four points, as described below.

Crop using a rectangle or tetragon as adjusted by the user
To crop the image using the tetragon as adjusted by the user, the application first reads the
cropTetragon property to retrieve the final corners as adjusted by the user. Then the application
supplies the cropTetragon via a BasicSettingsProfile to the Image Processor, and finally calls
the processImage method passing the distorted image. If the tetragon coordinates correspond
close enough to a true rectangle (all corner angles near 90 degrees), the image processor does not
stretch and fit (rectangularize) the image.

52

Kofax Mobile Capture SDK Developer's Guide

Image object
Can be found in Engines.

The Image object contains an in-memory (and optional) image file-based representation of an
image. The image file-based representation is subdivided into stored-file and memory-buffered file
representations. Refer to the imageWriteToFileBuffer method of the Image object for more details.
The Image object can contain results of operations performed on the Image object by the Image
Processor or Image Classifier objects.
• imageQuickAnalysisFeedback contains the results of a quick analysis performed on an input

image by the image processor. This is null until quick analysis is performed.
• The classificationResult array contains the results of a classification process performed by

the image processor, one result for each possible classification. This array is empty until a
classification is performed on an image.

• The imageBarCodes array is empty unless the object is created by the bar code UI control
process.

A typical way for an Image object to be created is via the Image Capture Control object. This control
will capture the image and return the Image object with an event when all the enabled guidance
criteria are met, such as the camera is still enough, level enough and oriented correctly. The Image
returned by the Image Capture control is an unprocessed image. After getting the image taken
event, the application can perform various editing operations on the image and it can associate that
image with any page of any document.

The application should use the processImage (ImageProcessor object) and file I/O methods (Image
object) carefully. You can do a file write in parallel to an image processing operation, but you cannot
do more than one image processing operation in parallel, and attempts to do this will result in a
error.

The Image object indicates if the image is represented in a bitmap or in a file (stored or buffered),
or both bitmap and file. The application could write the image to a file and also keep the image in
memory, but such an approach may encroach on memory limits.

Recommended mime types
• For black and white image storage, the recommended mime type is TIFF. For black and white

TIFFs, the Kofax Mobile Capture SDK uses G4 compression, which is lossless and much more
space efficient than PNG at this color depth.

• For grayscale and color image storage, the recommended mime type is JPEG, unless lossless
compression is required by the customer’s application, in which case the recommendation is
PNG.

 Apps should not use the Kofax Mobile Capture SDK to create color TIFF images. Attempting to
open such images may cause problems on certain mobile OS platforms.

53

Kofax Mobile Capture SDK Developer's Guide

Date and time stamps
The Image.imageWriteToFile and Image.imageWriteToFileBuffer methods store three EXIF
(Exchangeable Image File) tags for date and time into the output image file metadata (JPEG and
TIFF only).
• DateTime (code 0x132)
• DateTimeDigitized (code 0x9004)
• DateTimeOriginal (code 0x9003)

If the imageReadFromFile method has been used with this Image object, ImageWriteToFile
writes any JPEG or TIFF date and time stamps from the read image file "as is" into the output file
metadata.

Otherwise, ImageWriteToFile writes internally generated EXIF metadata into the new JPEG or TIFF
file as follows (all times adjusted to GMT):

The EXIF tags DateTime and DateTimeDigitized are generated based on the date and time the
image object was created.

EXIF tag DateTimeOriginal is normally generated the same way as the other two EXIF tags, but there
is a difference when the given image was created as a result of image processing. In such cases,
imageWriteToFile will generate the DateTimeOriginal value based on the date/time of the image
that was sent to image processing. The input image date/time is normally the date/time that image
object was created, but could also be derived from JPEG or TIFF image file metadata used to create
that image object via imageReadFromFile.

The date/time string is formatted as yyyy:MM:dd HH:mm:ss, as required by the EXIF standard. This
format does not accommodate time zones, so the SDK uses the UTC time that the Image object was
created, with the time shifted to compensate for the time zone offset.

However, when the imageReadFromFile() method has been used with the Image object, the
JPEG or TIFF date/time stamp from the original image file metadata is carried as is into the output
compressed data stream.

 Date/time metadata output is supported only with the default Image Processor File I/O Engine.

Memory management
In general, mobile devices have significant memory constraints, and require careful memory
management.

This is particularly true with regard to images. Bitmaps, especially those taken with higher pixel
count cameras, consume large blocks of memory. When finished with an Image object, the calling
application must be sure to call the imageClearBitmap and imageClearFileBuffer methods on
the Image to avoid out-of-memory problems.

Memory management methods may vary by platform, so your application must carefully consider
constraints imposed by the execution environment. For example, in Android 2.3 and later, apps
may be limited to as little as 16MB of memory on certain devices. Images from some cameras

54

Kofax Mobile Capture SDK Developer's Guide

may significantly exceed this limit. For example, a picture taken with a five megapixel camera may
require nineteen megabytes when stored in memory.

Android-specific recommendations
Options provided by the Kofax Mobile Capture SDK for managing large bitmaps:
• Use the imageReadFromFile, imageReadFromFileBuffer methods, which take a bitmap

scaling parameter, to scale the bitmap when read into memory. The bitmap scaling factor must
be greater than 0.1 and less than 1. For example, to scale the image by half, set a value of 0.5

 when reading PNG files, the resulting bitmap will be downscaled if it does not fit in memory.
An aggressive scaling progression is used, starting with an 0.5 scaling factor on an out-of-
memory condition, and halving it successively until the bitmap fits in memory.

• When bitmap scaling is not an option, an alternative is to specify a larger heap size in the
application Manifest using the \a android:largeHeap attribute as shown below:
 <application
 android:allowBackup="true"
 android:largeHeap="true"
 android:icon="@drawable/ic_launcher"
 android:name="com.kofax.kmc.kut.utilities.AppContextProvider"
 android:label="@string/application_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name="com.example.enginestest.MainActivity"
 android:label="@string/application_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

Apps should use this option only as a last resort, since enabling large heap size does not
guarantee a fixed increase in available memory, because some devices are constrained by their
total available memory. It's preferable to focus on reducing overall memory usage for improved
performance.

• Add the following items to the Android manifest file:
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

Retain image option
The retain_image flag option in ImgReviewEditCntrl in the SDK enables the original image
to be changed. If this flag is set to true, it retains the image displayed in ImgReviewEditCntrl
even if orientation is changed. If this flag is set to false, it will not retain the image displayed in
ImgReviewEditCntrl even if orientation is changed. This flag is set to true by default.

This can be set through XML files in Android, as in this following example.
<com.kofax.kmc.kui.uicontrols.ImgReviewEditCntrl

55

Kofax Mobile Capture SDK Developer's Guide

 xmlns:customtag="http://schemas.android.com/apk/lib/com.kofax.imgrevieweditcntrl"
 android:id="@+id/img_edit_review"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 customtag:retain_image="false" />

This flag can also be set from Java code by using this boolean method setRetainImage on
ImgReviewEditCntrl.

Glare remover
Can be found in Engines.

The GlareRemover's removeGlare method takes two images as input and uses the second image
to remove the glare from first image. The output of the glare remover object is a instance of an
IGlareResult, which contains a glare-free image and an errorinfo object.

An application can also use the GlareRemover object to get the glarefraction of an image by using
the GlareRemover's getGlareFraction method. It takes an image as input and returns a float value.

Image Processor object
Can be found in Engines.

The ImageProcessor object can process a single image according to settings contained in
an ImagePerfectionProfile object or a BasicSettingsProfile object, but not both
simultaneously. The settings in an ImagePerfectionProfile object take precedence over those in
a BasicSettingsProfile object. The output of the ImageProcessor object is a new instance of an
Image object that contains the processed image.

An application can use the ImageProcessor object to clean up and perfect images by the
application. The ImageProcessor's processImage method operates asynchronously. It takes an
unprocessed input image and outputs a new image. The image processor does not associate that
image with a particular document or page - it is up to the application to do that if it needs to.

Another use of this processor is in concert with a server, such as the Kofax Front Office
Server. In this case the KFS administrator creates document types and the associated
ImagePerfectionProfile. The application uses this profile to process images, create a document
and submit it to KFS.

Because the purpose of the image processor is to allow background image processing, there
may be no need for image processing progress feedback. However, some large images may take
several seconds for the engine to complete processing, so in such cases the application may need to
provide some sort of progress feedback. The application can use the processing complete event to
detect when to start processing another image.

The ImageProcessor imageOutEvent indicates that image processing is complete and provides a
reference to the new Image object and a status or error code.

56

Kofax Mobile Capture SDK Developer's Guide

Image Processor Configuration
The Image Processor Configuration (introduced in SDK 3.3) contains a list of properties used to
manage the processing settings. Improved cropping algorithms were introduced through a new
interface in the Image Processor. If you set cropType to CROP_TETRAGON, users can perform
manual cropping.

A constructor can be used to create the Image Processor Configuration class from the Image
Perfection Profile operation string. This will allow a smooth transition to the new API. Remaining
parameters that were not handled and wrapped up with properties are put in the ippString
variable to be used for legacy processing operations.

The Image Perfection Profile and Basic Settings Profile were deprecated. Image Processor
Configuration is a new class which we recommend for use in all image processing cases. Calls to
ImageProcessor.processImage(ImageProcessorConfiguration) will automatically handle all
of the provided image processing operations, both old and new.

Configuration properties:
rotateType - Rotate automatically or in 90 degree increments.
• ROTATE_NONE
• ROTATE_90
• ROTATE_180
• ROTATE_270
• ROTATE_AUTO

outputColorDepth - Use this property to set the desired output color depth.
• BITONAL
• GRAYSCALE
• COLOR

cropType - Crop image to a user specified option.
• CROP_NONE
• CROP_AUTO
• CROP_TETRAGON

targetFrameCropType - Use this property to enable or disable target frame cropping.
• TARGET_FRAME_CROP_OFF
• TARGET_FRAME_CROP_ON

deskewType - Deskew an output image.
• DESKEW_NONE
• DESKEW_BY_DOCUMENT_EDGES
• DESKEW_BY_DOCUMENT_CONTENT

documentDimensions - Use this property to set the length of the shot and longer edges of the
original.

57

Kofax Mobile Capture SDK Developer's Guide

outputDPI - Use this property to set the desired output image DPI (Dots Per Inch). If it is set to 0,
then the library will automatically detect the output image DPI and indicate it in the output object.
ippString - The IPP string that is used for a secondary processing operation.
croppingTetragon - Use this property to specify the corner points of a tetragon (or rectangle) for
cropping an image. These points are valid only if the cropType is CROP_TETRAGON, otherwise
these points will be ignored. If the cropType is CROP_TETRAGON and points are invalid, the Image
Processor will throw an error.

BasicSettingsProfile

 The BasicSettingsProfile is deprecated.

The BasicSettingsProfile object contains basic settings used to perform image
processing, including cropping. These are general purpose settings, unlike the settings in an
ImagePerfectionProfile, which can be very complicated and targeted to a specific image
type. If the application specifies an ImagePerfectionProfile to the image processor, any
BasicSettingsProfile is ignored.

BasicSettingsProfile Object Diagram

ImagePerfectionProfile

 The ImagePerfectionProfile is deprecated.

The ImagePerfectionProfile encapsulates advanced image processing settings. These
settings may have originated from a KFS Server, a TotalAgility Server or the application itself. The
ImagePerfectionProfile allows for two ways of specifying settings: the ipOperations property,
or the ipOperationsFilePath property.

If the ipOperations string is a non-empty string, the ImageProcessor processImage
method simply passes the ipOperations string as is to the library. In this case, the
ipOperationsFilePath property is not used in any way.

If the ipOperationsFilePath is a non-empty string and the ipOperations is an empty string,
then the ImageProcessor processImage method will load operations string(s) from the specified
file. If the specified file contains other contents besides operations string(s), those other contents
will be ignored.

It is an error case if both the ipOperations and ipOperationsFilePath strings are empty
strings.

58

Kofax Mobile Capture SDK Developer's Guide

The application can use the ImagePerfectionProfile's properties to enable the processing
functions using the keywords described below.

As an example, if the application wants to crop, deskew, binarize, and perform auto-rotation, the
application could construct the necessary ipOperations string by using the following example
code (given in C):

strcat(operations, "_DoCropCorrection_");
strcat(operations, "_DoSkewCorrectionPage_");
strcat(operations, "_DoBinarization_");
strcat(operations, "_Do90DegreeRotation_4");

As shown in the above example, the ipOperations string can contain multiple keywords
concatenated together.

Refer to the sample code projects included in this SDK for more examples of code used to prepare
the ipOperations string.

The following section contains keywords for the ipOperations field.

Image operations specification
Most of the image processing modules are disabled by default, but appropriate keywords included
in the operations string enable the corresponding modules. In the operations string a leading
“_” character indicates the start of a new keyword or parameter. The trailing “_” character may be
followed by a setting value: a string in <> or a numeric value. The image processor uses this string
to indicate what type of image processing to perform on the input image.

The operations string can explicitly include any number of module activation keywords.

As an example, if a user wants to crop, deskew, binarize and perform auto-orientation, then the
corresponding substring would begin with:

“_DoCropCorrection__DoSkewCorrectionPage__DoBinarization__Do90DegreeRotation_4”

The number 4 after _Do90DegreeRotation_ indicates automatic orientation/rotation.

The following sections cover keywords for the image processing operation string.

Abort if Page Reject
Operation String Keyword _DoAbortIfPageReject_
Header File Macro #define: DO_ABORT_IF_PAGE_REJECT
Instructs page detection to return the corresponding error code in case of failure.

Background smoothing
Operation String Keyword _DoBackgroundSmoothing_
Header File Macro #define: DO_BACKGROUND_SMOOTHING
Performs smoothing of page background for color and grayscale images. Saturates output image to
remove artifacts in the background.

59

Kofax Mobile Capture SDK Developer's Guide

Binarization
Operation String Keyword _DoBinarization_
Header File Macro #define: DO_BINARIZATION
Tells the image processor to output a black and white image.
In order to improve the quality of binary images for documents with low original resolution it is
possible to replace DO_BINARIZATION with DO_ENHANCED_BINARIZATION. This functionality is
useful for creation of binary images with resolutions higher that 300 DPI and it results in a binary
processed image with the requested high resolution (and correspondingly smoother character
contours), but with lower background noise levels.
In order to improve the quality of binary images with very high (300 DPI and up) resolutions
and complex backgrounds (such as driver licenses captured with an 8MP camera), you can
use a combination of scaling to DPI and enhanced binarization to suppress the background
noise. For example, adding _DoScaleBWImageToDPI_400_DoEnhancedBinarization_ to the
operations_str will create a 400 DPI binary image with a cleaner background than if using
regular binarization.

 There are several essential parameters controlling binarization, namely:

Property name (case is important) Description and Parameter range

intelligent_contrast_enabled Boolean with the default 1 (TRUE). If set to 0, will
cancel Auto-Contrast.

CBinarize.Contrast_Slider_Pos.Int Integer within [1,5] with the default = 2 . Controls the
aggressiveness of Auto-Contrast determination.

intelligent_brightness_enabled Boolean with the default=1 (TRUE). If set to 0, will
cancel Auto-Brightness.

CBinarize.Do_Adv_Clarity.Bool Boolean with the default=1 (TRUE). If set to 0, will
cancel Intelligent Cleanup.

CBinarize. Cleanup_Slider_Pos.Int Integer within [1,5] with the default =2. Controls the
aggressiveness of Intelligent Cleanup.

Advanced_Threshold_Dot_Matrix_Image_Enable Boolean with the default=1 (TRUE). For most
contemporary documents without any dot-matrix
printing, this should be set to 0 to save time spent on
this analysis.

global_threshold Integer within [0,255] with the default 128. Used if
Auto-Brightness is off. Sets the brightness threshold
for binarization of flat (non-edge) pixels: those with
gray levels below 255 - global_threshold will become
black, otherwise – white.

edge_threshold Integer within [0,255] with the default 128. Used
if Auto-Contrast is off. Sets the contrast threshold
for edge strength to be used by the Dynamic
Thresholding. Smaller values will create more edges.

CBinarize.Edge_Aggr.Int Integer within [0,255] with the default 168. Used by
the Dynamic Thresholding.

60

Kofax Mobile Capture SDK Developer's Guide

Property name (case is important) Description and Parameter range

Threshold.alpha_strength Integer within [0,255] with the default 128. Used if
both Auto-Contrast and Auto-Brightness as well as
other advanced features of binarization such as color
analysis are off in order to mimic VRS4.5 binarization.
Replaces the value of CBinarize.Edge_Aggr.Int in
the Dynamic Thresholding.

VRS.Analyze.Color.Enable Boolean with the default=0 (FALSE). If set to 1, will
enable independent binarization of BLUE, GREEN, and
RED channels of a color image with their combination
resulting in the final binary image. Takes about 3
times more time than binarization from a grayscale
image.

CBinarize.Wei_Blue_To_Gray.Int
CBinarize.Wei_Green_To_Gray.Int
CBinarize.Wei_Red_To_Gray.Int

If color analysis is off these 3 integer values
determine the relative weights of color channels
in the conversion of color to gray. The defaults for
BLUE, RED, and GREEN are 4, 7 and 5 respectively,
meaning that the gray value will be calculated
as GRAY=(4*BLUE+7*GREEN+5*RED)/(4+7+5).
These values can be used to strengthen or
suppress particular colors in the image - for
example, in order to make green text stronger
CBinarize.Wei_Green_To_Gray.Int can be set
to 0, or in order to suppress red in the background
CBinarize.Wei_Red_To_Gray.Int can be set to 1
with the other 2 weights set to 0.

Blank page detection
Operation String Keyword _DoBlankPageDetection_
Header File Macro #define: DO_BLANK_PAGE_DETECTION
Detects if the page is blank so that it could be deleted by the application.
The following example demonstrates setting the page detection sensitivity.

Property name:
VRS.Blank.Page.Content.Sensitivity

Description:
 Integer within [0,255] with the default 128. Controls the sensitivity
 of blank page detection. Higher values are more likely to determine
 the page as non-blank.

Example syntax for adding to operation string:
LoadInlineSetting[VRS.Blank.Page.Content.Sensitivity=100]

Output metadata:
 When an image is detected as blank, there will be a "Blank Page" item in
 the ImageMetaData property string of the processed Image as shown in the
 following example. Lack of a "Blank Page" item should be taken as a
 non-blank determination.

{
"Front Side":
 {

61

Kofax Mobile Capture SDK Developer's Guide

 "Input Image Attributes":
 {
 "Width":2448,
 "Height":3264,
 "Channels":3,
 "BitDepth":24,
 "xDPI":72,
 "yDPI":72
 },
 "Output Image Attributes":
 {
 "Width":2448,
 "Height":3264,
 "Channels":3,
 "BitDepth":24,
 "xDPI":276,
 "yDPI":276
 },
 "Page Detection":
 {
 "Tetragon":
 {
 "Corners":
 {
 "TLx": 308.1299, "TLy": 86.5922, "TRx": 2308.8644,
 "TRy": 155.3332, "BLx": 250.8317, "BLy": 3045.1201,
 "BRx": 2223.6763, "BRy": 3080.1947
 },
 "Max Deviation from 90 in degrees": 0.859,
 "Rectangularized": true
 }
 },
 "Blank Page":
 {
 "Page is Blank": true
 }
 }
}

Blur and illumination check
Operation String Keyword _DoBlurAndIlluminationCheck_
Header File Macro #define: DO_BLUR_AND_ILLUMINATION_CHECK
Flags blurred, oversaturated and grainy images. Included in Preview mode for camera image
capture.

Color detection
Operation String Keyword _DoColorDetection_
Header File Macro #define: DO_COLOR_DETECTION
Limits binarization to only those pages that do not contain any color. Performs automatic color
detection of the input to automatically provide either color or black and white output. The image
processor returns a color image if color is detected, or a black and white image otherwise.

Color dropout
Operation String Keyword _DoColorDropOut_

62

Kofax Mobile Capture SDK Developer's Guide

Triggers the analysis of the document determining the color of the main background of the page
and also the most numerous of the foreground colors. This is assumed to be the color of the form
that should be dropped out. The sensitivity can be adjusted.

Property name (case is important) Description and Parameter range

CColrDrp.Slider_Pos.Int Integer within [0,255] with default 128. Larger
values will increase the sensitivity and result in more
expansive dropout.

Crop correction
Operation String Keyword _DoCropCorrection_
Header File Macro #define: DO_CROP_CORRECTION
Crops to the actual size of the document in the image. Can be used with or without skew correction.

Auto crop
Operation String Keyword _DoDocumentDetectorBasedCrop__DoCropCorrection_
Header File Macro #define: _DODOCUMENTDETECTORBASEDCROP__DOCROPCORRECTION_
To use the autocrop feature, the above token must be added to the image processing settings of an
ImagePerfectionProfile. For additional info on how to create\edit image processing settings please
see ImagePerfectionProfile.

Despeckle
Operation String Keyword _DoDespeck_n
Header File Macro #define: DO_DESPECK
Removes speckles on the final binary image. n indicates the maximum speck size. Applicable to
binary images only.
n=4 is a typical despeck size. The valid range is 1 to 50, with the higher settings removing larger
speckles or actual content in the output image.

DeviceType 0
Operation String Keyword _DeviceType_0
Specifies non-phone camera specific image processing. Use this when processing an image that
has already been processed using phone-camera specific image processing and therefore does not
need rectangularization correction.

DeviceType 2
Operation String Keyword _DeviceType_2
Specifies phone-camera specific image processing. Note this is included by default.

DocDimLarge
Operation String Keyword _DocDimLarge_n.nn
Header File Macro #define: DOC_DIM_LARGE
Use this setting to communicate the dimensions (in inches) of the long edge of the document to the
image processor.

63

Kofax Mobile Capture SDK Developer's Guide

This is intended to be used only when the document long edge length is explicitly known
beforehand. If so, this keyword helps the image processor to more accurately estimate the DPI of
the document.

DocDimSmall
Operation String Keyword _DocDimSmall_n.nn
Header File Macro #define: DOC_DIM_SMALL
Use this setting to communicate the dimensions (in inches) of the short edge of the document to
the image processor.
This is intended to be used only when the document short edge length is explicitly known
beforehand. If so, this keyword helps the image processor to more accurately estimate the DPI of
the document.

Edge cleanup
Operation String Keyword _DoEdgeCleanup_
Header File Macro #define: DO_EDGE_CLEANUP
Cuts a small frame around the final image in order to clean the fringes of the page. By default edge
cleanup is enabled, and this frame is 8 pixels wide regardless of image resolution. The frame width
can be adjusted and prorated for DPI.

Property name (case is important) Description and Parameter range

EdgeCleanup.enable Boolean with the default=1 (TRUE). Set this to 0
(FALSE) to disable edge cleanup.

CBrdCrop.Crop_Dist.Int Integer specifying frame width. The default value is 8
pixels.

CBrdCrop.Crop_Dist_Prorate_for_DPI.BOOL Boolean with the default=0 (FALSE). If set to 1 (TRUE)
edge cleanup will prorate CBrdCrop.Crop_Dist.Int by
the ratio of image DPI to 200.

Note the following:
• You must specify both _DoSkewCorrectionPage_ and _DoCropCorrection_ in order for edge

cleanup to have any effect.
• If edge cleanup is performed, the resulting processed image becomes a little smaller while its

resolution stays unchanged. In cases when the image dimensions are known, the final image will
come out with height and/or width just under the specified value(s). A possible way to keep this
discrepancy small is to set CBrdCrop.Crop_Dist_Prorate_for_DPI.BOOL to 1 (TRUE), in which case
the default 8 pixels will be equivalent to 8/200 = 0.04".

Enhanced binarization
Operation String Keyword _DoEnhancedBinarization_
Header File Macro #define: DO_ENHANCED_BINARIZATION
Converts the input image to black and white using an enhanced method to provide better results
than those usually seen for standard binarization. This functionality is useful for creation of binary
images with resolutions higher than 300 DPI, and it results in a bitonal processed image with the
requested high resolution (and correspondingly smoother character contours), but with lower
background noise levels.

64

Kofax Mobile Capture SDK Developer's Guide

 See comments for DO_BINARIZATION above.

Final image DPI
Operation String Keyword _FinalImageDPI_n
Header File Macro #define: FINAL_IMAGE_DPI
Specifies DPI n of the final image. See FINAL_IMAGE SCALING and RESOLUTION for details.

Final image larger pixel dimension
Operation String Keyword _FinalImageLargerPixelDim_n
Header File Macro #define: FINAL_IMAGE_LARGER_PIXEL_DIM
Specifies pixel size n of the larger side of the final image. See FINAL_IMAGE SCALING and
RESOLUTION for details.

Final image smaller pixel dimension
Operation String Keyword _FinalImageSmallerPixelDim_n
Header File Macro #define: FINAL_IMAGE_SMALLER_PIXEL_DIM
Specifies pixel size n of the smaller side of the final image. See FINAL_IMAGE SCALING and
RESOLUTION for details.

Find graphic lines
Operation String Keyword _DoFindGraphicLines_
Header File Macro #define: DO_FIND_GRAPHIC_LINES
Finds horizontal and vertical graphic lines in the image.

Find text hand print
Operation String Keyword _DoFindTextHP_
Header File Macro #define: DO_FIND_TEXT_HP
Finds lines of handwriting and returns their coordinates. Can be used for signature detection on
checks. It can be combined with _ProcessCheckFront_. For successful hand print detection, the
application must ensure that the image is deskewed and cropped. This is because noisy areas in
the perimeter of the image can easily be mistaken for hand printing. The application must include
the tokens _DoSkewCorrectionPage_ and _DoCropCorrection_ to perform deskew and crop
unless it is known that these operations have already been performed on the image. See also MICR
Recognition and Hand Print Detection.
Since the purpose of signature detection in check images is only to flag those of them without
a signature and not verification of its validity, any cursive writing detected in the bottom right
area of the image qualifies as signature. In order to obtain the metadata allowing the calling
application to do that, the operations_str used in the image perfection profile should include
DoFindTextHP.
Related properties:

CDetectMpHp.RegionOfInterestPercX1.Int
CDetectMpHp.RegionOfInterestPercX2.Int

65

Kofax Mobile Capture SDK Developer's Guide

CDetectMpHp.RegionOfInterestPercY1.Int
CDetectMpHp.RegionOfInterestPercY2.Int

Description:
These settings define the region of the detected page in which the hand print finding is to be
performed. The point (X1, Y1) defines the top left point of the rectangular region, and (X2, Y2)
defines the bottom right point of that region. The X1 and X2 values are expressed as a percentage
of the width of the detected page. The Y1 and Y2 values are expressed as a percentage of the
height of the detected page. The defaults are X1=0, Y1=0, X2=100, Y2=100, which specifies the entire
detected page is to be searched. As an example, to specify the bottom right quarter of the detected
page, specify X1=50, Y1=50, X2=100, Y2=100.
Depending on the image, a large amount of metadata may be generated if the entire detected
page is searched for hand printing. Not only is it laborious for the app to search through all this
metadata, it may in some cases overflow the buffer allocated by the SDK to contain the metadata.
For these reasons it is highly recommended to use the above RegionOfInterest settings to confine
the hand print searching to the relevant area of the detected page.
In the following example, the text line of “MI” type reflects the results of MICR recognition, and the
text line of “HP” type corresponds to the signature.

"Text Lines":
 {
 "Num": 2,
 "Lines":
 [
 { "Index": 0, "Type": "MI", "TLx": 112, "TLy": 709, "TRx": 1223, "TRy":
 709, "BLx": 112, "BLy": 753, "BRx": 1223, "BRy": 753, "Label":
 "MICR", "OCR_System": "MICR", "OCR_Template": "", "OCR Length": 27, "OCR
 Data":
 "C222371863C 0251508 30P 3587",
 "Num Words": 1,
 "Words":
 [
 {"TLx": 112, "TLy": 709, "TRx": 1223, "TRy": 709, "BLx": 112, "BLy": 753,
 "BRx":
 1223, "BRy": 753, "Length": 27, "Word": "C222371863C 0251508 30P 3587" }
]
 },
 { "Index": 1, "Type": "HP", "TLx": 955, "TLy": 508, "TRx": 1555, "TRy":
 508, "BLx": 955, "BLy": 685, "BRx": 1555, "BRy": 685, "Label": "",
 "OCR_System":
 "Preprocess", "OCR_Template": "", "OCR Length": 0, "OCR Data": "",
 "Num Words": 0,
 "Words":
 [
]
 }
]
 }

Find text machine print
Operation String Keyword _DoFindTextMP_
Header File Macro #define: DO_FIND_TEXT_MP
After binarization looks for approximately horizontal lines of text and returns their coordinates.

66

Kofax Mobile Capture SDK Developer's Guide

Gray output
Operation String Keyword _DoGrayOutput_
Header File Macro #define: DO_GRAY_OUTPUT
Tells the image processor to output a grayscale image. The request to convert the output image to
grayscale is ignored when the incoming image is binary.

Hole fill
Operation String Keyword _DoHoleFill_
Header File Macro #define: DO_HOLE_FILL
Fills punch holes on document edges in order to match the surrounding page background.
Performed for dark backgrounds only.

Illumination correction
Operation String Keyword _DoIlluminationCorrection_
Header File Macro #define: DO_ILLUMINATION_CORRECTION
Attempts to equalize the brightness and hue of page background. The boolean flag set
to TRUE by this keyword can be alternatively set by specifying the value of the parameter
CSkewDetect.correct_illumination.Bool. By default it is set to TRUE for Mobile; however, if it
is known that the documents have no uniform background it is better to save processing time and
avoid problematic corrections by setting this flag to 0 (FALSE).

Load operations string tokens from file
Operation String Keyword _LoadOperationsStringTokensFromFile_<filename>
Tells the image processor to load operations tokens from a file. The image processor opens the
specified file and looks for a section in it like the following example:
<OPERATIONS_STRING_TOKENS>

<Property Name="OPERATIONS_STRING_TOKENS" Value="_DoSkewCorrectionPage_" />

<Property Name="OPERATIONS_STRING_TOKENS" Value="_DoCropCorrection_" />

<Property Name="OPERATIONS_STRING_TOKENS" Value="_DoEnhancedBinarization_" />

</OPERATIONS_STRING_TOKENS>

LoadSetting
Operation String Keyword _LoadSetting_<filename>
Use to load non-default processing parameters from a file.
For example, _LoadSetting_</mnt/sdcard/non_defaults.xml> will load the contents of a
non_defaults.xml from an SD card of an Android device.
In the specified file, the image processor looks for the keyword <VINSET>, which indicates the
beginning of the section to load. Each subsequent line of xml is loaded until </VINSET>, is found.
The calling application can indicate that it is also necessary to read lines between
<VINSET_XXX> and </VINSET_XXX>, where the XXX string can be passed through the
ipOperations string by adding _ProcessID_ followed by the string. For example, if you use
LoadSetting<non_defaults.xml>_ProcessID_<DL_AL_T1F>, all lines of non_defaults.xml
between <VINSET_DL_AL_T1F> and </VINSET_DL_AL_T1F> will be also loaded.

67

Kofax Mobile Capture SDK Developer's Guide

 Refer to the most recent version of the Kofax Mobile Demo sample application source code for
an example of a properly formatted XML file.

Load settings from file operation string keyword
Operation String Keyword LoadSettingsFromFile_<filename>
Use to load non-default processing parameters from a file. The filename extension can be .ini, .xml.
or .json, with lines appropriately formatted, to load correctly.

Load inline setting
Operation String Keyword _LoadInlineSetting_
Use to load a non-default processing parameter from character string following the keyword. The
character string can be in either .ini, .xml. or .json format specified respectively by [], < >, or { }
characters within which it must be enclosed.
INI-style example (preferred):
LoadInlineSetting[intelligent_contrast_enabled=0]

JSON-style example:
LoadInlineSetting{"intelligent_contrast_enabled":0}

XML-style example:
LoadInlineSetting<Property Name="intelligent_contrast_enabled" Value="0"/>

No page detection
Operation String Keyword _DoNoPageDetection_
Header File Macro #define: DO_NO_PAGE_DETECTION
Informs the image processor that the incoming image has been already deskewed and cropped, so
no page detection is necessary.
Image processing always begins with page detection. Even if deskew to page or deskew to content,
as well as crop, are not requested, page detection is still performed unless it is cancelled by setting
DoNoPageDetection. The reason for that is the need to know where the page is in order to
detect content like punch holes within it, to decide whether the page is blank, or to analyze the
image only inside the page while determining how better to binarize it.

 The important difference between the DO_NO_PAGE_DETECTION and the absence of the
DO_SKEW_CORRECTION_PAGE, DO_SKEW_CORRECTION_ALT, and DO_CROP_CORRECTION controls is
that their absence does not cancel page detection, just skew and crop correction. Normally page
detection is always performed because it is necessary for other operations.

Process check front
Operation String Keyword _ProcessCheckFront_
Header File Macro #define: PROCESS_CHECK_FRONT
Enables the page detection algorithm specific to bank check fronts. Enables MICR recognition and
reporting of MICR line in the metadata. It can be combined with _DoFindTextHP_. See also MICR
Recognition and hand print Detection.

68

Kofax Mobile Capture SDK Developer's Guide

Note that no error is generated for lack of MICR on a check front.

Process check back
Operation String Keyword _ProcessCheckBack_
Header File Macro #define: PROCESS_CHECK_BACK
Enables MICR recognition and reporting of MICR line in the metadata. It can be combined with
DoFindTextHP. See also MICR Recognition and Hand Print Detection.
If MICR is found on the check back, MICR is reported in the metadata and no error is generated.

Process ID
Operation String Keyword _ProcessID_
Header File Macro #define: PROCESS_ID
This is used with _LoadSettingsFromFile_. See that section for a description.

Recognize text MICR
Operation String Keyword _DoRecognizeTextMICR_
Header File Macro #define: DO_RECOGNIZE_TEXT_MICR
This is a non-preferred synonym for the keyword _ProcessCheckFront_.

Remove graphic lines
Operation String Keyword _DoRemoveGraphicLines_
Header File Macro #define: DO_REMOVE_GRAPHIC_LINES
Finds and removes graphic lines from the processed binary image.

Rotate AUTO
Operation String Keyword _Do90DegreeRotation_4
Header File Macro #define: DO_ROTATE_AUTO
Automatically rotate the image so the text is oriented normally.

Rotate none
Operation String Keyword _Do90DegreeRotation_0
Header File Macro #define: DO_ROTATE_NONE
Do not rotate the image.

Rotate 90
Operation String Keyword _Do90DegreeRotation_3
Header File Macro #define: DO_ROTATE_90
Rotate the image 90 degrees clockwise.

Rotate Auto + 90
Operation String Keyword _Do90DegreeRotation_7

69

Kofax Mobile Capture SDK Developer's Guide

Automatically rotate the image so the text is oriented normally and then rotate the image an
additional 90 degrees clockwise.

Rotate Auto + force landscape 90
Operation String Keyword _Do90DegreeRotation_9
Automatically rotate the image so the text is oriented normally and then, if necessary to make the
output image be landscape orientation, rotate the image an additional 90 degrees clockwise.

Rotate 180
Operation String Keyword _Do90DegreeRotation_2
Header File Macro #define: DO_ROTATE_180
Rotate the image 180 degrees.

Rotate Auto + 180
Operation String Keyword _Do90DegreeRotation_6
Automatically rotate the image so the text is oriented normally and then rotate the image another
180 degrees.

Rotate 270
Operation String Keyword _Do90DegreeRotation_1
Header File Macro #define: DO_ROTATE_270
Rotate the image 270 degrees clockwise.

Rotate Auto + 270
Operation String Keyword _Do90DegreeRotation_5
Automatically rotate the image so the text is oriented normally and then rotate the image another
270 degrees clockwise.

Rotate Auto + force landscape 270
Operation String Keyword _Do90DegreeRotation_8
Automatically rotate the image so the text is oriented normally and then, if necessary to make the
output image be landscape orientation, rotate the image an additional 270 degrees clockwise.

90 degree rotation
Operation String Keyword _Do90DegreeRotation_n
Header File Macro #define: DO_90_DEGREE_ROTATION
Performs image rotation in 90 degree increments or automatically, based on image content.
1=270 degrees clockwise; 2=180 degrees; 3=90 degrees; 4=automatic; 5=auto+270 degrees
clockwise; 6=auto+180 degrees; 7=auto+90 degrees clockwise; 8=auto+270 degrees clockwise if
necessary to force landscape; 9=auto+90 degrees clockwise if necessary to force landscape
Image rotation is performed on the final cropped and deskewed image if these options are
included. If automatic rotation (4 through 9) is selected, then the image processor will rotate
the image according to content found in the image, so that the image is right side up, and the

70

Kofax Mobile Capture SDK Developer's Guide

additional (auto+) rotation is performed if specified. Rotation is normally used with crop and deskew
enabled.

Scale after page detection
Operation String Keyword _DoScaleAfterPageDetection_n
Header File Macro #define: DO_SCALE_AFTER_PAGE_DETECTION
The original image can be scaled down to reduce time spent on subsequent image processing.
This feature is used to speed up processing of high resolution images of small documents like
business cards and driver licenses. The scaling (only down) is always performed after page
detection which is using the original image. The integer factor following this keyword is based on
fractions of 60, so in order to scale down by 2x its value should be 120; in order to scale down by 3:2
it should be 90; in order to scale down by 4:3 it should become 80. Scaling down by an integer, 3:2,
and 4:3 is performed by dedicated routines and is much quicker than the generic scaling.

Scale black/white image to DPI
Operation String Keyword _DoScaleBWImageToDPI_n
Header File Macro #define: DO_SCALE_BW_IMAGE_TO_DPI
Desired DPI of binary processed image.
See comments for DO_SCALE_CG_IMAGE_TO_DPI above.

Scale color/gray image to DPI
Operation String Keyword _DoScaleCGImageToDPI_n
Header File Macro #define: DO_SCALE_CG_IMAGE_TO_DPI
n=desired DPI of color or gray processed image.
It is possible to request different resolutions of processed images depending on whether they come
out in color/gray or binary. This feature is most useful when the user requests binarization based on
color detection because in order to match the success of OCR from color or gray it is necessary to
use binary images of at least 1.5 times the resolution.
For more information see DPI Estimation.

Scale image to DPI
Operation String Keyword _DoScaleImageToDPI_n
Header File Macro #define: DO_SCALE_IMAGE_TO_DPI
n=desired DPI of processed image. Suggested values: [150,200,240,300] .

Sharpen
Operation String Keyword _DoSharpen_n
Header File Macro #define: DO_SHARPEN
Sharpens processed color or gray image, n: 1=a little, 2=more, 3=most.

Skew correction by content
Operation String Keyword _DoSkewCorrectionAlt_
Header File Macro #define: DO_SKEW_CORRECTION_ALT

71

Kofax Mobile Capture SDK Developer's Guide

Performs skew correction based on content.

Skew correction by page edges
Operation String Keyword _DoSkewCorrectionPage_
Header File Macro #define: DO_SKEW_CORRECTION_PAGE
Performs skew correction based on edges.
For both types of skew correction, if any of the page corners are outside the image frame, skew
correction has to fill the missing areas with some color. By default, skew correction fills these areas
with the median color of the surface the document was photographed against. This behavior can be
modified and the desired color provided by the following settings:

Property name (case is important) Description and Parameter range

CSkwCor.Fill_Color_Scanner_Bkg.Bool Boolean with the default=1 (TRUE). By default,
missing areas are filled with the median color of the
surface the document was photographed against.
If set to 0 (FALSE), skew correction uses the color
specified by the following settings.

CSkwCor.Fill_Color_Red.Byte
CSkwCor.Fill_Color_Green.Byte
CSkwCor.Fill_Color_Blue.Byte

Integers within [0,255]. The default=0
(black) for all of them. Used only if
CSkwCor.Fill_Color_Scanner_Bkg.Bool is set to 0
(FALSE). .

Resolution of inconsistencies
If the operations_str contains contradictory requests, such as DO_BINARIZATION and
DO_GRAY_OUTPUT, the image processor resolves the conflicts as follows:
• DO_BINARIZATION and DO_ENHANCED_BINARIZATION take precedence over DO_GRAY_OUTPUT

regardless of their order in the operations string.
• DO_SKEW_CORRECTION_PAGE and DO_SKEW_CORRECTION_ALT can coexist. If they are both

present, then deskew to content will be done if the found page gets rejected.
• In case the same keyword or parameter name is followed by a different parameter value, for

example, _DoScaleBWImageToDPI_200_DoScaleBWImageToDPI_300, the last value will be
used.

• All individual parameter values loaded from substrings beginning with LOAD_INLINE_SETTING
or LOAD_SETTINGS are loaded in order they are mentioned in the operations_str, so if the
same parameter name is mentioned again, the last value will be used.

Rectangularization
Rectangularization is an image processing feature that corrects an image taken from a camera that
is tilted in reference to the source document. In this case, due to projective effects, the document
page may have a tetragon shape with slightly curved sides. In the processed output image, the
page is converted to a rectangle, and the content of the page is stretched appropriately.

Rectangularization detection and correction are automatically performed as part of page detection.

72

Kofax Mobile Capture SDK Developer's Guide

For driver licenses only, the edge detection algorithm uses a dynamic threshold parameter to
enhance edge detection for low contrast backgrounds. The dynamic threshold is implemented by
invoking multiple runs of the edge detection algorithm with different thresholds in order to get the
best result.

Image processing: date and time stamps
The SDK also contains a provision to add the date and time stamps to the output file metadata
when the image is processed. For more information on the date and time stamps, see Date and
time stamps. For specific information about adding these stamps during image processing, see the
API Reference help system.

DPI estimation
Images coming from cameras do not have a defined resolution, so when the image processor first
receives them their DPI is estimated based on the assumption that the document is letter-size and
fits with a small margin within the frame of the image. In reality, the document can have a higher or
lower actual resolution depending on its size, so the image processor uses a mixed strategy in order
to estimate resolution in absence of any direct information (such as distance to object determined
by auto-focus) from the camera.

This information can be provided via the image the perfection profile by including one or both
of the keywords, _DocDimSmall_ and/or _DocDimLarge_ followed by the corresponding
dimensions in inches. For example, the dimensions of a standard US driver license can be set as
_DocDimSmall_2.125_DocDimLarge_3.375. If only one of them is known, it is still sufficient, but
if both are known it helps to correct slight discrepancies caused by a lack of precision in the page
detection results.

Alternatively, it is possible to set the value of CSkewDetect.document_size.Int. This parameter
refers to the larger dimension of the document and can be set to 1 (small), 2 (medium), or 3 (large),
and it will be used to set the approximate value of _DocDimLarge_.

Finally, if no information regarding document dimensions is available, DPI estimation estimates the
resolution of the document based on the found content.

 If it is known that the incoming document is letter-size and that it fills the camera frame with
just small margins, then it is simply wasting processing time and the whole effort can be canceled
by setting CSkewDetect.estimate_dpi.Bool to 0.

If both dimensions of the document are known, the image processor will try to match
the aspect ratio of the found document to that calculated from the dimensions provided
by the caller. In order to prevent damage due to errors in page detection, the estimated
aspect ratio (average width and height as seen in the photo) is compared to the aspect
ratio of the provided dimensions. If the difference is greater than the parameter
CSkewDetect.document_max_aspect_diff.double the estimated aspect ratio is left as final.
The default value of CSkewDetect.document_max_aspect_diff.double is 0.25.

The application can see the estimated dpi in the imageDPI property of the output Image object
referenced in the imageOutEvent. The imageOutEvent is associated with the processImage
method of the ImageProcessor.

73

Kofax Mobile Capture SDK Developer's Guide

Process progress feedback
To provide progress information, the application needs to implement a process progress event
handling method.

The image processor generates events as the percent of completed status updates, so the
application can display actual progress. The application event handler could use the percent
complete and update a progress bar or keep a spinner spinning or design some other feedback
display.

The image processor also generates an event for process complete. When the application processes
this event, it can report this event and then access the output image, move it to a Document object,
write it to disk or perform other operations with it.

Cancel image processing
The application developer may use the cancel method in the image processor to cancel image
processing. If the application includes a button to call the cancel method, the application users can
cancel image processing when started by any profile, or to cancel quick analysis.

The ability to cancel image processing allows the application to respond to low-memory events or
stop processing when the user decides to capture another image while the first is being processed
in the background. To do this, asynchronously call the cancel method in the image processor. Note
that there may be a delay between cancelling and the image out event. This happens because the
image processor will only cancel the balance of processing tasks on functional boundaries. The
image out event will indicate that the processing was cancelled if the image processing operation
was incomplete.

Image processing is an asynchronous operation. Also, the application can call the cancel method
in the image processor at any time. If the application calls the cancel method when the image
processing is nearly complete, the cancel method call may not cancel the operation. Instead, the
library operation will finish and report final completion status.

 The cancel method ignores all calls when no image processing operation is in progress. In
this case, the method will not return an error. The cancel condition will not be persisted, so that a
subsequent image processing operation will not be immediately cancelled.

Queue management
If the application needs to have input and output Image queues, the application must create
and manage these on its own. The application may find it helpful to use the imageID and
imageSourceID properties of the Image object if the application is implementing some type of
image queue management.

To help prevent problems, the Image Processor detects and indicates errors for the following
conditions:
• ImageProcessor is already busy doing a previously requested image processing operation.
• File I/O facility is already busy doing a previously requested File I/O operation.

74

Kofax Mobile Capture SDK Developer's Guide

 There is no need to wait for a current image processing task to complete before changing the
BasicSettingsProfile property or the ImagePerfectionProfile for the ImageProcessor.
The current process will complete with the properties and settings in effect when it started.
Subsequent changes will take effect the next time the Image Processor is invoked.

Final_Image scaling and resolution
By default, image processing produces an output image with pixel dimensions (image width and
height) and DPI as determined by the image processor based on characteristics of the input image
and on the specified image processing operations.

The application can specify _FinalImageSmallerPixelDim_n or
_FinalImageLargerPixelDim_n (or both) in the image processing operation string to precisely
control one or both of the output image pixel dimensions. This can be useful if, for example, the
final image is used as an input to another application with precise requirements for image height
or width in pixels. The image processor performs the adjustment by scaling the output image as
necessary immediately before returning it to the application.

If the application specifies _FinalImageDPI_n in the image processing operation string in addition
to one or both final image pixel dimensions, the image processor scales the output image based on
the specified pixel dimension(s), and then the image processor sets the output image DPI value to
the specified value.

If the application specifies _FinalImageDPI_n but does not specify either of the final image pixel
dimensions, the image processor scales the output image based on the specified final image DPI,
and then the image processor sets the output image DPI value to the specified value.

MICR Recognition and hand print detection
ImagePerfectionProfile tokens can be used to activate MICR recognition and hand-printed text
detection.

MICR recognition
The following ImagePerfectionProfile operations tokens are used to activate MICR recognition:

ProcessCheckFront
This is required in order to find and recognize the MICR line text. It can be combined with
DoFindTextHP.

MICR parsing
The results returned by the real-time check detection class include properties for the routing
number, account number, and check number. Specifically, the returned fields are:

1. AuxiliaryOnUs When this field is present (usually only on business checks), it usually contains
the check number.

2. EPC This field is used for "specific purposes" and cannot be used without written authorization
from ASC (Accredited Standards Committee) X9B.

75

Kofax Mobile Capture SDK Developer's Guide

3. RoutingNumber Officially this is called the transit field, but it is only used for the routing
number.

4. OnUs Returns all characters from the MICR, from the transitNumber to the amount (if present),
or to the right of the string if the amount is not present.

5. On-Us1, On-Us2 The On-Us field are convenience parses provided where, ignoring any left-
leading onus symbols in the OnUs field, onus1 is the part to the left of any remaining onus
symbol and onus2 is the part to the right.

6. Amount If present, a zero padded string of the encoded check amount, in cents.

7. Account Number Returns numeric value only, no alpha characters or spaces

8. CheckNumber Returns numeric value only, no alpha characters or spaces.

9. TransitNumber Returns numeric value only, no alpha characters or spaces.

Hand print detection
The following ImagePerfectionProfile operations tokens are used to activate hand print
detection:

DoFindTextHP
This is required in order to find hand-printed lines of text. It can be combined with
ProcessCheckFront.
For successful hand print detection, the application must ensure that the image is
deskewed and cropped. This is because noisy areas in the perimeter of the image
can easily be mistaken for hand printing. The application must include the tokens
_DoSkewCorrectionPage__DoCropCorrection_ to perform deskew and crop unless it is known
that these operations have already been performed on the image.

Example metadata results
After image processing is completed for an Image object, the application can access the hand print
detection and MICR recognition results in the imageMetaData property of the processed Image.

In general, the ImageProcessor formats the imageMetaData property as a JSON string. The
following imageMetaData example shows combined hand print detection and MICR recognition
results:
{
"Front Side":
 {
 "Output Image Attributes":
 {
 "Width":2953,
 "Height":1356,
 "Channels":3,
 "BitDepth":24,
 "xDPI":318,
 "yDPI":318
 },
 "Text Lines":
 {
 "Num": 4,

76

Kofax Mobile Capture SDK Developer's Guide

 "Lines":
 [
 { "Index": 0, "Type": "MI", "TLx": 139, "TLy": 1185,
 "TRx": 1905, "TRy": 1185,
 "BLx": 139, "BLy": 1259,
 "BRx": 1905, "BRy": 1259,
 "Label": "MICR",
 "OCR Length": 29, "OCR Data": "C123454321C 0123454321P 09999"},

 { "Index": 1, "Type": "HP", "TLx": 148, "TLy": 820,
 "TRx": 1182, "TRy": 820,
 "BLx": 148, "BLy": 1254,
 "BRx": 1182, "BRy": 1254,
 "Label": "", "OCR Length": 0, "OCR Data": "" },

 { "Index": 2, "Type": "HP", "TLx": 1607, "TLy": 906,
 "TRx": 2560, "TRy": 906,
 "BLx": 1607, "BLy": 1146,
 "BRx": 2560, "BRy": 1146,
 "Label": "", "OCR Length": 0, "OCR Data": "" },

 { "Index": 3, "Type": "HP", "TLx": 160, "TLy": 194,
 "TRx": 2842, "TRy": 194,
 "BLx": 160, "BLy": 783,
 "BRx": 2842, "BRy": 783,
 "Label": "", "OCR Length": 0, "OCR Data": "" }
]
 },
 "Auto Orientation":
 {
 "Auto Orientation has been done": true
 }
 }
}

With regard to the above sample, note the following:
• The Index field contains the sequential number of the found text line.
• The Type field identifies the type of text line machine print (MP), or hand print (HP). A MICR text

line is categorized as type MP. Type HP lines can appear only if hand print detection has been
performed.

• The pixel coordinates of the text line bounding box are contained in the subsequent 8 fields, from
TLx to BRy.

• The Label field value of MICR identifies the text line as being the MICR line.
• The OCR Length and OCR Data fields contain the number of recognized characters and the

corresponding character string. These, and the Label field, are currently used only for MICR
recognition.

 The following special characters can appear in the MICR line:
• Transit ()
• Amount ()
• On-us ()
• Dash ()

77

Kofax Mobile Capture SDK Developer's Guide

In the OCR data field of the metadata, these special characters are represented by normal
characters as follows:
• Transit: letter "C"
• Amount: slash "/"
• On-Us: letter "P"
• Dash: hyphen "-"

Code Sample
Following are Android and iOS code snippets for MICR reading and hand print detection.

 The URL in the sample code is only an example of a connection to a remote site. It is not a
functional site. Replace this URL with one for a site you use for your application. If you need a
demo site, contact your account representative or salesperson to have access to a demo site for
your specific use.

MICR reading
Android:

JSONObject mJSONObject = new JSONObject(this.metadata);
JSONObject mFrontSideObject = mJSONObject.getJSONObject("Front Side");
JSONObject mImageDimObject = mFrontSideObject.getJSONObject("Output Image Attributes");
mProcImageWidth = mImageDimObject.getInt("Width");
mProcImageHeight = mImageDimObject.getInt("Height");
mProcImageDPI = mImageDimObject.getInt("xDPI");
JSONObject mLinesObject = null;
JSONArray mLinesCordinates = null;
try {
 mLinesObject = mFrontSideObject.getJSONObject("Text Lines");
 mLinesCordinates = mLinesObject.getJSONArray("Lines");

 for(int i=0;i< mLinesCordinates.length();i++)
 {
 if("MICR".equals(mLinesCordinates.getJSONObject(i).getString("Label"))&& !
mMICRFound)
 {
 mOCRData = mLinesCordinates.getJSONObject(i).getString("OCR Data");
 mMICRTLy = mLinesCordinates.getJSONObject(i).getInt("TLy");
 mMICRBLy = mLinesCordinates.getJSONObject(i).getInt("BLy");
 mMICRFound = checkMICR(mOCRData);
 }
 }
} catch (JSONException e) {
}

for(int i=0;i< mLinesCordinates.length();i++)
{
 f(("HP").equals(mLinesCordinates.getJSONObject(i).getString("Type")) && !
mSignatureFound)
 {
 mSignatureFound = true;
 }
}

// Reject bad MICR reads (1) by checking height, and (2) by pattern matching the

78

Kofax Mobile Capture SDK Developer's Guide

// MICR data.
public boolean checkMICR(String OCRData)
{
 final int MIN_MICR_HEIGHT = 8;
 boolean result = false;
 if ((mMICRBLy - mMICRTLy) >= MIN_MICR_HEIGHT) {
 if (OCRData.matches(".*C\\d{9}C.*")) {
 result = true;
 }
 }
 return result;
}

iOS:
//Function which talks to RTTI to extract amount from a check

-(void)extractCheckAmount:(NSString*)imagePath { //imagePath contains path of tiff
 image

 if([imagePath isEqualToString:@""] || [imagePath isEqual:nil]){

 return;
 }

 NSString *urlString = @"http://mobiledemo.kofax.com"; //IP address/ host name of
 extraction server

 NSURL *checkExtractionServerURL = [NSURL URLWithString:[NSString stringWithFormat:
 @"%@/mobilesdk/api/CheckDeposit", urlString]]; //Appending check deposit extraction
 service path to the original Extraction Server URL

 NSData *checkData = [NSData dataWithContentsOfFile:imagePath];
 //Storing tiff image as NSData object

 //Forming SOAP request to talk to the server
 NSMutableURLRequest *urlRequest = [NSMutableURLRequest requestWithURL:
 checkExtractionServerURL cachePolicy:NSURLRequestReloadRevalidatingCacheData
 timeoutInterval:30];
 [urlRequest setHTTPMethod:@"PUT"];
 [urlRequest setValue:@"application/json" forHTTPHeaderField:@"Accept"];
 [urlRequest setValue:@"image/tiff" forHTTPHeaderField:@"Content-Type"];
 [urlRequest setHTTPBody:checkData];

 // Preparing Connection to the server
 NSURLConnection *checkConn = [[NSURLConnection alloc] initWithRequest:urlRequest
 delegate:self startImmediately:NO];

 [checkConn scheduleInRunLoop:[NSRunLoop mainRunLoop] forMode:NSRunLoopCommonModes];
 [checkConn start]; // Starting connection to server

 //We will be getting the response/Data in the NSURL Delegate methods viz.
 // - (void)connection:(NSURLConnection *)connection didReceiveData:(NSData *)data
 // -(void)connectionDidFinishLoading:(NSURLConnection *)connection
}

//Function which talks to RTTI to extract details from a remittance coupon

79

Kofax Mobile Capture SDK Developer's Guide

-(void)extractBillDetails:(NSString*)imagePath{ //imagePath contains path of tiff image

 if([imagePath isEqualToString:@""] || [imagePath isEqual:nil]){

 return;
 }

 NSString *urlString = @"http://mobiledemo.kofax.com";
 //IP address/ host name of extraction server

 NSURL *billExtractionServerURL = [NSURL URLWithString:[NSString stringWithFormat:
 @"%@/mobilesdk/api/billpay", urlString]]; //Appending bill pay extraction service
 path to the original Extraction Server URL

 NSData *billData = [NSData dataWithContentsOfFile:imagePath]; //Storing tiff image
 as NSData object

 //Forming SOAP request to talk to the server
 NSMutableURLRequest *urlRequest = [NSMutableURLRequest requestWithURL:
 billExtractionServerURL cachePolicy:NSURLRequestReloadRevalidatingCacheData
 timeoutInterval:30];
 [urlRequest setHTTPMethod:@"PUT"];
 [urlRequest setValue:@"application/json" forHTTPHeaderField:@"Accept"];
 [urlRequest setValue:@"image/tiff" forHTTPHeaderField:@"Content-Type"];
 [urlRequest setHTTPBody:billData];

 // Preparing Connection to the server
 NSURLConnection *billConn = [[NSURLConnection alloc] initWithRequest:urlRequest
 delegate:self startImmediately:NO];

 [billConn scheduleInRunLoop:[NSRunLoop mainRunLoop] forMode:NSRunLoopCommonModes];
 [billConn start]; // Starting connection to server

 //We will be getting the response/Data in the NSURL Delegate methods viz.
 // - (void)connection:(NSURLConnection *)connection didReceiveData:(NSData *)data
 // -(void)connectionDidFinishLoading:(NSURLConnection *)connection
}

Hand print detection
Android
// Meta Data we get after processing front of check is as follows

/*
{
"Front Side":
 {
 "Input Image Attributes":
 {
 "Width":2448,
 "Height":3264,
 "Channels":3,
 "BitDepth":24,
 "xDPI":200,
 "yDPI":200
 },
 "Output Image Attributes":
 {
 "Width":2837,
 "Height":1310,
 "Channels":1,
 "BitDepth":1,

80

Kofax Mobile Capture SDK Developer's Guide

 "xDPI":475,
 "yDPI":475
 },
 "Page Detection":
 {
 "Tetragon":
 {
 "Max Deviation from 90 in degrees": 3.425,
 "Rectangularized": true
 }
 },
 "Text Lines":
 {
 "Num": 3,
 "Lines":
 [
 { "Index": 0, "Type": "HP", "TLx": 1828, "TLy": 726, "TRx": 2194, "TRy": 726,
 "BLx": 1828, "BLy": 1023, "BRx": 2194, "BRy": 1023, "Label": "", "OCR Length":
 0, "OCR Data": "" },
 { "Index": 1, "Type": "HP", "TLx": 2204, "TLy": 502, "TRx": 2318, "TRy": 502,
 "BLx": 2204, "BLy": 698, "BRx": 2318, "BRy": 698, "Label": "", "OCR Length":
 0, "OCR Data": "" },
 { "Index": 2, "Type": "MP", "TLx": 187, "TLy": 1139, "TRx": 2311, "TRy": 1139,
 "BLx": 187, "BLy": 1217, "BRx": 2311, "BRy": 1217, "Label": "MICR", "OCR Length":

 21, "OCR Data": "C000067895C 12345678P" }
]
 },
 "Auto Orientation":
 {
 "Auto Orientation has been done": true
 }
 }
}

*/

Check for Signature Front and Back (DocID 0 == Front of Check, DocID 1 == Back of
 Check)
Index values received as json parameters are sent to the bellow function.

Ex:
{ "Index": 0, "Type": "HP", "TLx": 1828, "TLy": 726, "TRx": 2194, "TRy": 726,
 "BLx":
1828, "BLy": 1023, "BRx": 2194, "BRy": 1023, "Label": "", "OCR Length":
0, "OCR Data": "" }

 public boolean checkSignature(int docID, int pImagewidth, int pImageHeight, int
 mMICRy,
 int mDPI, int tLX, int tLY, int tRX, int tRY, int bLX, int bLY, int bRX, int bRY)
 {

 boolean result = false;
 /* processed Image Bitmap */
 Bitmap procImageBitmap = ConstValues.mAppObject.mFrontProcessedBitmap;
 /* create a rectangle image on top of the Image Bitmap received from Metadata*/
Rect mEVRSRect = new Rect();
 mEVRSRect.set(tLX, tLY, bRX, bRY);

 int width = procImageBitmap.getWidth();
 int height = procImageBitmap.getHeight();

81

Kofax Mobile Capture SDK Developer's Guide

 Rect mSignRect = new Rect();
/* Create a rectangle image of ¼ size to the right bottom corner of the image */
 if (docID == 0)
 {
 int Signature_Zone_left = pImagewidth / 2;
 int Signature_Zone_top = pImageHeight / 2;
 int Signature_Zone_right = pImagewidth;
 int Signature_Zone_bottom = pImageHeight;

 mSignRect.set(Signature_Zone_left, Signature_Zone_top, Signature_Zone_right,
 Signature_Zone_bottom);

 }
/* Create a rectangle image of 1/6 size to the top of the Image bitmap */
 else
 {
 mSignRect.set(0, 0, width, height / 6);
 }
 /*Check for intersection of the rectangles created by Metadata and the ¼ or
 1/6 rectangles*/
 if (mSignRect.contains(tLX, tLY) && mSignRect.contains(tRX, tRY)
 && mSignRect.contains(bLX, bLY) && mSignRect.contains(bRX, bRY))
 {
 result = true;
 }
 return result;
 }

Check for Valid MICR

// we would look for OCR Data and make sure there are 9 digits (0-9) between two C's
present on check front side.

MetaData received after the processing we check for OCR Data key value pair available
in Json format.

{ "Index": 2, "Type": "MP", "TLx": 187, "TLy": 1139, "TRx": 2311, "TRy": 1139,
 "BLx":
187, "BLy": 1217, "BRx": 2311, "BRy": 1217, "Label": "MICR", "OCR Length": 21,
"OCR Data": "C000067895C 12345678P" }
/*Parse the OCRData key and send the value to the function */
/* Function will check for the string containing particular format CXXXXXXXXXC. Where
 X
ranges from 0-9*/
public boolean checkMICR(String OCRData)
 {

 boolean result = false;
 if (!OCRData.equals(""))
 {
 Log.e(TAG, "Raw MICR : " + OCRData);
 OCRData = OCRData.replace(" ", "");
 OCRData = OCRData.toLowerCase(Locale.getDefault());
 if (OCRData.contains("c"))
 {
 int startIndex = OCRData.indexOf('c');
 int endIndex = OCRData.indexOf('c', startIndex + 1);
 if ((endIndex - startIndex) == 10)/* Detects only 9- digits as per
 * US standards */
 {

 Log.e(TAG, "Parsed MICR : " + OCRData);
 String mMICRTxt = OCRData.substring(startIndex + 1, endIndex);

82

Kofax Mobile Capture SDK Developer's Guide

 String expression = "^[0-9]*$";
 Pattern pattern = Pattern.compile(expression);
 Matcher matcher = pattern.matcher(mMICRTxt);
 if (matcher.matches())
 {
 result = true;
 }

 }
 }

 }
 return result;
 }

iOS
// MetaData we get after processing front of check is as follows

/*
{
"Front Side":
 {
 "Input Image Attributes":
 {
 "Width":2448,
 "Height":3264,
 "Channels":3,
 "BitDepth":24,
 "xDPI":200,
 "yDPI":200
 },
 "Output Image Attributes":
 {
 "Width":2837,
 "Height":1310,
 "Channels":1,
 "BitDepth":1,
 "xDPI":475,
 "yDPI":475
 },
 "Page Detection":
 {
 "Tetragon":
 {
 "Max Deviation from 90 in degrees": 3.425,
 "Rectangularized": true
 }
 },
 "Text Lines":
 {
 "Num": 3,
 "Lines":
 [
 { "Index": 0, "Type": "HP", "TLx": 1828, "TLy": 726, "TRx": 2194, "TRy": 726,
 "BLx": 1828, "BLy": 1023, "BRx": 2194, "BRy": 1023, "Label": "", "OCR Length":
 0, "OCR Data": "" },
 { "Index": 1, "Type": "HP", "TLx": 2204, "TLy": 502, "TRx": 2318, "TRy": 502,
 "BLx": 2204, "BLy": 698, "BRx": 2318, "BRy": 698, "Label": "", "OCR Length":
 0, "OCR Data": "" },
 { "Index": 2, "Type": "MP", "TLx": 187, "TLy": 1139, "TRx": 2311, "TRy": 1139,
 "BLx": 187, "BLy": 1217, "BRx": 2311, "BRy": 1217, "Label": "MICR", "OCR Length":

 21, "OCR Data": "C000067895C 12345678P" }

83

Kofax Mobile Capture SDK Developer's Guide

]
 },
 "Auto Orientation":
 {
 "Auto Orientation has been done": true
 }
 }
}

*/

// We look for signature in the bottom right corner rectangle i.e. if check size is
100 x 100
// we would look for human written characters in the rectangle with origin (50,50)
and has width & height of 51

-(void)lookForSignature:(NSString*)metaData{

 NSError *jsonError;
 // converting metadata to a dictionary for easy accessing.
 NSDictionary *jsonDict = [NSJSONSerialization JSONObjectWithData:
 [metaData dataUsingEncoding:NSUTF8StringEncoding] options:kNilOptions
 error:&jsonError];

 if(jsonError != nil){
 return;
 }

 CGPoint BL, BR, TL, TR;
 CGFloat width=0, height=0, xDPI = 0, yDPI = 0;

 // Storing details like height, weight, DPI etc of check in local variables

 if([[jsonDict allKeys] containsObject:@"Front Side"]){

 jsonDict = [jsonDict objectForKey:@"Front Side"];

 if([[jsonDict allKeys] containsObject:@"Output Image Attributes"]){

 jsonDict = [jsonDict objectForKey:@"Output Image Attributes"];

 height = [[jsonDict objectForKey:@"Height"] floatValue];
 width = [[jsonDict objectForKey:@"Width"] floatValue];
 xDPI = [[jsonDict objectForKey:@"xDPI"] floatValue];
 yDPI = [[jsonDict objectForKey:@"yDPI"] floatValue];
 }
 }

 CGRect signatureRect = CGRectMake(width/2, height/2, width/2 +1 , height/2 +1);
 // Forming rectangle whose origin & height and width would look for signature in
 lower right quadrant

 jsonDict = [NSJSONSerialization JSONObjectWithData:[metaData dataUsingEncoding:
 NSUTF8StringEncoding] options:kNilOptions error:&jsonError];

 if(jsonError != nil){
 return;
 }

 if([[jsonDict allKeys] containsObject:@"Front Side"]){

84

Kofax Mobile Capture SDK Developer's Guide

 jsonDict = [jsonDict objectForKey:@"Front Side"];

 if([[jsonDict allKeys] containsObject:@"Text Lines"]){

 jsonDict = [jsonDict objectForKey:@"Text Lines"];

 if([[jsonDict allKeys] containsObject:@"Lines"]){

 NSArray *tempArray = [jsonDict objectForKey:@"Lines"];

 for (NSDictionary *tempDict in tempArray) {

 if([[tempDict valueForKey:@"Type"] isEqualToString:@"HP"]){
 // Looking for HP or Human Printed characters in Meta Data

 NSLog(@"HP found");
 BL = CGPointMake([[tempDict valueForKey:@"BLx"] floatValue],
 [[tempDict valueForKey:@"BLy"] floatValue]);
 BR = CGPointMake([[tempDict valueForKey:@"BRx"] floatValue],
 [[tempDict valueForKey:@"BRy"] floatValue]);
 TL = CGPointMake([[tempDict valueForKey:@"TLx"] floatValue],
 [[tempDict valueForKey:@"TLy"] floatValue]);
 TR = CGPointMake([[tempDict valueForKey:@"TRx"] floatValue],
 [[tempDict valueForKey:@"TRy"] floatValue]);

 if([self search:signatureRect For:BL signature:BR presence:
 TL AndReturn:TR] == 1){ // This would tell if HP character
 are inside lower right quadrant or not

 NSLog(@"SIGNATURE FOUND\n");
 break;
 }

 }
 }

 }
 }
 }

 return;

}

-(int)search:(CGRect)signatureRect For:(CGPoint)BL signature:(CGPoint)BR presence:
(CGPoint)TL AndReturn:(CGPoint)TR{

 if(CGRectContainsPoint(signatureRect, BL) && CGRectContainsPoint(signatureRect,
 BR)&&
 CGRectContainsPoint(signatureRect, TL) && CGRectContainsPoint(signatureRect, TR))
 {

 NSLog(@"signature inside zone 1\n");
 return 1;
 }
 else{

 signatureRect.origin.x -=5;
 signatureRect.origin.y -=5;
 signatureRect.size.height +=5;
 signatureRect.size.width +=5;

 if(CGRectContainsPoint(signatureRect, BL) &&

85

Kofax Mobile Capture SDK Developer's Guide

 CGRectContainsPoint(signatureRect, BR) &&
 CGRectContainsPoint(signatureRect, TL) &&
 CGRectContainsPoint(signatureRect, TR)) {

 NSLog(@"signature inside zone 2\n");
 return 1;
 }
 else{

 signatureRect.origin.x -=5;
 signatureRect.origin.y -=5;
 signatureRect.size.height +=5;
 signatureRect.size.width +=5;

 if(CGRectContainsPoint(signatureRect, BL) &&
 CGRectContainsPoint(signatureRect, BR) &&
 CGRectContainsPoint(signatureRect, TL) &&
 CGRectContainsPoint(signatureRect, TR)) {

 NSLog(@"signature inside zone 3\n");
 return 1;
 }
 }
 }

 NSLog(@"signature Outside zone\n");

 return 0;

}

// we would look for OCR Data and make sure there are 9 digits (0-9) between
 two C's present on check front side.
// Sample OCR Data "OCR Data": "C000067895C 12345678P"

-(void)lookForMICR:(NSString*)metaData{

 NSError *jsonError;
 NSDictionary *jsonDict = [NSJSONSerialization JSONObjectWithData:
 [metaData dataUsingEncoding:NSUTF8StringEncoding] options:kNilOptions error:
 &jsonError];

 if(jsonError != nil){
 return ;
 }

 if([[jsonDict allKeys] containsObject:@"Front Side"]){

 jsonDict = [jsonDict objectForKey:@"Front Side"];

 if([[jsonDict allKeys] containsObject:@"Text Lines"]){

 jsonDict = [jsonDict objectForKey:@"Text Lines"];

 if([[jsonDict allKeys] containsObject:@"Lines"]){

 NSArray *tempArray = [jsonDict objectForKey:@"Lines"];

 for (NSDictionary *tempDict in tempArray) {

 if([[tempDict valueForKey:@"Label"] isEqualToString:@"MICR"] &&
 [[tempDict valueForKey:@"OCR Data"] length] > 0){

86

Kofax Mobile Capture SDK Developer's Guide

 NSString *ocrData = [tempDict valueForKey:@"OCR Data"];
 ocrData = [ocrData lowercaseString];
 NSArray *ocrArray = [ocrData componentsSeparatedByString:@"c"];

 if([ocrArray count] == 3){

 ocrData = [ocrArray objectAtIndex:1];
 ocrData = [ocrData stringByReplacingOccurrencesOfString:
 @" " withString:@""];

 if([ocrData length] == 9 && [self isAllDigits:ocrData])
 break;
 }
 }

 }

 }
 }
 }

}

- (BOOL) isAllDigits:(NSString*)inputString
{
 NSCharacterSet* nonNumbers = [[NSCharacterSet decimalDigitCharacterSet]
 invertedSet];
 NSRange r = [inputString rangeOfCharacterFromSet: nonNumbers];
 return r.location == NSNotFound;
}

Target frame cropping
ImageProcessor has a frame pre-cropping functionality. It performs a preliminary crop of the image
based on the target frame and can improve page detection by eliminating some background noise.
This only works if images are captured with our capture experience or a target frame rectangle
object was set on the image manually.

Cropping happens during image processing, prior to page detection. To enable crop to frame:

iOS: Set the targetFrameCropType property of KFXImageProcessorConfiguration to
TARGET_FRAME_CROP_ON.

Android: Set the targetFrameCropType property of ImageProcessorConfiguration to
TargetFrameCropType.TARGET_FRAME_CROP_ON.

QuickAnalysisFeedback object

The QuickAnalysisFeedback object contains the results of image quality checking using the
doQuickAnalysis method of the ImageProcessor object. You can enable legacy blur detection for
feedback by setting enableLegacyBlurDetection to true.

87

Kofax Mobile Capture SDK Developer's Guide

The doQuickAnalysis method performs a variety of image quality checks for the Image objects,
populates the imageQuickAnalysisFeedback property in the input Image, and fires the
analysisCompleteEvent.

The analysisCompleteEvent returns a status code, info/error status message string, and the
Image object reference. The Image object parameter references the original input image that was
passed to doQuickAnalysis originally. This Image will have the imageQuickAnalysisFeedback
property populated.

The application can read the following properties of the QuickAnalysisFeedback object:
• isOversaturated: true if the image is over saturated
• isBlurry: true if the image is blurry
• isUndersaturated: true if the image is under saturated
• tetragonCorners: found coordinates of the bounding tetragon
• viewBoundariesImage: native Bitmap object; shows green line drawn around detected page

edges. Acts as a visual representation of found tetragonCorners property.

OpenCV
If you need to use OpenCV in your application, please take note of the following information.

Android
When using OpenCV with Android:
• Download OpenCV-4.5.3-android-sdk.zip from the repository (https://github.com/
Itseez/opencv/releases).

• Replace libopencv_java3.so in the Kofax Mobile Capture SDK with the similar binary from the
related release folder (OpenCV-android-sdk/sdk/native/libs).

iOS
Since, OpenCV 4.5.3 (imgproc and core modules) is built into the Kofax Mobile Capture SDK on iOS,
there is no simple way to replace it. If you want to use the imgproc and core modules from OpenCV,

88

Kofax Mobile Capture SDK Developer's Guide

you can simply rely on the Kofax Mobile Capture SDK. Additional linking with OpenCV is not needed.
Just update the project file with header files from OpenCV.

If you want to use additional modules from OpenCV, you will have to build and link them to your
project.

Here are the basic steps:

1. Download the OpenCV source code from the repository (https://github.com/Itseez/
opencv/releases).

2. Update build script to specify required modules: /<your_workspace>/opencv/platforms/
ios/build_framework.py.
See the following code snippet for an example.

<<<
 for t in self.targets:
 mainBD = self.getBD(mainWD, t)
 dirs.append(mainBD)
 cmake_flags = []
 if self.contrib:
 cmake_flags.append("-DOPENCV_EXTRA_MODULES_PATH=%s" %
 self.contrib)
 if Xcode_ver >= 7 and t[1] == 'iPhoneOS':
 cmake_flags.append("-DCMAKE_C_FLAGS=-fembed-bitcode")
 cmake_flags.append("-DCMAKE_CXX_FLAGS=-fembed-bitcode")
 cmake_flags.append("-DBUILD_opencv_core=ON")
 cmake_flags.append("-DBUILD_opencv_imgproc=ON")
 cmake_flags.append("-DBUILD_opencv_world=OFF")
 self.buildOne(t[0], t[1], mainBD, cmake_flags)
 self.mergeLibs(mainBD)
 self.makeFramework(outdir, dirs)
>>>

3. Follow the readme on how to build OpenCV: /<your_workspace>/opencv/platforms/ios/
readme.txt

4. A successful build with result in OpenCV binaries under: /<your_workspace>/ios.

5. Create a fat library to built all the architectures into a single binary using the "libtool"
command. Here is an example of the .sh file:
$DT_TOOLCHAIN_DIR/usr/bin/libtool" -static "/<your_workspace>/ios/build/
<module>_arm64.a" "/<your_workspace>/ios/build/<module>_armv7.a" "/
<your_workspace>/ios/build/<module>_i386.a" "/<your_workspace>/ios/build/
<module>_x86_64.a" -o "/<your_workspace>/<module>_universal.a

6. Link the extra OpenCV module from Step 5 to your Xcode project and add the required header
files from OpenCV.

Server objects
Can be found in Logistics.

the following sections provide information about the server objects in the Logistics library.

89

Kofax Mobile Capture SDK Developer's Guide

Capture Server
CaptureServer is a new class in the Logistics part of the Mobile SDK, which helps in
communicating with FrontOfficeServer and TotalAgilityServer

This capture server class provides a number of methods to facilitate the interface with an external
server.
• registerDevice: Register a mobile device. This method must precede any of the following

methods. A successful device registration is sufficient for multiple login/logout operations.
• login: Log in to the server associated with the URL provided by the application by using

username and password. After a successful login, the documetTypes list will be returned.
• loginAnonymously: Log in to the server associated with the URL provided by the application as

a guest user. After successful login, the default documetTypes list will be returned
• logout: Log out from a server.
• getDocumentType: Get a specified document type.
• submitDocument: Submit a Document object to a server.
• sendImageService: Send an image to this server.
• startJobService: Start a new Document submission on the server.

Before performing any of the above methods, a valid license must be set.

Examples
String serverUrl = "http://xxx.xx.xx.xx/TotalAgility/kofax/kfs/legacy/ws/";

registerDevice API for Android

CaptureServer ktaServer=new CaptureServer(serverUrl,
 DocumentType.SourceServer.SERVER_KTA);
ktaServer.registerDevice(new ICompletionListener<Void>() {
 @Override
 public void onComplete(Void aVoid, Exception e) {
 if (e!=null) {
 Log.e("Exception",e.getMessage());
 } else {
 Log.i("registerDevice ", “success”);
 }
 }
});

registerDevice API for iOS

NSString *serverUrl = "http://xxx.xx.xx.xx/TotalAgility/kofax/kfs/legacy/ws/";
KFXCaptureServer* server = [[KFXCaptureServer alloc] initWithType:KLO_SERVER_KFS URL :

 serverUrl];
[server registerDevice : ^(int responseCode, NSError* error) {
 if(error != nil){
 NSLog(@"error occurred %@",error.localizedDescription);
 }
 else{

90

Kofax Mobile Capture SDK Developer's Guide

 //successfully registered
 }
}];

login API for Android

CaptureServer ktaServer=new CaptureServer(serverUrl,
 DocumentType.SourceServer.SERVER_KTA);
UserProfile userProfile = new UserProfile();
userProfile.setDomain(domain);
userProfile.setUsername(userName);
userProfile.setPassword(password);
userProfile.setUserEmailAddress(email);
ktaServer.login(userProfile, new ICompletionListener<List<String>>() {
 @Override
 public void onComplete(List<String> strings, Exception e) {
 if (e != null) {
 Log.e("Exception", e.getMessage());
 } else {
 Log.i("Login ", "Success");
 }

 }
});

login API for iOS

KFXCaptureServer* server = [[KFXCaptureServer alloc]
 initWithType:KLO_SERVER_KFS URL:@"serverurl"];
 kfxKLOUserProfile* userProfile = [[kfxKLOUserProfile alloc] init];
[userProfile setDomain:@"domain"];
[userProfile setUsername:@"username"];
[userProfile setPassword:@"password"];
[userProfile setUserEmailAddress:@"email"];

[server login:userProfile completionHandler:^(int responseCode, NSArray
 documentTypeNames, NSError error){

 if(error != nil){
 NSLog(@"%@", error.localizedDescription);
 }
 else{
 //save document types
 }

}];

loginAnonymously API for Android

CaptureServer ktaServer=new CaptureServer(serverUrl,
 DocumentType.SourceServer.SERVER_KTA);
ktaServer.loginAnonymously(new ICompletionListener<List<String>>() {
 @Override
 public void onComplete(List<String> strings, Exception e) {
 if (e != null) {
 Log.e("Exception", e.getMessage());
 } else {
 Log.i("Anonymous Login ", "Success");
 }

91

Kofax Mobile Capture SDK Developer's Guide

 }
});

loginAnonymously API for iOS

KFXCaptureServer* server = [[KFXCaptureServer alloc]
 initWithType:KLO_SERVER_KFS URL:@"serverurl"];
[server loginAnonymously:^(int responseCode, NSArray *documentTypeNames, NSError*
 error){
 if(error != nil){
 NSLog(@"%@", error.localizedDescription);
 }
 else{
 //save document types
 }
}];

logout API for Android

CaptureServer ktaServer=new CaptureServer(serverUrl,
 DocumentType.SourceServer.SERVER_KTA);
ktaServer.logout(new ICompletionListener<List<String>>() {
 @Override
 public void onComplete(Void aVoid, Exception e) {
 if (e != null) {
 Log.e("Exception", e.getMessage());
 } else {
 Log.i("logout ", "Success");
 }
 }
});

logout API for iOS

[server logout:^(int responseCode, NSError* error){
 if(error != nil){
 NSLog(@"%@", error.localizedDescription);
 }
 else{
 //log out successful
 }
}];

getDocumentType API for Android

CaptureServer ktaServer=new CaptureServer(serverUrl,
 DocumentType.SourceServer.SERVER_KTA);
ktaServer.getDocumentType(documentTypeName, new ICompletionListener<List<String>>() {
 @Override
 public void onComplete(DocumentType documentType, Exception e) {
 if (e != null) {
 Log.e("Exception", e.getMessage());
 } else {
 Log.i("getDocumentType", "Success");
 }

 }

92

Kofax Mobile Capture SDK Developer's Guide

});

getDocumentType API for iOS

[server getDocumentType:documentType completionHandler:^(int responseCode,
 kfxKLODocumentType* documentTypeObject,NSError* error){
 if(error != nil){
 NSLog(@"%@",error.localizedDescription);
 }
 else{
 //get documenttype success
 }
}];

submitDocument API for Android

CaptureServer ktaServer=new CaptureServer(serverUrl,
 DocumentType.SourceServer.SERVER_KTA);
ktaServer.submitDocument(document, progressListener,
 new ICompletionListener<List<String>>() {
 @Override
 public void onComplete(int successCode, Exception e) {
 if (e != null) {
 Log.e("Exception", e.getMessage());
 } else {
 Log.i("submitDocument ", "Success");
 }

 }
});

submitDocument API for iOS

[server submitDocument:DOCUMENT completionHandler:^(int responseCode,NSError* error){

 if(error != nil){
 NSLog(@"%@", error.localizedDescription);
 }
 else{
 //Submit document complete
 }
 }progressHandler:^(int progress,NSString* submissionJobId,NSError* error){
 // progress contains the status
 }];

sendImageService API for Android

CaptureServer ktaServer=new CaptureServer(serverUrl,
 DocumentType.SourceServer.SERVER_KTA);
ktaServer.sendImageService(document, jobId, image, imageIndex, isLastImage,
 new ICompletionListener<List<String>>() {
 @Override
 public void onComplete(int successCode, Exception e) {
 if (e != null) {
 Log.e("Exception", e.getMessage());
 } else {
 Log.i("sendImageService ", "Success");
 }

93

Kofax Mobile Capture SDK Developer's Guide

 }
});

sendImageService API for iOS

[server sendImageService:document image:image jobID:jobid imageIndex:imageIndex
 lastImage:
 NO completionHandler:^(int responseCode,NSError* error){
 if(error != nil){
 NSLog(@"%@", error.localizedDescription);
 }
 else{
 //sendImageservice complete
 }
 }];

startJobService API for Android

CaptureServer ktaServer=new CaptureServer(serverUrl,
 DocumentType.SourceServer.SERVER_KTA);
ktaServer.startJobService(new ICompletionListener<List<String>>() {
 @Override
 public void onComplete(String jobId, Exception e) {
 if (e != null) {
 Log.e("Exception", e.getMessage());
 } else {
 Log.i("JobID", jobId);
 }

 }
});

startJobService API for iOS

[server startJobService:^(NSString* jobID, int responseCode,NSError* error){
 if(error != nil){
 NSLog(@"%@", error.localizedDescription);
 }
 else{
 //start job service complete
 }
}];

Server extraction objects
ServerExtractor is a new class in Logistics part of the Kofax Mobile Capture SDK, which helps
in communicating with Smart Mobile Components in SMC projects such as Kofax Mobile Bill Pay
and Kofax Mobile ID. This class can even be used to send a multi-part request to any server, which
supports multi-part extraction of images. This class is optimized to work with Kofax Smart Mobile
Projects.

This class exposes APIs to extract data from valid documents (images) like IDs, Checks and Bills.
Images can be either in memory (bitmap) or on a disk (filepath). It returns a JSON received from

94

Kofax Mobile Capture SDK Developer's Guide

server or error code in case of an error. The error codes and description received from Server in
general is not parsed and returned as is.

Before using these classes it is recommended to look at the SMC project documentation to become
familiar with the expected parameters for a typical request required to extract data from images.

Using server extractor
There are two major server installations Kofax Real-Time Transformation Interface and Kofax
TotalAgility in which the SMC projects can be used for extraction. There are two server objects
RTTIServerConnection and KTAServerConnection that are provided by the SDK, which
represent the above, said installations. These server objects can be instantiated with the
destination URL. A time out for the connection can also be set on these server objects. In case of
KTAServerConnection a login method is exposed to explicitly login to Kofax TotalAgility in server
and get the required documentid, sessionid or any other required parameters.

ServerExtractor class needs to be instantiated with either one of the above server objects to
perform extraction.

 The URL in the sample code is only an example of a connection to a remote site. It is not a
functional site. Replace this URL with one for a site you use for your application. If you need a
demo site, contact your account representative or salesperson to have access to a demo site for
your specific use.

Examples
iOS:
KFXRTTIServerConnection* rttiServer = [[KFXRTTIServerConnection alloc] initWithURL:
 @"https://mobiledemo.kofax.com"];
KFXServerExtractionParameters* parameters = [[KFXServerExtractionParameters alloc]
 initWithImages:processedImages];
parameters.parameters = params;

kfxKLOServerExtractor* serverExtractor = [[kfxKLOServerExtractor alloc]
 initWithConnection:customServer];
serverExtractor.delegate = self;
[serverExtractor extract : parameters];

Android:
IServerExtractor serverExtractor = ServerBuilder.build(getApplicationContext(),
 ServerBuilder.ServerType.RTTI);
 serverExtractor.extractData(serverExtractionParameters,
 new ICompletionListener() { @Override public void onComplete(String response,
 Exception e) { } });
IServerExtractor serverExtractor = ServerBuilder.build(getApplicationContext(),
 ServerBuilder.ServerType.KTA);
serverExtractor.extractData(parameters, new ICompletionListener() {
 @Override public void onComplete(String response, Exception e) {} });

Extraction parameters contains the images to be extracted and a dictionary of server input
parameters like xregion or processimage = true, etc. These are essentially the server flags
required as part of the request to perform extraction. If the parameters are not valid, or if the
required parameters are not sent, extraction may fail.

95

Kofax Mobile Capture SDK Developer's Guide

The KFXServerExtractorDelegate contains the callbacks, which return the extracted results
and errors in case of errors.

Kofax Front Office Server logon
An application can establish a connection with Kofax Front Office Server, making it possible to
interact with it via SSL as a supported security method. Connection and Session properties can be
"set" or "get."

When using this object, there are methods that make it possible to log in or log out from the server
and register the mobile device with the server.

TotalAgility Server logon
An application can establish a connection with TotalAgility, making it possible to interact with it via
SSL as a supported security method. Connection and Session properties can be "set" or "get."

TotalAgility Server interface
The Kofax Front Office Server and TotalAgility Server objects provide a number of methods to
facilitate the interface with an external server:
• registerDevice: Register a mobile device. This method must precede any of the following

methods. A successful device registration is sufficient for multiple login/logout operations.
• login: Login to the server associated with the URL provided by the application.
• logout: Logout from a server.
• cancel: Cancel a previously started submitDocument method.
• getDocumentTypeList: Get a list of available document types.
• getDocumentType: Get a specified document type.
• submitDocument: Submit a Document object to a server.

Before performing any of the above methods, a valid license must be established.

All of the above server interface methods operate asynchronously, except for
getDocumentTypeList which is synchronous. That is, each asynchronous method initiates the
server interface communication and returns immediately to the application. The final success or
failure of server interface methods is returned to the application in an event. If a failure occurs, the
event includes an error code indicating the specific failure status.

Logging into a server
In order to log into a server, the application must first specify the necessary credentials.

To specify credentials, the application must create a User Profile object and set the username,
password, optional email address and optional domain. It can initialize one or more of these user
objects as required, and associate one with a Kofax server object. The Kofax server object will
indicate if any of these user data properties are invalid when they are used.

The application may not necessarily need to log into a server to perform library operations.
Therefore, it may login at any time when necessary to establish a remote connection.

96

Kofax Mobile Capture SDK Developer's Guide

To log into a Kofax server, the application must first set a valid license. Following that, the
application must use the appropriate Kofax Front Office Server or TotalAgility server class, supply
user credentials and the server URL, and call the register method followed by the login method.
(The register method need only be called once for a given server. Multiple login and logout
operations can be performed for a single register.) If the connection fails, the error code in the
Server object will indicate the reason for the failure. The application is responsible for presenting
Server object error messages to the user.

The library responds with an asynchronous event when login completes, indicating success or
failure. The library sets the error code in the Server object to indicate why login failed (bad or
expired license, no WiFi, bad username, bad password, already logged into another server, or login
cancelled). The application should always display error messages for these errors.

Upon successfully logging in, the library stores available document type names which can be
accessed with the getDocumentTypes method. The document types are only valid and available if
the login event indicates success. If the login failed, the getDocumentTypes method returns a null
pointer, and all other methods similarly set an error code to indicate that it is not connected to the
server.

The library will detect this condition and not attempt to perform the Server object method. Instead,
it will return the appropriate null data for these calls. Therefore, the application should always check
for null pointers and error codes when the event indicates failure.

Indicated errors
The library will send an event to indicate that login failed. In addition, the library times out after
approximately 60 seconds, and returns a login failed event.

Before attempting login, the library checks the following:
• If the license is valid: the error code indicates that the license is not valid
• If the user is already logged in: The method event indicates success, and the error code is set to

"Already Logged in."
• That the user is not in the process of logging out : If so, it means the application did not wait for

logout to complete, and for this case the library returns an overlap error code.
• WiFi access: If none, the error code indicates that WiFi is not available.
• That all available document types are received: The library will return an error if WiFi service is

lost or some other condition occurred.
• That no other Kofax Server object exists with a session status indicating that the application is

already logged into another server. The library returns an error code for this case.

Login cancellation
Application users can cancel a login operation at any time using a cancel button or some other
control. The action for this control calls the cancel method on the Server object. The library will
attempt to cancel the login, and indicate in the error code that the login was cancelled.

If the application calls the cancel method at about the same time the login completes successfully,
the library will honor the cancel, and logout from the server if necessary. If more than 10 seconds
have elapsed after a successful login, the library ignores the cancel request. This protects against a
potential race condition.

97

Kofax Mobile Capture SDK Developer's Guide

DocumentType object
Can be found in Logistics.

The DocumentType object is a model that describes the attributes of a document. A DocumentType
object can be defined at design time or obtained at run time from a server such as the Kofax Front
Office Server or TotalAgility. The DocumentType object will include only one active object either
a BasicSettingsProfile or an ImagePerfectionProfile object to define the type of image
processing to perform for this type of document.

DocumentType Object

The DocumentType object is instantiated with an array of FieldType which becomes the
fieldTypes read-only property. Once instantiated, the fieldTypes property cannot be modified
by the application.

Once the application has logged in to a server it can access the available document type names on
the server by calling the getDocumentTypes method on the Server object. This call returns an array
of strings for names of documents that could possibly be created. The application must use one of
these name strings, without modification, to create a Document object.

A valid document type is required to create a Document object. The Document object is a place
to add pages. A Document object is also required to submit the document to a Kofax Server or a
custom-built server.

The library will return an error to this method if the application is not logged in.

98

Kofax Mobile Capture SDK Developer's Guide

There is no need to process the DocumentType name strings returned from the library, because the
library removes any and all escape sequences, such as %20 for the space character.

Document object
The Document object is instantiated as a specific DocumentType. A Document object contains zero
or more Field objects and one or more Page objects

Document Object

At instantiation time, the fields property is created by examining the fieldTypes property of
the documentType property, and instantiating a new Field object for each FieldType in the
fieldTypes array. These Field objects are placed in an array, and made available to the application.

The document class constructor creates the reference to the DocumentType object used to create
the document object, along with an uninitialized array with a single empty page. It also sets the
other document properties to their default settings. When working with images intended for the
Kofax Front Office Server or TotalAgility server, the application works with a document object to
prepare it for submission.

The application must create a Document object in order to begin or continue adding pages to the
document.

99

Kofax Mobile Capture SDK Developer's Guide

Saving a Document Object

To create a Document object, instantiate a document class by providing a document type object as
a parameter. The library initializes and generates the field data array from the field type array in
the DocumentType object. The current value in each field comes from the DocumentType object.
Then the application can fill in the Field objects as needed, either manually or in combination with
extraction or from some user interface screen.

Since the application creates the Document object itself, no errors are returned or expected. Also,
the library does not generate an event. The Document object constructor returns a Document
object.

All document objects contain a DocumentType object reference. This reference must remain current
during the life of the Document object because it contains information necessary for controlling
document processing, data verification and submission. If it becomes necessary to restore the fields
array with default values, the application can copy the field type data to the field data array.

The application can save the Document object to disk and open it later to continue adding pages as
needed. Multiple documents can be open at the same time, but the library can work with only one
document at a time.

An application that uses the Document object controls the flow of image processing. The SDK
provides the Document object as a container for images. The Document object contains all the
document pages and associated data. You add pages to the document using the addPage method.
You add images to a page using the addImage method on the page. You can create images by using
the UIControl objects or by using an output image from the image processor. Then you can add
these images by using the addImage method in your application.

 The library does not fetch all document fields for all document types in the background. That is
the responsibility of the application.

The application can also initialize and use a DocumentType object of its own design.

100

Kofax Mobile Capture SDK Developer's Guide

Page object
A page represents the front or back side of an original sheet. A page can have multiple images, but
only one can be marked as the current image. This way the application can maintain the original,
and restore the original as the current page if desired.

Conversely, the application could destroy the original image, and set the processed image
as the current. Or, after reviewing the image, it could delete the image altogether (using the
RemoveImage on the Page object) and repeat image capture. It is up to the application to decide
image management policy. The code must indicate the current image for that page, by setting an
array index in the Page object, the first image having an index of 0.

When there are multiple images within a Page object, these images could be the original
unprocessed image, a partially-processed image , an intermediate image, the final image, or the
current image. Image objects can be freely deleted, keeping in mind that the raw image takes up a
large amount of the available memory. It may be necessary to store that image to disk, and restore
it to the image buffer as needed.

The application manages these images and sets the currentPageIndex to mark the image that
will be submitted to the server.

If currentPageIndex is applied to an image that doesn't exist in the page array, the library will
use the last image in the array to avoid a fatal error. However, the application should make every
attempt to set a valid image index. There must be at least one page with one image to submit a
document to the server, otherwise the library returns an error with the submit method. The library
detects and reports this error.

FieldType object
The FieldType object describes the attributes of a Field object.

In order to get field data, the application must create a DocumentType object using one of the
document type names. Then, call the library to initialize the balance of the DocumentType object.
Upon calling the getDocumentType method the library will:
• Fetch the document field types and fill in the array of field types in the DocumentType object,

if that DocumentType object field type array is currently empty. The field type array will include
all fields, and each field contains things like the field name, min, max, and the current (default)
setting.

• Populate the basic settings or image perfection profile associated with this document type.
• Return a kfsDocTypeResultEvent event, with the DocumentType object and an error code

when there is a failure.

Field object
The Field object is instantiated using a particular FieldType object and contains a value which
conforms to that Field Type.

101

Kofax Mobile Capture SDK Developer's Guide

Each Field object in the current Document object has a property to store all the possible extracted
data options for that field in an array. The first item is the most probable, and this is stored in the
field value. The other values stored in the classification results array are possible alternates.

When validating fields, upon completion of the Web services exchange, the library will generate
an event to notify the application that the validation request has been completed. The event will
indicate if the validation completed with or without error.

If the validation completed with an error, then inspect the fieldsAreValid bool setting of the
Document object to locate invalid fields. If the fields are invalid, then the application can iterate
through the Field objects associated with the document.

When an invalid Field object is found, inspect the errorDescription string in the Field object and
possibly raise a pop up.

 The constructor for the Field object should set all fields to invalid. Then when document
verification is executed, the Valid flag is set if valid. This forces an application user to go through
verification.

The server performing the validation generates and downloads this string when a validation fails
and the library stores this string in the Field object. There is no error code generated by the field
validation script, only an error string.

Depending on the error code, the application must iterate through the field objects to determine
what field has errors, and carry out appropriate corrective actions.

BarCodeCaptureControl object
Can be found in UIControls.

The BarCodeCaptureControl object shows a camera preview window that continuously sends low-
resolution preview images to the image processor, where the bar code reading module scans for
bar codes. Features include user feedback cues to control levelness, camera shake, and bar code
positioning. The application is responsible for creating and displaying any screen overlays that offer
user feedback, such as "Hold camera still."

102

Kofax Mobile Capture SDK Developer's Guide

BarCodeCaptureControl Object Diagram

If the application needs to read one bar code, and that is likely the only thing to be processed, then
it can use the BarCodeCaptureControl object, which has methods to highlight the bar code, capture
an image and capture the data from it.

The BarCodeCaptureControl object asks the library to capture and return an unprocessed image of
a bar code and its bar code data.

To capture a bar code, the application instantiates the object and sets the desired capture feedback
features to help users take clear pictures. The application also specifies the type of bar code to
recognize.

The stability and orientation thresholds help ensure the camera is level and steady before the
library captures an image.

To start the process of capturing a bar code, the application calls the readBarCode method.

As soon as the application gets the event for the bar code, the library stops the feedback events and
the application can process that bar code data. The bar code data includes the location of the bar
code in the image, the bar code type, and the bar code contents and length.

The library generated image need not necessarily be associated with a page. The image and bar
code data can later be added to a page with addImage.

Supported bar codes for BarCodeCaptureControl object
The following bar codes and variants are supported:

 All UPC codes are also EAN codes (EAN is a superset of UPC). If only the EAN symbology is
selected, then UPC codes will be reported as EAN.

• CODE93
• DATAMATRIX
• CODE39

103

Kofax Mobile Capture SDK Developer's Guide

• EAN
• EAN13
• EAN8

• UPC
• UPCA
• UPCE

• CODE128
• PDF417
• QR
• AZTEC
• CODE25

• 2 of 5 interleaved
• 2 of 5 standard

• CODABAR

Reading techniques
There are two types of bar code reading techniques in the library. When the application needs to
read and process only one bar code, use the BarCodeCapture object with maxBarCodes set to 1. In
this case, there are user interface methods to guide the user through the process of highlighting
the bar code, capturing the image, and capture the data from the bar code.

 The BarCodeCaptureControl object only finds bar codes, and does no other image processing.

The BarCodeCaptureControl object supports the following search directions:
• All
• Horizontal
• Vertical

Bar code reader and return all bar codes
For those cases where the application needs to read and process multiple bar codes on a single
page, the SDK provides a bar code reader separate from the bar code UI control that can be used
for processing images. Set maxBarCodes set to the maximum number of bar codes you want found.

This method finds all the bar codes on the sheet, where you can specify different orientations and
bar code types. There is no UI guidance in this case.

The application uses the bar code reader to scan an arbitrary image for one or more bar codes and
populate its internal bar code list with the results. By requiring bar code data to include bound,
position, and direction information, any image processing that occurs later can use the results to do
special processing or avoid destructive transforms on those areas.

Given a set of parameters, the bar code reader will return all the bar codes it can find in the image.
For each bar code that is returned, the following information is included:
• type

104

Kofax Mobile Capture SDK Developer's Guide

• value
• bounding area
• directions

The bar code reader supports the following search directions:
• All
• LEFT_RIGHT
• RIGHT_LEFT
• TOP_DOWN

Supported bar codes for bar code reader
The following bar codes and variants are supported:

 All UPC codes are also EAN codes (EAN is a superset of UPC). If only the EAN symbology is
selected, then UPC codes will be reported as EAN.

• CODE93
• POSTNET
• CODE39
• EAN

• EAN13
• EAN8

• UPC
• UPCA
• UPCE

• CODE128
• PDF417
• QR
• CODE25

• 2 of 5 interleaved
• 2 of 5 standard

• CODABAR

BarcodeReader object
The BarcodeReader object is a stand-alone asynchronous bar code reader that can search for
multiple bar codes and multiple bar code types in an image with just one call of the readBarcodes
method. Unlike the bar code capture control, it has no UI element to it, and will add the results
found to the image passed into it.

It has the following three properties:
• An array of bar code types that can be searched for.
• The maximum total number of bar codes that could possibly be returned.

105

Kofax Mobile Capture SDK Developer's Guide

• The search direction

These three parameters must be set in order to set up the bar code reader object before calling
readBarcodes. Defaults for these properties are: an empty array of bar code types, the maximum
number of bar codes to be found is set to one, and "All" for the search directions.

The bar code results that get added to the image after readBarcodes is called are of the same type
as the bar code capture control would return, so a bounding box, data format, direction, type, and
bar code value get added for each one of the bar codes found by the BarcodeReader object. The
results and image are returned in the read complete event, or call back method for java, and iOS
respectively.

 As a best practice, try to specify the absolute minimum number of bar codes and bar code
types the application should search for and return. Otherwise, in some cases multiple results with
bogus data may be returned.

Reading techniques
Take care to use images that are in focus. Images that are overly dark or out of focus will result in
poor bar code reading results, or no results at all.

 The BarcodeReader object only searches for bar codes, and does not perform any other image
processing on the image.

Supported bar code types
The following bar code types and their variants are supported.

 All UPC codes are also EAN codes (EAN is a superset of UPC). If only the EAN symbology is
selected, then UPC codes will be reported as EAN.

• CODE128
• EAN

• EAN13
• EAN8

• UPC
• UPCA
• UPCE

• CODE39
• CODE25
• CODABAR
• PDF417
• QR

106

Kofax Mobile Capture SDK Developer's Guide

Guideline feature
The BarCodeCapture object has a real-time view of the sheet that guides the user to properly take
an image of a bar code. A sheet is a representation of the printed original piece of paper, which has
a front and back page.

To capture a bar code, the application instantiates the BarCodeCapture object and sets the capture
feedback features to use. One feedback feature is a guideline that the user can align through the
approximate center of the target bar code. The guideline helps the user position the camera relative
to the bar code to facilitate capturing a readable image.

Before the library takes the picture of the bar code, the application can enable (or disable) the
guideline. When the guideline is enabled and the view is instantiated, the library opens up a camera
view with a color guideline option instead of a finder frame.

The purpose of the Bar Code object is to capture and return an unprocessed image of a bar code
and its data. This object captures and generates a unique bar code output image with one bar code.

The Bar Code Capture object has an associated real-time view of the sheet, and helps users position
the camera by means of a guideline. To capture a bar code using a guideline, first instantiate the
Bar Code Capture object, and set the capture desired feedback features. Also specify the type of bar
code to recognize. Next enable the feedback guideline that helps users position the camera so the
guideline passes through the target bar code.

To start the process of capturing a bar code, call the readBarCode method. This starts the flow
of periodic feedback events, and after the feedback thresholds are met, the library calls the
BarCodeFound event. This event gives the application the Image object, including the bar code data
stored in that Image object.

As soon as the application gets the event for the bar code, the library stops providing feedback
events, and the application can process that bar code data as appropriate. The bar code data
includes the location of the bar code in the image, the bar code type, and the associated bar code
contents and length.

The library generated image need not be associated with a page. At a later time in the process the
application can add the image with the bar code to a page using addImage.

License capture control object
Can be found in UIControls.

The License Capture Control object is a smart camera view that detects and recognizes the Kofax
Mobile Capture SDK software license in the QR code format.

Once the license is found, it will be used for Kofax Mobile Capture SDK licensing. Features include
screen overlays that offer user feedback, such as instruction messages and a static frame.
Properties of this object allow customizing the location and size of the control within the app's user
interface.

In order to use the License Capture Control, it is not necessary for the Mobile SDK is to be licensed.

107

Kofax Mobile Capture SDK Developer's Guide

To license the Kofax Mobile Capture SDK via the License Capture Control, the application
instantiates the object (Android: LicenseCaptureView, iOS: kfxKUILicenseCaptureControl),
and sets a listener for a capture event. Optionally, the application can also specify a user instruction
message, the static frame color, and padding.

To start the process of capturing a license, the application calls the readLicense method.

As soon as the application gets the event for the license, the library stops the feedback events, and
the application can process that license data. The license data includes the status code of the Kofax
Mobile Capture SDK license. If licensing was successful, it will also include the license string and the
number of days remaining until the license expires.

 A different API is used for manually entering the SDK license key. See Using the SDK with iOS
and Using the SDK with Android for examples and/or guidance.

Credit card capture
The Credit card capture control should be used only for embossed credit cards only. It does not
support nom-embossed credit cards.

When capturing embossed credit cards, a dedicated capture control (CreditCardCapture) is used
which presents a dedicated interface. This interface captures the card and extracts the card number
data. An event is then fired that returns a credit card info object.

 The SDK does not store credit card information for any period of time beyond that necessary
to process and extract the credit card number and expose it to the application developer.

Expiration dates
The SDK credit card scanner can extract expiration dates from images of credit cards. However,
there are some known limitations
• Expiration date scans will sometimes fail to obtain the correct date value. Proper illumination of

the credit card is essential; strong lighting seems to work best. Different lighting angles may also
help. If there is not enough light, the expiration date will not be extracted.

• The credit card scanner returns an expiration date only if it finds one no older than the current
month/year, and no more than 5 years into the future.

• Only MM/YY and YY/MM formats are extracted. Cards made with date formats including a specific
day of the month, such as 09/22/15 will not have the date extracted. Further, cards made with
date formats including a 4-digit year, such as 09/2015, will not have the date extracted.

SDK Version object
Can be found in Utilities.

This object is only used with the SDK Utility package to get the version of the SDK. It also provides
access to the version information of the Utility package itself and other components used in the
SDK.

108

Kofax Mobile Capture SDK Developer's Guide

Version object
Use the Version object to retrieve version information for an SDK package. Each of the following
packages contains a Version object including their unique version information:
• UI Control Objects package
• Logistics Objects package
• Engine Objects package

UI control objects package
Version information for the UI Control Objects package is maintained in the KUIVersion object.

Logistics objects package
Version information for the Logistics Objects package is maintained in the KLOVersion singleton
object.

Engine objects package
Version information for the Engine Objects package is maintained in the KENVersion singleton
object.

App Statistics overview
Can be found in Utilities.

App Statistics is a feature of the mobile SDK that facilitates recording performance metrics on a
device. The application periodically may export the data, and upload it to a server for collection and
further analysis. The goal of collecting these statistics is to tell:
• Which functions of the SDK are being used
• Where end users are having difficulty using the SDK functions
• How long SDK functions are taking
• What errors users are experiencing when using the SDK
• What device is generating the data, its operating system, and other device properties

If the application also incorporates the Kofax Real-Time Transformation Interface server, then the
device-side statistics that are collected can be uploaded and combined with the server side metrics
to provide a complete, end-to-end traceability of performance and usage metrics.

Application Statistics collected on the mobile device can be uploaded to the Kofax Real-Time
Transformation Interface server where they can be combined with AppStats collected by the Kofax
Real-Time Transformation Interface server and analyzed by the customer's data analytics tools.

Statistics are captured first to a memory buffer, then flushed when specified by the application
developer to a file in flash storage. This file is used for the datastore to hold application statistics
during the lifecycle of the application. When the user wishes to export the data for further

109

Kofax Mobile Capture SDK Developer's Guide

processing, the Export method is called, which flushes the remainder of the in-memory data, and
then formats the data either into a relational database SQL dump for off-loading from the phone, or
a JSON export format suitable for uploading to theKofax Real-Time Transformation Interface.

By calling stopRecord and startRecord, the application can pause and resume recording
statistics as often as desired during the session.

The AppStatistics singleton object is part of the utilities component of the SDK, and must be
initialized with the initAppStats method prior to first use. This will ensure the datastore is
initialized with the correct schema to hold all of the information to be gathered. Statistics will not be
recorded until the application calls the startRecord method.

 The upgradeSchema method has been deprecated for SDK 3.1.

If the schema changes after an update of an application that uses a newer version of Kofax Mobile
Capture SDK, then initAppSats will now silently delete and recreate the database, as the normal
use case of App Statistics does not require all data from every device to be exported an uploaded.

General requirements for how to use app stats
1. Initialize App Stats

For iOS
Put the following code somewhere in application startup. A good place might be in the
AppDelegate "didFinishLaunchingWithOptions" handler:
NSString * deviceID = [[[UIDevice currentDevice] identifierForVendor] UUIDString];
kfxKUTAppStatistics *appStatsObj = [kfxKUTAppStatistics appStatisticsInstance];
NSString *appStatsDataBasePath = [NSString stringWithFormat:@"%@/
yourfilename.sqlite",
 [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, NSUserDomainMask,
 YES)
 lastObject]];
// This can be any file, name and path are application defined
[appStatsObj initAppStats:appStatsDataBasePath];

For Android
In order to implement event listeners for the various AppStatistics events (thresholds reached,
write file status, export status, etc), you may wish to define a class responsible for managing
your application's interface with AppStatistics, for example:
}
And here is the code to initialize AppStatistics and set various thresholds and
 listeners:
AppStatistics mSDKAppStatObj = AppStatistics.getInstance();
 mSDKAppStatObj.setDeviceId(UUID.randomUUID().toString());
 mSDKAppStatObj.setFileSizeThreshold(Integer.valueOf(ConstValues.
sAppStatsFileThreshold) * 1000);
 mSDKAppStatObj.setRamSizeThreshold(Integer.valueOf(ConstValues.
sAppStatsRAMThreshold) *1000);
 mSDKAppStatObj.addAppStatsExportListener(this);
 mSDKAppStatObj.addAppThresholdListener(this);
 mSDKAppStatObj.addAppStatsWriteFileListener(this);
String databasePath = "yourfilename.sqlite"; //This can be any file, name is
 application defined
 try{

110

Kofax Mobile Capture SDK Developer's Guide

 mSDKAppStatObj.initAppStats(databasePath);
 }
 catch(RuntimeException ex){

 }

2. Start recording

For iOS
[appStatsObj startRecord];

For Android
mSDKAppStatObj.startRecord();

3. Use SessionEvents as desired to log application specific custom events. If you are using Kofax
Analytics for Mobile server side, see chapter 6 of the Kofax Analytics for Mobile Administrator
Guide for details.

4. WriteToFile periodically
App Statistics are recorded to an internal memory buffer. Periodically this should be written out
to the database with the writeToFile call in the App Stats API.
The decision for when the application calls writeToFile is up to the application developer, but
we recommend the following:
Try to writeToFile periodically so as not to fill up too much memory. The RAM size threshold
event can be used to monitor this.
It is preferable to writeToFile while the application is relatively inactive, such as not in the
middle of taking a picture or image processing. Sometimes an application navigation event
such as returning to the main menu can be a sensible trigger point.
If there is a way to catch lifecycle events, try to write out the buffers before an application exits
or is suspended to the background.
Note that you must stop recording state while writeToFile is called, then re-enable recording
when it is complete. To do that, you will need to listen for the writeToFile complete event.
The code to writeToFile is as follows:

For iOS
if([self.appStatsObj isRecording]) {
 [self.appStatsObj stopRecord];
 [appStatsObj writeToFile];
}

And in the writeFileStatus delegate handler:
- (void) writeFileStatusEvent : (KUTappStatsWriteFile) type andProgress :
 (int) percentComplete withError: (int) errorCode withMsg: (NSString *) errorMsg{
 if(type==KUT_WRITEFILE_STATUS_COMPLETE)
 {
 // Re-enable recording
 [self.appStatsObj startRecord];
 }
}

111

Kofax Mobile Capture SDK Developer's Guide

For Android
if (mSDKAppStatObj.isRecording()) {
try {
 mSDKAppStatObj.stopRecord();
 mSDKAppStatObj.writeToFile();
 }
 catch (KmcRuntimeException ex) {
 Log.e(TAG, "Exception in writeToFile: " + ex.getMessage());
 }
}

And in the writeFileStatus delegate handler:
@Override
 public void writeFileStatusEvent(AppStatsWritetoFileEvent event) {
 if (event.getWritetoFileStatus() == WriteFileStatus.WRITE_STATUS_COMPLETE)
 {
 mSDKAppStatObj.startRecord();
 }
}

5. Export the data to JSON periodically, for upload to Kofax Real-Time Transformation Interface.

For iOS
NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
 NSUserDomainMask, YES);
 NSString *documentsDirectory = [paths objectAtIndex:0];
 NSString *exportPath;
 exportPath = [NSString stringWithFormat: @"%@/BR_Export.json",
 documentsDirectory];
 errorValue= [appStatsObj export:exportPath withFormat:KUT_EXPORT_TYPE_JSON];
[appStatsObj startRecord];

For Android
try {
 if (mSDKAppStatObj != null && mSDKAppStatObj.isRecording()) {
 canStartRecord = false;
 mSDKAppStatObj.stopRecord();
 mSDKAppStatObj.export(exportFilePath,
 ConstValues.sAppStatisticsExportFormat);
 }
 } catch (KmcRuntimeException ex) {
 Log.e(TAG, "Exception at manualExport() and Message :" + ex.getMessage());
}

6. Upload Exported files to Kofax Real-Time Transformation Interface.
In order to upload the exported JSON to Kofax Real-Time Transformation Interface for Kofax
Analytics for Mobile to be able to aggregate and report on them, you will need the Kofax
Real-Time Transformation Interface layer on a KTM server. There is a web service API at the
following path:
http://<serverurl>/mobilesdk/api/appStats

Upload the contents of the exported JSON data using an HTTP PUT.

112

Kofax Mobile Capture SDK Developer's Guide

Recording App Statistics sessions
The App Statistics methods beginSession, endSession, and logSessionEvent, provide a means
for an application to group application statistics that belong to the same application-defined
session. Each session is a grouping in which all subsequent AppStats operations will be logged with
the same sessionKey until the next endSession call.

The application begins by calling beginSession, passing in an application-defined sessionKey
and category, each of which are text strings. This same sessionKey should also be passed to any
server-side calls, such as the Kofax Real-Time Transformation Interface, so stats collected on the
server can reflect the same sessionKey. Category is an application-defined string, representing
the type of session.

Examples of typical categories include BillPay and check capture, but it is completely up to the
application to define a meaningful string. This is what will appear, upon export, in the Category field
of the SessionEvent database table.

Check capture example
For example, a check capture session could consist of the following steps, all of which are
considered part of the same "check deposit session":

1. BeginSession.

2. Capture a picture of the check (front) and a picture of the check (back) with Image Capture
Control, which returns SDK Image objects.

3. Process the front Image object using SDK Image Processor to read the MICR on the front.

4. Process the back Image object using the SDK Image Processor to confirm the presence of an
endorsement signature.

5. Submit the front check image to a Kofax Real-Time Transformation Interface Transformation
Web service for extraction.

6. Present the extracted check fields to the user and allow corrections of fields that did not extract
correctly.

7. Submit the corrected fields to a Kofax Real-Time Transformation Interface Validation Web
service to validate the changed fields.

8. EndSession.

From an AppStats point of view, what ties all of these individual steps together is a
unique, application-specified SessionKey. The logSessionEvent method accepts an
AppStatsSessionEvent object as a parameter, which exposes a SessionKey property. The
application can decide which steps contain valuable AppStats metrics, and log its type, event time,
and result tied to a particular SessionKey.

In order to associate specific images, capture events, and image processing events with a specific
SessionKey, Document and Image AppStats events and their corresponding database tables are
included in the AppStats schema.

113

Kofax Mobile Capture SDK Developer's Guide

The Document objects contain Pages, and Pages contain Images. Since, from an AppStats
perspective, a Page contains a single Image, there is no added value to logging Page creation
events. Therefore, only Image creation events are logged.

Consequently, the database schema shows Images in the AppStats Image table directly linked
to the AppStats Document table. The Document AppStats event and database table include a
SessionKey field, which provides the link to one or more rows in the SessionEvent database
table which have the same SessionKey. The entry in the SessionEvent database table was
inserted or updated by a call to the logSessionEvent method on the AppStatistics object.

The ImageProcessor AppStats events and database table allow the collection of Image Processing
metrics including start time, stop time, image processing profile, source image, processed image,
and image processing results.

Related AppStats events
Using the same check capture example, the table below shows AppStats events that would be
recorded based on the application taking advantage of the logSessionEvent method and the
Document, Image, and ImageProcessor AppStats events:

Process Step Associated Events

The application calls beginSession, passing
in a unique sessionKey, and a Category of
CheckDeposit.

The application captures the front and back check
images using the Image Capture control.

An AppStats CaptureEvent is logged which includes
a link to the captured Image object in the Image
table. The Source field of the Image database table
row indicates the Image came from the Image
Capture control.

The application sends the front side Image object
to the SDK ImageProcessor object for processing to
detect and return the MICR line. Crop and deskew are
also performed.

The SDK ImageProcessor object processes the image,
and creates a new processed Image object.

An AppStats event is logged in the Image database
table indicating the CreationTime of the Image,
and the FileSize, if its Image Representation
property indicates a file-based representation. The
Source field in the AppStats Image table indicates
the Image was created by the ImageProcessor.

114

Kofax Mobile Capture SDK Developer's Guide

Process Step Associated Events

An AppStats event is logged in the
ImageProcessorEvent database table indicating
processing start time, stop time, the EVRS Op String
that requested MICR recognition, the EVRS result
code, and links to these Image rows in the AppStats
Image table:

1. Original unprocessed Image.

2. Processed Image.

The ProcessingProfile field in the
ImageProcessorEvent database table indicates that
MICR recognition was requested.

The application decides it wants to document the
results of the MICR reading step as the first in a
sequence of steps required to complete an entire
check deposit session.

The application calls the logSessionEvent
method and passes in a new instance of the
AppStatsSessionEvent data-only Class.
One of the properties of this object is a unique
SessionKey created by the application which
corresponds to a single check deposit session. The
Type property of the AppStatsSessionEvent object
is set to ReadMICR.

The application sends the back side Image object
to the SDK ImageProcessor object for processing
to detect the existence of a signature on the
endorsement line.

The SDK ImageProcessor object processes the image
through EVRS, and creates a new processed Image
object.

An AppStats event is logged in the Image database
table indicating the CreationTime of the image,
and the FileSize (if its Image Representation
property indicates a file-based representation).
The Source field in the Image table indicates the
image was created by the ImageProcessor. The
ProcessingProfile field indicates that handprint
recognition was requested.

An AppStats event is logged in the
ImageProcessorEvent database table indicating
processing start time, stop time, the EVRS Op String
that requested handprint recognition, the EVRS result
code, and links to these Image rows in the AppStats
Image table:

1. Original unprocessed Image.

2. Processed Image .

The ProcessingProfile field in the
ImageProcessorEvent database table indicates that
handprint detection was requested.

115

Kofax Mobile Capture SDK Developer's Guide

Process Step Associated Events

The application decides it wants to document the
results of the endorsement signature reading step as
the next in a sequence of steps required to complete
an entire check deposit session.

The application calls the logSessionEvent
method and passes in a new instance of the
AppStatsSessionEvent data-only class. One of
the properties of this object is the same application-
created SessionKey as above which corresponds
to a single check deposit session. The Type property
of the AppStatsSessionEvent object is set to
VerifyEndorsement.

Assuming the ReadMICR and VerifyEndorsement
steps are successful, the application is ready to
submit the captured, processed front-side check
image to the Kofax Real-Time Transformation
Interface Transformation Web service for extraction.

The application calls the logSessionEvent
method and passes in a new instance of the
AppStatsSessionEvent data-only class. One of the
properties of this object is the same SessionKey
previously used by the application to log ReadMICR
and VerifyEndorsement steps. The Type property
of this AppStatsSessionEvent object is set to
RTTI_CheckExtraction_Start. The EventTime
field of the AppStats SessionEvent table is set to the
current time by the logSessionEvent method.

The Kofax Real-Time Transformation Interface
Transformation Web service is called. Included in the
HTTP Request is:

1. SessionKey.

2. Cropped, deskewed front-side check JPEG, TIFF,
or PNG image.

The Kofax Real-Time Transformation Interface
Transformation Web service response includes
the SessionKey sent in the HTTP Request.
The application calls the logSessionEvent
method and passes in a new instance of the
AppStatsSessionEvent data-only class, and
then it calls logSessionEvent to add a new row
to the SessionEvent table. The Type property
of this AppStatsSessionEvent object is set to
RTTI_CheckExtraction_End. The EventTime
field in the SessionEvent table row indicates
when the Kofax Real-Time Transformation Interface
response was received. The Response field in
the SessionEvent table row is also updated
by the application to indicate Kofax Real-Time
Transformation Interface Transformation success or
failure (the application defines the contents of this
field).

The Kofax Real-Time Transformation Interface
response also includes classification information
indicating how many documents were created
from the images sent in the Kofax Real-Time
Transformation Interface request. Each document
in the response shows a DocumentID (which must
be a GUID). So, from the response, it's clear to
the application which images belong to the same
document.

116

Kofax Mobile Capture SDK Developer's Guide

Process Step Associated Events

The application creates a new SDK Document object. The object logs an AppStats Document event in the
Document database table. The application sets the
DocumentID property of the SDK Document object
to the same DocumentID returned by Kofax Real-
Time Transformation Interface. This new row in
the Document database table will have a primary
key ID matching the DocumentID in the response
from Kofax Real-Time Transformation Interface. The
SessionKey property of the SDK Document object
is set to the same SessionKey used in earlier calls
to the logSessionEvent method. The SessionKey
field of the AppStats Document table is updated to
match this.

The application creates a new Page object and adds it
to the Document object created in the previous step.

This does not generate an AppStats Page event, as
Page creation is not a relevant metric; only the image
creation event is. Based on the Kofax Real-Time
Transformation Interface response, the application
knows which images belong to a given document.

The application adds the front-side check Image
object to the Page object created in the previous step
by calling the addImage method.

This causes an AppStats Image table update
operation to be performed, which updates the
DocumentID field in the Image table to link with its
parent AppStats Document table row.

The DocumentID property of the Image event
database row is now set to the parent Document
event row in the Document AppStats table.
This is a critical link, as it joins the AppStats
Document events generated on the Kofax Real-Time
Transformation Interface server with the mobile SDK
AppStats Image events. AppStats analytics tools on
the server can discover information about the original
captured image(s), and what EVRS processing has
been performed on those images based on just the
Document ID.

The fields of the Document object are updated
by the application, with the extracted field results
from the Kofax Real-Time Transformation Interface
Transformation response.

The application calls the getFields method on the
Document object containing the image that was
submitted for extraction. Each field value is updated
by calling the setValue method on the Field object.

The values of extracted fields are presented by
the application to the user and the user makes
corrections as needed.

An AppStats FieldChangeEvent is recorded for
every field that gets changed by the user. The
FieldChangeEvent database table is linked to the
Document table through the DocumentID field.

 This is a breaking change from earlier
versions, where the FieldChangeEvent
database table was linked to the Environment
table.

117

Kofax Mobile Capture SDK Developer's Guide

Process Step Associated Events

The application calls the logSessionEvent
method and passes in a new instance of the
AppStatsSessionEvent data-only class.

One of the properties of this object is the same
SessionKey previously used by the application to log
the ReadMICR and VerifyEndorsement steps. The
Type property of this AppStatsSessionEvent object
is set to RTTI_CheckValidation. The EventTime
field of the SessionEvent table is set to the current
time by the logSessionEvent method.

The Kofax Real-Time Transformation Interface
Validation Web service is called.
Included in the HTTP Request is:

1. SessionKey.

2. Field name-value pairs, including fields
corrected by the user.

The Kofax Real-Time Transformation Interface
Validation Web service response includes the
SessionKey sent in the HTTP Request. The
application calls logSessionEvent to add a new row,
setting the EventTime field in the SessionEvent
table row to indicate when the Kofax Real-Time
Transformation Interface response was received. The
Response field in the SessionEvent table row is also
updated by the application to indicate Kofax Real-
Time Transformation Interface Validation success or
failure (application defines the contents of this field).

If Validation fails for one or more fields, the IsValid
and ErrorDescription properties of the SDK Field
object are updated by the application. The user is
asked to make corrections to conform with validation
requirements.

An AppStats event is generated to record:
• Original field value.
• Corrected field valu.e
• IsValid flag
• ErrorDescription text indicating cause of validation

failure.

This event is recorded in the FieldChangeEvent
table.

The previous two Process Steps are repeated until
check validation succeeds for all fields.

The application calls endSession.
The entire check deposit session is complete. All
associated AppStats events on both the mobile device
and the Kofax Real-Time Transformation Interface
server which track the entire sequence have been
logged and connected together through:

1. A single sessionKey.

2. One or more DocumentID values.

SQL database schema
App Statistics are recorded internally in an SQLite datastore of the following schema (see figure
below). This same data schema is used by the Export method as a SQL dump that can be imported
to a server side database for further analysis.

 Statistics are recorded in the order of occurrence. No additional formatting or filtering
capabilities are provided.

118

Kofax Mobile Capture SDK Developer's Guide

The App Statistics are organized by events, some of which belong to an instance of an SDK object.
For example, an instance of an image capture control may trigger multiple image capture events.

So in this case, when the image capture control is instantiated, the SDK will create a record in the
Instance table, with an InstanceType corresponding to the Image Capture control. Subsequently,
each time an image is captured with the capture control, a record is created in the CaptureEvent
table, with the InstanceID of the instance control that is being used.

All time data are in the form of UTC-based date/time strings.

 For convenience in importing and aggregating data from multiple devices into a central
database, all foreign keys are GUIDs (Globally Unique Identifiers), as opposed to auto-increment
integers.

119

Kofax Mobile Capture SDK Developer's Guide

CaptureEvent table
The events fired while capturing an image are stored in this table. For example, PageDetect, level
indicator events, etc.

120

Kofax Mobile Capture SDK Developer's Guide

Database Column Data Type Description

ID GUID Primary key for this table.

InstanceID GUID Foreign key for the Instance table.

EventTime DateTime Time event occurred.

EventType Text String showing the type of capture event.
• Stability
• Levelness
• Focus
• PageDetect
• Capture
• ForceCapture
• CaptureExperienceCapture

Value Integer Numeric value associated with the event type.

ImageID GUID Foreign key to Image table.

SessionKey Text Key that identifies the active session.

Document table
Each time an SDK Document object is created, an entry is created in this table.

Database Column Data Type Description

ID GUID Primary key for this table.

SessionKey Text Key that identifies the active session.

CreationTime DateTime Time the document was created.

EnvironmentID GUID Foreign key to the environment table.

Environment table
Information about the device and SDK version is stored in this table.

Database Column Data Type Description

ID GUID Primary key for this table.

DeviceID Text GUID Identifier of the device used as assigned by
the application.

Manufacturer Text Name of device manufacturer.

Model Text Model of the device used. For iOS, the model text
follows official Apple nomenclature.

Memory Text Amount of memory in the device used.

OSVersion Text Name and version of OS.

Language Text Language setting of OS.

121

Kofax Mobile Capture SDK Developer's Guide

Database Column Data Type Description

SDKVersion Text Version of SDK.

TimeZone Text Time zone setting for the device.

Carrier Text Name of Phone Carrier.

OSName Text Name of OS (iOS, Android).

ErrorLog table
If there are errors, like crashes, the error will be logged in this table. If the error code returned is as
expected, it will be logged in an individual event table.

Database Column Data Type Description

ID GUID Primary key for this table.

EnvironmentID GUID Link to relevant row in Environment table.

ErrorTime DateTime Date and time of error.

ErrorCode Integer Code for reported error.

Description Text Textual description of error code.

Recommendation Text Error cause, if any.

SessionKey Text Key that identifies the active session.

FieldChangeEvent table
The purpose of this table is to record the field and data corrections the user had to make to the
data returned by the server. For example, the Kofax Real-Time Transformation Interface returns
DL (Driver License) information, if the user changes the first name to match the DL, the change
and field changed will be recorded in this table. A query to this table will help the fields that are not
getting processed correctly.

Database Column Data Type Description

ID GUID Primary key for this table.

DocumentID GUID Foreign key to Document table.

EventTime DateTime Time event occurred.

OriginalValue Text Value prior to change.

ChangedValue Text Value after change.

FieldName Text Name of changed field.

IsValid Integer 1 = new value found, else 0.

ErrorDescription Text Description of any errors related to this changed field, such as
field validation results.

SessionEventID GUID Optional, foreign key to SessionEvent table.

Confidence Float Confidence value ranging from -1 to 1.

122

Kofax Mobile Capture SDK Developer's Guide

Database Column Data Type Description

Formatting Failed Bool Indicates that formatting failed.

Image table
Each time an Image object is created by the SDK, either from image capture, creating from a file, or
as a result of an image processing operation, a new entry will be created in the Image table.

Database Column Data Type Description

ID GUID Primary key for this table.

EnvironmentID GUID Foreign key to the Environment table.

CreationTime DateTime Time the instance was created.

FileSize Integer Size of file (if image is file-based). If image is not file-
based, this field will be 0 until the image is written
out to a file.

Source Text Source of the image (Image capture, user created,
Image processing, etc.)

DocumentID GUID Foreign key to Document table. If this image is not
part of a document (or more technically, not part of
a page of a document), this field can be null.

StoragePath Text If the application chooses to store a copy of this
image somewhere, this field can be set to record
where that image is persisted. This can be done
on the server-side Kofax Real-Time Transformation
Interface App Stats plugin.

SessionKey Text Key that identifies the active session.

ImageProcessorEvent table
This table records all image processing events, and tracks the source, processed images, time it
took to process, and the processing profile that was used.

Database Column Data Type Description

ID GUID Primary key for this table.

InstanceID GUID Foreign key to the Instance table.

StartTime DateTime Time the event started.

StopTime DateTime Time the event stopped.

ResultCode Integer Result of image processing operation.

ProcessingProfile Text Image processing profile used (human-readable
string describing settings in a BasicSettings
profile, or the actual formatted processing string for
an image perfection profile).

SourceImageID GUID Foreign key to Image table.

ProcessedImageID GUID Foreign key to Image table.

123

Kofax Mobile Capture SDK Developer's Guide

Database Column Data Type Description

SessionKey Text Key that identifies the active session.

Instance table
Each time an AppStats-aware SDK object is instantiated, a row is inserted in this table. The table
contains instanceId (a GUID) which is its PrimaryKey (PK) and corresponds to a foreign key (FK)
for the other tables. Hence, the relationship between the Instance table and an event table is a one-
to-many relationship.

If there are two objects of the same type in the current application, the creation time and dismissal
time of each object are recorded in a separate row in the table.

Database Column Data Type Description

InstanceID GUID Primary key for this table.

EnvironmentID GUID Foreign key to the Environment table.

CreationTime DateTime Time the instance was created.

DismissalTime DateTime Time the instance was dismissed.

InstanceType Text Type of instance:
• ImageClassifier
• ImageProcessor
• BarcodeReader
• ImageCapture
• ImageReviewEdit
• BarcodeCapture
• FrontOfficeServer
• TotalAgilityServer

SessionKey Text Key that identifies the active session.

PropertyChangeEvent table
If the user has to make changes in settings, such as roll, pitch and so forth, in order to capture
a picture, it's recorded in this table. Also if the user is unable to take a picture and has to force a
manual image capture, those settings are also captured in this table.

Database Column Data Type Description

ID GUID Primary key for this table.

InstanceID GUID Foreign key to the Instance table.

EventTime DateTime Time event occurred.

124

Kofax Mobile Capture SDK Developer's Guide

Database Column Data Type Description

PropertyType Text String showing which property changed:
• Stability Delay
• Levelness Threshold Pitch
• Levelness Threshold Roll
• Page Detect Mode
• Continuous Capture
• GPS Usage

PropertyValue Text New value for the property that changed.

SessionKey Text Key that identifies the active session.

Session Event table
The SessionEvent table, along with the corresponding new method LogSessionEvent, provides
a mechanism for an application to log time stamps in App Statistics.

As many entries in the SessionEvent table can be created as the application developer chooses,
but each would use the same SessionKey, and the free-text "Type" field would describe the
type of event (example: Image processed, server request, response received, etc). This allows the
application developer to record key points of interest for timing measurements, which could then
be used in subsequent analysis for performance measurements of various parts of the process.

Database Column Data Type Description

ID GUID Primary key for this table.

SessionKey Text Key that identifies the active session.

Category Text Maps to the current project.

Type Text Application-defined description of session event
type.

EventTime DateTime Time of the event.

EnvironmentID GUID Foreign key to the environment table.

Response Text Optional. Application-provided response from a
particular session event. For example, a server
response.

DocumentID GUID Optional, foreign key to document table.

Exporting data
The SDK supports exporting data from the datastore to MSSQL. When the export is done, an
SQL dump file will be created at the location specified by the user in the Export method. For
convenience, there is a sample create script in the AppStats folder of the product zip file that creates
an MSSQL database that matches the supported schema.

The developer can create their own custom exporter or use the export capability provided with the
SDK. With custom exporters you can export data from the datastore to a database of you choice.

125

Kofax Mobile Capture SDK Developer's Guide

With the SDK's built in exporter, the data from datastore will be exported to an SQL dump file as a
series of insert statements in MSSQL syntax. No create statements are included in this export file. It
assumes the target database already exists.

If an SQL dump file already exists, the SDK will throw an exception. If you want to preserve multiple
SQL dumps, the application will have to create a new file.

SDK-provided export
The export handler provided in the SDK exports the data from the datastore to an SQL dump file in
the location specified in the Export method.

In order to use the exporter in the SDK, you have to add the export listener in the application and
the event provided with the listener will return the status of the export.

JSON export format
The SDK supports exporting data from the datastore to a database-neutral format. The format is
simple JSON and is suitable for sending to the Kofax Real-Time Transformation Interface via a new
Kofax Real-Time Transformation Interface Web service designed to accept AppStats data. When
the export is done, a JSON file with an extension of ."json" will have been created at the location
specified by the user in the Export method.

JSON-formatted export data is structured as a single JSON object which contains two name/value
pairs:
• AppStatisticsVersion: The AppStatisticsVersion contains the version of the SDK which

generated this JSON data.
• AppStatisticsTables: JSON object which contains a name/value pair for each database table.

The name is the table name, the value is an array of objects (one for each table row). Each object
in the array contains a name/value pair for every field in that table row, with the name of each
field paired with its value.

A sample implementation for an Android device is as follows, however the basic format will be the
same regardless of platform:
{ "AppStatisticsVersion": "2.2.0.0.0.0",
 "AppStatisticsTables" :
 {
 "Environments" :
 [{"ID": "ab6cb9d6-2e13-4067-9ed0-ecf453bd7a46",
 "DeviceID": "",
 "Manufacturer": "Samsung",
 "Model": "Samsung Galaxy Nexus",
 "Memory": "711480 kB",
 "OSVersion": "4.0.4",
 "Language": "en_US",
 "SDKVersion": "2.0.0.0",
 "TimeZone": "PDT",
 "Carrier": "Verizon",
 "OSName": "Android"
 }
],
 "Instances" :
 [{"InstanceID": "024f2227-c6a7-4ad3-bcf1-cb98fb562397",
 "EnvironmentID": "ab6cb9d6-2e13-4067-9ed0-ecf453bd7a46",

126

Kofax Mobile Capture SDK Developer's Guide

 "CreationTime": "2014-05-29 15:54:57",
 "DismissalTime": "",
 "InstanceType": "ImageClassifier"
 }
],
 "ClassificationEvents":
 [{"ID": "c636d6bf-0b22-475c-b740-a0c582b3b39e",
 "InstanceID": "024f2227-c6a7-4ad3-bcf1-cb98fb562397",
 "StartTime": "2014-05-29 15:55:16",
 "StopTime": "2014-05-29 15:55:16",
 "ClassificationResult": "LA1",
 "ClassificationConfidence": "0.8337612"
 }
],
 "ClassificationEventAlternatives":
 [{"ID": "833acf7b-c8c5-4393-abc4-e21a60cdb374",
 "ClassificationEventID": "c636d6bf-0b22-475c-b740-a0c582b3b39e",
 "AlternativeResults": "MS1",
 "AlternativeConfidence": "-0.36527917"
 },
 {"ID": "60398A01-85B0-44d4-95D1-A818380EE016",
 "ClassificationEventID": "c636d6bf-0b22-475c-b740-a0c582b3b39e",
 "AlternativeResults": "CA2",
 "AlternativeConfidence": "-0.69517412"
 }
],
 "FieldChangeEvents" :
 [{"ID": "798251f3-0208-4863-bab8-8982752fc702",
 "DocumentId: : "a963aa90-9718-449a-ab5b-5efd6b1e0021",
 "EventTime" : "2014-07-30 16:26:36",
 "OriginalValue" : "dog",
 "ChangedValue" : "cat",
 "FieldName" : "Pet_Name",
 "IsValid" : "1",
 "ErrorDescription" : ""
 }
]
 }
}

Custom exporter (Android)
You can create your own custom exporter if you have a need to modify the standard exported
output that comes with App Statistics.

1. Create a class that implements AppStatsDsExportHandler.

2. Register the handler using the Register method provided in the SDK.

3. Add the export listener and pass in the correct format type.

4. The AppStatsDsExportHandler returns the AppStatsDaoField array and table name. The
rows that were retrieved from the SQLite database are returned in the AppStatsDaoField
array. This array has to be parsed into INSERT statements acceptable to the database of
choice.

The sample implementation is as follows:
public class DatabaseExportHandler implements AppStatsDsExportHandler {

 private static final String TAG = "Handler";
 String path;

127

Kofax Mobile Capture SDK Developer's Guide

 ArrayList<String> insertStatements = new ArrayList<String>();

 public DatabaseExportHandler() {

 }

 @Override
 public void onExportAppStatsRowEvent(String dsExportTblName,
 AppStatsDaoField[] daoFields) {

 writeInsertStatementsToDumpFile(this.path, dsExportTblName, daoFields);
 }

 @Override
 public void configDsExpFilePath(String dsExpFilePath) {
 path = dsExpFilePath;

 if (path.endsWith(".sql"))
 createDumpFile(this.path);
 else {
 this.path = this.path + ".sql";
 createDumpFile(this.path);
 }
 }

 /**
 * This method writes INSERT statements for the rows of data
 * returned by the handler
 * into the sql dump file specified by the user in the export method.
 *
 * @param path - export file path with .sql as the extension
 * @param tableName - table into which the insert statements will be applied
 * @param rowInformation - rows returned in the handler
 */
 private void writeInsertStatementsToDumpFile(String path, String tableName,
 AppStatsDaoField[] rowInformation) {
 File myFile = new File(path);
 String insertStatment = null;
 StringBuffer insertStNames = new StringBuffer();
 StringBuffer insertStValues = new StringBuffer();
 insertStNames.append("INSERT INTO " + tableName + " (");
 insertStValues.append("VALUES (");
 if (myFile.exists()) {
 for (AppStatsDaoField r : rowInformation) {

 insertStNames.append(r.getDsFieldName() + ",");
 if (r.getDsFieldType() == AppStatsDsFieldType.DS_FIELD_TYPE_FLOAT)
 {
 insertStValues.append("'" + r.getDsValueFloat() + "'"
 + ", ");
 }
 else if (r.getDsFieldType() == AppStatsDsFieldType.DS_FIELD_TYPE_INTEGER)
 {
 insertStValues.append("'" + r.getDsValueInt() + "'" + ", ");
 }
 else if (r.getDsFieldType() == AppStatsDsFieldType.DS_FIELD_TYPE_LONG)
 {
 insertStValues.append("'"+ (r.getDsValueLong()) + "'"+ ", ");
 }
 else if (r.getDbFieldType() == AppStatsDbFieldType.DB_FIELD_TYPE_DATETIME)
 {

 if(r.getDsValueString() == "0" || StringUtils.isEmpty(r.getDsValueString())
 || r.getDsValueString() == null)

128

Kofax Mobile Capture SDK Developer's Guide

 {
 Log.i(TAG,"value[0] = "+r.getDsValueString());
 insertStValues.append("'"+ (" ") + "'"+ ", ");
 }
 else
 {
 Log.i(TAG,"value[0 - oops] = "+r.getDsValueString());
 insertStValues.append("'"+ (r.getDsValueString()) + "'"+ ", ");
 }
 }
 else if (r.getDsFieldType() == AppStatsDsFieldType.DS_FIELD_TYPE_STRING) {
 if (r.getDsFieldName().contains("ID")) {
 String guid = r.getDsValueString();
 insertStValues.append("'" + "{" + guid + "}" + "'"
 + ", ");
 } else
 {
 //remove extra ' - bug
 String value = r.getDsValueString().replace("'", "");
 insertStValues.append("'" + value + "'"
 + ", ");
 }
 }
 }

 insertStValues.deleteCharAt(insertStValues.lastIndexOf(","));
 insertStNames.deleteCharAt(insertStNames.lastIndexOf(","));
 insertStNames.append(")");
 insertStValues.append(");");
 insertStatment = insertStNames.toString()
 + insertStValues.toString();
 Log.i(TAG, "insertStatment = " + insertStatment);
 insertStatements.add(insertStatment);
 }
 try {
 FileOutputStream fOut = new FileOutputStream(myFile);
 OutputStreamWriter myOutWriter = new OutputStreamWriter(fOut);
 for (int i = 0; i < insertStatements.size(); i++) {
 myOutWriter.write(insertStatements.get(i) + "\n");

 }

 myOutWriter.close();
 fOut.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 /**
 * This method creates the sql dump file on the sdcard
 * @param path - export dump file with .sql extension appended if absent
 */
 private void createDumpFile(String path) {

 if (path == null || StringUtils.isEmpty(path))
 throw new NullPointerException();

 int lastIndex = path.lastIndexOf(File.separator);
 String parentPath = path.substring(0, lastIndex);
 String fileName = path.substring(lastIndex, path.length());
 File newFolder = null;
 if (!parentPath.equalsIgnoreCase(Environment
 .getExternalStorageDirectory().getPath())) {

129

Kofax Mobile Capture SDK Developer's Guide

 newFolder = new File(parentPath);
 if (!newFolder.exists()) {
 newFolder.mkdir();
 }

 File sqlDumpFile = new File(newFolder, fileName);
 try {
 sqlDumpFile.createNewFile();
 } catch (IOException e) {
 e.printStackTrace();
 }
 } else {
 File file = new File(parentPath, fileName);
 try {
 file.createNewFile();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 }
}

Custom exporter (iOS)
You can create your own custom exporter if you have a need to modify the standard exported
output that comes with App Statistics.

You can do this simply by using an option delegate method:
-(NSString *) formatExportRow:(NSString *) tableName withFields:
 (NSMutableArray *) daoFields;

If you implement this method in your delegate, it will be called. If not, then you will get the
default export format you have now. An example of an implementation for your delegate
method, that produces the same results as the current built-in export (be sure to #import
"kfxKUTAppStatsDaoField.h"):
-(NSString *) formatExportRow:(NSString *) tableName withFields:
 (NSMutableArray *) daoFields
{
 NSMutableString * fieldnames = [NSMutableString string];
 NSMutableString * fieldvalues = [NSMutableString string];

 unsigned long count = [daoFields count];

 for (int i = 0; i < count; i++)
 {
 kfxKUTAppStatsDaoField * field = (kfxKUTAppStatsDaoField *)
 [daoFields objectAtIndex:i];

 [fieldnames appendString:field.fieldName];
 if (field.fieldType == KUT_APP_STATS_DAO_FIELDTYPE_GUID)
 {
 [fieldvalues appendString:[NSString stringWithFormat:@"'{%@}'",
 field.fieldValue]];
 }
 else
 {
 [fieldvalues appendString:[NSString stringWithFormat:@"'%@'",
 field.fieldValue]];
 }

130

Kofax Mobile Capture SDK Developer's Guide

 if (i < count - 1)
 {
 [fieldnames appendString:@","];
 [fieldvalues appendString:@","];

 }

 }

 NSString * result = [NSString stringWithFormat:@"INSERT into %@ (%@)
 values (%@);\r\n", tableName, fieldnames, fieldvalues];

 return result;
}

About hybrid apps using PhoneGap
PhoneGap is an open source mobile application development framework, based upon the Apache
Cordova project. See cordova.apache.org for documentation for details. The PhoneGap Mobile
Plugin for the mobile SDK in your mobile application can be used to capture and process images
and bar code data received from mobile devices. For more information see the PhoneGap Plugin
Developer's Guide.

 PhoneGap Plugin supports Cordova 10.0 or later.

Kofax mobile plugin for Kofax TotalAgility
The PhoneGap based Kofax Mobile Plugin for TotalAgility makes it possible to access mobile and
tablet forms in Kofax TotalAgility, which utilize the new Mobile Capture and Mobile Bar Code
Capture controls. By using this plugin in your mobile application, you can use your application to
capture and process images and bar code data received from mobile devices.

For more information see the PhoneGap Plugin Developer's Guide.

Serialization and deserialization
The Logistics and Engines data classes have a serialization feature that allows certain objects
instantiated from these classes to be written out to a specified file, and later restored from this file.
The purpose of this feature is:
• To conserve memory space
• To save certain capture data for later use
• To be able to restore objects from the archived files
• To store certain objects for later use when a document is created. This reduces server interaction

and improves performance.

131

Kofax Mobile Capture SDK Developer's Guide

In addition:
• Compatibility: The library supports backward compatibility, such that an application that uses a

newer version of the SDK can still restore objects from archives created by an older version of the
SDK library. However, it is not a design goal to archive and unarchive with forward compatibility,
such as decoding an archive on a newer version of the class, with an older version of the library.

• Versions: Archiving a particular object includes the version of the parent library to which it is
associated. This allows for verifying backward compatibility before use. The library throws an
exception if the deserialization process cannot be performed with an input file.

• Named serialization: Each archive includes the name of the class so that the library can detect
errors with improper usage while maintaining backward compatibility. The library throws an
exception when the archive file does not match the class association. Therefore, each serialization
file includes two permanent items, namely, the version of the library and the class name.

Serializable classes
The SDK logistics and engine libraries are designed to allow archiving certain classes. These classes
contain the unique data associated with documents and images. These are the only classes that can
be serialized. Any of these classes may be serialized from any starting point, or from any level in a
hierarchy of objects, and individually. But, the most common use case is to save work in progress
associated with documents.

The following logistics and engine data classes can be serialized. Serializing a parent object
serializes all child objects when those objects are valid. There are a maximum of 5 levels of
hierarchy, and the capability ensures all lower-level objects are serialized correctly.

Logistics Classes:
• Document

• DocumentType

• Field

• FieldType

• Page

• Image

Engine Data Classes
• ImagePerfectionProfile

• BasicSettingsProfile

• QuickAnalysisFeedback

• BarcodeResult (part of an array in Image)
• BoundingTetragon

• ClassificationResult (part of an array in Image)

Serialization hierarchy
The diagram below shows the serialization hierarchy and dependencies.

132

Kofax Mobile Capture SDK Developer's Guide

Serialization Hierarchy

The SDK library includes classes organized under a top level Document object. If a document is
serialized, every Logistics and Engine Data object shown in the figure is included in the archive. In
some cases, the serialization file will include an array of objects or a set of objects. The "…" in the
diagram indicates a one-to-many relationship in the hierarchy. For instance, a document may be
composed of several pages, and a page may have multiple images within it. An image may have an
image perfection profile or a basic settings profile used by image processing. It may also have a bar
code results array, a classification results array or some quick analysis feedback results data. All of
these Engine Data objects would be included in the output file.

In the largest case, a document would include all five levels of objects in the hierarchy. A basic
settings profile may include a bounding tetragon, while the quick analysis feedback object may
refer to a different bounding tetragon and a bar code results object may refer to yet another.

Serialization of images
The Image object includes an image represented in different formats. These formats include:
bitmap, a buffered file, a stored file or none at all. The table shows the various representations
using the enumerations in the Image class. These are the only valid combinations, and the
serialization feature saves images in all these combinations.

Image Representation File Representation Description

Unknown Unknown An object with no associated image

Bitmap n/a An object that contains a native bitmap image:
either a source image or a processed image.

133

Kofax Mobile Capture SDK Developer's Guide

Image Representation File Representation Description

File Stored An object that has a path to a file that contains
the image stored in a file (as represented by
a file path with a named file that contains the
image saved in a specific mime type).

File Buffered An object that contains an embedded internal
buffer representing the image, which is
normally smaller than the bitmap image.
The buffer contains the image formatted
according to a specified mime type, such as
JPG or TIFF.

Both Stored An object that has both an embedded bitmap
and a file path with a file name that contains
the image saved in a particular mime type.

Both Buffered An object that has both an embedded bitmap
and a file image buffer that contains the
image formatted in a particular mime type.

Conditions and limitations
The application that uses the SDK objects is responsible for initiating, saving, and restoring
data. SDK classes that can be serialized implement the needed methods for both serializing and
deserializing.

The application may use serialization for any purpose that it deems appropriate. The application
layer decides the naming convention to use for the archive files, but we recommend using, at least,
the name of the top level root class within the file name to help manage the correct association.

The application manages saving the archive file names in some way that allows restoration. The
library does not maintain any archival file names in any class within the SDK.

An application can only restore an object from an archive file associated with the object to which it
was intended, or the library throws an exception.

An application can only restore an object from an archive file that was written by the current library
version or an earlier one. Otherwise, the library throws an exception.

Android specifics

Objects
The following objects are serialized:
• KfxEngines

• BarCodeResult
• BasicSettingsProfile
• BoundingTetragon
• Image
• ImagePerfectionProfile

134

Kofax Mobile Capture SDK Developer's Guide

• QuickAnalysisFeedback
• ImageClassificationResult

• KfxLogistics
• Document
• DocumentType
• Field
• Image
• FieldType
• Page
• WscIndexField

Example: application serialization
The following sample serializes the ImagePerfectionProfile object:
ImagePerfectionProfile myIPP = new ImagePerfectionProfile();
 File dest = new File(Environment.getExternalStorageDirectory() +
 java.io.File.separator
 + "sdk20IPP.save");

 myIPP.setIpOperations("_Do90DegreeRotation_4_DoBinarization_
_DoSkewCorrectionAlt__DoScaleImageToDPI_200");
 myIPP.setName("Insurance Sample Case");
 myIPP.setIpOperationsFilePath(dest.getPath());

 try {
 // write the object to file
 FileOutputStream fos = new FileOutputStream(dest);
 ObjectOutputStream out = new ObjectOutputStream(fos);
 out.writeObject(myIPP);
 out.close();
 } catch (KmcRuntimeException e) {
 e.printStackTrace();
 } catch (Exception ex) {
 ex.printStackTrace();
 }

Example: application deserialization
The following sample deserializes the ImagePerfectionProfile object:
try {
 // read the object from file
 FileInputStream fis = new FileInputStream(dest);
 ObjectInputStream in = new ObjectInputStream(fis);
 ImagePerfectionProfile myIPPCopy = (ImagePerfectionProfile)in.readObject();
 in.close();
 } catch (KmcRuntimeException e) {
 e.printStackTrace();
 } catch (Exception ex) {
 ex.printStackTrace();
 }

135

Kofax Mobile Capture SDK Developer's Guide

iOS Specifics
The serialization capability adopts the NSCoding protocol so that the object may be archived and
unarchived using the iOS standard keyed archival methodology.

The NSCoding delegate methods use encoded key value pairs so that the decode method can read
keyed values from the archive in any order, while ignoring new keys it does not know about.

The application uses the following approach to archive an object or a hierarchy of objects.

[NSKeyedArchiver archiveRootObject:<object> toFile: archiveFileName];

Using keyed archive files, you can save this object for later use. To restore an object or a hierarchy of
objects from a named archive file, the application calls the NSKeyedUnarchiver method, using the
following approach.

myRestoredObject = [NSKeyedUnarchiver
unarchiveObjectWithFile:archiveFileName];

When you initialize an object with the NSKeyedUnarchiver, iOS restores objects in a similar way to
an implied alloc-init. The library only throws exceptions when it detects something wrong with the
deserialization operation.

The libraries use unique key names that have the class name as the prefix, so that all keys are
guaranteed to be unique to the Kofax class names and properties. The encodeWithCoder method
encodes the object, and encodes each property using the unique key name. iOS handles saving
that encoding to the file specified with the KeyedArchive method. When the application calls the
unarchiveObjectWithFile, it uses the previously saved file by name.

Example: application serialization
This shows how to archive a bounding tetragon that is first initialized with test data.
// Example of serialization for only this pre-initialized object we
will use as the root object.

 kfxKEDBoundingTetragon * myTetragon = [[kfxKEDBoundingTetragon alloc] init];

 CGPoint aPoint;

 // Setup an object for example purposes
 aPoint.x = 77.500000;
 aPoint.y = 66.250000;
 myTetragon.topLeft = aPoint;

 aPoint.x = 55.120000;
 aPoint.y = 44.500000;
 myTetragon.topRight = aPoint;

 aPoint.x = 33.500000;
 aPoint.y = 22.750000;
 myTetragon.bottomLeft = aPoint;

 aPoint.x = 11.12500;
 aPoint.y = 0.500000;
 myTetragon.bottomRight = aPoint;

136

Kofax Mobile Capture SDK Developer's Guide

 NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
 NSUserDomainMask, YES);
 NSString* documentsDirectory = [paths objectAtIndex:0];
 NSString * archiveFileName = [documentsDirectory stringByAppendingPathComponent:
 @"SerialTetragonObject.ar"];
 [NSKeyedArchiver archiveRootObject:myTetragon toFile:archiveFileName];

Example: application deserialization
All keyed unarchive operations must be wrapped in a try-catch block because the initWithCoder
method throws exceptions. This example shows a popup with the error description when the library
throws an exception on unarchive.
 NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
 NSUserDomainMask, YES);
 NSString* documentsDirectory = [paths objectAtIndex:0];
 NSString * archiveFileName = [documentsDirectory stringByAppendingPathComponent:
 @"SerialTetragonObject.ar"];

 kfxKEDBoundingTetragon * myTetragonRestored;
 kfxKEDImage * myImageRestored;

 int errorCount = 0;

 @try{
 myTetragonRestored = [NSKeyedUnarchiver unarchiveObjectWithFile:archiveFileName];
 }@catch (NSException *anException)
 {
 dispatch_async(dispatch_get_main_queue(), ^{
 NSString * strException = [NSString stringWithFormat:@"Unarchive Exception:
 %@",anException.name];

 UIAlertView* alert = [[UIAlertView alloc] initWithTitle:strException message:
 anException.reason delegate:self cancelButtonTitle:@"OK"
 otherButtonTitles:nil];
 [alert show];
 });
 errorCount++;
 }

Licensing
All apps using the Kofax Mobile Capture SDK require a license.
The license string is supplied as a text string to include in your software project. For iOS, the license
file can be directly included in the project. For Android, the license string needs to be copied into the
Java code.
In addition to the methods below, you can also use a bar code reader to capture the SDK license at
run time. For more information, see License capture control object.

137

Kofax Mobile Capture SDK Developer's Guide

Licensing object
Can be found in Utilities.

Licensing is an object that comprises the licensing mechanism for this SDK. The licensing
mechanism prevents unlicensed users from using key components of the mobile SDK.

Licensing Object Diagram

The following mobile SDK objects are protected by licensing checks:
• ImageCaptureControl

• BarCodeCaptureControl

• ImageReviewEditControl

• ImageProcessor

• BarCodeReader

• ImageObject

• AppStatsClass

• FrontOfficeServer

• ImageClassifier

Licensing basics
It is necessary to obtain a license in order to use the protected SDK objects. This string is supplied
as a file that can be included in a software project. To set the license, the application calls the
setMobileSDKLicense method of the License object. The method returns KMC_SUCCESS if the
license is valid for use. The method returns an error code if the license has expired or the license
string is otherwise invalid.

The application can call getDaysRemaining to determine when the license expires, which returns a
value for how many days are left in the license. The setMobileSDKLicense method returns a non-
zero error code if it was invalid, in which case the return value for getDaysRemaining is zero.

138

Kofax Mobile Capture SDK Developer's Guide

kfxEVRS_License.h
The file kfxEVRS_License.h contains a non-working license string to ensure that you can at
least compile the sample source, if not actually run the sample program. You will need to obtain a
working license, according to the terms of your contract.

A sample file is shown here.

Sample: kfxEVRS_License.h
//===
// kfxEVRS_License.h
//
// Copyright (c) 2018 Kofax. All rights reserved. Kofax Confidential.
// Unauthorized use, duplication, distribution, or disclosure is strictly
// prohibited.
// Kofax VRS Mobile SDK
//
// This license header file contains a placeholder license string for use
// in the example code to ensure that you can compile the sample source.
// You may obtain an evaluation license from Kofax for the purpose of
// evaluating the Kofax VRS Mobile SDKlibrary.
// You will receive a production license from Kofax, according to the terms of
// your contract.
//
//
//===

#ifndef kfxEVRS_License_h
#define kfxEVRS_License_h

#define PROCESS_PAGE_SDK_LICENSE "This is not a valid license."

#endif

Driver license classifier
 ImageClassifier has been deprecated in Kofax Mobile Capture SDK 3.4.0.

Can be found in Engines.

The API includes an image classifier for United States Driver Licenses. The SDK includes some of the
specific configuration and model xml files to configure the classifier to classify U.S. Driver Licenses.
There can only be one instance of the classifier at a time.

Once you load the configuration file and the model file, you can use the classify Image method,
which examines an input image and returns an array of classification result data as a list of possible
classifications, with the most confident classification returned first in the array. The classification
data is stored in the input kfxKEDImage object. One classification result indicates what document
type is associated with the image.

139

Kofax Mobile Capture SDK Developer's Guide

An application can use the classification data classID string to associate it with a particular
DocumentType object in the application. For example, "CA2" may indicate a type 2 California driver
license.

Before classifying a driver license image
In the sample application included with the SDK, an image processing string, similar to the
following example, is used for classifying driver licenses. Note that this string is provided here for
example purposes only. You should refer to the source code for the application to obtain the most
current version of this string.

_DeviceType_2_DoSkewCorrectionPage__DoCropCorrection_
_DoScaleImageToDPI_500_DocDimSmall_2.125_DocDimLarge_3.375_LoadSetting_
<Property Name=\"CSkewDetect.prorate_error_sum_thr_bkg_brightness.Bool\"
Value=\"1\" Comment=\"DEFAULT 0\"></Property>_LoadSetting_
<Property Name=\"CSkwCor.Do_Fast_Rotation.Bool\" Value=\"0\"
Comment=\"DEFAULT 1\"></Property>"

 The above string (or a similar one) must be used to process the image before attempting to
classify it.

Initialize the classifier
In order to use the classifier, the application must first initialize it. To do so, specify the model file
and the configuration file. Two sample files are provided in the SDK to initialize the Classifier for
detecting US Driver Licenses. These files must be bundled with the application. The SDK includes
the XML configuration files in the Configuration Files folder. Copy these files into your
application project, and provide a fully qualified path to these files when you initialize the classifier.

It is the app's responsibility to download the latest classifier files from the extraction server to
update the files on the mobile device. To do this, use Web services calls to the extraction server
where the server administrator has stored the appropriate classifier files.

 At this time, the model can be updated only by the products team.

Classification results
Classification results are stored in the ClassificationResult objects array in the
input KEDImage object. To determine the highest confidence result, use the first
ClassificationResult in the objects array. This object includes the orientation of the image in 90
degree increments, and the confidence value.

The application can use the classification result data to perform advanced image processing using
specific settings for that document type. For instance, one sheet may have a dark background, while
another has a light background.

Each possible classification result object includes a class ID, the orientation of the image string,
and a score value. The score is a float, with negative values indicating low probability, while positive
values indicate high confidence. The higher the positive score, the more confident the classification.

140

Kofax Mobile Capture SDK Developer's Guide

On-Device Extraction
On-device extraction affords the app developer the choice of extracting data from an image of an ID
on the device instead of sending large images to a server for extraction. Extraction is done entirely
on the device; however, the component does periodically communicate with a Kofax Real-Time
Transformation Interface or TotalAgility server for license accounting purposes.

The on-device extraction API is a simple interface that expects the front and/or back images of the
ID and a callback/delegate.

For specific details regarding ID fields, please refer to the Kofax Mobile ID Capture Administrator's
Guide.

Using On-Device Extraction
When using on-device extraction, it is necessary to provide the extraction engine with some asset
files. These assets can either be pre-loaded into your applications assets (iOS and Android), pre-
loaded onto a device's external storage (Android only), or loaded from the Kofax Quick Updater for
Mobile download link (iOS and Android).

Each option has its own implementation, each located in the
com.kofax.mobile.sdk.extract.id package. By default, the SDK will use the
LocalProjectProvider.

Because the extractor will use the LocalProjectProvider by default, you can simply use the
default constructor with a context parameter. For example:

Android example
public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 IIdExtractor extractor = new OnDeviceIdExtractor(this);
 extractor.extractFields(...);
 }
}

iOS example
kfxKOEIDExtractor* idExtractor = [kfxKOEIDExtractor new];
idExtractor.delegate = self;
[idExtractor extract:...];

When using the LocalProjectProvider it is necessary to copy the project zip to the local storage
location of the device prior to running any on-device extraction. See the Kofax Mobile SDK API
Reference Guide of the LocalProjectProvider for more details.

If you would like to use the ServerProjectProvider, ensure you have a Kofax Quick Updater
for Mobile instance running, and provide an instance of the ServerProjectProvider to the
OnDeviceIdExtractor. For example:

141

Kofax Mobile Capture SDK Developer's Guide

Android example
public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 IProjectProvider projectProvider = new ServerProjectProvider(this, "http://
myCompanyServer.com/odedldservice/api/odedownload/);
 IIdExtractor extractor = new OnDeviceIdExtractor(this, projectProvider);
 extractor.extractFields(...);
 ...
 }
}

iOS example
KFXServerProjectProvider* serverProvider = [[KFXServerProjectProvider alloc]
 initWithURL:[NSURL URLWithString:@"http://myCompanyServer.com/odedldservice/api/
odedownload/"]];
kfxKOEIDExtractor* idExtractor = [[kfxKOEIDExtractor alloc]
 initWithProjectProvider:serverProvider];
idExtractor.delegate = self;
[idExtractor extract:...];

Be sure to provide the entire base path to the Kofax Quick Updater for Mobile web API.

It is also possible to use your own implementation of IProjectProvider to allow for complete
control of communication between your application and the updater instance. Simply implement
the IProjectProvider interface, and supply your implementation to the OnDeviceIdExtractor,
similar to the examples above. Please see the Kofax Mobile SDK API Reference Guide for
IProjectProvider for more information.

Furthermore, it is possible to use your own implementation of the cache provider, controlling
the behavior of the reference implementations of IProjectProvider. Simply implement the
IBundleCacheProvider interface, and supply your implementation to the IProjectProvider
instance of your choice. Provide that IProjectProvider to the OnDeviceIdExtractor,
similar to the examples above. Please see the Kofax Mobile SDK API Reference Guide for
IBundleCacheProvider for more information.

Project providers use cache providers for caching extraction assets. There is a built-in cache
provider - BundleCacheProvider. It is possible to customize the directory where cached assets will
be stored. In order to do so, create an IBundleCacheProvider instance with specified directory
path and supply it to the project provider instance of your choice. For example:

Android example
IBundleCacheProvider cache = new BundleCacheProvider(new File("/path/to/cache"));
IProjectProvider projectProvider = new ServerProjectProvider(MyActivity.this, cache,
 "http://myCompanyServer.com/odedlservice/api/odedownload");
IIdExtractor extractor = new OnDeviceIdExtractor(MyActivity.this, projectProvider);

iOS example
KFXBundleCacheProvider* cache = [[KFXBundleCacheProvider alloc] initWithPath:@"/path/
to/cache"];
KFXServerProjectProvider* serverProvider =
 [[KFXServerProjectProvider alloc] initWithURL:
 [NSURL URLWithString:@"http://myCompanyServer.com/odedldservice/api/odedownload/"]
 cacheProvider:cache];
 kfxKOEIDExtractor* idExtractor = [[kfxKOEIDExtractor alloc]
 initWithProjectProvider:serverProvider];

142

Kofax Mobile Capture SDK Developer's Guide

idExtractor.delegate = self;
[idExtractor extract:...];
".

Downloading package updates
In order to enable incremental updates to On-Device Extraction, the client-server architecture allows
the downloading of extraction configuration and model files.

The client is able to download the project packages (fields.xml, classifier.config/.model, and
cities.zip) in order to complete classification without downloading all of the variant data. Once
classification is complete and the variant is known, the client can download just that variant
package to complete extraction. The client can also request a bulk download. In this case, the
project package as well as all of the variants will be downloaded onto the device.

Android example for project package downloads
try {
 final String[] projectVersion = new String[1];
 IProjectProvider projectProvider = new ServerProjectProvider(mainActivity, "http://
 myCompanyServer.com/odedldservice/api/odedownload/");
 ICompletionListener listener = new ICompletionListener() {
 @Override
 public void onComplete(Object o, Exception e) {
 projectVersion[0] = (String) o;
 }
 };
 projectProvider.getHighestVersion(SdkVersion.getSdkVersion(), listener);
 //...
 // download project packages
 projectProvider.getProject(projectVersion[0], listener);
 } catch (MalformedURLException e) {
 Log.e("ServerProjectProvider", "MalformedURLException");
}

iOS example for project package downloads
__block NSString* wversion; KFXServerProjectProvider* serverProvider =
 [[KFXServerProjectProvider alloc]initWithURL:[NSURL URLWithString:@"http://
myCompanyServer.com/odedldservice/api/ odedownload/"]]; [serverProvider
 getHighestVersion:[[kfxKUTSdkVersion sdkInstance] getSdkVersion]
 completionHandler:^(NSString *version, NSError *error) { wversion = version;
 }]; [serverProvider getProject:wversion completionHandler:^(NSString *path, NSError*
 error) {

Android example for variant downloads
projectProvider.getVariant("variantName", projectVersion[0], listener)

iOS example for variant downloads
[serverProvider getVariant:@“variantName" version:wversion completionHandler:^(NSString
 path, NSError error) { NSLog(@"Variant load finished error: %@",
 err); }];

Android example for bulk downloads
projectProvider.loadAllVariantsForProject("CombinedIDs", listener);

iOS example for bulk downloads
[serverProvider loadAllVariantsForProject:@“CombinedIDs" completionHandler:^(NSError*
 error){

143

Kofax Mobile Capture SDK Developer's Guide

 NSLog(@"loadAllVariantsForProject error: %@", error.description);
 });

ID extraction licensing
The app can use the acquireVolumeLicenses method in the SDK to pre-allocate on-device
extraction license volume units obtained from the server. Also, users can have their own custom
server from which licenses can be obtained. This form of preallocation is useful, for example, for
situations where the device cannot connect to the server.

Outstanding license usage will be reported to the license server when the server connection is
available, and either acquireVolumeLicenses or setMobileLicenseServer is called.

However, once the licenses have been downloaded to the device, there is no way to restore them to
the license server. Also, please keep in mind that these preallocated, on-device extraction volume
licenses are permanently decremented on the license server. Any unused volume remaining on a
device will be lost if the application is uninstalled or if the application data is otherwise cleared.

For ID extraction, use the following code to set the licensing.

Android
// Custom License Server

LicensingVolume.setMobileSDKLicenseServer("Not Mandatory",
 Licensing.LicenseServerType.RTTI);
Licensing.addVolumeLicenseEventListener(new Licensing.VolumeLicenseEventListener() {
 @Override
 public void licenseOperationFailed(Licensing.VolumeLicenseFailureData failure) {
 Log.e("Exception", "License Operation Failed");
 }

 @Override
 public void licenseOperationSucceeded(Licensing.VolumeLicenseResultData results) {
 Log.i("Licensing", "License Operation Succeeded");
 }
});
Licensing.setCustomAcquireVolumeLicenseEventListener(new
 Licensing.CustomAcquireVolumeLicenseEventListener() {
 @Override
 public void customAcquireVolumeLicenseEventWithData(Licensing.
CustomAcquireVolumeLicenseRequestData requestData) {
 try {
 // User should use the above request and hit the service. Once the user has
 the response, they should set as below
 requestData.getCompletionHandler().onComplete(response, null);
 } catch (IOException e) {
 requestData.getCompletionHandler().onComplete(null, e);
 }
 }
});
Licensing.acquireVolumeLicenses(Licensing.LicenseType.ID_EXTRACTION, numberOfLicences);

// Replace my-server-here in the following line with the IP address or
// host name of your server.

LicensingVolume.setMobileSDKLicenseServer("http://my-server-here/mobilesdk",
Licensing.LicenseServerType.RTTI);
Licensing.setCertificateValidatorListener(new CertificateValidatorListener() {
 @Override

144

Kofax Mobile Capture SDK Developer's Guide

 public SSLSocketFactory getSSLSocketFactory(String s) {
 Log.i("Licensing", "validation challenge");
 return null;
}); }
Licensing.addVolumeLicenseEventListener(new Licensing.VolumeLicenseEventListener() {
 @Override
 public void licenseOperationFailed(Licensing.VolumeLicenseFailureData
 volumeLicenseFailureData) {
 Log.e("Exception", "License Operation Failed");
 }
@Override
 public void licenseOperationSucceeded(Licensing.VolumeLicenseResultData
 volumeLicenseResultData) {
 Log.i("Licensing", "License Operation Succeeded");
}); }
Licensing.acquireVolumeLicenses(Licensing.LicenseType.ID_EXTRACTION, numberOfLicences);

iOS
kfxKUTLicensing* _license = [[kfxKUTLicensing alloc] init];
 _license.delegate = self;
 _license.certificateValidatorDelegate = self;
 [_license setMobileSDKLicenseServer:@"http://my-server-here/mobilesdk”
 type:SERVER_TYPE_RTTI];
 [_license acquireVolumeLicenses:LIC_ON_DEVICE_EXTRACTION
 withCount:numberOfLicences];
 - (void)acquireVolumeLicenseDone:(int) licAcquired error: (NSError*) error
 {
 NSLog(@"acquireVolumeLicenseDone: count: %d error: %@", licAcquired,
 error.description);
 }
// License fetch for custom server
kfxKUTLicensing* _license = [[kfxKUTLicensing alloc] init];
_license.delegate = self;
_license.customAcquireVolumeLicenseDelegate = self;
[_license setMobileSDKLicenseServer:nil type:SERVER_TYPE_RTTI];
[_license acquireVolumeLicenses:LIC_ON_DEVICE_EXTRACTION withCount:numberOfLicenses];
- (void)customAcquireVolumeLicenseWithData:
(kfxKUTCustomAcquireVolumeLicenseRequestData*)data{
 NSDictionary* request = data.request;
 // User should use the above request and hit the service. Once the user has the
 response, they should set as below
 data.completionHandler(NSData * _Nullable data, NSURLResponse * _Nullable response,
}

Optical Character Recognition engines
On-device extraction uses several Optical Character Recognition (OCR) engines. The Tesseract OCR
engine is available for non-Latin character recognition (such as Arabic, Cyrillic, and Greek). For iOS,
the Tesseract OCR libraries are already included in the SDK. For Android, the following libraries are
required by the Tesseract OCR engine:
• tesseract-4.0.0.5.jar
• liblept.so
• libtess.so

If you do not require the extraction of non-Latin characters, these Tesseract OCR libraries can be
removed safely. No errors will be thrown.

145

Kofax Mobile Capture SDK Developer's Guide

For iOS, the Tesseract OCR engine is disabled by default so that its binaries do not increase
application size. However, an error is returned if the application attempts to extract non-Latin
text. If your application reads non-Latin languages, enable the Tesseract OCR engine by doing the
following:

1. Call the enable KFXTesseractOCR class method.

2. Run kfxKOEIDExtractor to extract data with the Tesseract OCR engine.

Diagnostics and error codes
You can enable the display of diagnostics information during the capture experience. This feature
provides state information about status of automatic capture and help with debugging. This view is
supported for the Document, Check, FixedAspectRatio and Passport capture experiences. Logging is
turned off by default.

Following diagnostics information is displaying as an overlay over the capture experience:
• Focus state
• Stability value and thresholds
• Selected camera resolution
• Pitch/roll - Value and thresholds
• Level value based on pitch/roll
• Detected page
• Focus Area
• Pre-crop target frame

 The Focus Area feature is applicable and enabled only for the Android platform for these
specific devices with poor focus: Samsung Galaxy S5, Samsung Note 3, Samsung S4 mini, HTC One
max, SONY Xperia Z, LG G3, Moto G, Lenovo Yoga, Nexus 7, Nexus 9, Asus Zenfone, HTC One M9.

Enabling diagnostics in the capture experience
Methods to manage logging information for the capture experience UI are provided for the Android
and iOS platforms. Below are examples showing how to enable diagnostics:

Android
DocumentBaseCaptureExperience captureExperience
captureExperience.setDiagnosticsViewEnabled(true);

iOS
kfxKUIDocumentBaseCaptureExperience* captureExperience;
captureExperience.diagnosticsViewEnabled = TRUE;

This example screen shows the debugging user interface.

146

Kofax Mobile Capture SDK Developer's Guide

147

Kofax Mobile Capture SDK Developer's Guide

Error code strings
For a complete listing of error codes, refer to the following files.

 For best results, view the files with a text editor optimized for development use.

Strings for the SDK error codes are available within the release zip separately for each platform:

Android
The SDK error message strings are available as XML files at the following path location within the
release zip: Android\MobileSDK_libs\jar\localization.

iOS
The SDK error message strings are available in the bundle file at the following path location within
the release zip: iOS\Frameworks\MobileSDK.zip\SDKStrings.bundle

About the Kofax mobile demo application
The Kofax Mobile Demo sample application is included with the SDK and may be found at iOS
\SampleApps\Native\KofaxMobileDemo-iOS.zip and Android\SampleApps\Native
\KofaxMobileDemo-Android.zip. It demonstrates the capabilities of the mobile SDK. This
demo is not intended to be used directly in a production environment. Rather, it is intended to
demonstrate how the SDK can be used to support typical use cases. The Kofax Mobile Demo source
code is packaged with the SDK and can be copied and used as a starting point for development.

Kofax Mobile Demo demonstrates SDK capabilities such as image capture, image processing,
classification, and submitting images to KTM (Kofax Transformation Module) or KTA (Kofax
TotalAgility).

 When submitting bitonal images, it may be necessary to increase the maximum buffer size. If
the buffer is too small, the application may present an error message stating that the maximum
message size quota for incoming messages has been exceeded. The default value for this quota
is 65K (65536) bytes. To increase the size, edit maxBufferSize="65536" in the Kofax Real-Time
Transformation Interface web.config file.

It also demonstrates several use cases. These are briefly explained below.

Kofax server support
Kofax Mobile Demo can connect to the mobile frameworks (Bill Pay and Mobile ID) on the Kofax
TotalAgility platform. Users can select the server type, Kofax Transformation Module (via the Kofax
Real-Time Transformation Interface) or KofaxTotalAgility for each component in Kofax Mobile Demo.
Some features that are currently supported on Kofax Real-Time Transformation Interface are not

148

Kofax Mobile Capture SDK Developer's Guide

supported on the Kofax TotalAgility platform. Please see the comparison table below for more
details on which features are supported.

Supported Parameters

Feature Kofax TotalAgility Kofax Real-Time Transformation
Interface

Text Value Y Y

ErrorDescription Y Y

Confidence Y Y

Valid Y Y

CheckReasonReject Y Y

RestrictiveEndorsment Y Y

RestrictiveEndorsmentPresent Y Y

Highlight extracted data
coordinates

N Y

formattingFailed N Y

fieldAlternatives N Y

Save original image N Y

Check capture
The user begins by selecting a region and then capturing images for both sides of the check. After
providing the amount on a check, the front and back images are captured. These captured images
are submitted to servers which can handle the processing of the check.

Most similar applications just take images and submit them, however such images are typically
large. Kofax Mobile Demo, on the other hand, processes the images by converting them to bitonal
and by cropping to remove excess edge space. This is performed on the device and consequently
reduces the size of image sent to the server.

Kofax Mobile Demo guides the user when taking photos of both the front and the back of a check.
The mobile SDK, which is used to take the pictures of the checks, provides two modes: video and
image. Kofax Mobile Demo uses the video mode for devices supporting high resolutions and image
mode for devices with low resolution.

Once the image of a check front is captured, Kofax Mobile Demo performs the necessary image
processing in the background. While this is happening, the user can proceed to take a picture of the
check back. Once image processing for the front is complete, the image of check front is submitted
to the server where check data is extracted and showed in a summary view. If there are issues, the
user can retake the picture to correct them.

As part of the extraction process, a variety of validations are performed to test the results, thereby
helping to ensure quality data. The server-side application checks if the image is too light or too
dark. It also checks for various fields on the check. For example, on the front side of the check it
looks for the payee name, amount, MICR code, and signature. Also, if a MICR line is not present,

149

Kofax Mobile Capture SDK Developer's Guide

then Kofax Mobile Demo informs the user that the MICR was not found and user needs to verify if
he has really submitted the front side of the check. If the same check is submitted again then the
user is shown a duplicate check duplicate message.

On the back side, the signature (endorsement) is checked.

Once both the front and back images are submitted, the server extracts the data and responds with
the information in the fields on the check. The check information and validation results are shown
in detail in the "Check Information" screen. This screen provides not only the values obtained from
processing the check, but also a confidence level for each value. There are also tabs for IQA Results,
and Usability Results.

 The SDK does not currently have a method for obtaining values for the confidence and
valid fields from Kofax TotalAgility. Instead, Kofax Mobile Demo obtains these values by using
Kofax Transformation Module to return the information via the Kofax Real-Time Transformation
Interface.

The user may continue after reviewing these details.

Check capture settings
Check capture has several settings that the user can change.
• Camera Settings The user can choose from a variety of settings such as Gallery, Page Detection,

Stability Delay and Roll Threshold.
• Processing Settings The user can configure various settings related to the processing of images.

Parameters like AutoCrop, Auto Rotate, Deskew, Scale (dpi), and Sharpen can be configured.
Deskew by content or layout can also be configured.

• Server Settings The user can configure the server to which the image will be submitted for
extraction. The URL can be HTTP or HTTPS.

• Advanced Settings The user can enable MICR detection, or whether Check Validation and Check
Extraction are performed locally or on the server. The user can also enable hand print recognition
and duplicate check detection.

• Edit Component Labels The user can modify the text used for various field labels use on the
screens.

Pay bills
Kofax Pay Bills, available from the main menu, allows the user to capture an image of a bill coupon
and pay the bill. The user begins by selecting a region and then capturing images of the bills.

After capturing an image of the coupon, relevant data, such as the amount, due date, and payee
information are extracted, or entered. After the required information is provided and confirmed, the
user can tap "Make Payment" to pay the bill.

If, while taking the picture, the page is not detected, or the picture is not taken promptly, the user
can opt to manually take the picture.

The Pay Bills module also performs image processing on the device. The image processing
parameters can be changed in the settings.

150

Kofax Mobile Capture SDK Developer's Guide

The processed image is sent to the server. The server extracts the values of the important fields and
sends the results back to the application. After validating these values, the user can continue to add
more payees.

"Make Payment" is similar to "Add Payee." Additional fields such as the amount are shown to the
user.

Please note that the bill is not actually paid since this is a demo application.

Pay bills settings
Pay Bills has several settings that the user can change.
• Camera settings The user can choose from a variety of settings such as Gallery, Page Detection,

Stability Delay and Roll Threshold.
• Processing settings The user can configure various settings related to the processing of images.

Parameters like AutoCrop, Auto Rotate, Deskew, Scale (dpi), and Sharpen can be configured.
Deskew by content or layout can also be configured.

• Server settings The user can configure the server to which the image will be submitted for
extraction. The URL can be HTTP or HTTPS.

• Edit component labels The user can modify the text used for various field labels use on the
screens.

ID card
The ID Card feature can be used to capture an ID card from a number of regions around the world.
Images can be captured from both sides of the card. The captured images are then sent for data
extraction.

Further more, ID verification is done by comparing the photograph on the ID against a selfie
portrait captured using the Selfie Capture Experience in both Kofax TotalAgility and Kofax Real-Time
Transformation Interface servers.

The information is shown to the user, which he can then verify and correct as needed and finally
submit.

Please note that the card is not actually used since this is a demo application.

 The ID Card feature requires a color image.

ID card settings
ID Card has several settings that the user can change.
• Camera settings The user can choose from a variety of settings such as Gallery, Page Detection

and Stability Delay.
• Processing settings The user can configure various settings related to the processing of images.

Parameters like AutoCrop, Auto Rotate, Deskew, Scale (dpi), and Sharpen can be configured.
Deskew by content or layout can also be configured.

• Server settings The user can configure the server to which the image will be submitted for
extraction. The URL can be HTTP or HTTPS.

151

Kofax Mobile Capture SDK Developer's Guide

• Edit component labels The user can modify the text used for various field labels use on the
screens.

Credit Card
The credit card capture feature can be used to capture an embossed or a non-embossed credit card,
which can then be used as a form of payment. The user begins by capturing an image of the card.
The captured image is processed for data extraction.

 Extraction from non-embossed cards is supported only on the server.

The information is shown to the user, which he can verify and correct as needed and finally submit.

Please note that the credit card is not actually used since this is a demo application.

Credit card settings
Credit Card has several settings that the user can change.
• Extraction Settings Credit card has support of Card IO as well as Server Extraction. By default

Card IO is selected. If the server option is selected, the user can configure the server to specify
which the image will be submitted for extraction. The URL can be HTTP or HTTPS. Also the below
additional options will be enabled when server is selected
• Camera settings The user can choose from a variety of settings such as Gallery, Page

Detection and Stability Delay.
• Processing settings The user can configure various settings related to the processing of

images. Parameters like AutoCrop, Auto Rotate, Deskew, Scale (dpi), and Sharpen can be
configured. Deskew by content or layout can also be configured.

• Edit component labels The user can modify the text used for various field labels use on the
screens.

Passport
The passport feature can be used to capture the information page from a passport, which can then
be used as a form of identification. The user begins by capturing an image of the information page.
The captured image is sent for data extraction.

ID verification is performed by comparing the passport photo against a selfie portrait captured
by the Selfie Capture Experience in both Kofax TotalAgility and Kofax Real-Time Transformation
Interface servers.

We recommend using the Image mode for passports, since this mode produces images with a
higher resolution. Using the Video mode is not recommended because it may negatively impact the
extraction results.

The information is shown to the user, which he can verify, correct as needed and finally submit.
Please note that when the Submit button is pressed in the Demo program, nothing happens. If
On-Device Extraction is used, passport data is not actually sent anywhere. However, if server side
extraction was used, data was sent to the server earlier in the workflow. However, none of this data
is retained at the server.

152

Kofax Mobile Capture SDK Developer's Guide

 The passport feature requires a color image.

Passport settings
Passport has several settings that the user can change.
• Camera settings The user can choose from a variety of settings such as Gallery, Page Detection,

Stability Delay and Roll Threshold.
• Processing settings The user can configure various settings related to the processing of images.

Parameters like AutoCrop, Auto Rotate, Deskew, Scale (dpi), and Sharpen can be configured.
Deskew by content or layout can also be configured.

• Server settings The user can configure the server to which the image will be submitted for
extraction. The URL can be HTTP or HTTPS.

• Edit component labels The user can modify the text used for various field labels use on the
screens.

Custom Component
The custom component feature can be used to capture the information page from a passport, ID
card, bill, or credit card, which can then be used as a form of identification. The user begins by
capturing an image of the information page. The captured image is sent for data extraction. The
information is shown to the user, which they can verify, correct as needed and finally submit. Please
note that when the Submit button is pressed in the Demo program, nothing happens.

Custom Component settings
The Custom Component has several settings that the user can change.
• Camera settings The user can choose from a variety of settings such as Gallery, Page Detection,

Stability Delay and Roll Threshold.
• Processing settings The user can configure various settings related to the processing of images.

Parameters like AutoCrop, Auto Rotate, Deskew, Scale (dpi), and Sharpen can be configured.
Deskew by content or layout can also be configured.

• Server settings The user can configure the server to which the image will be submitted for
extraction. The URL can be HTTP or HTTPS.

• Edit component labels The user can modify the text used for various field labels use on the
screens.

Adding the license
In addition to the methods below, you can also use a bar code reader to capture the SDK license at
run time.

For more information, see License capture control object.

153

Kofax Mobile Capture SDK Developer's Guide

Android
To add an Android license to the Kofax Mobile Demo Application with Android Studio:

1. After the project is imported into Android Studio, navigate to Src/
com.kofax.mobiledemo.common/License.java.

2. Change the PROCESS_PAGE_SDK_LICENSE variable from "Invalid License" to your provided
license.

iOS
To add an iOS license to the Kofax Mobile Demo Application:

1. Open the project in Xcode.

2. Navigate to KofaxMobileDemo/KofaxSDKHelperFiles/EVRS/kfxEVRS_License.h

3. Change the PROCESS_PAGE_SDK_LICENSE variable from "No License" to your provided license.

154

Chapter 5

Security model

This chapter gives you information about the Kofax Mobile Capture SDK and Kofax Real-Time
Transformation Interface security model.

User login and authentication

Category Authentication and Authorization

Description User provides login credentials for Kofax application
or customer Web application.

Security Details Kofax supports corporate authentication
mechanisms, including Windows authentication.
When using a Customer Web Application as
middleware between the mobile client and the Kofax
Real-Time Transformation Interface Server, the
customer web application handles authentication
using a preferred mechanism.

155

Kofax Mobile Capture SDK Developer's Guide

Client transmits to Customer Web Application or Kofax Real-Time Transformation Interface
Server

Category Data in transit

Port 80 or 443

Protocol HTTP or HTTPS

Description Client transmits to Customer Web Application or
Kofax Real-Time Transformation Interface Servers.

Security Details All connectivity from mobile clients to Kofax Real-
Time Transformation Interface Servers use HTTP/
HTTPS. Configure HTTPS for maximum security.
For maximum security, use HTTPS to configure
Customer Web Applications for maximum security.

Kofax Real-Time Transformation Interface transmits to SQL Server

Category Data in transit

Port Varies depending on protocol

Protocol TCP/IP or Named Pipes

Description Kofax Real-Time Transformation Interface server
transmits to/from database

Security Details Kofax Real-Time Transformation Interface Server can
optionally connect to a SQL Server database to store
analytics information.
The SQL Server system is typically co-located or
otherwise physically protected eliminating the need
for additional encryption.
If encryption is required, encrypt the database
connection using SSL /TLS protocols.

Analytics data storage

Category Data at rest

Description Analytics data is stored

Security Details Analytics data is optionally stored in a customer
database. Access this database using connection
information stored in the web.config file for the Kofax
Real-Time Transformation Interface Server.
Use ASP.NET encryption to encrypt associated
connection information in the web.config file.
When connecting to the database, use Windows
authentication for maximum security.
Use SQL Server Transparent Data Encryption (TDE) for
data at rest.

Temporary image storage

Category Data at rest

156

Kofax Mobile Capture SDK Developer's Guide

Description Images are stored.

Security Details Images are stored temporarily for processing.
The image storage location is configurable in the
web.config file. Use Windows file security controls
to restrict folder access to the account running IIS
application pool.
Use Windows file system encryption for maximum
security.

157

	Table of Contents
	Preface
	System requirements
	Getting help with Kofax products
	Product documentation
	Default online documentation
	Configure offline documentation

	Introduction to the Kofax Mobile Capture SDK
	Product overview

	Conceptual overview
	Guidelines for improving image capture
	Capturing an image
	Auto-Capture
	Image processing recommendations
	Submitting an image to the Kofax Mobile Frameworks
	Flash capture
	NFC support
	NFC certificate validation
	Kofax Mobile Bill Pay
	Check capture
	Kofax Mobile ID Capture
	HTML5 Capture

	Getting started with the SDK
	Setting up for localization
	iOS
	Android

	Using the SDK with iOS
	Creating a Swift package for Kofax Mobile Capture SDK
	Sample iOS projects
	Set up licensing
	Image capture
	Image review
	Image processing
	Data extraction
	Results

	Using the SDK with Android
	Selecting Camera or CameraX
	Component names and descriptions for the Android SDK
	Required libraries for Kofax Mobile Capture SDK functionality
	Android APK split mechanism
	Sample Android projects
	Set up licensing
	Image capture
	Image review
	Image processing
	Data extraction
	Results

	Obfuscating applications with ProGuard

	In-depth look at the SDK
	Native interface object types
	Capture objects
	UI control objects
	Engine objects
	Logistics objects
	Utility objects
	Capturing images overview
	Library feedback and controls
	Page detection

	Image Capture Control object
	Set camera resolution
	Camera LED lamp
	Auto-Torch

	Get/Set focus area
	Set camera type
	Real-Time video feed
	Check Capture Experience
	Document Capture Experience
	Passport Capture Experience
	Flash capture for the Passport Capture Experience

	Fixed Aspect Ratio Capture Experience
	Glare reduction for the Fixed Aspect Ratio Capture Experience
	Flash capture for the Fixed Aspect Ratio Capture Experience

	Selfie Capture Experience
	Integration of face detection
	Bundled model
	Unbundled model

	Required code changes

	Packaged Capture Experience
	Activities and view controllers
	Model classes
	Capturing both sides of a document

	Stability delay
	Page detection mode

	Image Capture Frame object
	Portrait target frame

	Image Review and Edit control
	Transform an image
	Highlight extracted data
	Indicating the crop area
	Crop using a rectangle or tetragon as adjusted by the user

	Image object
	Recommended mime types
	Date and time stamps
	Memory management
	Android-specific recommendations

	Retain image option

	Glare remover
	Image Processor object
	Image Processor Configuration
	BasicSettingsProfile
	ImagePerfectionProfile
	Image operations specification
	Resolution of inconsistencies
	Rectangularization

	Image processing: date and time stamps
	DPI estimation
	Process progress feedback
	Cancel image processing
	Queue management
	Final_Image scaling and resolution
	MICR Recognition and hand print detection
	MICR recognition
	MICR parsing

	Hand print detection
	Example metadata results
	Code Sample
	MICR reading
	Hand print detection

	Target frame cropping
	QuickAnalysisFeedback object

	OpenCV
	Android
	iOS

	Server objects
	Capture Server
	Examples

	Server extraction objects
	Using server extractor
	Examples

	Kofax Front Office Server logon
	TotalAgility Server logon
	TotalAgility Server interface
	Logging into a server
	Indicated errors
	Login cancellation

	DocumentType object
	Document object
	Page object
	FieldType object
	Field object

	BarCodeCaptureControl object
	Supported bar codes for BarCodeCaptureControl object
	Reading techniques
	Bar code reader and return all bar codes
	Supported bar codes for bar code reader

	BarcodeReader object
	Reading techniques
	Supported bar code types

	Guideline feature

	License capture control object
	Credit card capture
	SDK Version object
	Version object
	UI control objects package
	Logistics objects package
	Engine objects package

	App Statistics overview
	General requirements for how to use app stats
	Recording App Statistics sessions
	Check capture example
	Related AppStats events

	SQL database schema
	CaptureEvent table
	Document table
	Environment table
	ErrorLog table
	FieldChangeEvent table
	Image table
	ImageProcessorEvent table
	Instance table
	PropertyChangeEvent table

	Session Event table
	Exporting data
	SDK-provided export
	JSON export format
	Custom exporter (Android)
	Custom exporter (iOS)

	About hybrid apps using PhoneGap
	Kofax mobile plugin for Kofax TotalAgility
	Serialization and deserialization
	Serializable classes
	Serialization hierarchy
	Serialization of images
	Conditions and limitations
	Android specifics
	Objects
	Example: application serialization
	Example: application deserialization

	iOS Specifics
	Example: application serialization
	Example: application deserialization

	Licensing
	Licensing object
	Licensing basics

	kfxEVRS_License.h
	Sample: kfxEVRS_License.h

	Driver license classifier
	Before classifying a driver license image
	Initialize the classifier
	Classification results

	On-Device Extraction
	Using On-Device Extraction
	Downloading package updates
	ID extraction licensing

	Optical Character Recognition engines

	Diagnostics and error codes
	Enabling diagnostics in the capture experience
	Error code strings

	About the Kofax mobile demo application
	Kofax server support
	Check capture
	Check capture settings

	Pay bills
	Pay bills settings

	ID card
	ID card settings

	Credit Card
	Credit card settings

	Passport
	Passport settings

	Custom Component
	Custom Component settings

	Adding the license

	Security model

