
Kofax Web Capture
Developer's Guide

Version: 11.5.0
Date: 2024-05-24

© 2024 Tungsten Automation. All rights reserved.

Tungsten and Tungsten Automation are trademarks of Tungsten Automation Corporation,
registered in the U.S. and/or other countries. All other trademarks are the property of their
respective owners. No part of this publication may be reproduced, stored, or transmitted in any
form without the prior written permission of Tungsten Automation.

Table of Contents
Preface... 8

Related documentation.. 8
Training... 8
Getting help with Kofax products...8

Chapter 1: Deploy Kofax Web Capture..10
Visual C++ Runtime dependencies... 10
Deploy Kofax Web Capture in ASP.NET..10

Dependencies using Kofax Web Capture class library... 10
Dependencies using Kofax Web Capture with WebControls... 10

Generating licenses.. 11
Chapter 2: Web scanning.. 13

Getting Started with Web Capture... 13
Kofax Web Capture demos...13
Set up a new project...14
Add the Web Document Viewer handler..15
Add the Web Capture handler...15
Set up the scanning controls and viewer...18
Wrap-up... 20
Deploy on multiuser environment.. 20

Chapter 3: Web scanning server..22
Troubleshoot Web Capture Handlers...22
Extend the KicHandler..23
Connect to Kofax Import Connector services...23

Modify web.config.. 23
Specify the Kofax Import Connector endpoint..24

Configure Kofax Import Connector..25
Required license...25
Configure the service.. 25
Configure the Electronic Documents plugin..26
Test the configuration... 26

Chapter 4: Web scanning client... 27
Initialize the control on the client.. 27

Include WebCapture Javascript..27
Initialize... 27

3

Kofax Web Capture Developer's Guide

Connect to UI controls... 29
Examples of UI controls..30

Filter selection lists... 31
Connect controls with no UI... 32
Import loose pages.. 32
Batch fields...33

Display and enter values.. 33
Filter the displayed list..33
Set values through the initialize parameter list.. 34
Batch field validation...34

Index fields...35
Index field list filtering..35
Required fields..35
Hidden fields...35
Set index field values without connecting to UI... 35
Index field validation...36
Skin the generated table.. 37

Handle events..37
ImageProxy properties and methods...39

Handle errors...43
Handler: onScanError(msg, params)...43
Handler: onScanClientReady().. 45

Set scanning options.. 47
Upload Options... 57
Connect to the Web Document Viewer... 58
Licensing...60

File Formats and File Options.. 60
Use VirtualReScan (VRS)... 60
Test your application.. 61

Test in Edge, Firefox and Chrome... 61
Test for error conditions...61

Troubleshoot scanning problems... 62
Uninstall Web Capture MSI... 64
Client API reference..64

Atalasoft.Controls.Capture.WebScanning..64
Atalasoft.Controls.Capture.CaptureService... 72

Chapter 5: Web Document Viewer.. 75
Chapter 6: Program with DotPdf... 76

4

Kofax Web Capture Developer's Guide

Mathematical model...77
Transformations.. 78
PdfGeneratedDocument...80
Pages...80
Standard page sizes... 81
Create stationery...81
Clipping...83
Colors.. 84
Rendering... 85
Resources... 85

Font resources..86
Type 1 symbol font encoding.. 87
Embed fonts..90
Color space resources...90
Image resources.. 91
Template resources..92

Shapes...92
PdfPath.. 92
PdfRectangle... 95
PdfRoundedRectangle... 96
PdfCircle...96
PdfArc...96
PdfImageShape.. 96
PDF text shapes... 98
PdfTable... 99
PdfTemplateShape... 100
PostnetBarcodeShape... 103
GSave / GRestore...103
Transform..104
Marked content..104
Make custom shapes.. 105

Round trip documents... 108
Integrate with Web Capture..109
Actions.. 110

PdfAction... 111
Go To View actions.. 111
URI actions..112
JavaScript actions... 112

5

Kofax Web Capture Developer's Guide

Sound actions...112
Show/Hide action...113
Named actions... 114
Submit Form Actions...115
Reset Form Action... 115

Annotations..115
Properties common to all annotations...116
Properties common to all mark up annotations...119
Properties common to all widget annotations..120
General annotations..121
Markup annotations.. 124
Widget annotations... 135

Use annotations.. 144
Place an annotation.. 144
Create an annotation with a custom border... 145
Add a pop-up to a markup annotation.. 146
Create an annotation with transparency... 147
Skin an annotation.. 148
Make an annotation with a rollover appearance..149
Make a sticky note annotation.. 150
Add a review state to a sticky note.. 150
Make a highlight annotation... 151
Set a redaction area.. 155
Use JavaScript to calculate values... 156

PDF Forms..158
PdfForm...159
Node form fields..160
Leaf form fields..160
Visiting nodes... 160
Form actions...161

Merge PDF forms..162
Import pages..163
Merge forms...163
Default merging...164

DotPdf repair... 164
DotPdf repair process... 164
Detect errors...165
Repair errors...166

6

Kofax Web Capture Developer's Guide

Repair events..166
Repair filtering..167
Structure options... 168
Array options.. 170
Property repair... 170

Digital signatures.. 171
Certify documents... 172
Get signer information... 174
Document signing operations... 177
Customize signature appearance..180
Certify a document with PdfDocument..181
Determine if a document is certified or signed.. 181
Fill fields of a certified document..182
Sign a document with an existing signature...182
Add a signature to a document.. 182

Linearized PDF...183
PdfDocument and PdfGeneratedDocument integraton...183
PdfEncoder integration... 184

PDF/A...184
PDF/A in PdfDocument... 184
PDF/A data in PdfDocumentMetadata..187
PDF/A in PdfGeneratedDocument...187

PDF 2.0..195
Document upgrade to PDF 2.0..196

Chapter 7: BarcodeReader.. 197
Use the BarcodeReader... 198

Reading a bar code... 198
Read a bar code with options set.. 199

7

Preface

The Kofax Web Capture Developer's Guide contains information about how to install and customize
your Kofax Web Capture installation. This guide explains how to:
• Use .NET assemblies to acquire, read, write, display, annotate, or process images
• Use WebForms controls to scan, display, and manipulate images and documents
• Add .NET controls to WinForms, WPF, and WebForms projects

Related documentation
In addition to this guide, the Kofax Web Capture documentation set includes the following:
• API Reference: Gives the complete Kofax Web Capture class library in online help format.
• API Reference (.chm file): Gives the complete Kofax Web Capture class library for offline use.
• Kofax Web Capture Release Notes: Contains late-breaking product information not included in this

guide.

Training
Kofax offers both classroom and online training to help you make the most of your product. To
learn more about training courses and schedules, visit the Kofax Education Portal on the Kofax
website.

Getting help with Kofax products
The Kofax Knowledge Portal repository contains articles that are updated on a regular basis to
keep you informed about Kofax products. We encourage you to use the Knowledge Portal to obtain
answers to your product questions.

To access the Kofax Knowledge Portal, go to https://knowledge.kofax.com.

 The Kofax Knowledge Portal is optimized for use with Google Chrome, Mozilla Firefox, or
Microsoft Edge.

The Kofax Knowledge Portal provides:
• Powerful search capabilities to help you quickly locate the information you need.

Type your search terms or phrase into the Search box, and then click the search icon.

8

https://docshield.tungstenautomation.com/KWC/en_US/11.5.0-8wax4k031j/help/KWC/html/Atalasoft_DotImage_Welcome.htm
https://docshield.tungstenautomation.com/KWC/en_US/11.5.0-8wax4k031j/help/ApiReference.chm
https://docshield.tungstenautomation.com/KWC/en_US/11.5.0-8wax4k031j/help/WC_releasenotes_html/index.html
https://learn.kofax.com/
https://knowledge.kofax.com/
https://knowledge.kofax.com/

Kofax Web Capture Developer's Guide

• Product information, configuration details and documentation, including release news.
To locate articles, go to the Knowledge Portal home page and select the applicable Solution
Family for your product, or click the View All Products button.

From the Knowledge Portal home page, you can:
• Access the Kofax Community (for all customers).

On the Resources menu, click the Community link.
• Access the Kofax Customer Portal (for eligible customers).

Go to the Support Portal Information page and click Log in to the Customer Portal.
• Access the Kofax Partner Portal (for eligible partners).

Go to the Support Portal Information page and click Log in to the Partner Portal.
• Access Kofax support commitments, lifecycle policies, electronic fulfillment details, and self-

service tools.
Go to the Support Details page and select the appropriate article.

9

https://knowledge.kofax.com/bundle/z-kb-articles-salesforce1/page/19280.html
https://knowledge.kofax.com/bundle/z-kb-articles-salesforce1/page/19280.html
https://knowledge.kofax.com/category/support_details

Chapter 1

Deploy Kofax Web Capture

Kofax Web Capture does not contain COM components to register, and no Registry modifications
are required to use the SDK. To deploy the SDK, copy Kofax Web Capture assemblies alongside your
EXE.

Visual C++ Runtime dependencies
Kofax Web Capture is distributed in several configurations, which are listed in the Kofax Web Capture
Technical Specifications.

Deploy Kofax Web Capture in ASP.NET
When deploying Kofax Web Capture in an ASP.NET application, the Kofax Web Capture license file
must be located in the bin directory of the application.

Dependencies using Kofax Web Capture class library
The following files must be included on the server that usesKofax Web Capture. This is all that is
required when using the class library only:
• Atalasoft.dotImage.dll

• Atalasoft.dotImage.Lib.dll

• Atalasoft.Shared.dll

All of these files must be placed in the application's bin folder.

Dependencies using Kofax Web Capture with WebControls
The following files must be included on the server that uses Kofax Web Capture with WebControls:
• Atalasoft.dotImage.dll

• Atalasoft.dotImage.WebControls.dll

• Atalasoft.dotImage.Lib.dll

• Atalasoft.Shared.dll

• Atalasoft.dotImage.Pdf.dll

• Atalasoft.dotImage.PdfReader.dll

• Atalasoft.dotImage.PdfDoc.Bridge.dll

10

Kofax Web Capture Developer's Guide

• Atalasoft.dotImage.PdfDoc.dll

• Atalasoft.dotImage.Ocr.dll

• Atalasoft.dotImage.AdvancedDocClean.dll

All of these files must be placed in the application's bin folder.

Generating licenses
To license application components, a license file is generated or updated and compiled into the
project output.

The licenses.licx file is generated or updated automatically by Windows Form Designer when a
licensed control is added to a form. For console application, this file is added manually as shown in
HOWTO: License an EXE for Deployment on the Atalasoft website. During compilation, the project
system transforms licenses.licx into a .licenses binary resource that provides support for .NET
control licensing. The binary resource is embedded in the project output.

For .NET Framework, use the License Compiler (lc.exe) to compile and embed the license binary
resource. (See the Microsoft website for instructions.) For .NET 6 or later, the License Compiler is
not supported. Instead, use the Atalasoft License Compiler (AtalasoftLicenseCompiler.exe) provided
with Kofax Web Capture to transform and embed the license binary resource. Just like the License
Compiler, the Atalasoft License Compiler takes the licenses.licx file that was generated or updated
by Windows Form Designer or added manually, transforms the file into a .licenses binary resource,
and embeds it into the project output.

The Atalasoft License Compiler can be run separately, and it uses the same command-line
arguments as the License Compiler, as in this example:
AtalasoftLicenseCompiler.exe
/complist:<licenses.licx_path>
/outdir:<result_folder_path> /target:<application_name>
/i:"<refassembly1>;<refassembly2>;<refassembly3>;..;<refassemblyN>"

But to embed licensing, you need to install the Atalasoft.dotImage.AtalasoftLicenseCompiler.x86
or Atalasoft.dotImage.AtalasoftLicenseCompiler.x64 NuGet package for .NET 6 project. The NuGet
package includes AtalasoftLicenseComplier.exe and the appropriate targets and instructions for
*.licenses generation. Targets are added to the .csproj file during compilation.

To use the Atalasoft License Compiler, follow these steps:

1. Install the NuGet package, either Atalasoft.dotImage.AtalasoftLicenseCompiler.x86 or
Atalasoft.dotImage.AtalasoftLicenseCompiler.x64.

2. Create or add the licenses.licx file.
If you create the file, make sure it is in <project folder>/Properties. If you add it, follow
the instructions in HOWTO: License an EXE for Deployment on the Atalasoft website.

3. Build the project.
During compilation, the following takes place:

a. The AtalasoftLicenseComplier.exe utility and necessary assemblies are copied to
<destination folder>/lib.

11

https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.atalasoft.com%2FKB2%2FKB%2F50311%2FHOWTO-License-an-EXE-for-Deployment&data=04%7C01%7C%7C971ff3ee3ae6449a73b808d9db47d7fb%7Cbcd8ba5f75e24d6c8aa5fff6c8baa1ff%7C0%7C0%7C637781923916032734%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=2ExbgwCsbIR26P7wgx3ptGKUKv5OKLD35W2v8Xylep8%3D&reserved=0
https://docs.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/ha0k3c9f(v=vs.100)?redirectedfrom=MSDN
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.atalasoft.com%2FKB2%2FKB%2F50311%2FHOWTO-License-an-EXE-for-Deployment&data=04%7C01%7C%7C971ff3ee3ae6449a73b808d9db47d7fb%7Cbcd8ba5f75e24d6c8aa5fff6c8baa1ff%7C0%7C0%7C637781923916032734%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=2ExbgwCsbIR26P7wgx3ptGKUKv5OKLD35W2v8Xylep8%3D&reserved=0

Kofax Web Capture Developer's Guide

b. The <application name>.licenses file is generated and embedded into the resulting
application file.

4. Check the build log file for any errors.

 If the license is not found for the assembly, an error message is added to the build log,
but the build does not fail.

12

Chapter 2

Web scanning

Web Capture Service includes a set of integrated components that can be used to easily capture-
enable a website. It uses Javascript, supported by a local scanning service on the client which could
be deployed either as a Windows service or a regular Windows application.

Also, Web Capture Service supports scanning in multiuser environments: MS Terminal Server and
Citrix. In these environments, multiple users can work with Web Capture Service at the same time,
from different Windows logon sessions with the same user experience as on a single-user machine.

The Web Capture Service SDK includes a demo Web application that can scan, upload and import
documents into Kofax Capture.

See our Web Capture Service Guide for a step-by step tutorial of setting up a scanning a new
scanning application and deploying it to an IIS server.

The Web Capture Service online documentation is available at https://atalasoft.github.io/web-
capture-service. The offline verison can be downloaded from the public GitHub repository at https://
github.com/Atalasoft/web-capture-service/tree/master/docs.

Getting Started with Web Capture

Follow these steps to create a new capture-enabled Web project. Topics include adding the
document viewer and scanning controls to your Web page, and handling uploaded content on the
server. Several steps will contain cross-references to other sections with more detailed information.

This guide is intended to be followed exactly, but it is not intended to give you a solution that is
ready to deploy. Once you have succeeded building the example project, you can begin modifying it
to fit your organization.

Make sure you read the Kofax Web Capture Technical Specifications for supported products and
versions.

Kofax Web Capture demos
The demo programs provided at our demo gallery demonstrate the wide range of capabilities
available to you while developing applications with Kofax Web Capture.

These demos are designed as a reference and an evaluation tool, and are provided as compiled
executables, as well as Visual Studio projects in C# and VB.NET in Visual Studio. The executables
generally run without a license, but licenses are required to compile the source code.

13

https://atalasoft.github.io/web-capture-service
https://atalasoft.github.io/web-capture-service
https://github.com/Atalasoft/web-capture-service/tree/master/docs
https://github.com/Atalasoft/web-capture-service/tree/master/docs

Kofax Web Capture Developer's Guide

To view a complete list of demos, go to: http://www.atalasoft.com/Support/Sample-Applications.

Set up a new project
A capture-enabled application requires these basic elements:
• A client-side ASPX page containing the scanning controls and document viewer.
• A server-side ASHX handler for the Web Document Viewer.
• A server-side ASHX handler for the Web Capture back end.
• WebCapture and WebDocumentViewer resources files.
• An upload location for scanned documents.

Start by creating a new ASP.NET Web Application in Visual Studio.

 In the following instructions the project is called BasicWebCapture.

Visual Studio automatically gives you Default.aspx as a page, which we will use for placing the
scanning controls and viewer.

Modify the MSBuild project file when using .NET 6
If you are using .NET 6, you need to modify the MSBuild project file (which has a .csproj extension)
to add Windows Forms support and enable Kofax Web Capture libraries to be imported.
Search the MSBuild project file to see if <UseWindowsForms> is already in the file. If so, change
false to true. If not, add the following line to the file:
<UseWindowsForm>true</UseWindowsForm>

Add assembly references
Add the following DotImage assemblies to your project:
• Atalasoft.dotImage.WebControls
• Atalasoft.Shared

In a default installation, these assemblies can be found in the following folders:
• .NET Framework 4.6.2 (64-bit): C:\Program Files (x86)\Kofax\Web Capture 11.5\bin
\4.6.2\x64

• .NET Framework 4.6.2 (32-bit): C:\Program Files (x86)\Kofax\Web Capture 11.5\bin
\4.6.2\x86

• .NET Framework 3.5 (64-bit): C:\Program Files (x86)\Kofax\Web Capture 11.5\bin
\3.5\x64

• .NET Framework 3.5 (32-bit): C:\Program Files (x86)\Kofax\Web Capture 11.5\bin
\3.5\x86

There may be further dependencies on any of the remaining DotImage assemblies. Include all
DotImage assemblies in your project if there are problems resolving them.

Copy resources
Web Capture comes with two sets of resources: WebCapture and WebDocumentViewer. In a
default .Net installation, these directories are located in C:\Program Files (x86)\Kofax\Web
Capture 11.5\bin\WebResources.

14

http://www.atalasoft.com/Support/Sample-Applications

Kofax Web Capture Developer's Guide

Copy the WebCapture and WebDocumentViewer directories into the root of your project.

Create the upload location
Create a new directory in the root of your project called atala-capture-upload. This is the default
path that will be used for storing images uploaded by the scanning controls.
If you need to change the location of the upload path (for example, to place it in a location outside
of your document root), you can set an atala_uploadpath value in the appSettings section of
either your web.config or app.config.
<appSettings>
 <add key="atala_uploadpath" value="c:\path\to\location"/>
</appSettings>

Add the Web Document Viewer handler
The Web Document Viewer handler is responsible for communicating with the Web Document
Viewer embedded in your page, and is separate from the capture handler.

Add a new Generic Handler to your project. For the purposes of this guide, it is assumed this file will
be called WebDocViewerHandler.

Change the class definition to extend WebDocumentRequestHandler (part of
Atalasoft.Imaging.WebControls). Your handler should resemble the following example.

C#
using Atalasoft.Imaging.WebControls;
namespace BasicWebCapture
{
public class WebDocViewerHandler : WebDocumentRequestHandler
{ }
}

There is no need for further modification to your handler.

Add the Web Capture handler
The Web Capture handler is responsible for handling file uploads from the scanning controls
embedded in your page, and routing them to their next destination along with any necessary
metadata. It is also responsible for supplying the scanning controls with the available content and
document types, and status information.

For this guide, we will create a custom handler that provides a few static content and document
types, and saves uploaded files to another location. Using this baseline, you can continue modifying
the handler to suit your own document handling needs.

If your organization uses Kofax Import Connector (KIC), DotImage ships with handlers to connect to
the service.

 Kofax Import Connector handlers are only supported with .NET Framework 3.5 and 4.6.2.

15

Kofax Web Capture Developer's Guide

Create a handler
Add a new Generic Handler to your project. For the purposes of this guide, it is assumed this file will
be called WebCaptureHandler.ashx.
The handler should be modified to extend from WebCaptureRequestHandler (part of
Atalasoft.Imaging.WebControls.Capture), and should not implement the IHttpHandler interface, as
is done when a generic handler is first created. Instead your handler will need to override several
methods of WebCaptureRequestHandler. Your handler should resemble the following example.

C#
using System;
using System.Collections.Generic;
using System.IO;
using System.Web;
using Atalasoft.Imaging.WebControls.Capture;

namespace BasicWebCapture
{
 public class WebCaptureHandler : WebCaptureRequestHandler
 {
 protected override List<string> GetContentTypeList(HttpContext context)
 {
 // ...
 }

 protected override List<Dictionary<string, string>>
 GetContentTypeDescription(HttpContext context, String contentType)
 {
 // ...
 }

 protected override Dictionary<string, string> ImportDocument(HttpContext
 context, string filename,
 string contentType, string contentTypeDocumentClass, string
 contentTypeDescription)
 {
 // ...
 }
 }
}

The three stubs represent the minimum number of methods that must be implemented for basic
functionality, but there are other methods available in the public API that can also have their
behavior overridden, such as methods to generate IDs or query the status of documents. Refer to
the accompanying object reference for the complete WebCaptureRequestHandler API.

GetContentTypeList
This method returns the collection of available content types that can be used to organize scanned
and uploaded documents. Content types are the top-level organizational unit, and each one has its
own collection of document types (also called document classes) below it.
For this example, GetContentTypeList will be implemented to return a fixed list of two types:
Accounts and HR. In a real system, this would probably query a database or other data source
instead. In the KIC handler, this method queries the system for these values.
C#
protected override List<string> GetContentTypeList(HttpContext context)
{
 return new List<string>() { "Accounts", "HR" };

16

Kofax Web Capture Developer's Guide

}

GetContentTypeDescription
This method returns a collection of data describing all the document types under a single content
type. The return data is a list of dictionaries, where each dictionary contains a set of properties
describing a single document type. In this example, the only property returned for a document type
is its documentClass, which serves as its name.

C#

protected override List<Dictionary<string, string>>
 GetContentTypeDescription(HttpContext
 context, String contentType)
 {
 switch (contentType)
 {
 case "Accounts":
 return CreateDocumentClassDictionaryList(new string[]
 { "Invoices",
 "Purchase Orders" });
 case "HR":
 return CreateDocumentClassDictionaryList(new string[]
 { "Resumes" });
 default:
 return base.GetContentTypeDescription(context, contentType);
 }
 }

 private List<Dictionary<String, String>>
 createDocumentClassDictionaryList(String[] docList)
 {
 return docList.Select(doc => new Dictionary<String, String> {{"documentClass",
 doc}}).ToList();
 }

A helper method is provided to produce the actual list of document types, while
GetContentTypeDescription switches on a given content type to determine what document types
should be included in the list. As with content types, it is expected that this data will originate from
another data source, instead of being hard-coded.

ImportDocument
This method is responsible for actually moving a document and its metadata to its real destination,
which could be a directory, database, or system such as KIC.

C#
protected override Dictionary<string, string> ImportDocument(HttpContext context,
 string filename,
 string contentType, string contentTypeDocumentClass, string
 contentTypeDescription)
{
 string docId = Guid.NewGuid().ToString();
 string importPath = @"C:\DocumentStore";

 importPath = Path.Combine(importPath, contentType);
 importPath = Path.Combine(importPath, contentTypeDocumentClass);
 importPath = Path.Combine(importPath, docId + "." +
 Path.GetExtension(filename));

 string uploadPath = Path.Combine(UploadPath, filename);

17

Kofax Web Capture Developer's Guide

 File.Copy(uploadPath, importPath);

 return new Dictionary<string, string>()
 {
 { "success", "true" },
 { "id", docId },
 { "status", "Import succeeded" },
 };
}

In this example, imported documents are copied into a directory tree rooted at C:\DocumentStore,
using the content type and document class as subdirectories for organizing files. The imported file
is copied and given a new name based on a GUID, which is also passed back to the client in the "id"
field of a dictionary. The id could be used by the client to query the handler at a future time for the
status of the imported document, but this functionality is not included in the guide.

Set up the scanning controls and viewer
The setup for scanning just requires placing some JavaScript, CSS, and HTML into your page. The
page itself could be HTML, ASPX, JSP, or anything else, as the client-side technology is not directly
tied to .NET or IIS. For this guide however, we will update the document Default.aspx, which was
originally included in the new project.

Include the resources
Include the following script and link tags in your page's head section to include the necessary Web
Document Viewer and Web Capture code and dependencies.

HTML
<!-- Script includes for Web Viewing -->
<script src="WebDocViewer/jquery-3.4.1.min.js" type="text/javascript"></script>
<script src="WebDocViewer/atalaWebDocumentViewer.js" type="text/javascript"></
script>

<!-- Style for Web Viewer -->
<link href="WebDocViewer/jquery-ui-1.12.1.custom.css" rel="Stylesheet" type="text/
css" />
<link href="WebDocViewer/atalaWebDocumentViewer.css" rel="Stylesheet" type="text/
css" />

<!-- Script includes for Web Capture -->
<script src="WebCapture/atalaWebCapture.js" type="text/javascript"></script>

Configure the controls
The scanning and viewing controls need to be initialized and configured to set up connections to
the right handlers, specify behavior for events, and so forth. This can be done with another block
of JavaScript, either included or pasted directly within your page's head somewhere below the
included dependencies.

JavaScript
<script type="text/javascript">
 // Initialize Web Scanning and Web Viewing
 $(function() {
 try {
 var viewer = new Atalasoft.Controls.WebDocumentViewer({
 parent: $('.atala-document-container'),
 toolbarparent: $('.atala-document-toolbar'),

18

Kofax Web Capture Developer's Guide

 serverurl: 'WebDocViewerHandler'
 });

 Atalasoft.Controls.Capture.WebScanning.initialize({
 handlerUrl: 'WebCaptureHandler',
 onUploadCompleted: function(eventName, eventObj) {
 if (eventObj.success) {
 viewer.OpenUrl("atala-capture-upload/" +
 eventObj.documentFilename);
 Atalasoft.Controls.Capture.CaptureService.documentFilename
 = eventObj.documentFilename;
 }
 },
 scanningOptions: { pixelType: 0 }
 });

 Atalasoft.Controls.Capture.CaptureService.initialize({
 handlerUrl: 'WebCaptureHandler.'
 });
 }
 catch (error) {
 alert('Thrown error: ' + error.description);
 }
 });
</script>

Note that the URL for the WebDocViewer handler is specified once and the URL for the WebCapture
handler is specified twice, since two capture services must be initialized.
There are several additional options and handlers that can be specified in the initialization routines
for scanning and viewing. This example represents the minimal configuration necessary for
scanning with an integrated document viewer.

Add the UI
Add the following HTML to your project to create a basic viewer UI. This includes the Web Document
Viewer, drop-down boxes to choose scanners, content types, and document types, and buttons to
drive the UI. The scanning demos included with DotImage also include more complete examples.

HTML
<p>Select Scanner:
 <select class="atala-scanner-list" disabled="disabled" name="scannerList"
 style="width: 22em">
 <option selected="selected">(no scanners available)</option>
 </select>
</p>
<p>Content Type:
 <select class="atala-content-type-list" style="width:30em"></select>
</p>
<p>Document Type:
 <select class="atala-content-type-document-list" style="width:30em"></select>
</p>
<p>
 <input type="button" class="atala-scan-button" value="Scan" />
 <input type="button" class="atala-import-button" value="Import" />
</p>
<div>
 <div class="atala-document-toolbar" style="width: 670px;"></div>
 <div class="atala-document-container" style="width: 670px; height: 500px;"></div>
</div>

19

Kofax Web Capture Developer's Guide

Wrap-up
Your project should be ready to deploy to an app server. It is also ready to run from your developing
environment, for testing purposes.

Web server Upload size limits
By default, IIS limits uploads to 30MB. Estimate the maximum upload size your application could
generate, and adjust the server limits accordingly.

Deploy on multiuser environment
There are scenarios where Web Capture Service is used on multiuser environments (MS Terminal
Server, Citrix). On these environments, multiple users work with Web Capture Service at the same
time from different Windows logon sessions. We need to support such environments and provide
the same experience as on single-user machine.

Terminal server
When using a terminal server, users can connect to the scan server simultaneously and perform
scanning tasks or import files in parallel.

In this case, the Web Capture Service Host determines who exactly has made a request to it, and
forwards the request to the appropriate Web Capture Service Worker which, in turn, works with
devices and files that are available to the specific user. For the end user, this detection process is
transparent, and takes the same as in the simple single-user environment.

Web Capture Service can work only with scanners attached to a remote Terminal Server. Locally
connected scanners are not available in this scenario. The same goes for file import – Web Capture
Service provides access to files on a Terminal Server.

Citrix
The major difference, in comparison with the standalone scenario, when both the Browser app
and Web Capture Service are installed on client machine, is that Web Capture Service is physically
running on a remote Citrix server, while a scanner is connected to the client user’s computer. This
works transparently for Web Capture Service when Citrix TWAIN Redirection is enabled.

Installation
Web Capture Service can be installed as a Windows Service, enabling the multiuser support features
described above by using the INSTALLASSERVICE command line option as shown below:

msiexec /I Kofax.WebCapture.Installer.msi INSTALLASSERVICE=1

The same command line parameter should be passed to upgrade Web Capture Service installed as
Windows Service.

Administrator rights are required to deploy and upgrade Web Capture Service installed as Windows
Service; therefore it is the responsibility of server Administrator to deploy/upgrade it.

20

Kofax Web Capture Developer's Guide

Upgrade
You cannot upgrade Web Capture Service installed as a Windows Service to the standalone version.
The following error message is shown if you try to do so:

This application can't be installed because you already have Web Capture
Service install as Windows service.

However, upgrading from the standalone installation to Windows Service is supported and works as
expected.

21

Chapter 3

Web scanning server

The following sections cover the server-side handlers for displaying and processing scanned
documents. This also includes sections on forwarding documents to remote services such as Kofax
Import Connector.

 Kofax Import Connector handlers are only supported with .NET Framework 3.5 and 4.6.2.

Troubleshoot Web Capture Handlers
If you have difficulty getting this project to run, consider using a tool like Fiddler Web Debugger,
which allows you to monitor the HTTP requests and responses that pass between the web scanning
controls, and the handlers on the back-end. Exceptions in your handlers will present as 500 errors
and will likely contain the exception information embedded in the response. Other errors in your
handlers will present as JSON data in the response that does not contain the data you expect.

 When implementing the web capture handler, all of the data returned from the methods you
override is converted into an equivalent JSON representation. Examining the JSON is an easy way
to verify outside of the debugger that you are returning the right data.

Client errors will usually present as JavaScript errors. Use your browser's equivalent of F12 tools to
access the JavaScript console to check for errors. The most likely source of errors is not correctly
including all of the necessary web resources, not initializing the controls correctly, or running your
page in an incompatible browser.

No documents appear in the Web Document Viewer after scanning
If you have successfully deployed your application to an application server with a Web Document
Viewer, but the viewer does not appear to work, then the web document viewer handler may be
failing and returning an HTTP 500 code. Use a tool such as Fiddler Web Debugger to see if this is the
case. Check the error logs provided by your application server for more detailed information.
If the handler is returning an HTTP 200 code and there is no image, examine the JSON returned
in the response. It may contain a key-value pair such as: "error":"There was a problem with your
license..."
If this is the case, an SDK license is required, but has not been properly applied to your handler.
Another reason for not seeing anything is that you forgot to create the upload directory in which
scanned images are sent for viewing.

22

Kofax Web Capture Developer's Guide

Extend the KicHandler
1. Open the application project in your development environment.
2. Add a generic handler to the project.
3. Extend the handler that was just created with the KicHandler found in

the Atalasoft.dotImage.WebControls.Capture namespace that in the
Atalasoft.dotImage.WebControls.dll assembly.
Sample code snippet
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

namespace TheApplicationNamespace
{
 public class MyKicHandler : KicHandler
 {

 }
}

No other modifications are necessary.

Connect to Kofax Import Connector services
These instruction are for configuring an application to connect to an existing Kofax Import
Connector server.

For information on configuring Kofax Import Connector, see Configure Kofax Import Connector

 Kofax Import Connector handlers are only supported with .NET Framework 3.5 and 4.6.2.

Modify web.config
To connect to Kofax Import Connector a WCF endpoint, a binding must be added to the
application’s web.config, or app.config. In the provided example a standard basicHttpBinding
will be used, but other appropriate binding types are possible choices to use as the WCF binding.

Set the WCF EndPoint
web.config endpoint
<system.serviceModel>
 <client>
 <endpoint address="http://servername.domain.com:[http or https port]/
soap/tsl" binding="basicHttpBinding" bindingConfiguration="importBinding"
 contract="importPortType" name="importPort" />
 </client>
</system.serviceModel>

23

Kofax Web Capture Developer's Guide

Set the binding
HTTP
<system.serviceModel>
 <bindings>
 <basicHttpBinding>
 <binding name="importBinding" closeTimeout="00:01:00" openTimeout="00:01:00"
 receiveTimeout="00:10:00" sendTimeout="00:01:00" allowCookies="false"
 bypassProxyOnLocal="false" hostNameComparisonMode="StrongWildcard"
 maxBufferSize="1655360" maxBufferPoolSize="15242880" maxReceivedMessageSize="1655360"
 messageEncoding="Text" textEncoding="utf-8" transferMode="Buffered"
 useDefaultWebProxy="true">
 <readerQuotas maxDepth="32" maxStringContentLength="256000"
 maxArrayLength="16384" maxBytesPerRead="4096" maxNameTableCharCount="16384" />
 <security mode="None">
 <transport clientCredentialType="None" proxyCredentialType="None" realm="" />
 <message clientCredentialType="UserName" algorithmSuite="Default" />
 </security>
 </binding>
 <basicHttpBinding>
 </bindings>
</system.serviceModel>

HTTPS
<system.serviceModel>
 <bindings>
 <basicHttpBinding>
 <binding name="importBinding" closeTimeout="00:01:00" openTimeout="00:01:00"
 receiveTimeout="00:10:00" sendTimeout="00:01:00" allowCookies="false"
 bypassProxyOnLocal="false" hostNameComparisonMode="StrongWildcard"
 maxBufferSize="1655360" maxBufferPoolSize="15242880" maxReceivedMessageSize="1655360"
 messageEncoding="Text" textEncoding="utf-8" transferMode="Buffered"
 useDefaultWebProxy="true">
 <readerQuotas maxDepth="32" maxStringContentLength="256000"
 maxArrayLength="16384" maxBytesPerRead="4096" maxNameTableCharCount="16384" />
 <security mode="Transport">
 <transport clientCredentialType="None" proxyCredentialType="None" realm="" />
 <message clientCredentialType="UserName" algorithmSuite="Default" />
 </security>
 </binding>
 <basicHttpBinding>
 </bindings>
</system.serviceModel>

Specify the Kofax Import Connector endpoint
The KicHandler will connect to Kofax Import Connector through a services endpoint defined
in a WSDL file provided by the KIC server. The location to the WSDL file must be specified in a
WebInitParam annotation within your handler's WebServlet annotation, or in an init-param tag
within your handler's web.xml servlet tag.

The following example includes the necessary configuration to map your handler to a public URL.

XML - configuring servlet in web.xml
<servlet>
 <servlet-name>KicHandler</servlet-name>
 <servlet-class>com.mydomain.mypackage.MyKicHandler</servlet-class>
 <init-param>
 <param-name>KicWsdlLocation</param-name>

24

Kofax Web Capture Developer's Guide

 <param-value><http>://<server>:<port>/file/import.wsdl</param-value>
 </init-param>
</servlet>
<servlet-mapping>
 <servlet-name>KicHandler</servlet-name>
 <url-pattern>/kichandler</url-pattern>
</servlet-mapping>

Modify the KicWsdlLocation value to point to the actual location of import.wsdl on your Kofax
Import Connector server. Replace <http>, <server>, and <port> with values appropriate for your
Kofax Import Connector server. If the WSDL file is not provided at the default location, ask your
Kofax Import Connector administrator for assistance.

Configure Kofax Import Connector
This is not intended to be a full set of instructions to install, set up, and maintain a Kofax Import
Connector server. The following information provides the minimum amount of configuration
needed for the Web Capture Web Scanning Control to successfully connect, and import into Kofax
Import Connector.

For information on connecting to an already configured Kofax Import Connector server, see
Connect to Kofax Import Connector (KIC) Web Services.

 Kofax Import Connector handlers are only supported with .NET Framework 3.5 and 4.6.2.

Required license
For the KIC server to accept documents imported from the Web Capture assembly, a KIC –
Electronic Documents – Web Service interface.

The license must be installed on your KIC server.

To verify that the correct minimum license has been installed go to the Message Connector Monitor,
which by default is located on the KIC server at https://localhost:25086/file/index.html where under
the Status->license section.

Configure the service
The Web Capture Web scanning control connects via KIC’s service via a server-side handler that
extends the KicHandler found in the Atalasoft.dotImage.WebControls assembly.

Once in the message connector, go to the “General” section, and verify that the “.

1. From the App Programs list, select Kofax > KIC Electronic Documents > Message Connector
Configuration.
The message connector opens.

2. in the General section, verify the Own Computer Name is filled in with the current server’s
domain qualified name.

25

Kofax Web Capture Developer's Guide

3. Next, go to the Web-Service Input section.
• If only a HTTP based connection is desired set the HTTPS port to 0

This will be the port which the endpoint in the application's web.config will point to. If
HTTPS is desired, then enter the port which will be used.

• If HTTPS is enabled the HTTP port will not be able to be connected to, and the endpoint in
the application's web.config will need to point at the URL using the HTTPS port.

4. Once all of the desired changes to the KIC Message Connector have been made save, and
restart the Message Connector service.

Configure the Electronic Documents plugin
In the Kofax Capture (KC) Administration application, open the 'Electronic Documents-
>Configuration' window, and configure the necessary Connections, and Destinations.

When finished, stop and start the service.

Test the configuration
To test that the KIC server has been minimally configured correctly in a browser either on the
server, or at a client that might connect to the server enter the following URLs (all on one line of
course):

HTTP enabled webservice
http://[kic_servername]:[http_port]/soap/tsl/Import?<OwnerReference>myref</
OwnerReference>
<Address>importaddr</Address><Part><ContentType>text/plain</ContentType>
<Content><Text>hello</Text></Content></Part>

HTTPS enabled webservice
https://[kic_servername]:[https_port]/soap/tsl/Import?<OwnerReference>myref</
OwnerReference>
<Address>importaddr</Address><Part><ContentType>text/plain</ContentType>
<Content><Text>hello</Text></Content></Part>

26

Chapter 4

Web scanning client

Use the Web Scanning Control to add the control to a web page, configure, and connect to server-
side handlers.

Initialize the control on the client
On the page of your application that will support scanning, you need to include the capture
javascript, and initialize scanning and upload/import.

Include WebCapture Javascript
Add the needed includes in the <head> section of the document, like this: <script
src="jquery-3.4.1.min.js" type="text/javascript"></script> <script
src="atalaWebCapture.js" type="text/javascript"></script>

If you placed the capture resources in a subfolder under your application, you will need to modify
the src attribute to the appropriate relative path.

Initialize
There are two parts of the control that need to be initialized, both can be initialized in the same
script tag.

Initialize scanning
Scanning is initialized with a call to:
Atalasoft.Controls.Capture.WebScanning.initialize({params})

This function takes a comma-separated list of arguments including the URL of the handler used on
the server, event handlers, scanning options sent to the control, and error handling for the client. All
of the arguments are optional except the URL of the server handler.
See Client API reference for details.

Initialize the Kofax Import Connector connection
The connection to the Kofax Import Connector server is initialized with a call to:
Atalasoft.Controls.Capture.CaptureService.initialize({params})

This needs to be called in addition to the WebScanning.initialize function to populate any client UI
controls with Kofax Import Connector contentTypes, and contentTypeDescriptions. It requires a
handler argument, and accepts optional custom error handlers. When no selection dropdowns, or

27

Kofax Web Capture Developer's Guide

other selection UI is desired values for the required contentType, and contentTypeDescriptionName
are also set in the parameter list.

Example
The following example script shows both these objects being initialized:

Code snippet
<script type="text/javascript">
 // Initialize Web Scanning and Web Viewing
 $(function() {
 try {

 Atalasoft.Controls.Capture.WebScanning.initialize({
 handlerUrl: 'KicWebCaptureHandler.ashx',

 onScanError: function(msg, params) { appendStatus(msg); },

 onScanStarted: function(eventName, eventObj) { appendStatus('Scan
 Started'); },
 onScanCompleted: function(eventName, eventObj) { appendStatus('Scan
 Completed: ' + eventObj.success); },

 onUploadError: function(msg, params) { appendStatus(msg); },
 onUploadStarted: function(eventName, eventObj)
 { appendStatus('Upload Started'); },
 onUploadCompleted: function(eventName, eventObj) {
 appendStatus('Upload Completed: ' + eventObj.success);
 if (eventObj.success) {
 viewer.OpenUrl('atala-capture-upload/' +
 eventObj.documentFilename);
 }
 },
 scanningOptions: { pixelType: 0 }
 });

 Atalasoft.Controls.Capture.CaptureService.initialize({
 handlerUrl: 'KicWebCaptureHandler.ashx',
 onError: function(msg, params) { appendStatus(msg +': ' +
 params.statusText); }
 });
 }
 catch (error) {
 //Do something with the error caught. Default is to just go
 //to the javascript error console in the browser.
 }
 });
</script>

Example when no contentType, or contentTypeDescription UI is desired:
<script type="text/javascript">
 // Initialize Web Scanning and Web Viewing
 $(function() {
 try {
 Atalasoft.Controls.Capture.WebScanning.initialize({
 handlerUrl: 'KicWebHandler.ashx',

 onScanError: function(msg, params) { appendStatus(msg); },
 onScanStarted: function(eventName, eventObj) { appendStatus("Scan
 Started"); },
 onScanCompleted: function(eventName, eventObj) {
 appendStatus("Scan Completed: " + eventObj.success); },

28

Kofax Web Capture Developer's Guide

 onUploadError: function(msg, params) { appendStatus(msg); },
 onUploadStarted: function(eventName, eventObj)
 { appendStatus("Upload Started"); },
 onUploadCompleted: function(eventName, eventObj) {
 appendStatus("Upload Completed: " + eventObj.success);
 if (eventObj.success) {
 appendStatus("atala-capture-upload/" +
 eventObj.documentFilename);
 viewer.OpenUrl("atala-capture-upload/" +
 eventObj.documentFilename);
 Atalasoft.Controls.Capture.CaptureService.documentFilename
 = eventObj.documentFilename;
 }
 },
 scanningOptions: { pixelType: 1}
 });

 Atalasoft.Controls.Capture.CaptureService.initialize({
 handlerUrl: 'KicWebHandler.ashx',
 //The required BatchClassName.
 contentType: 'AtalasoftEngineering',
 //The ContentTypeDescriptionName must be in the form of
 //'DocumentClassName / FormType'.
 contentTypeDescriptionName: 'PointOfOrigin / ClaimForms',
 onError: function(msg, params) { appendStatus(msg +": " +
 params.statusText); },
 onImportCompleted: function(params) { appendStatus(params.id +": "
 + params.status); },
 onTrackStatusReceived: function(params) {appendStatus("Import
 status: "+ params); }
 });
 }
 catch (error) {
 appendStatus("Thrown error: " + error.description);
 }
 });
</script>

Connect to UI controls
The Web Scanning control automatically finds and connects to UI controls using their class=""
identifiers, so it is sufficient for you to add, lay out and style the UI controls required by your
application, and assign the appropriate classes to those controls.

Valid classes include
• atala-scan-button
• atala-scanner-list
• atala-content-type-list, and
• atala-content-type-document-list

29

Kofax Web Capture Developer's Guide

Examples of UI controls

Scan button
<input type="button" class="atala-scan-button" value="Scan" />

This button will automatically be enabled when scanning is possible, and disabled otherwise.

When the user clicks this button, a scan is initiated with current scanner and document selections.

Scanner device list
This control is loaded with the list of available TWAIN devices, and the current visible selection will
be used when a scan is initiated.
<select class="atala-scanner-list" disabled="disabled" name="scannerList" style="width:
 194px">
 <option selected="selected">(no scanners available)</option>
</select>

If the contents of the control were changed programmatically (for example, WIA scanners were
filtered out of the list using jQuery), the currently selected value may not reflect the currently
selected TWAIN scanner. To synchronize the two, the onchange event should be manually triggered
on the control.

If scanning is not possible or there are no scanners available, this control will be disabled.

Kofax Import Connector content types
<select class="atala-content-type-list" style="width:385px"></select>

This control is automatically loaded with the list of available content types provided by the Kofax
Import Connector (KIC) server, and the current visible selection is used when an import is initiated.

If a connection cannot be established to the KIC server, this control is disabled.

Kofax Import Connector content type descriptions
<select class="atala-content-type-document-list" style="width:385px"></select>

This control is automatically loaded with the list of available content type descriptions as provided
by the Kofax Import Connector server, and the current visible selection is used when a scan is
initiated.

If a connection cannot be established to the Kofax Import Connector server, this control is disabled.

Kofax Import Connector import button
<input type="button" class="atala-import-button" value="Import" />

This button is automatically enabled if KIC import is possible, and is disabled otherwise.

When the user clicks it, a KIC import (of the last scanned document) is initiated.

30

Kofax Web Capture Developer's Guide

Kofax Import Connector track import button
<input type="button" class="atala-track-import-button" value="Track Import" />

When the user clicks it, the status of the last import is returned.

Kofax Import Connector index fields
<div class="atala-indexfield-list" style="width:600px; height:250px; overflow:scroll;
 border:solid 1px #CCC;"></div>

A table with the index field names for a label, and text input will be constructed at this div.

Kofax Import Connector batch fields
<div class="atala-batchfield-list" style="width:600px; height:250px; overflow:scroll;
 border:solid 1px #CCC;"></div>

A table with the batch field names for a label, and a text input will be constructed at this div.

Kofax Import Connector import with index fields
<input type="button" class="atala-import-index-field-button" value="Import with
 IndexFields" />

This button is automatically enabled if import is possible, and is disabled otherwise.

When the user clicks it, an import into Kofax Import Connector is initiated for the last scanned
document, along with any entered index field values.

*One should also note, that any "button" that has a type="submit" will create an empty POST that
will override any POST or GET that the scanning control sends.

Filter selection lists
Use the removedContenTypes, and removedContentTypeDescriptions initialization parameter to
filter the lists displayed in the atala-contentype-list, and atala-contenttype-document-list.

Example
Atalasoft.Controls.Capture.CaptureService.initialize({

handlerUrl: 'KicWebHandler.ashx',

loosePages: "true",

removedContentTypes: "KfxSingleMessageBatch",

removedContentTypeDescriptions: "KfxMultiDocument / NWestMulti",

onError: function(msg, params) { appendStatus(msg + ": " + params.statusText); },

});

31

Kofax Web Capture Developer's Guide

Connect controls with no UI
When using the client controls to connect to Kofax Capture through Kofax Import Connector, it is
not desired to have the content type/repository name selection boxes on the page, because then a
selected value can be passed through the capture service's initialize parameters.

Example
Atalasoft.Controls.Capture.CaptureService.initialize({

handlerUrl: 'KicWebHandler.ashx',

contentType: 'AtalasoftEngineering',

batchFields: "BatchField1:value1, BatchField2:value2",

contentTypeDescriptionName: 'Engineering / TestDocument',

indexFields: "IndexField1: value1, IndexField2: value2",

onError: function(msg, params) { appendStatus(msg + ": " + params.statusText); },

});

At a minimum the contentType must be specified for all document imports into Kofax Capture
through Kofax Import Connector.

Import loose pages
When connecting to Kofax Capture (KC) via the Kofax Import Connector (KIC) a loose page can be
imported by not selecting or specifying a document class/ form type combination when importing a
document via the scanning client, and by having the loosePages initialization parameter set to true.
By default this parameter is set to 'false'. When set to 'true' by default a blank option will be added
to the atala-contenttype-document-list (when available).

Example
With UI
Atalasoft.Controls.Capture.CaptureService.initialize({

handlerUrl: 'KicWebHandler.ashx',

loosePages: "true, Loose Page: Test",

onError: function(msg, params) { appendStatus(msg + ": " + params.statusText); },

onImportCompleted: function(params) { appendStatus(params.id + ": " +
 params.status); }

});

32

Kofax Web Capture Developer's Guide

 With UI assumes that batch fields will be displayed, along with the atala-contenttype-list,
and atala-contenttype-document-list.

Without UI
Atalasoft.Controls.Capture.CaptureService.initialize({

handlerUrl: 'KicWebHandler.ashx',

contentType: 'AtalasoftEngineering',

batchFields: "BatchField1:123, BatchField2:321",

contentTypeDescriptionName:'',

loosePages: "true",

onError: function(msg, params) { appendStatus(msg + ": " + params.statusText); }

});

Batch fields
Batch Fields are much like index fields. They have the same hidden, and required class associated
with them, and can be used to add meta data to loose pages imports into Kofax Capture. See Index
fields.

Display and enter values
Batch fields get displayed in the same <div>as index fields. See instructions on adding the index
field <div> to a page: Connect to UI Controls.

Filter the displayed list
To filter the batchfields that get displayed in the client page UI specify the batch fields to be
displayed by setting the displayedBatchFields parameter.

Example
Atalasoft.Controls.Capture.CaptureService.initialize({

 handlerUrl: 'KicWebHandler.ashx',

 contentType: 'AtalasoftEngineering',

 displayedBatchFields: "BatchField1, BatchField2",

 onError: function(msg, params) { appendStatus(msg + ": " + params.statusText); },

 onImportCompleted: function(params) { appendStatus(params.id + ": " +
 params.status); },

});

33

Kofax Web Capture Developer's Guide

In the example above only BatchField1, and BatchField2 would be displayed in the generated table.

Set values through the initialize parameter list
When no indexfield div has been added to a page, but batch field values still need to be set they can
be passed through the capture service's initialize method.

Example
Atalasoft.Controls.Capture.CaptureService.initialize({

 handlerUrl: 'KicWebHandler.ashx',

 contentType: 'AtalasoftEngineering',

 batchFields: "BatchField1:value1, BatchField2:value2",

 onError: function(msg, params) { appendStatus(msg + ": " + params.statusText); },

});

In the above example the two batch fields (BatchField1, and BatchField2) for the
AtalasoftEngineering batch class have each had a value set. The batchFields parameter takes a
string where each bath field name value pair are comma separated, and the batch field name, and
value are colon separated.

Batch field validation
There are two capture service initialization parameters that can be used to handle batch field
validation on the client. There is the error handling event, onBatchFieldImportValidationError, and
the custom client validation parameter, onBatchFieldTypeValidationStatus.

Example
Atalasoft.Controls.Capture.CaptureService.initialize({

 handlerUrl: 'KicWebHandler.ashx',

 contentType: 'AtalasoftEngineering',

 onError: function(msg, params) { appendStatus(msg + ": " + params.statusText); },

 onImportCompleted: function(params) { appendStatus(params.id + ": " +
 params.status); },

 onTrackStatusReceived: function(params) { appendStatus("Import status: " +
 params); },

 onBatchFieldImportValidationError: function(params) { appendStatus("BatchField
 Validation Error:" + params); },

 onBatchFieldTypeValidationStatus: function(params)
 { customValidationFunction(params); }

});

34

Kofax Web Capture Developer's Guide

Index fields

Index field list filtering
As part of the Atalasoft.WebScanning.CaptureService.Initialize's list of parameters that get passed in
includes a mechanism to provide a list of the index fields that should be displayed in the generated
table of index fields.

Example
Atalasoft.Controls.Capture.CaptureService.initialize({

handlerUrl: 'KICDemoHandler.ashx',

onError: function(msg, params) { appendStatus(msg + ": " + params.statusText); },

onImportCompleted: function(params) { appendStatus(params.id + ": " +
 params.status); },

onTrackStatusReceived: function(params) { appendStatus("Import status: " + params); },

displayedIndexFields: 'Name, Title, Content Type'

});

In the above example the parameter "displayedIndexFields" specifies the list of index field that
should be included for display. Only the index fields with named: "Name", "Title", and "Content
type" will be displayed.

Required fields
Kofax Import Connector has required index fields that must be set so that a document import is
successful. When the list of index fields is retrieved from the server the required field information
is included with that information, and a class is added to the label of that index field. The class that
gets added is:
class="atala-indexfield-required"

An example that shows how to use this class to add an asterisk to the beginning of the label can be
found in the WebCapture demo included with the installation.

Hidden fields
Index fields in KC have an optional flag called hidden, when this is set to "true" in KC the field that it
is applied to will have the following class applied to it:
class="atala-field-hidden"

Set index field values without connecting to UI
As with content types, and content type descriptions indexfields can also be passed in through to
the import POST parameters via the Atalasoft.Controls.Capture.CaptureService.initialize call.

35

Kofax Web Capture Developer's Guide

Example
Atalasoft.Controls.Capture.CaptureService.initialize({

handlerUrl: 'KICDemoHandler.ashx',

contentType: 'Documents',

contentTypeDescriptionName: 'Document',

indexFields: "Name: Adam, Title: Q3 results , Content Type: ",

});

The "indexFields" parameter takes a string where the index fields are comma separated with
the name of the particular index field separated from the value being assigned to it by a ':', so
"indexField1: indexfieldValue1, indexfield2:indexfieldvalue2, ..."

Index field validation
Client side validation
Any index field value validation beyond checking that required fields have values prior to
import should be handled via the "onIndexFieldTypeValidationStatus" parameter in the
Atalasoft.Controls.Capture.CaptureService.initialize setup.
Atalasoft.Controls.Capture.CaptureService.initialize({

handlerUrl: 'KICDemoHandler.ashx',

contentType: 'Documents',

contentTypeDescriptionName: 'Document',

onError: function(msg, params) { appendStatus(msg + ": " + params.statusText); },

onImportCompleted: function(params) { appendStatus(params.id + ": " +
 params.status); },

onTrackStatusReceived: function(params) { appendStatus("Import status: " + params); },

onIndexFieldImportValidationError: function(params) { appendStatus("Index field
 validation error:" + params); },

onIndexFieldTypeValidationStatus: function(params) { fieldTypeValidation(params); }

});

Where the function fieldTypeValidation(params) is a function elsewhere in the page that performs
the additional index field input validation that could be run before importing. An example of this
function is available in the WebCapture demo project included with the installer.

Server side validation
Validation on the server side checks that the index field input values are of the correct form for the
culture specified in the web.config, or app.config. By default the handler will use the default
culture of the server.

36

Kofax Web Capture Developer's Guide

Handling validation error events in the client
As with the other import, and track status events index field validation has an
onIndexFieldImportValidationError event that can be used to return information to the client in the
case that a input value has been deemed invalid. See the WebCapture demo for an example.

Skin the generated table
It is possible to "skin" the generated table of index fields to suit the needs of the design aesthetic of
the site.

Generated Table of index fields
Once connected to the UI (see Connect to UI Controls) a table will be added as a child to the <div
class="atala-indexfield-list"/> with id="atala-indexfield-table" applied to it. The table has an specific
id applied to it as do the index field labels, and input fields. Each input field will have an id applied to
it as well, and will be in the form of id="<indexfieldname>_inputId"

Required index field values
Required index field have a class applied to them, class="atala-indexfield-required" for an example
of how to use this to apply a red '*' to the beginning of the label name see the Web Capture demo
included with the installation.

Handle events
The Atalasoft.Controls.WebScanning control has the following events that can be used in the client:
• onScanError
• onScanStarted
• onImageAcquired
• onScanCompleted
• onScanClientReady
• onUploadError
• onUploadStarted
• onUploadCompleted

To use one, some, or all of the events add them to the Atalasoft.Controls.WebScanning.initialize
method’s argument list. See Client API reference.

An example where each event is used:

Initialize WebScanning with Event Handlers
try {
 Atalasoft.Controls.Capture.WebScanning.initialize({
 handlerUrl: 'TestCaptureHandler.ashx',

 onScanError: function(msg, params) { appendStatus(msg); },
 onScanClientReady: function() { appendStatus('Scan-Client Ready'); },
 onScanStarted: function(eventName, eventObj) { appendStatus('Scan Started'); },

37

Kofax Web Capture Developer's Guide

 onImageAcquire: function(eventName, imageProxy) { appendStatus('Image
 Acquired'); },
 onScanCompleted: function(eventName, eventObj) {
 appendStatus('Scan Completed: ' + eventObj.success);
 },
 onUploadError: function(msg, params) { appendStatus(msg); },
 onUploadStarted: function(eventName, eventObj) { appendStatus('Upload
 Started'); },
 onUploadCompleted: function(eventName, eventObj) {
 appendStatus('Upload Completed: ' + eventObj.success);
 if (eventObj.success) {
 viewer.OpenUrl('atala-capture-upload/' + eventObj.documentFilename);
 }
 }
 });
}
catch (error) {
 appendStatus("WebScanning initialization error: " + error.description);
}

Handler: onScanError(msg, params)
See Handling errors

Handler: onScanClientReady()
See Handling errors

Handler: onScanStarted(eventName, eventObj)
Called when scanning starts.

 Always followed by a call to onScanCompleted, even if the scan fails or is aborted.

Handler: onImageAcquired(eventName, imageProxy)
This handler will be called during scanning each time an image is received from the scanner and
processed by Web Capture.

 If blank images are being discarded (the discardBlankPages scanning option has been set to
true), any image that is determined to be 'blank' will be discarded during post-processing. This
handler is not called for such images.

The second parameter is a 'proxy' object representing the acquired image, with a limited set of
properties and methods that can be used inside the handler.

 Do not retain the proxy object outside the onImageAcquired handler, it is not valid after the
handler returns. Generally, the proxy is valid if the image wasn't discarded or cleared by calling
the proxy.clear() method, and before a new scan/import has been started. In most cases, not
using a proxy outside handler is preferred because it is less error-prone.

38

Kofax Web Capture Developer's Guide

ImageProxy properties and methods

imageProxy.discard
If the handler sets imageProxy.discard to true, the image will be discarded when the handler
returns. Use this feature if you are uploading or otherwise disposing of each incoming image
yourself, and do not want Web Capture to collect and upload all the scanned images at the end of
the scan job.

An Image my be persisted to the local WCS hard disk storage as an encrypted local file. In this
case, a file identifier will be returned. The image object can be cleared on the server by using
proxy.clear(). The local file is stored as an image in the specified format, so it makes sense to use the
target format because this avoids re-compressing the image when it is read.

Also, it's possible to configure automatic local file generation using scanningOptions.deliverables. in
this case the image proxy would have a localFile property with a created local file identifier.

imageProxy.originalImage
Iidentifier of the local file that stores original image obtained from scanner. See deliverables
settings for details.

imageProxy.filename
Present only when the image represents an entire imported PDF file, during an importFiles
operation. The property contains the full path of the imported file e.g. C:\Users\Hugh McLarty
\Documents\Kofax.pdf.

imageProxy.barcodes
When bar coderecognition is enabled, the image object will have a property barcodes whose value
is an array describing any bar code symbols found in that image.

Each entry in the bar codes array represents one barcode found in the image, and has these
properties:
• data string the data decoded from the symbol, excluding start, stop.

 standard error-checking codes are always stripped.

If the checksums option for barcoding was set true, the optional checksums of Code 39, Codabar
and I25 are checked and stripped.

• symbology string symbology of the symbol.
• bounds rectangle bounding box of symbol, in pixels from upper-left of page, with properties top,

left, right, and bottom.
• orientation integer degrees the symbol is rotated clockwise from 'conventional' orientation

Unrecognized symbols, symbols not in an enabled symbology, and symbols that fail error-check,
are not listed. When bar code recognition is not enabled, the barcodes property of the image will
be either an empty array, or null.

39

Kofax Web Capture Developer's Guide

imageProxy.patchCode
Presents patch code found on the page.

Values are 0, 1, 2, 3, 4, 6, or T. The '0' value means" no patch code detected". The values are 1-
character strings. When patch code detection is not enabled, the patchCode of each acquired image
is 0.
scanningOptions = { onImageAcquired: this._onImageAcquired, patchCodes: true }
...
function _onImageAcquired(eventName, image) {
 // Check patch code:
 if (image.patchCode == 'T') {
 // 'T' patch-code detected
 }
}

imageProxy.width, imageProxy.height
Contains the width and height in pixels of the image.

imageProxy.bitsPerPixel
Contains the number of bits used to represent a pixel (typically 1, 8, or 24).

imageProxy.pixelType
pixelType image data format:
• 0 B&W - bitonal
• 1 Grayscale (8-bit linear)
• 2 RGB Color (24-bit)
• 3 Indexed color (8-bit)

imageProxy.dpi
The resolution of the image, in DPI (Dots Per Inch), in an array of [horizontal dpi, vertical dpi].

imageProxy.sheetNo (optional)
If present, the index of the physical sheet within the scan job of which this is an image (front or back
side). The first sheet scanned is index 0. If not present, this information could not be confidently
determined e.g. the scan is from a device that does not feed sheets.

imageProxy.newSheet
If present, this is true when this image came from a different physical sheet than the preceding
image if any. It is false if this image is the flip (back, bottom) side of the same sheet as the
preceding image. If omitted, it means this information could not be confidently determined.

40

Kofax Web Capture Developer's Guide

imageProxy.asBase64String (format [, options[, callback]])
Returns the image formatted in the specified file format+options and encoded into a base64 string.
(Everything is done in memory, no actual file is created on the client system.)

 imported PDF files can only be requested in "pdf" format, no format conversion is allowed,
options are ignored.

imageProxy.clear()
Resets the image object to an empty state, releasing any (possibly large) internal memory being
used to store pixel data.

imageProxy.thumbnail(w, h)
The creation of a thumbnail image is available as a method thumbnail on the image object passed
to the onImageAcquired handler. The thumbnail method takes a maximum width and height
in pixels, and returns a copy of the base image, scaled down proportionally to not exceed the
given width and height. The ratio of width to height in the base image is preserved as closely as
possible in the thumbnail. If the base image does not need to be scaled down to fit within the given
dimensions, it is simply copied.

The object returned by imageProxy.thumbnail(w,h) is itself an image object and has the same
methods and properties. Note: 1-bit B&W images are rendered as grayscale thumbnails.

Code Example: thumbnail

scanningOptions = { onImageAcquired: this._onImageAcquired }
...
function _onImageAcquired(eventName, image) {
 // Make a 32x48 pixel (maximum) thumbnail of the acquired image:
 var thumbnail = image.thumbnail(32, 48);
 // get thumbnail in JPG format encoded as Base64
 var thumbData = thumbnail.asBase64String('jpg');
}

imageProxy.saveEncryptedLocal(format [,options[, callback]])
This method writes the image using the specified file format and options into an encrypted local
file. Returns a unique identifier (a relatively meaningless string) representing that saved file. The
name of the local file is automatically generated (partly to guarantee no conflicts), and the file is
stored in the current user's local application data, under %USERPROFILE%\AppData\Local\Kofax
\WebCapture\Persistent.

 Imported PDF files are always saved in "pdf" format, ignoring the format parameter. Any
options are ignored.

If SymmetricEncryptionKey has not been set, this throws an exception.

41

Kofax Web Capture Developer's Guide

imageProxy.asBase64String(fmt)
This method returns a base-64 encoded file containing the just-received image, in the file-format
specified by the fmt parameter. The fmt parameter must be either the string, png, bmp, tif or
jpg. Note that jpg won't work if you are receiving B&W images, because JPEG files can only hold
grayscale or RGB color images.

This method is useful if you want to store or upload each scanned image separately as it arrives.

asBase64String(fmt, [options], [callback])

options: {
[jpegCompression] : bool,
[quality]: number
};

callback: function(base64){}with service architecture each image or file function have synchronous
and asynchronous versions, depending whether callback function is passed as last parameter.

Synchronous versions are left for compatibility. Async is the preferred choice. Synchronous versions
are not supported in IE8/9. Calling them will issue a sync request and execution won't be blocked.

Handler: onScanCompleted(eventName, eventObj)
Called when scanning ends, successfully or otherwise.

The eventObj has a property success. If it is true, the scan completed without error.

If eventObj.success is false, the scan was not fully successful, and there will be a string with more
information in eventObj.error.message.

Usually when scanning fails, the onScanError handler will have already been called with a specific
error message.

Handler: onUploadStarted(eventName, eventObj)
Called when an upload begins.

Handler: onUploadError(msg, params)
Called when an error is detected during upload to the server.

The msg parameter will be one of the following:
• Atalasoft.Controls.Capture.Errors.ajax - could not create/initialize the XMLHttpRequest object.
• Atalasoft.Controls.Capture.Errors.serverNotResponding - connection to the server timed out.
• Atalasoft.Controls.Capture.Errors.uploadError - the params object will contain three properties:

responseStatus, response, and handlerUrl.

Handler: onUploadCompleted(eventName, eventObj)
Called when an upload completes, whether successfully or not.

42

Kofax Web Capture Developer's Guide

If the upload was successful, eventObj.success is true, and eventObj.documentFilename contains
the unqualified name of the file in the upload directory on the server.

If the upload failed for some reason, eventObj.success is false. In this case, onUploadError will have
been called to report the error.

Handle errors
By default all errors are sent to the javascript console in the browser. However,
you can override this by specifying an error-handling function in the parameters to
Atalasoft.Controls.WebScanning.initialize and Atalasoft.Controls.CaptureService.initialize. See Client
API reference.

This example shows the basic technique of specifying error-handling functions. There is a longer
code example at the end of this section.

JavaScript
$ (function) () {
 try {
 Atalasoft.Controls.Capture.WebScanning.initialize({
 handlerUrl: 'TestCaptureHandler.ashx',

 onScanError: function(msg, params) { appendStatus(msg); },
 onUploadError: function(msg, params) { appendStatus(msg); }
 });
 }
 catch (error) {
 appendStatus("WebScanning initialization error: " + error.description);
 }
});

function appendStatus(msg) {
 $('#status').append(''+msg+'');
}

This will display error messages to a div with id=status.

Handler: onScanError(msg, params)
The Web Capture service can be initialized with a scan error handler (see the Code Example at the
end of this section), and that handler will potentially be called back by Web Capture with one of
various scanning-related errors.

 It is essential to a well-functioning scanning application that you handle at least the noPlugin
and oldPlugin errors. This is the standard way to deploy local service installer packages to the end
user.

All WebCapture errors are string members of: Atalasoft.Controls.Capture.Errors.

Atalasoft.Controls.Capture.Errors contains quite a few properties, each of which represents
a particular error. The values of each property is a string with an error description returned as the

43

Kofax Web Capture Developer's Guide

msg parameter of the error callback. Error handling could be based on a comparison of msg with
different Atalasoft.Controls.Capture.Errors values.

Error strings could be localized by providing params.localization values to the
WebScanning.initialize function.

The format of the localization object is same as for Atalasoft.Controls.Capture.Errors.
Specifically, corresponding keys will be replaced with new strings.

Below are the currently defined scanning-related errors, with an explanation of their cause and
proper handling recommendations.

Errors.badBrowser
Atalasoft.Controls.Capture.Errors.badBrowser
Fired in:Any unsupported browser
During: Atalasoft.Controls.Capture.WebScanning.initialize
Cause: Web Capture detected that it is running in a browser or operating system it does support.
For a list of supported browsers and operating systems, see the Kofax Web Capture Technical
Specifications.
How to Handle: Make sure your application displays the msg parameter to the handler, or your own
equivalent message. If you also display the value of the params parameter, which will be a string, it
would help a technical support specialist identify the browser causing the problem.

errors.noTwain
Atalasoft.Controls.Capture.Errors.noTwain
Fired In: All browsers.
During: Atalasoft.Controls.Capture.WebScanning.initialize
Cause: Support for the TWAIN protocol itself not found on the client computer.
Background: This error is extremely unlikely to happen on a typical end-user PC running Windows
8, because retail editions of Windows all include a copy of the TWAIN manager. However, a user on
Windows Server and perhaps some other Server editions can be missing TWAIN which will cause
this error. Ref:
Using scanners in Windows Server with TWAIN drivers might require the installation of Desktop
Experience Pack.
How to Handle: You could just display the error string (the value of the msg parameter of the
onScanError handler) or display your own message that TWAIN was not found on the computer.

errors.noPlugin
Atalasoft.Controls.Capture.Errors.noPlugin
Fired In:All browsers
During: Atalasoft.Controls.Capture.WebScanning.initialize
Cause: The required Web Scanning plugin is either not installed or is disabled.
Background: If the plugin is not installed, A notification displays.

errors.oldPlugin
atalasoft.Controls.Capture.Errors.oldPlugin
Fired In: All browsers
During: Atalasoft.Controls.Capture.WebScanning.initialize

44

Kofax Web Capture Developer's Guide

Cause: The Web Scanning plugin is installed and enabled but Web Capture is designed to work
with a newer version. For example, Web Capture might require plugin version 1.55, but detect
that the browser has plugin version 1.42 installed. That would cause this error to be fired during
initialization.
How to Handle: Similar to handling noPlugin above, but there will never be any prompting by the
browser so you must present the user with a button or hyperlink to the correct plugin deployment
package on your server. The filename of the appropriate download is passed to your error handler
as params.filename.

errors.licensingError
Atalasoft.Controls.Capture.Errors.licensingError
Fired In: All browsers
During: Asynchronously, after Atalasoft.Controls.Capture.WebScanning.initialize()
Cause: When queried, the server did not return the expected JSON licensing information in a timely
fashion.
How to Handle: If you see this during development, it suggests some server configuration problem,
the handlerUrl passed to WebScanning.initialize isn't right, the server is actually off-line or not
accessible, or (maybe, even) the licensing isn't right for Web Capture on the server.
Assuming you resolve any logical problems during development, if this error occurs after
deployment it almost certainly represents a typical "server not responding" error, with all the usual
causes.

Other errors
Other errors are possible, and additional errors may be added in future updates to DotImage.
We recommend that you defend against that possibility by displaying the text of the error (the
msg parameter to the onScanError handler) to the user, and offering them as much flexibility as
possible - for example, by linking to a troubleshooting & support page that you can revise based on
experience.

Handler: onScanClientReady()
This is a handler which can be passed to WebScanning.initialize alongside the onScanError handler.
See the Code Example at the end of this section.

Called In: All browsers.

During: Atalasoft.Controls.Capture.WebScanning.initialize OR at some later time if the scanning
control needed to be downloaded and installed.

Cause: The client-side scanning control or plugin has just been successfully initialized and is
operational. Note that this does not mean that any scanners were detected, working or otherwise,
so the Scan button is not necessarily enabled.

Background: Alongside the onScanError handler, you can provide an onScanClientReady handler
that will be called when client scanning services have been successfully initialized. Remember that
the onScanClientReady handler may be called an arbitrarily long time after the WebCapture initialize
call.

45

Kofax Web Capture Developer's Guide

Or this handler may never be called. Some possible causes:
• The user declines to install/approve the WebCapture plugin.
• Plugin installation fails.
• The browser or OS is unsupported.

How to Handle: This handler is a good place to clear any initialization error messages or prompts as
discussed above. See the code example at the end of this section.

Code Example – Scan Error Handling

See also: Initialize the Control on the Client.

JavaScript
function scanErrorHandler(msg, params)
{
 appendStatus(msg);
 switch (msg) {
 case Atalasoft.Controls.Capture.Errors.badBrowser:
 promptHTML(
 msg + "
(" + params + ")");
 break;

 case Atalasoft.Controls.Capture.Errors.activeX:
 promptText(
 "The ActiveX Scanning Control needs to be installed or updated.\n" +
 "When prompted, please allow the Kofax Scanning Control to install
 itself.");
 break;

 case Atalasoft.Controls.Capture.Errors.noPlugin:
 promptHTML(
 "The Kofax Web Scanning plugin is not available. "+
 "Please follow any prompts to install it, or <a href='/"+params.filename
+"'>Click Here
"+
 "If you are not prompted to install, the plugin may "+
 "be installed but disabled - please enable it.");
 break;

 case Atalasoft.Controls.Capture.Errors.oldPlugin:
 promptHTML(
 "The Kofax Web Scanning plugin is out of date.
"+
 "To download and install the latest version "+
 "Click Here");
 break;

 case Atalasoft.Controls.Capture.Errors.noTwain:
 promptText(
 "TWAIN is not installed on this computer.\n"+
 "Contact your system administrator.");
 break;

 default:
 promptText(msg);
 break;
 }
}

function scanClientReady() {
 promptText(""); // Clear the prompt box
}

46

Kofax Web Capture Developer's Guide

// Initialize Web Scanning and Web Viewing
Atalasoft.Controls.Capture.WebScanning.initialize({
 // designate error handler:
 onScanError: scanErrorHandler,
 onScanClientReady: scanClientReady,
 // etc...
});

Set scanning options
In the Atalasoft.Controls.WebScanning.initialize method one of the parameters that can be passed
as an argument in scanningOptions. These are various settings that apply to the scanner and to the
way images from the scanner are processed.

Not all settings can be applied to every scanner. If a setting is used on a scanner that does not
support it, the unsupported setting is simply ignored.

applyVRS
An option to specify if VRS should run or not in the client.
Default value: true.

Example
Atalasoft.Controls.Capture.WebScanning.initialize({
 handlerUrl: 'TestCaptureHandler.ashx',
 scanningOptions: { applyVRS: false }
});

autoRotate
Detects the orientation of the text in an image - right-side up, upside-down, sideways - and rotates
the image so the text is upright.
If VRS is disabled, autoRotate is always disabled. If VRS is enabled, autoRotate is enabled by default
but you can disable it with this option.

deskew
Deskew is scanning jargon for 'straighten' - to rotate the scanned image by a few degrees to correct
for the paper being scanned slightly crooked. Different from autoRotate.
If VRS is disabled, deskew is always disabled. If VRS is enabled, deskew is enabled by default but you
can disable it with this option.

Example
Atalasoft.Controls.Capture.WebScanning.initialize(
 scanningOptions: { applyVRS: true, deskew: false }
});

disableVRSIfInstalledOnWorkstation
Automatically disable VRS processing by WebCapture, in those cases where VRS is detected on the
client workstation. The idea here is that if VRS is detected on the workstation, the user is probably
using a VRS-equipped TWAIN driver, so there is no need to apply VRS processing twice to each
image.
Default value: false.

47

Kofax Web Capture Developer's Guide

Controls the scanning resolution. It would be very unusual to find a scanner that doesn't support
100, 200 and 300 DPI. 150 DPI is almost as widely supported. Nearly all flatbed scanners can scan
anything from 50 DPI to 1200 DPI.

discardBlankPages
When this option is true, blank images are detected and discarded during scanning.

 In duplex scanning, front and back sides of pages are discarded independently.

 No ImageAcquired event is fired for such discarded images.

Default value: false.
Example
Atalasoft.Controls.Capture.WebScanning.initialize({
 handlerUrl: 'TestCaptureHandler.ashx',
 scanningOptions: { duplex: 1, discardBlankPages: true }
});

dpi
Controls the scanning resolution. Most of the scanners support 100, 200 and 300 DPI. 150 DPI is
almost as widely supported. Nearly all flatbed scanners can scan anything from 50 DPI to 1200 DPI.
Default value: 200 DPI.
To set the Scanner DPI to 300:

Example
Atalasoft.Controls.Capture.WebScanning.initialize({
 handlerUrl: 'TestCaptureHandler.ashx',
 scanningOptions: { dpi: 300}
});

If you specify "applyVRS: true", the following options are set by default (i.e. if you do not specify
them):
• pixelType: 2 (Color)
• resultPixelType: 0 (B&W)
• deskew: true
• autoRotate: true
• discardBlankPages: false

This option is ignored by importFiles.

duplex
Set the Scanner duplex property. The possible values are:
0 = Simplex (front side only)
1 = Duplex (both sides)
-1 = Any (leave up to scanner)
Default value: 0 (Simplex).
All scanners support simplex scanning. Many scanners with an ADF (Automatic Document Feeder)
can scan duplex, but many cannot.

48

Kofax Web Capture Developer's Guide

Example
Atalasoft.Controls.Capture.WebScanning.initialize({
 handlerUrl: 'TestCaptureHandler.ashx',
 scanningOptions: { duplex: -1 }
});

feeder
This option selects between the ADF (Automatic Document Feeder) and the flatbed/glass or platen
Valid values are: 0 - Scan from platen, 1 - Scan from feeder, -1 - Don't care (up to scanner or user).
Default value: -1 (Don't care)

Example
Atalasoft.Controls.Capture.WebScanning.initialize({
 handlerUrl: 'TestCaptureHandler.ashx',
 scanningOptions: { feeder: 0 }
});

orientation
This parameter tells the scanner the expected orientation of the paper being fed, in the sense
of upright (short edge feed) or sideways/landscape (long edge feed).
-1 = Any (leave up to scanner)
0 = Portrait (paper is scanned 'upright' (short edge feed))
1 = Landscape (paper is scanned 'sideways' (long edge feed))

paperSize
To set the paper size being fed in to the scanner. This is not a complete list, but shows the most
common values. The list depends on a particular scanner's capabilities. Values are directly mapped
to paper size constants from the TWAIN specification. So if a customer knows his scanner supports
some size, but it's not listed here, it could be added to to the static list of sizes. As a better choice,
the result from getSupportedValues could be added. For example 53 3.5" x 2" Business Card
Default value: 3 (8.5" x 11")

Value Meaning / Dimensions

-1 Indicates 'no preference'

0 TWAIN defines this as meaning 'maximum scan area' but many scanners will
treat this as 'default' or 'last size selected by the user.'

1 210mm x 297mm

2 182mm x 257mm (Same as JIS B5)

3 8.5" x 11.0"

4 8.5" x 14.0"

5 148mm x 210mm

6 250mm x 353mm (ISO B4)

7 125mm x 176mm (ISO B6)

8 unused

9 11.0" x 17.0"

49

Kofax Web Capture Developer's Guide

Value Meaning / Dimensions

10 10.5" x 7.25"

11 297mm x 420mm (ISO A3)

12 353mm x 500mm (ISO B3)

13 105mm x 148mm (ISO A6)

14 229mm x 324mm (ISO C4)

15 162mm x 229mm (ISO C5)

16 114mm x 162mm (ISO C6)

Example
Atalasoft.Controls.Capture.WebScanning.initialize({
 handlerUrl: 'TestCaptureHandler.ashx',
 scanningOptions: { paperSize: 3 }
});

pixelType
To set the pixel type of the document getting scanned. This affects the pixel type that scanner
is asked to produce. To specify the pixel type of the resulting image after all possible image
prepossessing, resultPixelType should be used.
0 – Black and white
1 – Grayscale
2 – RGB 24 bits per pixel
3 – Indexed color images 8 bits per pixel
-1 – Don’t care
Default value: 0 (Black & white)

Example
Atalasoft.Controls.Capture.WebScanning.initialize({
 handlerUrl: 'TestCaptureHandler.ashx',
 scanningOptions: { pixelType: 0 }
});

Every scanner capable of scanning paper documents can scan in Black & White (B&W) mode.
Almost all scanners can scan grayscale and color. Many scanners, but certainly not all, can scan
indexed color.

resultPixelType
This specifies the pixel format you want delivered to your application after scanning or importing,
and post-processing. This is distinct from the pixelType parameter, which controls the pixel format
requested from the scanner. If the resulting PixelType is not specified, it defaults to -1.
The pixel format used for scanning is:

1. pixelType if specified

2. otherwise the pixelType implied by resultPixelType if specified, (see tables below)

3. otherwise if applyVRS is true then Color

4. otherwise: B&W. applyVRS:

50

Kofax Web Capture Developer's Guide

applyVRS:true
Value

Name Delivered Image Default Scan

-2 PixelType.Auto B&W and grayscale =>
BW; All color => BW or
RGB24, chosen by VRS

Color

-1(default) PixelType.Any All => BW (binarized by
VRS)

Color

0 PixelType.BW 1-bit B&W images Color

1 PixelType.Grayscale 8-bit grayscale images Grayscale

2 PixelType.Color 24-bit color images Color

applyVRS:false
Value

Name Delivered Image Default Scan

-2 PixelType.Auto as scanned BW

-1 (default) PixelType.Any as acanned BW

0 PixelType.BW Color 1-bit B&W images BW

1 PixelType.Grayscale 8-bit grayscale images Grayscale

2 PixelType.BW Color 24-bit color images Color

 Note that when VRS is disabled, resultPixelType can be effectively used in place of
pixelType to control the scanner.

Example
var PixelType = Atalasoft.Controls.Capture.PixelType;
Atalasoft.Controls.Capture.WebScanning.initialize({
 // Deliver color images. Implies scanning color.
 scanningOptions: { resultPixelType: PixelType.Color }
});

showScannerUI
To show (true), or not show (false) the scanning device’s user interface.
Default value: false.

Example
Atalasoft.Controls.Capture.WebScanning.initialize({
 handlerUrl: 'TestCaptureHandler.ashx',
 scanningOptions: { showScannerUI: true }
});

suppressBackgroundColor
Only has effect in Auto Color mode i.e. when applyVRS is true and resultPixelType is -2.
In that mode, if suppressBackgroundColor is true, solid-color background in color scans is treated
as white. If there is no other color content on a scanned image, the image will be automatically
converted to B&W.

51

Kofax Web Capture Developer's Guide

This is useful when your scan batch may include invoices and other documents printed on colored
paper, which you want converted to B&W, but you also expect some pages with color content which
you want to be preserved as color.

Example
Atalasoft.Controls.Capture.WebScanning.initialize({
 handlerUrl: 'TestCaptureHandler.ashx',
 scanningOptions: {
 resultPixelType: -2, // detect color & B&W pages automatically
 suppressBackgroundColor: true // treat solid color background as white
 }
});

tiff.jpegCompression
Controls use of JPEG compression when writing color and grayscale images in TIFF format.
Important: Uses the revised TIFF 6 form, not Wang/Microsoft variant - check your downstream
processes for compatibility.
When true, JPEG compression is used when writing color or grayscale images to TIFF.
When false,some other compression for color and grayscale images in TIFF will automatically be
chosen.
Default value: true.

Example
Atalasoft.Controls.Capture.WebScanning.initialize({
 handlerUrl: 'TestCaptureHandler.ashx',
 scanningOptions: { tiff: { jpegCompression: true } }
 // Note the nested object-within-object construction
}

scanner
Specifies the name of the scanner to use.
Default value: The last scanner selected in the scanner list control. If no scanner has been selected
or there is no designated scanner list control, the user's default scanner according to TWAIN is
used.
Code Example: scanningOptions.scanner

Atalasoft.Controls.Capture.WebScanning.initialize({
...
scanningOptions: { scanner: 'Canon DR-3010C', showScannerUI: true, showProgress:
 false },
...
}

This option is ignored during importFiles.

showProgress
Similar to showScannerUI, when this option is true, the scanner is asked to display a small progress
dialog during scanning. These dialogs typically include a Cancel button. When set to false, the
scanner is asked not to display a progress dialog during scanning.
Default value: true.
This option is ignored during importFiles.

52

Kofax Web Capture Developer's Guide

threshold
Default value: -1
This scanning option specifies the threshold to be used when scanning to B&W (bitonal) images.
The value range is -1 to 255. The threshold value T is applied roughly as follows:
A value of -1 means "let the scanner choose the threshold." Imagine that each pixel of the
document is measured as 8-bit grayscale to give a value V, with 0=black and 255=white. In the
returned bitonal image, that pixel is returned as white if V > T, and as black if V < T.
If V==T, it may be returned as black or as white, depending on the scanner.

 Almost all scanners support this.
This setting only has an effect when scanning with pixelType 0 (B&W).

barcodes
This scanning option controls bar code recognition during scanning. The results are available in the
bar codes property on each image delivered to the onImageAcquired handler.
Code Example: bar code

Atalasoft.Controls.Capture.WebScanning.scanningOptions = {
 barcodes: { count: 1, symbology: ['Code 39', 'Code 128'] }
...
function _onImageAcquired(eventName, imageProxy) {
 if (imageProxy.barcodes.length > 0) {
 // process barcodes
 alert('first bar codetype='+imageProxy.barcodes[0].symbology+',
 data='+imageProxy.barcodes[0].data);
 }
}

To enable bar code recognition, include bar codes as a property of the scanningOptions object, and
set it to an object with one or more of the following properties:
• property {type} meaning if omitted
• count {integer} maximum number of symbols to recognize -1, meaning "all."
• checksums {Boolean} whether to check & strip optional checksums false.
• symbology {array} names of symbologies to recognize (see below) "all."

 Symbology names are not case-sensitive, so "qr code" and "QR cOdE" are equivalent.

Supported symbologies:
• EAN-13
• EAN-8
• UPC-A
• UPC-E
• Code 39
• Code 39 (Full ASCII)
• Code 128
• Interleaved 2 of 5

53

Kofax Web Capture Developer's Guide

• Codabar
• Code 93
• Aztec
• POSTNET
• PDF417
• Data Matrix
• QR Code
• MicroPDF417
• Micro QR Code

The default bar 1code engine is the Honeywell Omniplanar/SwiftDecoder, which requires a license
key, which must be set before using the engine. See Licensing above.

brightness
Default value: 0
This scanning option specifies how the brightness of scanned images should be adjusted by the
scanner. Following TWAIN convention, the value range is -1000 to +1000.
• -1000: reduce brightness as much as possible
• -1000 < n < 0: reduce brightness
• 0: do not adjust brightness
• 0 < n < 1000: increase brightness
• +1000: increase brightness as much as possible

 Not all scanners support this.
For some scanners, not all values are distinguished: -500 may have the same effect as -501 or
-499.
Some scanners will ignore this value when scanning B&W.
This option is ignored during importFiles.

contrast
Default value: 0
This scanning option specifies how the contrast of scanned images should be adjusted by the
scanner. Following TWAIN convention, the value range is -1000 to +1000.
• -1000: reduce contrast as much as possible
• -1000 < n < 0: reduce contrast
• 0: do not adjust contrast
• 0 < n < 1000: increase contrast
• +1000: increase contrast as much as possible

54

Kofax Web Capture Developer's Guide

 Not all scanners support this.
For some scanners, not all values are distinguished: -500 may have the same effect as -501 or
-499.
Some scanners will ignore this value when scanning B&W.
This option is ignored during importFiles.

deliverables
This scanning option specifies some data formats that the application expects to request, for each
scanned or imported image. This provides some performance-enhancing "hints" to Kofax Web
Capture. The following code example shows the deliverables option value with all possible members
filled in.
Code Example: deliverables

Atalasoft.Controls.Capture.WebScanning.scanningOptions = {
deliverables: {
 localFile: { format: 'tif', jpegCompression: true, quality: 85 },
 thumbnail: { width: 128, height: 128, format: 'tif' },
 originalImageFile: {
 format: 'tif', [jpegCompression: true, quality: 85]
 }

}
...
}

The deliverables property if defined must be null or an object as shown above. Neither member of
deliverables is required - the object can be empty or contain any combination of localFile, thumbnail
or originalImageFile. The additional deliverable data is attached to the image-proxy object that is
handed to the ImageAcquired handler, just as bar codes, dpi, pixelType, etc. are properties of the
image proxy already. Note that you can consider deliverables as a performance-enhancing 'hint' to
the plugin, which simply makes the image-proxy.saveEncryptedLocal and image-proxy.thumbnail
functions faster. More details below.

deliverables.localFile
If deliverables.localFile is defined, Kofax Web Capture will automatically save each incoming
image to an encrypted local file. The file-id is stored in the localFile property of the image-proxy
object. The format must be provided. It specifies a filetype (as a 3-letter extension). Exception:
When a PDF file is imported this format value is ignored and the PDF file is saved verbatim, in
PDF format.
The jpegCompression and quality properties are optional - if present, they are also passed when
saving image to encrypted local file.
However, we recommend you not specify these options here, but instead, supply them as top-
level scanning options, i.e. as scanopts.tiff.jpegCompression* and scanopts.jpeg.quality*.

deliverables.thumbnail
If deliverables.thumbnail is defined, Kofax Web Capture precomputes thumbnail for each
incoming image.
The size of the thumbnail must be specified as width & height.

55

Kofax Web Capture Developer's Guide

To obtain thumbnail proxy object call imageProxy.thumbnail(w,h). To retrieve thumbnail base64
data call thumbProxy.asBase64String(fmt) and if your width and height match the precomputed
thumbnail that data will be returned immediately.
If you call image-proxy.thumbnail(w,h) asking for a different size than you specified in
deliverables.thumbnail, then you'll get a new thumbnail proxy and retrieving image data will
require additional scanning service roundtrip.

deliverables .originalImageFile
Tells the service to store the original image obtained from a scanner to an encrypted local file.
It's useful when image processing applied to scanned image makes it less readable for humans.
For example, color dropout on forms images or even binarization. It makes OCR more robust, but
makes human reading harder. With this feature, a client app could preserve both images and use
them accordingly.

maxPages
Default value: -1
Requests that the scanner scan no more than the specified number of pages. It defaults to -1,
meaning 'no limit'. Set to 1 to scan a single page.
This option is ignored by importFiles.

 This means physical pages - if scanning in duplex, maxPages:1 tells the scanner to send 2
images.
Not all TWAIN scanners can do this! Numerous Kodak models always scan everything in the
hopper once you start them.

evrsSettings
Settings can be loaded into EVRS for use in post-processing scanned images, by adding the property
evrsSettings as a scanning option. The value of this property, if present, must be a string containing
a valid XML-style EVRS operation string.
This option has effect only when applyVRS is true. If applyVRS is false the evrsSettings string is
ignored. This option can be used to set the effective value of any EVRS parameter, overriding any
default value or value normally used by Kofax Web Capture.
Any command/operation included in this string will cause EVRS to ignore any competing scanning
options, as described in this table.

eVRS command ignored options

Do90DegreeRotation autoRotate

DoBarcodeDetection patchCodes

DoBinarization resultPixelType

DoBlankPageDetection discardBlankPages

DoColorDetection resultPixelType

DoCropCorrection autoCrop

DoEnhancedBinarization resultPixelType

DoGrayOutput resultPixelType

56

Kofax Web Capture Developer's Guide

DoSkewCorrectionAlt deskew

DoSkewCorrectionPage deskew

Code Example: scanningOptions.evrsSettings
Atalasoft.Controls.Capture.WebScanning.initialize({
...
scanningOptions: { evrsSettings:
'_Do90DegreeRotation_2' +
'_DoGrayOutput_' +
'_LoadSetting_<PropertyName="CBinarize.Do_Adv_Clarity.Bool" Value="1" Comment="DEFAULT
 0"/>'
},
...
}

jpeg.quality
Default value: 75
Specifies the 'quality' to use when doing JPEG compression, either in saved JPEG files, or in TIFF files
saved with JPEG compression.
Lower quality = smaller files. Higher quality = larger files.
Valid quality values are from 1 to 100. We recommend using values of 60 and above, unless file
size is at a premium. Quality is severely degraded around 50 and below. Around 85-90 and above,
images begin to be indistinguishable from uncompressed images except under magnification.
The effect of the quality setting depends on the content, the medium and the human viewer.
Quality should be selected using a representative sample of documents, displayed or printed and
viewed in realistic end-use scenarios, preferably by several different people.
Remember that B&W images are unaffected by this setting, it applies only to grayscale and color
images saved to files using JPEG compression.

Upload Options
The following are the supported properties of the uploadOptions object that can be included in the
parameters to Atalasoft.Controls.Capture.WebScanning.initialize .

Keep in mind that an upload is submitted to the server as a POST of a MIME message, per RFC2046
"Multipart Media Type." The uploaded file is included as a form-data part with name="file".

uploadOptions.formData object
Default value: null
Each 'own' property of the formData object is inserted in uploads as a form-data part, with its
name and value. On the server, if you override the HandleUpload method, each property of the
formData object will be available in the context.Request.Form dictionary. Numbers are converted to
strings, strings are sent unquoted. Objects and arrays are sent (as strings) in JSON format. Unicode
characters are handled correctly in both names and values.
Code Example: uploadOptions.formData

his._uploadOptions = {};
...

57

Kofax Web Capture Developer's Guide

 Atalasoft.Controls.Capture.WebScanning.initialize({
 ...
 uploadOptions: this._uploadOptions,
...
}
...
this._uploadOptions.formData = {
 application: 'Doc-U-droid 9000',
 operator: ''
 pages: [1, 3, 7]
};
// an upload initiated now will include three extra form-data parts.
// These fields are accessible on the server
// in the HandleUpload method, viz:
string app = context.Request.Form["application"];
string oper = context.Request.Form["operator"];
string pages = context.Request.Form["pages"];

uploadOptions.extraParts array of strings
Default value: undefined
This optional parameter is a list of additional parts to be inserted in the multipart body of each
upload. Each string must conform to the rules in RFC2046 for a body-part. This option is retrieved
from the uploadOptions object at the beginning of each upload, so its contents at that moment are
included in the subsequent upload.

 The order of strings in the array is not necessarily preserved in the upload.

Code Example: uploadOptions.extraParts

this._uploadOptions = {};
...
Atalasoft.Controls.Capture.WebScanning.initialize({
...
uploadOptions: this._uploadOptions,
...
}
...
this._uploadOptions.extraParts = [
'Content-Disposition: form-data; name="application"\n'+
'\n'+
'Doc-U-droid 9000'
];
// an upload initiated now will include the 'application' field
// above, in the multipart MIME message sent to the server.

Connect to the Web Document Viewer
To display the documents scanned with the Web Capture WebScanning Control in the same page, or
possibly another page in a browser simply do the following:

1. Add the Web Document Viewer resources to the application.
2. Add the following div tag to the same page:

58

Kofax Web Capture Developer's Guide

Code Snippet
<div>
 <div class="atala-document-toolbar" style="width: 670px;"></div>
 <div class="atala-document-container" style="width: 670px; height: 500px;"></
div>
</div>

3. In the html/aspx/jsp page add the following script. The values of serverurl and handlerUrl
should be changed to the locations of your WebDocViewer and Capture handlers, respectively.

Code Snippet
<script type="text/javascript">
 // Show status and error messages
 function appendStatus(msg)
 {
 $('#status').append('<p>'+msg+'</p>');
 }

 // Initialize Web Scanning and Web Viewing
 $(function() {
 try {
 var viewer = new Atalasoft.Controls.WebDocumentViewer({
 parent: $('.atala-document-container'),
 toolbarparent: $('.atala-document-toolbar'),
 serverurl: 'WebDocViewer.ashx'
 });

 Atalasoft.Controls.Capture.WebScanning.initialize({
 handlerUrl: 'TestCaptureHandler.ashx',

 onScanError: function(msg, params) { appendStatus(msg); },

 onScanStarted: function(eventName, eventObj) { appendStatus('Scan
 Started'); },
 onScanCompleted: function(eventName, eventObj)
 { appendStatus('Scan Completed: ' + eventObj.success); },

 onUploadError: function(msg, params) { appendStatus(msg); },
 onUploadStarted: function(eventName, eventObj)
 { appendStatus('Upload Started'); },
 onUploadCompleted: function(eventName, eventObj) {
 appendStatus('Upload Completed: ' + eventObj.success);
 if (eventObj.success) {
 viewer.OpenUrl('atala-capture-upload/' +
 eventObj.documentFilename);
 }
 },
 scanningOptions: { pixelType: 0 }
 });

 Atalasoft.Controls.Capture.CaptureService.initialize({
 handlerUrl: 'TestCaptureHandler.ashx',
 onError: function(msg, params) { appendStatus(msg +': ' +
 params.statusText); }
 });
 }
 catch (error) {
 appendStatus('Thrown error: ' + error.description);
 }
 });

59

Kofax Web Capture Developer's Guide

</script>

Licensing
Kofax Web Capture requires confirmation that it is licensed, and that its built-in copy of VRS is also
licensed if you wish to use it. Kofax Web Capture and bar code engine licensing are integrated into a
single object.

Normally this licensing information will come from the server. Kofax Web Capture can accept it in
two different ways that might be called 'push' licensing, and 'call-back' licensing.

For details, see the params.license property under
Atalasoft.Controls.Capture.WebScanning.initialize.

File Formats and File Options
Several methods take a file format as a parameter, followed by an optional options parameter.

Examples are encryptedLocalFileAsBase64String and imageProxy.asBase64String.

Valid values for the format parameter are described in this table:

Value Result

"bmp" or ".bmp" Windows BMP file

"gif" or ".gif" standard GIF file

"jpg" or ".jpg" standard JPEG (technically, JFIF)

"png" or ".png" standard PNG file

"tif" or ".tif" TIFF file TIFF file
Bitonal images are written to TIFF with CCITT G4 compression. Color and
grayscale are written uncompressed, unless the tiff.jpegCompression
option is true.

Use VirtualReScan (VRS)
The Web Capture Web Scanning Control includes the award-winning VirtualReScan Technology
(VRS), a "de Facto Standard" for image processing. VRS requires additional licensing.

By default, VRS processing is applied to each scanned image: All images are auto-rotated and
deskewed, and non-B&W images are converted to B&W (‘binarized’).

 The specific image processing steps performed by VRS may change in future versions of Web
Capture.

60

Kofax Web Capture Developer's Guide

To turn on or off VRS processing in the client an optional argument must be passed into the
Atalasoft.Controls.Capture.WebScanning.initialize method on the page in which the control has
been added. See Client API Reference.

Example - Disabling VRS
JavaScript
Atalasoft.Controls.Capture.WebScanning.initialize({
 handlerUrl: 'TestCaptureHandler.ashx',

 onScanError: function(msg, params) { appendStatus(msg); },
 onScanStarted: function(eventName, eventObj) { appendStatus('Scan
 Started'); },
 onScanCompleted: function(eventName, eventObj) { appendStatus('Scan
 Completed: ' + eventObj.success); },

 onUploadError: function(msg, params) { appendStatus(msg); },
 onUploadStarted: function(eventName, eventObj) { appendStatus('Upload
 Started'); },
 onUploadCompleted: function(eventName, eventObj) {
 appendStatus('Upload Completed: ' + eventObj.success);
 if (eventObj.success) {
 viewer.OpenUrl('atala-capture-upload/' + eventObj.documentFilename);
 }
 },
 scanningOptions: { pixelType: 1, applyVRS: false }
});

Atalasoft.Controls.Capture.CaptureService.initialize({
 handlerUrl: 'TestCaptureHandler.ashx',
 onError: function(msg, params) { appendStatus(msg +': ' + params.statusText); }
});

In the scanningOptions argument, applyVRS is set to false to turn VRS off in the Web Scanning
Control.

Test your application
Obviously you should test scanning, ideally with several scanners. Yes, we try to hide all the
scanning issues and make it "just work". Nonetheless, it can be beneficial to learn about the
problems your end-users will have setting up and using scanners, to get a sense of the little
idiosyncrasies every scanner has, and to understand the physical details of the task you are asking
users to carry out.

Test in Edge, Firefox and Chrome
Always test with all the browsers you intend to support. The Web Capture plugin may operate
differently and require subtle differences in coding in different browsers.

Test for error conditions
Scanning and uploading documents is fast and simple when everything works. Your users' efficiency
and satisfaction will primarily depend on how you handle errors and failures.

61

Kofax Web Capture Developer's Guide

Verify that your application behaves in a reasonable way and guides users successfully when:

1. These browsers are not supported: Safari, or Opera, or a non-Windows OS.

2. The client PC has no devices in the TWAIN device list.

3. The selected scanner is turned off or disconnected.

4. A scan is canceled mid-scan.

5. Web Capture throws an error, especially those documented in Handling Errors.

Troubleshoot scanning problems
My scanner appears in the list as WIA-something - what does this mean?
Many scanners support Microsoft's proprietary scanner protocol, called WIA. Microsoft Windows
enables WIA devices to appear as TWAIN devices. However, these pseudo-TWAIN devices are not
native TWAIN drivers, and sometimes have important limitations. If you have any problems using a
WIA driver through TWAIN, see if the scanner vendor offers a native TWAIN driver.

My scanner appears twice in the scanner list, once with a WIA-prefix and once without - what
does this mean?
This means your scanner supports the Microsoft WIA scanner protocol as well as having a native
TWAIN driver. Basically you are seeing two different drivers that can both talk to your scanner. In
general we recommend using the native (non-WIA) driver, but you are welcome to try them both
and see which one works better for you.

Scanner does not appear in device list.
Things to check:
• Is the scanner connected and powered on.
• Does the scanner support TWAIN? The popular Fujitsu ScanSnap models do not.
• Is a TWAIN driver for the scanner installed? Most do not auto-install.
• Test the driver+scanner combination outside the browser with IrfanView, see "Scanning fails"

below.

Scan fails with "unable to open" or "connection failure"
Scan fails before scanning any pages
• Is the scanner connected and powered on?
• If there has been a recent crash or error related to scanning?

Try cycling the power on the scanner and then re-try the scan, up to two times.
• Verify that the scanner is working outside the browser, through TWAIN. Note the TWAIN name of

the device.
To verify that a scanner has a working TWAIN driver, we sometimes use IrfanView - this is a free
scanning application with TWAIN support.

• If IrfanView can scan from your scanner, then you have a working scanner with a working TWAIN
driver.
In this case, scanning failures are most likely caused by the browser sandboxing the scanner
driver. Try moving your Web site into the trusted zone.

62

Kofax Web Capture Developer's Guide

• If IrfanView cannot find and scan from your scanner, then you don't have the basic prerequisite of
a working TWAIN scanner.
The ultimate fall-back for this kind of problem is to get support from the scanner vendor.

Uploads fail with '598' status
If uploads fail with ‘598’ status codes, this indicates the client-side code timed-out waiting for the
upload to complete. You can increase the Params.serverTimeout: Integer value, try to speed up
your connection, reduce your upload sizes (see below), or (if it’s actually the problem) speed up your
server.

Uploads fail with JSON parse error or server response status 404
If uploading fails with a JSON parse error or server response 404, once you check that the URL being
used for upload is valid and correct, consider whether the upload might be exceeding the server’s
upload size limit. Some suggestions:
• Increase the server’s upload limit.
• Scan to grayscale instead of color, or better yet to B&W. If you use VRS, we recommend specifying

resultPixelType instead of pixelType. This allows VRS to scan in color and use sophisticated
algorithms to convert to grayscale or B&W. Note that this may cause slower scanning with some
scanners.

• If you have licensed VRS, try setting resultPixelType: -2 to tell VRS to automatically classify color
and non-color images, and convert non-color images to B&W. If you are scanning pages on
colored paper, take a look also at suppressBackgroundColor.

• If you are scanning with a DPI higher than 200, experiment with scanning at 200 DPI to see if the
results are acceptable.

Documents do not display in viewer after scan & upload
First check the upload: Are the documents being uploaded?

1. Attach handlers for onUploadStarted, onUploadCompleted and onUploadError (see Client API
Reference) - is onUploadCompleted being fired, and not onUploadError?

2. Does each new upload appear in the upload folder on the server? (See notes about the upload
folder in Getting Started with Web Capture).

Second, check the viewer:

1. Is the code to invoke the viewer being called, and is the correct URL being given to the viewer?
An alert box is an easy way to check this.

2. Can you enter the URL or its fully-qualified equivalent into a browser manually and get the
expected file?

Scan quality is poor
If images or graphics looks bad, could this be because the scans are being converted to black &
white? See question below.
Are you setting the resolution? See Setting Scanning Options. A very low resolution - anything below
100 DPI or so - will produce blurry or ... well, 'low-res' images.
As a very rough guide, for black & white scans of text:

100 DPI legible but visibly rough & pixelated, like a poor quality fax or a 1970's video game.

63

Kofax Web Capture Developer's Guide

150 DPI modest fax quality, still some visible defects and pixelation but highly legible in typical
on-screen viewing.

200 DPI high quality fax. A full page viewed on screen looks good, letters look slightly fuzzy or
'haloed'.

300 DPI good quality, minor defects usually visible only under magnification.

All scans are converted to B&W, even my bunny pictures
This is the default behavior for WebCapture: It applies several VRS clean-up operations to each scan,
including binarization, which converts the image to 1-bit per pixel black & white.
To avoid this, specify the resultPixelType as grayscale (1) or color (2). If you are using VRS, you can
also specify resultPixelType: -2 which tells VRS to automatically classify each image as color or non-
color, and to convert only non-color images to B&W.

I ask for duplex scanning, but only front sides are scanned.
It sounds a little silly, but the first thing to check is that 'duplex scanning' is a listed feature of the
scanner.
Assuming the scanner claims to support duplex (both sides) scanning, the most common reason for
it to fail is using the scanner through a WIA driver (choosing WIA-something in the scanner list). The
WIA drivers have historically had problems with duplex scanning.
If a WIA-driver is being used, the solution is to find, install and use a native TWAIN driver for the
scanner.

Logging
There are client and server side logging results.
Server logging can be enabled in configuration files located in the
installation folders: Kofax.WebCapture.Host.exe.log.config and
Kofax.WebCapture.ScanWorker.exe.log.config. By default logging is turned off.
Client side logging can be enabled in the browser console by setting Atalasoft.TraceEnabled =
true;.

Uninstall Web Capture MSI
Here are the steps to uninstall the scanning service on a Windows client machine.

1. Open Add or Remove Programs.
2. Locate and right click the Kofax WebCapture item.
3. Select Uninstall.

Client API reference

Atalasoft.Controls.Capture.WebScanning
This object is responsible for communicating with the client-side scanner, controlling scanning, and
uploading scanned documents to the Web server.

64

Kofax Web Capture Developer's Guide

Atalasoft.Controls.Capture.WebScanning.initialize(params)
This method must be called to initialize the WebScanning component. The params object must
contain a handlerUrl property, the other properties are optional.
As a side-effect, initialize attempts to initialize TWAIN scanning on the client, and to collect a list of
available TWAIN scanners. If it is successful, it will populate a scanner-list control and enable a scan
button, provided that they exist with the appropriate classes. See Connect to UI controls.

 The scanner initialization process is asynchronous and may not have finished when the
initialize function returns. In fact it may never complete, for example if the user declines to install
and activate the plugin MSI.

params.handlerUrl: string
The URL of the request handler. This is normally a relative URL, for example:
TestCaptureHandler.

params.serverTimeout: Integer
This is the number of seconds to wait for the server response after starting an upload. After
this number of seconds, the upload is considered to have failed, it is canceled, and an error is
signaled by calling onUploadError.
Default value: 20

params.onScanClientReady: function()
This handler is called when scanning initialization is complete. Not successful, just complete:
Scanning initialization has either succeeded fully, or failed. Normally in case of failure the
onScanError handler will have been called.
See Handle errors

params.onScanError: function(msg, params)
This handler is called when an error occurs during scanning or scan initialization.

params.onScanStarted: function(eventName, eventObj)
This handler is called when a scan is started. See Handle events

params.onScanCompleted: function(eventName, eventObj)
This handler is called when a scan is completed.

params.onUploadStarted: function(eventName, eventObj)
This handler is called when a document upload is starting.

params.onUploadCompleted: function(eventName, eventObj)
This handler is called a document upload has completed.

params.onUploadError: function(msg, params)
This handler is called when an error occurs during uploading.

params.scanningOptions: object
This object contains any scanner settings to be used for scanning, as described in Setting
Scanning Options.

params.license:object
Provides Kofax Web Capture, VRS, and bar code engine licensing information.

65

Kofax Web Capture Developer's Guide

key a Kofax Web Capture and VRS license authentication string. Required if object set.
barcode a bar code engine license key. Optional.
Currently the only bar code engine key accepted is for the Honeywell/SwiftDecoder engine.
Code Example: licensing object

Atalasoft.Controls.Capture.WebScanning.initialize({
...
license: { key: '~}qs~z}af4 @# ?)%?!+F#*(&#(&^H4f`gw4f`gw', barcode: 12345 },
...
}

Default value: If no license object is provided to WebScanning.initialize, Kofax Web
Capture asks the server for license information. Specifically, the initialize method starts an
AJAX GET to the handlerUrl with ?cmd=getlicense appended. For licensing to be successful,
GET must return a JSON encoded string that decodes to a licensing object as described above.
Typically the WebCaptureRequestHandler on the server takes care of this automatically

params.onShutdownfunction()
This optional handler is called when the page is unloaded or reloaded, prior to any internal
Kofax Web Capture cleanup or shutdown.

 Any scan or import that is in progress is aborted before this handler is called.

If WebScanning.Initialize did not succeed, it is possible this handler will not be called.
And if you are somehow using Kofax Web Capture in the Opera browser, this handler will never
be called because Opera famously does not support thepage-unload event.

params.onImageAcquiredfunction(eventName, imageProxy)
See onImageAcquired handler.

params.uploadOptionsobject
This property must be an object, which contains (additional) upload settings, as described in
Upload Options.

params.localizationobject
Default value: {} - which selects the default American English localization. This object provides a
translation table for all potentially user-visible strings used by Kofax Web Capture.

Identifier Approximate English

activeX The Scanning ActiveX Control needs to be installed, updated, or
enabled, or ActiveX controls need to be allowed to install and run.

ajax Could not create an XMLHttpRequest object needed for uploading.

badBrowser Scanning requires Chrome, Firefox, or Edge running on Windows, or
Safari running on macOS

badLicense license is invalid or expired

badVrsLicense VRS license is missing or invalid

contentTypesError The server could not retrieve content types.

contentDescError The server could not retrieve the content description.

66

Kofax Web Capture Developer's Guide

Identifier Approximate English

docClassIndexFieldError The server could not retrieve the index fields for the document class.

doorOpen scanner reports cover or door open

doubleFeed scanner reports a double feed

driverCrash a fatal exception occurred in the device driver

dsmFail TWAIN DataSource Manager failure

dsOpen unable to open TWAIN device

fileFail file not found or cannot be written or cannot be read

ieVersion IE version not supported:

importError The server could not import the document.

importFilesPrompt Choose Files to Import' (title of file-open dialog of importFiles)

internalError unexpected internal error

licensingError The server did not return valid licensing information

minVersion minimum version needed:

not32Bit Browser is not 32-bit:

noPlugin The scanning plugin needs to be installed. If it is installed it may
need to be enabled. In your browser look for Add-ons, Plugins, Kofax
scanning.

notSupported Not currently supported:

notWindows Platform is not Windows:

noTwain The TWAIN Manager needs to be installed.

oldPlugin The scanning plugin needs to be updated to a newer version.

outOfMemory memory allocation failed (out of memory)

paperJam scanner reports a paper jam

pluginCreate plugin not created

pluginVersion plugin is version:

scanFail Unable to start scan

scanMore Would you like to scan more pages? (user prompt during multipage
scan from flatbed)

serverNotResponding The server is not responding.

Atalasoft.Controls.Capture.WebScanning.scan(options)
Initiates a scan with the specified scanning options (see Set scanning options).
If you pass in nothing, null or undefined, it uses the scanning options stored in
Atalasoft.Controls.Capture.WebScanning.scanningOptions.
This method is called (with no parameters) when the user clicks the designated scan button.

67

Kofax Web Capture Developer's Guide

Atalasoft.Controls.Capture.WebScanning.abortScan()
Aborts the current background operation in progress, if any. If there is no current background
operation, it does nothing.
Background Operation Started by:
• Scanning WebScanning.scan
• Importing files WebScanning.importFiles
• Querying supported values WebScanning.getSupportedValues
• Displaying the scanner settings dialog WebScanning.showSettingsDialog

Atalasoft.Controls.Capture.WebScanning.importFiles([options])
Begin a background process to import files with the specified options. The options
object has the same valid properties as the scanningOptions parameter to the scan
method above, however, this method ignores options that control the scanner. If
options is omitted, null or undefined, importFiles uses the scanning options stored in
Atalasoft.Controls.Capture.WebScanning.scanningOptions.
The user is prompted to select one or more files on the local machine, with a standard multi-select
File Open dialog. The supported file formats are those listed in File Formats and File Options above,
plus PDF. If the user cancels the File Open dialog, this is treated as an import of zero (0) files.
The title of the dialog is a localizable string named importFilesPrompt.
The selected files are read image-by-image and processed as if they were being scanned - post-
processing options are applied to each image - except for PDF files, which are passed through
verbatim.
Files are processed in an order determined by Windows, and not necessarily in the order they
appear in the File Open dialog nor the order of selection. If the order of processing is important, the
user must do separate Import operations.
importFiles calls the onScanStarted handler before doing anything else, then calls the
onImageAcquired handler with each successfully imported image or PDF file, and finally calls the
onScanCompleted handler when finished, whether successful or not.
The eventObj parameter to onScanCompleted has a property (success) that tells you if the import
completed successfully. See the onImageAcquired handler for details of how PDF files are imported.
If the user attempts to import any files of unsupported type (such as .doc or .psd) the
unsupportedFileFormat error is fired to the onScanError handler and the import proceeds,
completely ignoring all those files.
If a file of supported type cannot be imported (e.g. corrupted data, access error), an appropriate
error is fired to the onScanError handler and the import process is aborted (completes
unsuccessfully).
The images and files imported by importFiles are not retained by the control or uploaded
automatically to the server.
This method is called (with no parameters) when the user clicks the designated import button, if
any.

Atalasoft.Controls.Capture.WebScanning.dispose: function (success, error)
Closes scanning session, unbinds events, removes default generated UI, if any.

Atalasoft.Controls.Capture.WebScanning.isInitialized: function()
Indicates whether WebScanning component is initialized.

68

Kofax Web Capture Developer's Guide

Atalasoft.Controls.Capture.WebScanning.getVersion: function(){}
Returns the current Kofax Web Capture version.

Atalasoft.Controls.Capture.WebScanning.LocalFile.splitToFiles: function (fid, [params],
callback)
Splits specified file to the set of blobs of the specific size(source stream is not decoded to image, so
chunks are just blobs, not a valid images)
params: { size: number, removeSource: bool}

Callback is called with array of new files identifiers in order of split. this function is usefull for
transferring huge files that could not be mapped into memory in a 32 bit process.(32-bit browser
could refuse to load files bigger than 200-300mb).

Atalasoft.Controls.Capture.WebScanning.setBarcodeLicense(licenseKey)
Code Example: bar code licensing:

Atalasoft.Controls.Capture.WebScanning.setBarcodeLicense(licenseKey)

The licenseKey is a string, which is decoded/decrypted and passed to the Honeywell engine.

Atalasoft.Controls.Capture.WebScanning.getSupportedValues(params,callback)
Begins a background operation to query the scanner for supported values of scanning parameters.
When done, it invokes callback(vals) where vals is an object describing the supported values,
described below. If anything goes wrong, it invokes callback({ }). Before querying the scanner, the
current scanning options are set as specified by params. If params is null, the current scanning
options are used.
The scanner used is: params.scanner, if that exists and is a string. Otherwise
Atalasoft.Controls.Capture.WebScanning.scanningOptions.scanner is used if it exists
and is a string. Otherwise the scanner most recently selected in the UI or otherwise the default
scanner, as reported by TWAIN.
Errors during this operation will normally result in an asynchronous call to the onScanError handler.

The supported-values object
Each property in the object has the name of a Kofax Web Capture scanning-parameter property
e.g. pixelType, dpi, and so on. Each property value is one of the following:
• A enumeration, represented by an array of valid values, for example [0, 1, 3].
• A range represented by an object with min, max and step properties, for example { min: 50,

max: 2400, step: 1 }.

In this release of Kofax Web Capture, a range value is returned only for the value of dpi, and
only for scanners that describe their resolution values this way.

 A few models of scanner may provide incorrect or misleading information through this
query, such as a flatbed scanner that lists the value 1 for feeder, implying that you can scan
from its (non-existent) ADF.

69

Kofax Web Capture Developer's Guide

 Qquerying the scanner's capabilities requires opening the scanner, which may fail (scanner
offline, unplugged, etc.) which may display an error box to the user. For TWAIN-friendly user-
interface design, make 'choose your scanner' or 'change scanner' into a separate dialog or
screen, and call getSupportedValues when the user OK's a new scanner choice.

 Completing the getSupportedValues operation can take several seconds.

Code Example: getSupportedValues:
Atalasoft.Controls.Capture.WebScanning.getSupportedValues(null, gotValues);
// if successful might call gotValues with an object like this:
{ pixelType: [0, 1, 2],
dpi: {min: 50, max: 1200, step: 1},
duplex: [0, 1],
feeder: [0, 1],
paperSize: [0, 1, 2, 4, 7, 9],
orientation: [0 1]
}

Atalasoft.Controls.Capture.WebScanning.getSupportedValues(null , gotValues);
Starts a background operation to display the settings-only dialog (custom user interface) of the
scanner, if the scanner supports this feature. This shows a version of the scanner's UI that is only for
choosing settings, without a Scan button.
When the operation completes, successfully or not, callback(status) is called, where status is an
object.
status.complete is true if the dialog was successfully displayed and closed by the user, false if the
dialog could not be displayed or the operation was aborted.
If anything goes wrong, the onScanError handler will be called, asynchronously, with details.
The scanner used is: params.scanner if that exists and is a string. Otherwise
Atalasoft.Controls.Capture.WebScanning.scanningOptions.scanner, if it exists and is a
string. Otherwise the scanner most recently selected in the UI, or otherwise the default scanner, as
reported by TWAIN.

Atalasoft.Controls.Capture.WebScanning.LocalFile.setEncryptionKey: function (key, callback)
Sets the encryption key for subsequent encrypted local file load/saves. The basis is an arbitrary
string, which is used to generate the symmetric encryption key. The basis is immediately discarded,
and the generated key is moved into the Windows secure cryptographic storage.
Required for any local file operations.

Atalasoft.Controls.Capture.WebScanning.LocalFile.fromBase64String: function (str, callback)
Saves the specified base64-encoded binary data to an encrypted local file, and returns a unique file-
identifier for that local file.
str: base64 string representing data to store.

Atalasoft.Controls.Capture.WebScanning.LocalFile.asBase64String: function (fid [,fmt [,
options[, callback]]])

Decrypts a locally-saved file and returns it as a base64-encoded string. If fmt is specified, returns
the data in the specified file format. If no encryption key has been set, throws an exception.

70

Kofax Web Capture Developer's Guide

Atalasoft.Controls.Capture.WebScanning.LocalFile.remove: function (fid, callback)
Immediately deletes a local file and any data associated with it. This is irreversible and non-
recoverable.

Atalasoft.Controls.Capture.WebScanning.LocalFile.list: function (callback)
Returns an array of the identifiers of all the existing saved local files associated with this instance of
Kofax Web Capture.

Atalasoft.Controls.Capture.WebScanning.LocalFile.removeAll: function (callback)
Immediately deletes all local files associated with (created by) this instance of Kofax Web Capture.
Has no effect on local files created in other instances of the client application, or files created by
previous incarnations of Kofax Web Capture.

Atalasoft.Controls.Capture.WebScanning.LocalFile.globalPurgeByAge: function (hours,
callback)
Immediately deletes all local files written more than hours ago. Deletes ALL local files meeting
the age criterion, no matter how or when they were created, or by which instance of Kofax Web
Capture.
Encrypted Local Files
• Local files are stored in this folder: …\Users\<user>\AppData\Local\Kofax\WebCapture
\Persistent

• The file names follow this pattern: ('T'|'U')<sessionid>-<filenumber>'.elf'
• T indicates a 'trusted' file - Kofax Web Capture generated the contents.
• U indicates an untrusted file - contents came from outside the plugin e.g. via
LocalFile.fromBase64String.

• The session-id is generated each time the plugin is instantiated, and should be unique on any
given computer for ~13 years.

• The file number is generated sequentially within each session, starting from 1.
• .elf' stands for Encrypted Local File.

Atalasoft.Controls.Capture.WebScanning.scanningOptions
This property holds the current scanning options as described in Setting Scanning
Options. These options are used when the user clicks the scan button, or if
Atalasoft.Controls.Capture.WebScanning.scan() is called.
Initially this holds the scanningOptions object passed to
Atalasoft.Controls.Capture.WebScanning.initialize(params), but your code can dynamically edit this
object to change the settings for a subsequent scan.

Atalasoft.Controls.Capture.WebScanning.getProfile()
This method returns a string, containing the current scanning options. The string is in JSON format,
but you should not rely on that.

Atalasoft.Controls.Capture.WebScanning.setProfile(s)
This method loads the scanning options from a string previously produced by
Atalasoft.Controls.Capture.WebScanning.getProfile().

 This is not a merge - all scanning options not set in the strings are cleared.

71

Kofax Web Capture Developer's Guide

Atalasoft.Controls.Capture.CaptureService
This object is responsible for returning information from KIC, such as the content-types and
content-type document descriptions, and for importing uploaded documents into Kofax Capture.

.initialize(params)
This method must be called to initialize the CaptureService component. The params object must
contain a handlerUrl, the other items are optional.
As a side-effect, initialize starts a process that attempts to communicate with the KIC service and
obtain the content-type list and content-type document description list. If this process succeeds, it
will populate the appropriate controls on the page, if they exist with the correct classes.
• params.handlerUrl: string: The URL, normally relative, of the KIC extended Web request handler

on the server.
Example: 'TestCaptureHandler.ashx'

• params.onError: function(msg, params): This event is called if KIC returns an error. See Handle
errors.

• params.onImportCompleted: function(params): This event is called when a document has
finished importing. See Handle events.

• params.onBeforeImport: function(boolean): This parameter must return a function that
returns true or false. The function passed in through this parameter will be run prior to importing
a document to KC.

• params.onTrackStatusReceived: function(params): This event is called when track status of a
document imported into KC is requested.

• params.contentType: String: Use this parameter when the client is not bound to any UI
elements in a page to set the batch class or repository name for KIC. See Connect controls with
no UI.

• params.defaultContentType: String: Use this parameter to specify one content type to be the
content type first displayed and selected when the list is populated.

• params.onContentTypesCreated: function(params): The event is fired after the content type
selection box has finished being populated.

• params.contentTypeDescriptionName: String: Use this parameter when the client is not bound
to any UI elements in a page to set the KIC document class/form type pair.

• params.onContentTypeDescriptionsCreated: function(params): The event is fired after the
content type description selection box has been populated.

• params.removedContentTypes: String: Use this parameter to filter the list of content types
displayed in the content type selection drop down. The list (comma separated) specified in the
parameter will be removed from the list. See Filter selection lists.

• params.removedContentTypeDescriptions: String: Use this parameter to filter the list of
content type descriptions displayed in the content type document list selection drop down. The
list (comma separated) specified in the parameter will be removed from the list.

• params.LoosePages: String: This parameter enables importing loose pages in to KC through KIC
only. Set to "true" to enable. Default is false. To specify a loose pages selection text in the atala-
contenttype-document-list selection set the parameter to "true, <any text>", if unspecified a blank
entry is created. See Import loose pages.

72

Kofax Web Capture Developer's Guide

• params.displayedLoosePagesForContentType: String: Use this parameter in conjunction with
the LoosePages parameter. Will only apply to clients connecting to a KIC service. This take a
comma separated list of batch class names which should have the loose pages option included in
the content type description name drop down list.

• params.indexFields: String: Use this parameter when the client is not bound to the indexfield UI
div to set the indexfields for the specified KC/KIC document class.

• params.displayedIndexFields: String: Use this parameter when the client is bound to the index
field dive element to inclusively filter the list of index fields displayed.

• params.onIndexFieldImportValidationError: function(params): Use this parameter to deal
with index field validation errors.

• params.onIndexFieldTypeValidationStatus: function(params): Use this parameter to
customize how index field validation gets dealt with in the client.

• params.onIndexFieldCompleted: function(params): Use this parameter to customize event
behavior when an index field label, and input field have been created.

• params.onIndexFieldsCompleted: function(params): Use this paramter to customize event
behavior for after all index field labels and input fields have been created.

• params.batchFields: String: Use this parameter when the client is not bound to the indexfield UI
div to set the batch fields for the specified KC/KIC batch class.

• params.displayedBatchFields: String: Use this parameter when the client is bound to the index
field dive element to inclusively filter the list of batch fields displayed.

• params.onBatchFieldImportValidationError: function(params): Use this parameter to deal
with batch field validation errors.

• params.onBatchFieldTypeValidationStatus: function(params): Use this parameter to
customize how batch field validation gets dealt with in the client.

• params.onBatchFieldCompleted: function(params): Use this parameter to customize behavior
after each batch field label, and input field have been created.

• params.onBatchFieldsCompleted: function(params): Use this parameter to customize
behavior after all of the batch fields labels and input fields have been created.

.setIndexFieldValues(String)
This function can be used to set index fields outside of the initialization parameters. Currently this
works as it would if used in the initialization parameters, and is intended to be used when no UI for
index fields is present.

Example
var indexFields = "Required: filled in";

Atalasoft.Controls.Capture.CaptureService.setIndexFieldValues(indexFields);

.setBatchFieldValues(String)
This function can be used to set batch fields outside of the initialization parameters. Currently this
works as it would if used in the initialization parameters, and is intended to be used when no UI for
batch fields is present.

Example
var batchFields = "BatchField1: SomeText";

Atalasoft.Controls.Capture.CaptureService.setBatchFieldValues(batchFields);

73

Kofax Web Capture Developer's Guide

74

Chapter 5

Web Document Viewer

The WebDocumentViewer is JavaScript based image viewing control that can be created on the
client side without the need for a traditional WebServerControl back end. It communicates directly
with a WebDocumentRequestHandler on the server side, so there are no page lifecycle problems to
deal with.

A WebDocumentViewer only requires a few snippets of HTML and JavaScript on your page, and a
separate bare-bones handler.

The WebDocumentViewer doesn't have a Toolbox item to drag onto a form, so you can create
the control on any page that you need to use it, without forms. See our Web Document Viewer
Guide for a step-by-step tutorial of setting up a WebDocumentViewer in a new project and
deploying it to an IIS server. A complete example of the WebDocumentViewer is also included in the
DotImageWebForms demo projects that are installed with Kofax Web Capture.

The Web Document Viewer online documentation is available at https://
atalasoft.github.io/web-document-viewer. The offline verison can be downloaded from the
public GitHub repository at https://github.com/Atalasoft/web-document-viewer/tree/
master/docs.

75

Chapter 6

Program with DotPdf

DotPdf is a set of tools used for creating or manipulating PDF documents. PDF is a file format
created by Adobe Systems that is used to represent the content and structure of a document in a
way that the appearance of the document will maintain its quality independent of the device on
which it is displayed. For example, TIFF documents are scanned images that only look as good as
the resolution of the scan, whereas PDF documents can contain text and graphic content that do
not have a fixed resolution and render well on low or high resolution devices.

In addition, PDF can contain a number of interactive features including hyperlinks, annotations,
bookmarks.

DotPdf includes two main tools for operating on PDF files:
• PdfDocument - Object for performing efficient, document-level manipulation of PDF documents,

including rearranging or deleting existing pages, adding pages from another document, creating
or editing the bookmark tree, creating or editing document metadata, or combining multiple
documents into one.

• PdfGeneratedDocument - Object capable of doing everything PdfDocument can do, but requires
reading in the full content of the document. In addition, PdfGeneratedDocument can be used for
adding content to existing pages and creating new content from scratch.

Both PdfDocument and PdfGeneratedDocument have the ability to detect and repair many types of
broken or non-compliant PDF documents.

The PDF document format is a standard format that describes the appearance layout, and to
a certain extent the behavior of a collection of pages. PDF documents are designed to look
consistently good on whatever device is used to display them, whether the device is a computer
screen, a desktop printer, a phototypesetter, or a cell phone. Unlike most image formats, PDF has
no sense of resolution. This means that a document can viewed at arbitrary magnification with little
or no loss of information.

The Atalasoft PDF Generating library provides a mechanism for creating PDF documents that is
simple, consistent, and extensible. Since the underlying document format is complicated, the library
is built to separate the document format from the means used to create the document. Client code
needs to concern itself with the content and the mathematical modeling. The actual production of
PDF from this is handled behind the scenes.

In addition to basic shapes, images and text, the Atalasoft library has tools for creating your own
shapes from primitive shapes, composites of basic shapes, as well the ability to stitch all of these
together into high-level tools for creating documents from very little code.

To create a PDF document, one needs to make a document object, add pages to the document, put
content onto the pages and save the document. The following example demonstrates how to make
a basic PDF:

76

Kofax Web Capture Developer's Guide

 PdfGeneratedDocument doc = new PdfGeneratedDocument();

 PdfGeneratedPage page = PdfDefaultPages.Letter;

 doc.Pages.Add(page);

 string font = doc.Resources.Fonts.AddFromFontName("Times New Roman");

 PdfTextLine line = new PdfTextLine(font, 12, "Hello, PDF", new PdfPoint(72, 400));

 page.DrawingList.Add(line);

 doc.Save("hello.pdf");

The authoring library has seven main components: resources, pages, drawing primitives, shapes,
forms, annotations and rendering. Resources are collections of large objects that may be used
multiple times on a page or a document such as fonts or images. Resource objects are named
and are always referred to by name. Pages are objects that contain dimensions as well as a list
of drawings that make the visible contents of the page. Pages may be moved freely from one
document to another, cloned and serialized. Drawing primitives are objects that can directly
generate PDF page content. Primitives include paths, rectangles, primitive text, and images. Shapes
are higher level objects that are more easily described and controlled and may include transforms
to apply to the shape like scale and rotation. Shapes can be built in terms of primitives or in terms
of other shapes. Rendering is the process of turning a collection of pages and their content into
PDF or some other format. Although most applications concerned with making PDF documents will
only need to concern themselves with resources, pages and shapes, the Atalasoft library is designed
to be open and extensible. Advanced applications can work with primitives directly, create their
own higher level shapes or create their own renderers. And while the rendering process is typically
invisible to client code, the mechanism is open so that documents can be created that are limited
only by the PDF specification.

Mathematical model
In PDF, a page is based on a formal Cartesian coordinate system. In this model, the origin is in the
lower left corner of the page with the positive X axis stretching to the right and the positive Y axis
extending up. Units are in PDF standard units which are 1/72 of an inch. Coordinates are expressed
in floating point numbers. Every page includes an Affine transformation matrix through which all
coordinates are pushed before being placed on the page.

 This differs from conventional image coordinates where the origin is in the upper left corner of
the image and the positive Y axis extends down.

For drawing, there are five main primitives: paths, rectangles, images, text, and templates. A path is
a collection of lines and Bezier curves. Paths may be disjoint or non-disjoint. In non-disjoint paths,
all elements are connected. A non-disjoint path may be closed or open. In a closed path, there is an
explicit step to connect from the first element in the path to the last element in the path. A disjoint
path may consist of any number of sub paths which may be open or closed.

Paths and rectangles are placed on the page. After a shape has been placed on the page, it may be
stroked, filled or clipped. Outlines in the path may be stroked with solid or dashed lines. Line ends

77

Kofax Web Capture Developer's Guide

may rounded, square projecting, or square flat. Line joints may be beveled or mitered. Paths may
filled with solid colors. Clipping and filling are done based on one of two different filling rules, the
even-odd rule and the non-zero winding rule.

Images in PDF are considered to be 1 by 1 in PDF units. To place an image on the page, one sets a
transform to set the location and size of the image on the page.

Templates are encapsulated collections of other PDF primitives. In PDF Generating they are
intended for two main purposes: creating reusable page content like letterhead, backgrounds or
watermarks. Templates can also be used for building transparency or blending layers.

Transformations
The PDF imaging model includes the notion of a current transformation. All objects that are
rendered get pushed through the transformation before being rendered.

Transformations are represented by an Affine transformation matrix which is a 3x3 matrix of the
form:

When a point (x, y) is transformed by the matrix, the output of the transformation will be (),
where and . In the Atalasoft Pdf Generating library, transformations
are represented by the class PdfTransform. Within that class there are some factory methods for
making common transformations.

PdfTransform.Identity() returns a new identity matrix:

PdfTransform.Translate(double x, double y) returns new matrix that will perform a translation:

PdfTransform.Scale(double s) returns a new matrix that will perform a uniform scale:

PdfTransform.Scale(double x, double y) returns a new matrix that scales in x and y directions,
possibly by different amounts:

78

Kofax Web Capture Developer's Guide

PdfTransform.Rotate(double theta) returns a new matrix that will perform a counter clockwise
rotation by theta radians:

PdfTransform.Skew(double x, double y) performs a two dimensional skew operation by x and y
radians:

PdfTransform includes a property, TransformType that attempts to determine if the transform is
one of the primary transformation types. If the transform type can't be determined, the property
will be set to PdfTransformType.Other.

To transform a point, use the Transform methods. For example, to rotate a point counterclockwise
around the origin, you can do this:
PdfPoint p = new PdfPoint(x, y);
PdfTransform transform = PdfTransform.Rotate(angle);
p = transform.Transform(p);

PdfTransform can also combine transformation by using the Concat() method:
PdfTransform combined = PdfTransform.Rotate(angle);
PdfTransform translate = PdfTransform.Translate(x, y);
combined.Concat(translate);

Note that the Concat operation is not reflexive - a.Concat(b) is not necessarily the same as
b.Concat(a).

In PdfDrawingSurface, there is a method called ApplyTransformation() which takes a PdfTransform
object and Concats it onto the drawing surface's current transformation. In this way, transforms are
cumulative. Applying a transformation will accumulate changes into the drawing surface. To undo a
transform, there are two approaches. The first is to apply the inverse transformation:
PdfTransform transform = GetTransform();
if (!transform.IsInvertable())
 return;
PdfTransform itransform = transform.GetInverse();

Renderer.DrawingSurface.ApplyTransformation(transform);
...perform drawing operations
Renderer.DrawingSurface.ApplyTransformation(itransform);

In order to do this, the specific transform to be applied must have an inverse. In all but degenerate
transformations (scale by 0 or a skew that creates a flat line), there will be an inverse that can be
applied. Using the IsInvertable() method will tell you if an inverse exists.

79

Kofax Web Capture Developer's Guide

The second way to undo a transform is to use the GSave() and GRestore() methods that are part of
the PdfPageRenderer objects. GSave() takes the entire drawing state of the PdfPageRenderer and
saves it on a stack. GRestore() pops the most recently saved drawing state and restores it. GSave()/
GRestore() performs a great deal more work than saving and restoring the current matrix. It will
also save line style, clipping, and more. Generally speaking, for working with transformations, it's
best to always avoid degenerate transformations and to apply the transform, perform operations
and then apply the inverse.

The power of the cumulative approach to transformation is that it is straight forward to encapsulate
drawing within another transformation. For example, the entire DrawingList of an existing
PdfGeneratedPage could be rendered as a the contents "thumbnail" shape with a dog-eared page
by applying a scale transform, doing a GSave(), clipping to the dog eared page boundary, calling the
DrawingList's Render() method, doing a GRestore(), stroking the dog-eared page boundary and then
undoing the transform.

PdfBaseShape provides indirect access to the transforms by breaking out Translation, Scale, and
Rotation into separate properties and concatenating them together before drawing the shape.

When any of the Add or Place methods are used in PdfDrawingSurface, an implicit transform will
be applied before the operation and the inverse afterwards. For example, AddRect(PdfBounds r) is
implemented in terms of AddRect(r, PdfTransform.Identity()).

PdfGeneratedDocument
For creating or modifying exist PDF documents, use the PdfGeneratedDocument object. Unlike
the PdfDocument object, the PdfGeneratedDocument object allows you to directly manipulate
the content and details of PDF documents to a much greater depth (and is also more resource
intensive). Strictly speaking, PdfGeneratedDocument offers a superset of the features in
PdfDocument.

With both PdfGeneratedDocument and PdfDocument, you can rearrange or delete pages,
add pages from other documents, rotate pages, set document permissions, create or modify
bookmarks, encrypt or decrypt documents, set automatic printing, or create or edit document
metadata. With PdfGeneratedDocument, you can replace images in a document, add new pages
with new content, add content to existing pages, create or edit annotations, create and edit data
collection forms, import SVG artwork, and define high level shapes.

PdfGeneratedDocument can be the cornerstone of a report generation system, a document
format converter, a document review system, or a print driver. Since content created within a
PdfGeneratedDocument can be serialized and embedded within the output PDF itself, it is easy to
create content and read it back for editing.

Pages
The main page class PdfGeneratedPage is a container class that represents a page in a PDF
document. It contains a set of PdfBounds objects that are used to describe the page's dimensions

80

Kofax Web Capture Developer's Guide

as well as PdfDrawingList object that represents the page's contents. The main dimensions of the
page are described with the following:
• Media Box - this is the size of the physical media on which the page is to be printed.
• Crop Box - this is the area to which all content on the page will be cropped when being displayed

or printed.
• Bleed Box - this is an area that defines the area that will be used for cropping in a production

environment, which may include extra area to accommodate cutting folding and trimming
equipment.

• Trim Box - this is the area of that page to be trimmed to in a production environment. It may
be smaller than the Media Box to allow for printing instructions, cut marks, color bars or other
printer's marks.

• Art Box - this is the area of the page that contains meaningful content intended by the creator.

Each of these areas are measured in PDF units and are subject to PDF's size limitations (3 units (1/24
inch) minimum and 14400 units (200 inches) maximum).

When a new PdfGeneratedPage is constructed only the MediaBox property is set to an area. All
other boxes are set to null PdfBounds objects, indicating "not used". In addition, all boxes must be
either the same size or within the MediaBox.

Standard page sizes
The object PdfDefaultPages contains a number of static properties that create new
PdfGeneratedPages initialized to standard sizes. While it is straightforward enough to create a page
with the PdfGeneratedPage constructor and pass in the desired width and height in PDF units, the
factory properties in PdfDefaultPages make it easy to work with common standard page sizes such
as letter, legal, ledger, A4-A6, B4-B6, and C4-C6. For each default size in portrait layout (the page is
thinner than it is tall), there is also a landscape version of the same.

Create stationery
There are a number of ways to create the effect of stationery in the PDF Generating API. Since each
PdfGeneratedPage object contains a list of things that are drawn on the page, it can be as simple
as prepopulating that list with a few items. Here is a simple example that creates a page that will
appear to be a note card.

In this sample, we first make a page that is wide x high in inches. Next we make a background
rectangle the same size as the page and add it to the drawing list. Then we make a path that is a
single red line a half inch (36 PDF units) down from the top and add it to the page. Finally, we make
a disjoint path of blue lines that are evenly spaced by quarter inches down from the red line. Since
each line in the path is defined with a separate MoveTo/LineTo pair, the path is disjoint. When the
page is returned from this method, there will be three items in the page's drawing list: a rectangle, a
red path and a blue path.

public PdfGeneratedPage Notecard(double wide, double high, IPdfColor backGroundColor)
{

81

Kofax Web Capture Developer's Guide

 PdfGeneratedPage page = new PdfGeneratedPage(wide * 72, high * 72);
 double top = page.MediaBox.Top;
 double right = page.MediaBox.Right;
 PdfRectangle backGround = new PdfRectangle(page.MediaBox, backGroundColor);
 page.DrawingList.Add(backGround);
 PdfPath redLine = new PdfPath(PdfColorFactory.FromRgb(.75, .16, .45), 0.5);
 redLine.MoveTo(new PdfPoint(0, top - 36));
 redLine.LineTo(new PdfPoint(right, top - 36));
 page.DrawingList.Add(redLine);
 PdfPath blueLines = new PdfPath(PdfColorFactory.FromRgb(.08, .64, .89), 0.5);
 for (double y = top - 36 - 18; y >= 0; y -= 18)
 {
 blueLines.MoveTo(new PdfPoint(0, y));
 blueLines.LineTo(new PdfPoint(right, y));
 }
 page.DrawingList.Add(blueLines);
 return page;
}

If you wanted to structurally organize your drawing so that the background of the page was a single
layer, you could use a separate layer for background. Although the PDF file format doesn't have
strong support for this kind of structural organization, the Atalasoft Generating library gives you the
ability to generate with structure if you choose via the PdfDrawingList object. In this way, we could
rewrite the note card sample to use a PdfDrawingList for the background:

public PdfGeneratedPage Notecard1(double wide, double high, IPdfColor backGroundColor)
{
 PdfGeneratedPage page = new PdfGeneratedPage(wide * 72, high * 72);
 double top = page.MediaBox.Top;
 double right = page.MediaBox.Right;
 PdfDrawingList backLayer = new PdfDrawingList();
 backLayer.Name = "background";
 page.DrawingList.Add(backLayer);
 PdfRectangle backGround = new PdfRectangle(page.MediaBox, backGroundColor);
 backLayer.Add(backGround);
 PdfPath redLine = new PdfPath(PdfColorFactory.FromRgb(.75, .16, .45), 0.5);
 redLine.MoveTo(new PdfPoint(0, top - 36));
 redLine.LineTo(new PdfPoint(right, top - 36));
 backLayer.Add(redLine);
 PdfPath blueLines = new PdfPath(PdfColorFactory.FromRgb(.08, .64, .89), 0.5);
 for (double y = top - 36 - 18; y >= 0; y -= 18)
 {
 blueLines.MoveTo(new PdfPoint(0, y));
 blueLines.LineTo(new PdfPoint(right, y));
 }
 backLayer.Add(blueLines);
 return page;
}

Every object that can be in a PdfDrawingList implements the interface IPdfRenderable. One element
of that interface is the property "Name" which is a string that names that item. This property is
never used by the PDF Generating library. It is intended for client code. In this example, the Name
property is used to make the backLayer object easy to identify in later code. For example, if you
wanted to create a sense of back-, mid- and foreground layers you could add three PdfDrawingList
objects to the page and name them appropriately.

82

Kofax Web Capture Developer's Guide

Clipping
In every PDF page there is always an area that clips drawing to a reduced area. The initial clipping
region for any page is the rectangle that defines the page itself. When creating PDF content, it is
possible to change that clipping region. Clipping in PDF is different than clipping in GDI. In GDI, any
region can be set as the current clipping region. In PDF when you request a new clipping region, the
result is the intersection of the current clipping region and the requested one. The net result is that
in PDF, it is only possible to reduce the current clipping region or keep it the same. It is, however,
possible to save and restore the current clipping region through calls to PdfPageRenderer.GSave()
and PdfPageRenderer.GRestore().

In this example, a circle is added to the page as a clipping shape and the rectangle added
afterwards will be clipped to the circle.

C# code
PdfCircle circle = new PdfCircle(new PdfPoint(72, 600),
 100,PdfColorFactory.FromGray(1));
circle.Clip = true;
page.DrawingList.Add(circle);
PdfRectangle rect = new PdfRectangle(new PdfBounds(72, 600, 288, 72),
PdfColorFactory.FromGray(0), 6, PdfColorFactory.FromRgb(0.1, 0, .9));
page.DrawingList.Add(rect);

This code produces this output.

Since clipping is permanent outside of calls to PdfPageRenderer.GSave() and
PdfPageRenderer.GRestore(), there are two IPdfRenderable objects named GSave() and GRestore()
which make those calls for you. By modifying the previous sample, the clipping region can be saved
and restored:

C# code

page.DrawingList.Add(new GSave());
PdfCircle circle = new PdfCircle(new PdfPoint(72, 600), 100,
PdfColorFactory.FromGray(1));
circle.Clip = true;
page.DrawingList.Add(circle);
PdfRectangle rect = new PdfRectangle(
 new PdfBounds(72, 600, 288, 72),
 PdfColorFactory.FromGray(0),
 6,
 PdfColorFactory.FromRgb(0.1, 0, .9));
page.DrawingList.Add(rect);
page.DrawingList.Add(new GRestore());
rect = new PdfRectangle(

83

Kofax Web Capture Developer's Guide

 new PdfBounds(36, 636, 400, 18),
 PdfColorFactory.FromRgb(1, 0, 0));
page.DrawingList.Add(rect);

This code produces this output.

As with any filled shape, clipping to a path or shape is done via either the non-zero winding rule or
the even odd rule.

Colors
The color model in PDF is very flexible. Colors are associated with a notion of a current color space.
Color spaces can include RGB, Gray, CMYK, Lab, and others. Color spaces may also be calibrated or
uncalibrated. The Atalasoft PDF Generating library gives you access to colors through a color factory
which hides the complexity of the PDF color model. To make a color, use the PdfColorFactory static
methods FromRgb, FromColor, FromGray, or FromCmyk. Each of these methods will return a new
IPdfColor object that represents the requested color. Color channel values go from 0.0, representing
the minimum value, to 1.0, representing the maximum value. Colors may be associated with the
name of a PdfColorSpaceResource object. If a color has a resource name, then the color will be a
calibrated color, possibly with an associated ICC color profile.

To use RGB colors with an ICC color profile, you can use the resource name "sRgb" as the resource
name for your colors. This uses the "standard" RGB ICC color profile which is always available in
the color space resources. While there will always be a profile named "sRgb", it is better to use
the property DefaultRgbColorSpace as the default resource name. This allows you code to change
the name of the default RGB color space resource without changing the calibration of any colors
already selected with the previous default.

To add additional color profiles to the resources, you only need a stream, path or the raw data itself.
For example, you could use the following C# code to add in a new ICC profile:

 PdfGeneratedDocument doc = new PdfGeneratedDocument();
 String csname = doc.Resources.ColorSpaces.AddFromFile("mycolorprofile.icm");
 IPdfColor color = PdfColorFactory.FromRgb(1.0, .8, .8, csname);

Note that it is up to client code to create colors that are in the appropriate color space for a given
resource. In the previous example, if the color profile had been for a CMYK color space, the code
requesting an RGB color would be in error and may result in an invalid PDF. In addition to a
standard RGB color space, there is also a calibrated gray color space preinstalled. The calibrated
gray color space has the resource name "CalGray" and is also accessible using the string property

84

Kofax Web Capture Developer's Guide

DefaultGrayColorSpace. While there is a property for a default CMYK color space, there is no default
installed. A standard CMYK color profile can be downloaded from Microsoft from the link http://
msdn.microsoft.com/en-us/windows/hardware/gg487391.

All color space resources include a property called ColorSpaceType which can be used to find the
type of color space represented by the resource.

Rendering
The PdfGeneratedDocument and the PdfGeneratedPage classes are representations of PDF
documents and PDF pages, but they are not actual documents or pages. No PDF is created until the
document is saved. The process of saving a document to PDF is part of a more general rendering
process and in this case, the output of rendering is a PDF document.

The rendering process involves creating an object that is a subclass of the abstract
DocumentRenderer class. DocumentRenderer defines the overall process that is used to render a
document including firing events, error handling and page rendering. The overall process follows
this outline:

1. Notify that the document has begun.
2. Render each page.

a. Notify that a page has begun.

b. Construct a PdfPageRenderer object for the page.

c. Generate the page.

d. Notify that the page has finished.
3. Notify that the document has finished.

Behind the scenes, the PdfGeneratedDocument.Save() method creates a PdfPageRenderer object
and uses it to create the PDF. In most cases, it will not be necessary to use any other means to
save a PDF document. The PDF Generating library is robust for creating documents that may
have a thousand pages or more without having to worry about memory use. However, in some
cases client code may wish to use another mechanism to produce documents. In this case, the
client code can construct the PdfPageRenderer directly and use the Render method that takes a
PdfGeneratedDocument and an ICollection<BasePage>. In this way client code can use their own
collections of pages instead.

Resources
PDF has the notion of document resources. These are objects or chunks of data that may be shared
within a page or several pages to reduce the memory needed for the document. There are several
classes of resources within PDF. Of them, the Atalasoft PDF library exposes four types: fonts,
images, templates and color spaces. In the Atalasoft PDF library, to use a resource, you create it and
assign it a name. From then on the resource is referred to by name.

The PdfGeneratedDocument class contains a property, Resources, of type GlobalResources. This
object contains properties which represent "managers" for each type of resource. While each

85

http://msdn.microsoft.com/en-us/windows/hardware/gg487391
http://msdn.microsoft.com/en-us/windows/hardware/gg487391

Kofax Web Capture Developer's Guide

resource manager shares a common base class which contains methods for adding, getting, and
querying resources, each manager also contains convenience factory methods specific to each
resource type so that making resources is easier.

For example, it might be easier to work with a font by its font name, so The PdfFontManager has a
method that will search through installed fonts and attempt to create a font resource based on that.

Font resources
The PDF Generating library supports fonts in PDF via True Type font files. Fonts resources can be
created from a font's name (such as Goudy Old Style Bold), a path to a .ttf or .otf file or a Stream
containing the True Type font. Note that .otf files may contain either True Type or Type 1 fonts, but
only True Type fonts are accepted.

When creating a font resource, client code assigns the font a name (or accepts an auto-generated
one). The actual name is inconsequential and is only used as a unique identifier for the font. Client
code should feel free to use any name it wishes. All references to that font will be made through
that name and not the resource object.

In version 10.4 and above, there is support for PDF standard Type 1 fonts. In the original version of
Acrobat, there were a set of standard fonts that did not need to be embedded within a PDF file and
were guaranteed to render accurately. These fonts will be pre-installed in any new GlobalResources
object.

The fonts are referred to by their PostScript names:

• Times-Roman
• Times-Bold
• Times-Italic
• Times-BoldItalic
• Helvetica
• Helvetica-Bold
• Helvetica-Oblique
• Helvetica-BoldOblique
• Courier
• Courier-Bold
• Courier-Oblique
• Courier-BoldOblique
• Symbol
• ZapfDingbats

 Type 1 fonts do not typically have support for more than 255 simultaneously encoded
characters. The standard Roman fonts use PDF Standard Encoding, but Symbol and Zapf Dingbats
use an Identity encoding scheme where the character value corresponds to the Adobe index of a
particular glyph name for the font.

86

Kofax Web Capture Developer's Guide

Type 1 symbol font encoding
Unicode
character

Character code Glyph Unicode
character

Character code Glyph

space 32 space ! 33 !

" 34 ∀ # 35 #

$ 36 ∃ % 37 %

& 38 & ' 39 ∋

(40 () 41)

* 42 ∗ + 43 +

, 44 , - 45 −

. 46 . / 47 /

0 48 0 1 49 1

2 50 2 3 51 3

4 52 4 5 53 5

6 54 6 7 55 7

8 56 8 9 57 9

: 58 : ; 59 ;

< 60 < = 61 =

> 62 > ? 63 ?

@ 64 ≅ A 65 Α

B 66 Β C 67 Χ

D 68 ∆ E 69 Ε

F 70 Φ G 71 Γ

H 72 Η I 73 Ι

J 74 ϑ K 75 Κ

L 76 Λ M 77 Μ

N 78 Ν O 79 Ο

P 80 Π Q 81 Θ

R 82 Ρ S 83 Σ

T 84 Τ U 85 Υ

V 86 ς W 87 Ω

X 88 Ξ Y 89 Ψ

Z 90 Ζ [91 [

\ 92 ∴] 93]

87

Kofax Web Capture Developer's Guide

Unicode
character

Character code Glyph Unicode
character

Character code Glyph

^ 94 ⊥ _ 95 _

` 96 � a 97 α

b 98 β c 99 χ

d 100 δ e 101 ε

f 102 φ g 103 γ

h 104 η i 105 ι

j 106 ϕ k 107 κ

l 108 λ m 109 μ

n 110 ν o 111 ο

p 112 π q 113 θ

r 114 ρ s 115 σ

t 116 τ u 117 υ

v 118 ϖ w 119 ω

x 120 ξ y 121 ψ

z 122 ζ { 123 {

| 124 | } 125 }

~ 126 _ 127

128 Ä 129 Å

130 Ç 131 É

132 Ñ 133 Ö

134 Ü 135 á

136 à 137 â

138 ä 139 ã

140 å 141 ç

142 é 143 è

144 ê 145 ë

146 í 147 ì

148 î 149 ï

150 ñ 151 ó

152 ò 153 ô

154 ö 155 õ

156 ú 157 ù

158 û DŸD 159 ü

88

Kofax Web Capture Developer's Guide

Unicode
character

Character code Glyph Unicode
character

Character code Glyph

160 € ¡ 161 ϒ

¢ 162 ′ £ 163 ≤

¤ 164 ⁄ ¥ 165 ∞

¦ 166 ƒ § 167 ♣

¨ 168 ♦ © 169 ♥

ª 170 ♠ « 171 ↔

¬ 172 ← • 173 ↑
® 174 → ¯ 175 ↓

° 176 ° ± 177 ±

² 178 ″ ³ 179 ≥

´ 180 × µ 181 ∝

¶ 182 ∂ · 183 •

¸ 184 ÷ ¹ 185 ≠

º 186 ≡ » 187 ≈

¼ 188 … ½ 189 |

¾ 190 # ¿ 191 ↵

À 192 ℵ Á 193 ℑ

Â 194 ℜ Ã 195 ℘

Ä 196 ⊗ Å 197 ⊕

Æ 198 ∅ Ç 199 ∩

È 200 ∪ É 201 ⊃

Ê 202 ⊇ Ë 203 ⊄

Ì 204 ⊂ Í 205 ⊆

Î 206 ∈ Ï 207 ∉

Ð 208 ∠ Ñ 209 ∇

Ò 210 ® Ó 211 ©

Ô 212 ™ Õ 213 ∏

Ö 214 √ × 215 ⋅

Ø 216 ¬ Ù 217 ∧

Ú 218 ∨ Û 219 ⇔

Ü 220 ⇐ Ý 221 ⇑

Þ 222 ⇒ ß 223 ⇓

à 224 ◊ á 225 〈

89

Kofax Web Capture Developer's Guide

Unicode
character

Character code Glyph Unicode
character

Character code Glyph

â 226 ® ã 227 ©

ä 228 ™ å 229 ∑

æ 230 æ ç 231 ç

è 232 è é 233 é

ê 234 ê ë 235 ë

ì 236 ì í 237 í

î 238 î ï 239 ï

ð 240 ñ 241 ñ

ò 242 ∫ ó 243 ⌠

ô 244 ô õ 245 ⌡

ö 246 ö ÷ 247 ÷

ø 248 ø ù 249 ù

ú 250 ú û 251 û

ü 252 ü ý 253 ý

þ 254 þ ÿ 255

Embed fonts
Standard Type 1 Fonts are not embedded. Allowed True Type fonts are embedded within created
PDFs by default. True Type fonts contain information about the contexts in which embedding is
permissible.

To embed a font, the PdfFontManager provides the embedding policy for the font. The policy
provided looks at the embedding permissions and returns a PdfFontEmbeddingPolicy object
containing an action to take.These actions include embed, don't embed, or throw an exception. The
default policy provider will embed where allowed and throw an exception when not allowed.

You can also replace the policy provider with a provider that embeds all fonts. Policy providers may
also exclude a set of common fonts that are typically on all systems or are known to Acrobat. In this
case, when a common font is not present, Acrobat will create a matching "faux font".

Color space resources
PDF allows the use of calibrated colors within documents. This can be done through specific
calibrated color spaces or through an ICC Color profile. To handle this the PdfColorSpaceManger
object holds a set of color space resources which can be embedded in PDF documents. See the
section on Colors for more information.

90

Kofax Web Capture Developer's Guide

Image resources
In PDF images resources are stored as a resolution free stream of two dimensional samples. The
stream is typically compressed in some manner within the file. The Kofax Web Capture model for
image resource handling to allow the resource manager to accept any object type as an image and
then use a set of installed image compressors to determine how to handle that object type. When
an image resource is created, all handlers are iterated until one determines that it can handle the
object type. That handler then reports a list of possible ways that it can compress the object into a
stream suitable for PDF. A compression method is then selected and subsequently applied to the
object. For example, if presented with a .NET Bitmap object that is 24 bit RGB, the default handler
will report that the image can be compressed using either DCT (JPEG), Flate, or no compression. A
compression selector in the PdfImageManager then selects the most appropriate compression to
use from that list and then the image is compressed to a stream suitable for PDF.

Image resource streams are kept in a "Stored Stream" object. This object is used to allow a chunk of
data to be written out to an appropriate storage device for later retrieval. The default StoreStream
type uses the systems temp folder for creating file streams that will be used for storing data.
This mechanism can be replaced with other systems if needed by changing the StreamProvider
property in the PdfImageManager object. In addition to the default TempStreamProvider, there is a
MemoryStreamProvider which is equivalent, but keeps compressed streams in memory. This will be
fast, but will clearly place a load on memory used and is therefore not recommended for anything
but small images.

The PdfImageManager contains a collection of objects that implement the IPdfImageCompressor
interface for compressing images. By default, this will be initialized to contain an instance of the
GdiImageCompressor object for handling .NET Bitmap objects.

Compressors are selected by their ability to handle a particular object type. For any given object, a
compressor is asked if it can handle the object at a particular "skill." Skills are an indication of the
type of work needed to create the actual image data and includes:

• Perfect: The image is handled as is with no changes.
• IncreaseInformation: The image is handled, but the output image will have more information

(for example, a compressor might not handle 1-bit perfectly, but instead converts it to 24 bit rgb
color).

• DecreaseInformation: The image is handled, but the output image will have less information (for
example, a compressor might not handle 48 bit rgb, but reduces it to 24 bit rgb).

For any given image format, there may be a number of different codecs that could be used to
compress that image. When an IPdfImageCompressor has been selected, it will return a collection
of PdfImageCodec enums that describe how the image will be compressed. Before compressing
the image data, the PdfImageManager calls a CompressionSelector with the set of available
PdfImageCodecs and returns back a PdfImageCompression object which fully describes all the
parameters need to compress the image data. The default CompressionSelector always chooses the
first compression in the list.

When an image is compressed and cached, the PdfImageManager uses a IStoredStreamProvider
object to provide a way to get at the cache later. The default implementation is the
TempFileStreamProvider, which creates a temporary file for the compressed stream for retrieving
later. There is also a MemoryStreamProvider that keeps compressed image data in memory. In

91

Kofax Web Capture Developer's Guide

most cases, it will not be necessary to change the default selections, but every step is the process is
replaceable if need be.

In addition, there is an extra assembly for interacting with Kofax Web Capture that contains an
AtalaImageCompressor object for handling all AtalaImage types.

See Integrate with Kofax Web Capture for more information.

Template resources
PDF defines a way to create page content that can be reused efficiently. In the PDF specification,
these are called Form XObjects, but they are unrelated to the process of data input and collection
(Acro Forms). In Kofax Web Capture, these are called Templates or Drawing Templates. A template
resource is a reference to a DrawingTemplate object. A DrawingTemplate object is very similar to a
PdfGeneratedPage in that it contains a bounding rectangle which defines a clipping rectangle for
the entire DrawingTemplate and a DrawingList which contains the shapes or operations that will
mark the page. DrawingTemplate objects themselves can refer to all other resource types.

Shapes
The Atalasoft PDF Generating library includes a hierarchy of high-level shapes. Each shape is
meant to fully encapsulate the shape's parameters and be able to draw itself. There are shape
objects that represent paths, circles, arcs, rounded rectangles, images, and text. Each of these
objects descends from a single class, PdfBaseShape. PdfBaseShape contains the definitions for the
shape's color (fill and stroke), the line style used for stroking, and the location, scale and rotation
of the object. Shapes that descend from PdfBaseShape typically only have to concern themselves
with how they are drawn (how they are filled or stroked) and not with how they are placed on
the page (location, scale, rotation). There is no requirement to use any of the PdfBaseShape-
derived classes. Each shape is implements at least the PdfRenderable interface and optionally the
PdfRenderableContainer and PdfResourceConsumer interfaces. All shapes must be serializable.

PdfPath
Path shapes are one of the fundamental components of PDF rendering. A path is a list of operations
that are performed in sequence to draw the path. There are four operations that can be performed:
move, line, curve and close. For example, you could create a square path with the following C#
code:
private PdfPath Square(double wide, IPdfColor outlineColor, double lineWidth)
{
 PdfPath path = new PdfPath(outlineColor, lineWidth);
 path.MoveTo(0, 0);
 path.LineTo(wide, 0);
 path.LineTo(wide, wide);
 path.LineTo(0, wide);
 path.Close();
 return path;
}

The path starts with a move operation and traces the outline of the square. Notice that the square
ends with a close operation and not another line. This is because PDF recognizes closed paths and
treats them differently. When path is closed, the PDF viewer will automatically connects a straight

92

Kofax Web Capture Developer's Guide

line from the last point to the first point and creates a joint to make a clean corner. If you connect
the line directly yourself, the PDF viewer doesn't know that it should create a clean corner. The
results may not be what you expect. For example, the square on the left was drawn with a close
operation. The square on the right was drawn without a close operation.

 All the path operations return the PdfPath object itself so you can use a "fluent" style if you
choose. The previous path construction could have been written as:

return path.MoveTo(0, 0).LineTo(wide, 0).LineTo(wide, wide).LineTo(0,
wide).Close();

Curves in PDF are represented by cubic Bézier functions. A Bézier is represented by four points, a
start point and an end point (P 0 and P 3) and two control points (P 1 and P 2) and is represented
by the following formula:

Where t represents time and ranges from 0.0 to 1.0. B(t) represents a point on the curve at time t.

Bézier curves have a number of desirable properties including: a small amount of information (4
points) can represent a wide variety of curves, they can be rendered efficiently, the entire curve will
always be contained within a rectangle bounded by the minima and maxima of the four points and
the segments P0P1 and P2P3 are tangent to curve at the start and end points respectively.

In the PdfPath shape, you can add a curve using the CurveTo method. This method takes three
points which represent the two control points and the end point of the curve. The start point of the
Bézier will be the last point in the path from any of MoveTo, LineTo or CurveTo methods.

Paths can be filled, stroked or clipped. When a line is stroked, there are a variety options that can be
selected for the style of the line, including thickness, joint style, end caps and dashes. These are all
available in the LineStyle property of PdfBaseShape.

93

Kofax Web Capture Developer's Guide

The thickness of a line is in PDF units and defaults to 1.0. When set to 0, the PDF viewer is instructed
to render the line in the thinnest possible way. Since this is device-dependent, the final output
will not be consistent from device to device and this should be avoided (consider the difference
between the thinnest possible line on a 96 dpi monitor versus a 2400 dpi phototypesetter). If a
client application wants to create a hairline, it should pick an appropriate thickness instead of 0.

The joint style for a path is how consecutive segments are merged together. There are three
possible styles, square, rounded and beveled as shown in these squares.

Paths may be stroked in an arbitrary dash pattern. The pattern is a phase number and a collection
of alternating dash lengths and gap lengths. The dash and gap lengths are distances along the path
in PDF units. The phase is how far into the pattern to start a line. The entire collection of dash and
gaps is used until it is exhausted, then it is repeated until the complete path has been stroked.

The following figure shows dash patterns, from top to bottom: [1], [1 2], [0.5], [0.5, 1, 2, 1]

In the sample dash patterns, a single entry implies alternating dash and gaps of the same length. In
the bottom example, you can see how complex dashes patterns can be made. Each pattern above
has a phase of 0, meaning that the PDF viewer starts the pattern at the beginning. If the phase were
0.5, the first example would have started with a half dash then continued normally.

Paths may be stroked with three different types of ends: butt, round or projecting square.

The final line style is the miter limit. This is a parameter that is used to handle cases when a path
with a highly acute angle will project in a reasonable way. In this picture the path is shown with an
acute angle and the full miter is project from the line in blue. The miter limit prevents the miter
from extending out this distance.

94

Kofax Web Capture Developer's Guide

The miter limit is a point at which the mitering will be turned off. It is defined by the ratio of the
miter length and the line thickness. When this ratio exceeds the miter limit, mitering will not be
done on the line. Since the miter length is related to the angle between the two lines, there is also a
relationship between miter limit and line join angle:

Where theta is the angle between the two lines.

A miter limit of 2.0 will cut off miters at angles less than 60 degrees. The default miter limit is 10.

In addition to stroking, paths may be filled with a color. A path may be filled using one of two
techniques, either the non-zero winding rule or the even-odd rule. In the non-zero winding rule,
horizontal rays are shot through the path. Whenever a path segment crosses the ray going up,
one is added to a winding number. Whenever a path segment crosses the ray going down, one
is subtracted from the winding number. Whenever the winding number is non-zero, areas along
the ray will be filled. In the even odd rule, rays are shot through the path. Whenever the ray has
crossed an odd number of path segments, areas along the ray will be filled. The choice of the rule
will produce different filled areas in compound paths or paths that self-intersect.

The following figure shows the same shape with the non-zero winding rule (left) and the even-odd
rule (right).

PdfRectangle
PdfRectangle is a shape that represents a rectangle. In addition to the properties of PdfBaseShape,
it includes a property Bounds, which represents the area of the rectangle. The fill method doesn't
affect how a rectangle is filled.

95

Kofax Web Capture Developer's Guide

PdfRoundedRectangle
PdfRounded rectangle is a shape that represents a rectangle with rounded corners. In addition to
the normal PdfBaseShape properties, PdfRoundedRectangle includes a property Bounds, which
represents the area of the rectangle and a property CurveRadius that represents the radius of each
corner.

PdfCircle
PdfCircle is a representation of a circle from a center and radius. The circle itself is drawn in PDF
using a Bézier path approximation of the circle. By changing the Scale property to a non-uniform
scale you can get an ellipse.

PdfArc
PdfArc represents a circular arc. It consists of a the center and radius of a circle as well as the start
angle and end angle of the arc in degrees. If the property Clockwise is set to true, the arc will be
drawn from the start angle to the end angle in a clockwise direction, otherwise the arc will be drawn
counterclockwise. If the property IncludeWedge is set to true, the center will be added to the path
drawn.

The following figure shows two PdfArc shapes stroked and filled with IncludeWedge set to false
(left) and IncludeWedge set to true (right).

PdfImageShape
PdfImageShape represents an image placed in a rectangular area on the page. It includes a Bounds
property representing the area that will be covered with the image and ImageName, the name
of an image resource to use to fill the shape. The FillColor, OutlineColor and Clip properties of
PdfBaseShape are ignored.

The following C# code creates an image shape from a bitmap.
PdfImageShape ConvertBitmapToShape(PdfGeneratedDocument doc, Bitmap bmp)
{
 string imageName = doc.Resources.Images.AddImage(bmp);
 PdfImageShape shape = new PdfImageShape(imageName, new PdfBounds(0,
 0, bmp.Width, bmp.Height));
 bmp.Dispose(); // if you don't need the Bitmap, dispose it
 return shape;
}

96

Kofax Web Capture Developer's Guide

If you have also purchased the DotImage DocumentImaging toolkit, then you will have access
to the classes AtalaImageCompressor and AtalaJpegStreamCompressor in the assembly
Atalasoft.dotImage.PdfDoc.Bridge. The AtalaImageCompressor can be added to Images resource
manager in a PdfGeneratedDocument's Resources and will handle compressing any object of
type AtalaImage. Similarly the AtalaJpegStreamCompressor can be added to the Images resource
manager and will handle streams that represent JPEG images. Any stream passed in will, if it is a
JPEG image, be copied to the current StoredStreamProvider (default is a temporary file) without
recompressing the JPEG data.

To install AtalaJpegStreamCompressor, use the following C# code:
doc.Resources.Images.Compressors.Insert(0, new
AtalaJpegStreamCompressor());

In addition to the above method to install a new compressor, the AtalaImageCompressor object
contains a utility factory method which will construct a new PdfGeneratedDocument with both the
AtalaImageCompressor and the AtalaJpegStreamCompressor pre-installed.

To create a document using the factory method, use the following C# code:
PdfGeneratedDocument doc = AtalaImageCompressor.CreateDocument();

 The CreateDocument() method also has a flavor that accepts instances of the Jpeg2000Encoder
and Jb2Encoder objects (or null for none). If you have a license for these objects, you can pass
them in and they will automatically be used for color images and 1-bit images respectively.

When the AtalaImageCompressor is installed in a PdfGeneratedDocument, you can pass an
AtalaImage directly into the resource manager.

In addition to the AtalaImageCompressor, the bridge assembly also contains a class,
AtalaImageCoordinateConverter, which can be used to convert coodinates back and forth between
image coordinates and image resolution to PDF coordinates and PDF units.

Remember that images can consume very large amounts of memory. Keeping images in memory
will not scale well beyond a few dozen images. If you're working with hundreds of pages with
hundreds of images, you should adopt an approach where you create image resources as early as
possible and dispose the original images soon thereafter.

You can convert a folder of images to a PDF by using the following C# code:
public void OneImagePerPage(string inputDirectory, string outputFile)
{
 PdfGeneratedDocument doc = AtalaImageCompressor.CreateDocument();
 FileSystemImageSource images = new FileSystemImageSource(inputDirectory, true);
 while (images.HasMoreImages()) {
 AtalaImage image = images.AcquireNext();
 PdfImageShape shape = AtalaImageCompressor.CreateImageShape(doc.Resources, image);
 PdfGeneratedPage page = doc.AddPage(new PdfGeneratedPage(shape.Bounds.Width,
 shape.Bounds.Height));
 page.DrawingList.Add(shape);
 images.Release(image);
 }
 if (doc.Pages.Count > 0)
 doc.Save(outputFile);
}

97

Kofax Web Capture Developer's Guide

PDF text shapes
There are six main text shapes available, PdfTextLine, PdfClippedTextLine, PdfTextPath, PdfTextBox,
PdfStyledTextBox and DynamicPdfTextBox. Each of the set have different uses and constraints.

PdfTextLine is the simplest of the set. It represents a horizontal line with text on top of it. Text is
drawn along the line as people tend to hand write - the bottoms of most letters will be tangent
to the line, except for letters with descenders (such as g, p, q, y etc.) which will appear with the
descender below the line.

PdfClippedTextLine represents a line of text that will be clipped inside a bounding box on the page.
It uses a PdfTextLine shape internally to draw the text.

PdfTextPath is similar to PdfTextLine except that instead of a horizontal line, text will follow any
arbitrary set of path operations, including Bézier curves.

PdfTextBox is a shape that draws formatted text on a page. The text will be formatted to fit the
bounds using the text properties.

PdfStyledTextBox is similar to PdfTextBox except that it accepts a StyleTextInput object which can be
used to add new styled text to the box. Typically this will be used for font changes or color changes.

DynamicPdfTextBox is similar to PdfTextBox except that instead of the text being limited to a fixed
box, the DynamicPdfTextBox lets you set a fixed width and it will grow the box up to a maximum.

Each text shape that inherits from PdfBaseTextShape will include the RenderMode property. This is
a flags enumeration that allows you to pick one of 8 possible modes of rendering the text which are
a combination of filling, stroking, and clipping.

98

Kofax Web Capture Developer's Guide

The following C# code provides a demonstration of the RenderMode property.

The code produces the following output.

PdfTable
PdfTable is a conceptual model of a table of text. The table is broken down into a collection of
columns. Rows are added to the table to fill out the columns with data. Once the data has been
added to the table, call the Fill() method to finalize the content.

Columns are defined by a few properties:
• A key or name for referring to the column
• Text to display as the column header
• The width of the column in PDF units
• The alignment of text in the column
• Left and right padding of the column

Rows can be represented by a Dictionary<string, string> where each key corresponds to a key in the
columns. The value associated with that key in the dictionary will be displayed in the row under the
column. In addition, rows can be represented by an enumeration of objects that have properties
that correspond to the column names.

The following C# creates a simple table.
[Serializable]
public class Person
{
 public string Name { get; set; }
 public int Age { get; set; }
 public string Color { get; set; }
}

public void MakeSimpleTable()
{
 PdfGeneratedDocument doc = new PdfGeneratedDocument();

99

Kofax Web Capture Developer's Guide

 PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);
 PdfTable table = new PdfTable(new PdfBounds(72, 300, 400, 400), "Arial", 12);
 table.HeaderFontName = "Arial Bold Italic";
 table.BorderStyle = PdfTableBorderStyle.Grid;
 table.Columns.Add(new PdfTableColumn("Name", "Person", 120, PdfTextAlignment.Center,
 8, 8));
 table.Columns.Add(new PdfTableColumn("Age", "Age", 60, PdfTextAlignment.Center, 8,
 8));
 table.Columns.Add(new PdfTableColumn("Color", "Favorite Color", 0,
 PdfTextAlignment.Center, 8, 8));

 List<Person> people = new List<Person>() {
 new Person() { Name = "John", Age = 15, Color = "Orange" },
 new Person() { Name = "Emily", Age = 37, Color = "Blue" },
 new Person() { Name = "Philippe", Age = 19, Color = "Green" },
 new Person() { Name = "Jill", Age = 23, Color = "Ochre" }
 };

 table.AddRows(people.GetEnumerator());
 table.Fill(doc.Resources.Fonts);

 page.DrawingList.Add(table);
 doc.Save("basictable.pdf");
}

The code produces the following output.

PdfTemplateShape
The PdfTemplateShape is a very simple shape that is used to place a DrawingTemplate (represented
by a Template resource name) on a page. In order to work with a PdfTemplateShape, you need
to first create a DrawingTemplate object and add it to your document's Template resources. Then
construct a PdfTemplateShape using the resource's name and a desired Bounds on the page. The
PdfTemplateShape will be drawn using the all the transformation information in PdfBaseShape
(Location, Scale, and Rotation).

 It is easier to make a template shape with coordinates that is based around the origin and
Bounds that match the DrawingTemplate's bounds, then use the Location to place it where you
want.

The following C# code makes a simple template.
public void SimpleTemplate()
{
 PdfGeneratedDocument doc = new PdfGeneratedDocument();
 doc.EmbedGeneratedContent = false;

 PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

 DrawingTemplate template = new DrawingTemplate(new PdfBounds(0, 0, 200, 200));

100

Kofax Web Capture Developer's Guide

 template.DrawingList.Add(new PdfRoundedRectangle(template.Bounds, 12,
 PdfColorFactory.FromRgb(.8, .8, 0)));
 template.DrawingList.Add(new PdfCircle(new PdfPoint(template.Bounds.Width / 2,
 template.Bounds.Height / 2),
 template.Bounds.Height / 4, PdfColorFactory.FromRgb(0, 0, 0), 2,
 PdfColorFactory.FromRgb(.8, .2, .1)));

 string resourceName = doc.Resources.Templates.Add(template);

 page.DrawingList.Add(new PdfTemplateShape(resourceName, new PdfBounds(144, 400,
 template.Bounds.Width, template.Bounds.Height)));

 doc.Save("simpletemplate.pdf");
}

Note that the DrawingTemplate object has a DrawingList in it that is identical to a
PdfGeneratedPage object. As such, you can put any PDF shape (and any IPdfRenderable) object into
the your DrawingTemplate.

The output of this example is shown below:

101

Kofax Web Capture Developer's Guide

 When the DrawingList in a DrawingTemplate is rendered it will be clipped to the
DrawingTemplate.Bounds property. Since lines in PDF are centered in width over the
mathematical line that defines them, adding a PdfRectangle with a drawn outline that is
coincident with the DrawingTemplate.Bounds will result in half of the rectangle's outline being
clipped (since it extends beyond the DrawingTemplate.Bounds.

Although DrawingTemplates offer a great deal of flexibility, there are a few artifacts that may
be undesirable. All graphic elements will be scaled to the PdfTemplateShape's bounds (and it's
Scale). You might wish to make a background box to represent an underlay of a highlighted area
and define a single unit-sized DrawingTemplate to represent it it. This will work as expected if the
template only uses filled shapes, but if you add any lines, the line width will also be scaled, possibly
non-uniformly, producing unpleasant results. In fact, anything with a typically fixed aspect ration
(images, text, circles) will get scaled and may look off.

The original intent for DrawingTemplates in PDF was to create letterhead or logos that could be
shared from page to page without appreciably increasing the document size.

By modifying the previous sample slightly, we can see how multiple PdfTemplateShapes can be
used on a page without altering the original shape.

The following code uses multiple copies of the sample DrawingTemplate.
public void SimpleTemplate3()
{
 PdfGeneratedDocument doc = new PdfGeneratedDocument();
 doc.EmbedGeneratedContent = false;

 PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

 DrawingTemplate template = new DrawingTemplate(new PdfBounds(0, 0, 204, 204));
 template.DrawingList.Add(new PdfRoundedRectangle(new PdfBounds(2, 2,
 template.Bounds.Width - 4, template.Bounds.Height - 4),
 12, PdfColorFactory.FromRgb(.8, .8, 0), PdfColorFactory.FromRgb(0, 0, 0), 4));
 template.DrawingList.Add(new PdfCircle(new PdfPoint(template.Bounds.Width / 2,
 template.Bounds.Height / 2),
 template.Bounds.Height / 4, PdfColorFactory.FromRgb(0, 0, 0), 2,
 PdfColorFactory.FromRgb(.8, .2, .1)));

 string resourceName = doc.Resources.Templates.Add(template);

 PdfTemplateShape shape = page.DrawingList.Add<PdfTemplateShape>(new
 PdfTemplateShape(resourceName, new PdfBounds(0, 0, template.Bounds.Width / 4,
 template.Bounds.Height / 4)));
 shape.Location = new PdfPoint(144, 400);

 for (int i = 1; i <= 30; i++)
 {
 shape = page.DrawingList.Add<PdfTemplateShape>(new PdfTemplateShape(shape));
 shape.Rotation = i * 3;
 }

 doc.Save("simpletemplate3.pdf");
}

102

Kofax Web Capture Developer's Guide

PostnetBarcodeShape
The PostnetBarcodeShape is an example shape that renders a zip code using a Postnet Barcode. A
Posnet bar code accepts a text string with either 5, 9, or 11 digits. The bar code is placed starting at
the Location property and moving to the right. Full height bars will be 0.125 inches high and short
bars will be 0.05 inches high.

GSave / GRestore
The GSave and GRestore objects are not strictly shapes – they are IPdfRenderable objects that
perform graphics state save and restore operations in a DrawingList object.

In PDF (and historically in PostScript), many graphics operations make changes to the current
graphic state that aren't changeable. For example, if the clipping area in a PDF page can only be
made smaller by clipping operations, not larger. To work around this issue, there are operations in
PDF to save and restore the current graphics state. Graphics state includes:
• Stroke Color
• Fill Color

103

Kofax Web Capture Developer's Guide

• Transformation matrix
• Font name
• Font size
• Text rendering mode
• Font leading
• Word spacing
• Character horizontal scaling
• Line style (width, dash pattern, line caps, line join, miter limit)
• Clipping
• Current path

Normally, client code will not need these operations as PdfBaseShape is careful to save and restore
the current transformation matrix and shapes that clip automatically generate GSave and GRestore
operations.

There are cases, where it does make sense. For example, if you need to watermark or otherwise
add content on top of existing content an existing PDF document created by software that is not
so careful, it will be vital to ensure that the graphics state is predictable. This can be done either by
inserting a GSave object in the beginning of the DrawingList and a GRestore object at the end of the
list.

The following C# code ensures a clean graphics state in existing content.
PdfGeneratedDocument doc = new PdfGeneratedDocument(sourceStream, true);
PdfGeneratedPage page = doc.Pages[0] as PdfGeneratedPage;
if (page == null) throw new Exception("unable to import page 0");
page.DrawingList.Insert(0, new GSave());
page.DrawingList.Add(new GRestore());
// add more content here
doc.Save("output.pdf");

Transform
The Transform object is not a shape. It is an object that implements IPdfRenderable. Transform
encapsulates a PdfTransform object that will be applied to the PDF content that follows it. Note
that transformations are cumulative not commutative. A scale transform applied after a translate
transform is rarely the same as a translate transform followed by a scale transform.

Marked content
PDF allows content on a page to contain special markups that define special areas of interest with a
name. The meaning of these names are highly specific to the task they represent. For example, the
tag "Tx" is used to mark where text operations should fall for rendering an annotation with variable
text; the tag "ReversedChars" is usually used for text in a right-to-left reading system that is being
rendered by a font that follows left-to-right advancing.

The PdfMarkedContent object encapsulates the PDF marked content markups. It is not a shape
itself, but instead contains a DrawingList that will contain content that will be surrounded by
marked content markups.

104

Kofax Web Capture Developer's Guide

Make custom shapes
To make custom shapes, the easiest approach is to subclass the PdfBaseShape object. Consider
the task of making a shape that represents a regular polygon. To make a regular polygon, you
need a center, a radius and the number of sides. One way to generate the points is to use get one
starting point and rotate it around the center by the angle subtended each side. In creating a new
descendant of PdfBaseShape, you need to write a constructor, a clone method and a means to draw
the shape:

[Serializable]
public class RegularPolygon : PdfBaseShape
{
 public RegularPolygon(PdfPoint center, double radius, int sides) :
 base(PdfColorFactory.FromGray(0.0), 5.0)
 {
 if (sides < 3) throw new ArgumentException("Polygons must have at least 3 sides");
 GeneratePoints(center, radius, sides);
 Center = center;
 Radius = radius;
 Sides = sides;
 }
 public PdfPoint Center { get; private set; }
 public double Radius { get; private set; }
 public int Sides { get; private set; }
 private void GeneratePoints(PdfPoint center, double radius, int sides)
 {
 Points = new List<PdfPoint>();
 PdfPoint currPoint = new PdfPoint(0, radius);
 Points.Add(currPoint + center);
 PdfTransform transform = PdfTransform.Rotate(2 * Math.PI / (double)sides);
 for (int i = 1; i < sides; i++)
 {
 currPoint = transform.Transform(currPoint);
 Points.Add(currPoint + center);
 }
 }
 public List<PdfPoint> Points { get; private set; }
 protected override PdfBaseShape CloneInstance()
 {
 return new RegularPolygon(Center, Radius, Sides);
 }
 protected override void DrawShape(PdfPageRenderer pdfPageRenderer)
 {
 PdfPath path = new PdfPath(this);
 for (int i = 0; i < Points.Count - 1; i++)
 {
 PdfPoint p = Points[i];
 if (i == 0) { path.MoveTo(p); }
 else { path.LineTo(p); }
 }
 path.Close();
 path.Render(pdfPageRenderer);
 }
}

In this example, a private list of points is used to hold the points at the corners of the polygon.
GeneratePoints() creates a start point at (0, radius) and adds successive rotations of the point to

105

Kofax Web Capture Developer's Guide

the list. DrawShape is an abstract method defined in PdfBaseShape. Overriding this method lets us
draw the polygon as we see fit - in this case we use a PdfPath object to draw the shape for us.

Suppose that you want to create a check box shape. A check box could have a property for its size
as well as a property for whether or not it is checked. We could implement this very simply with a
PdfBaseShape.

Create a check box with a PdfBaseShape using C#.
[Serializable]
public class PdfCheckBoxShape : PdfBaseShape
{
 public PdfCheckBoxShape(double size, bool isChecked, IPdfColor outlineColor, double
 lineWidth)
 : base(outlineColor, lineWidth)
 {
 Size = size;
 IsChecked = isChecked;
 }

 public double Size { get; set; }

 public bool IsChecked { get; set; }

 protected override PdfBaseShape CloneInstance()
 {
 return new PdfCheckBoxShape(Size, IsChecked, OutlineColor, Style.Width);
 }

 protected override void DrawShape(PdfPageRenderer w)
 {
 PdfRectangle rect = new PdfRectangle(new PdfBounds(0, 0, Size, Size), OutlineColor,
 Style.Width, FillColor);
 rect.Render(w);
 if (IsChecked)
 {
 PdfPath path = new PdfPath(OutlineColor, Style.Width);
 path.MoveTo(new PdfPoint(0, 0));
 path.LineTo(new PdfPoint(Size, Size));
 path.MoveTo(new PdfPoint(0, Size));
 path.LineTo(new PdfPoint(Size, 0));
 path.Render(w);
 }
 }
}

When adding these shapes to a PDF, we get something that looks like this:

Or like this when a fill color has been set:

106

Kofax Web Capture Developer's Guide

This may be satisfactory for your needs, but what if you didn't want to have a fill color at all and
maybe you feel that PdfBaseShape does too much work for you? In either case, you could define
your own class from the ground up. All you would need to do is create a class that implements the
interface IPdfRenderable, as in this C# code.
[Serializable]
public class PdfSimplestCheckBoxShape : IPdfRenderable
{
 public PdfSimplestCheckBoxShape(double size, bool isChecked, PdfPoint location, double
 lineWidth)
 {
 Size = size;
 IsChecked = isChecked;
 Location = location;
 LineWidth = lineWidth;
 }

 public double Size { get; set; }
 public bool IsChecked { get; set; }
 public PdfPoint Location { get; set; }
 public double LineWidth { get; set; }

 public string Name { get; set; }

 public void Render(PdfPageRenderer w)
 {
 w.DrawingSurface.Begin();
 w.DrawingSurface.AddRect(new PdfBounds(Location.X, Location.Y, Size, Size));

 if (IsChecked)
 {
 List<PdfPathOperation> path = new List<PdfPathOperation>();
 path.Add(PdfPathOperation.MoveTo(Location));
 path.Add(PdfPathOperation.LineTo(Location.X + Size, Location.Y + Size));
 path.Add(PdfPathOperation.MoveTo(Location.X, Location.Y + Size));
 path.Add(PdfPathOperation.LineTo(Location.X + Size, Location.Y));
 w.DrawingSurface.AddPath(path);
 }

 PdfLineStyle style = PdfLineStyle.Default;
 style.Width = LineWidth;
 w.DrawingSurface.Stroke(style, PdfColorFactory.FromGray(0));
 w.DrawingSurface.End();
 }
}

In this case, the infrastructure of PdfBaseShape is gone, so we have to implement the method
Render(). This method is give an object called PdfPageRenderer which is responsible for creating
content that will go into the pages content. This object itself is an abstraction of the PDF rendering
model and provides a number of operations that make is easy to create correct PDF content. Within
the PdfPageRenderer object, there is a property called DrawingSurface. The DrawingSurface is
a virtual canvas for performing drawing operations, including paths, rectangles, templates, and
images. To draw shapes, you add path elements (paths or rectangles) then either stroke or fill them.

107

Kofax Web Capture Developer's Guide

Before performing any drawing operations, you must call the Begin() method and after you are
done, you must call the End() method. Begin() and End() calls may be nested to any depth.

Note the following:
• Whether you are subclassing PdfBaseShape or implementing IPdfRenderable, you should

make your object serializable. When document content is embedded within a PDF document,
the elements of drawing lists will be serialized into the final PDF. If any element is not
serializable, this will cause a failure during a Save when the PdfGeneratedDocument property
EmbedGeneratedContent is true.

• If you are implementing a shape that uses document resources (fonts, colorspaces, templates,
images, etc.) or contains an object that implements IPdfResourceConsumer, you must
implement the interface IPdfResourceConsumer. This interface allows an object to report the
resources it uses as well as rename them if needed. In implementing ResourcesUsed and
NotifyResourceRenamed, if you refer to Template resources or any other object that implements
IPdfResourceConsumer, you must also find and return the resources consumed by them.

• If you are implementing a shape that contains text, consider implementing the interface
IPdfTextContainer which will allow a standard way of setting and getting text from a shape.

• If you are implementing a shape that may contain sub-shapes, consider making a property
of type PdfDrawingList and implementing IEnumerable<IPdfRenderable> and returning
the PdfDrawingList's GetEnumerator(). This will ensure that child enumeration happens in a
predictable manner.

Round trip documents
PDF documents can be created with a number of different tools and the process or toolset used
in their creation determines the actual PDF data content, which in turn may bear little or no
resemblance to the original data structures. As such, PDF is often considered to be a write-only
or final format. The Atalasoft PDF Generating toolkit provides some means around this limitation.
If you create a PDF from a PdfGeneratedDocument object and set the EmbedGeneratedContent
property to true, then after the PDF content has been rendered, the DrawingList object in the
PdfGeneratedPage will be serialized and embedded in the PDF so that it can be retrieved later and
rebuilt.

In other words, you can get full round-trip editing of PDFs by embedding your Generated content
within the PDF itself. This also means that shape objects like PdfCircle which generate Bezier curves
in the final PDF will come back as PdfCircle objects and not as a PdfPath object.

Embedding the Generated content adds a moderate amount of overhead to the final PDF, but
resource objects do not count in this overhead as these resources will get rebuilt from the PDF
content itself.

The Atalasoft PDF Generating toolkit also includes the ability to import pages from the Atalasoft
PdfDocument object. For example, you can dynamically insert a cover page into an existing
document or easily pull in a page, say a legal disclaimer, from an existing PDF. PdfPage objects from
the Pages property of PdfDocument also inherit from the BasePage object and can therefore go
into the Pages collection of a PdfGeneratedDocument.

108

Kofax Web Capture Developer's Guide

PdfPage objects from PdfDocument objects are very light-weight in comparison to
PdfGeneratedPage objects as they only reference the original page instead of containing a
representation of data within the page (size, rotation, annotations, scripts, etc.).

Integrate with Web Capture
In addition to the main assembly, there is an additional assembly, Atalasoft.PdfDoc.Bridge. This
assembly provides a bridge between Kofax Web Capture classes and the PDF Generating classes.
The main class is the AtalaImageCompressor. To use this class, make an instance of it and add it to
the Compressors collection using the following code.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.Resources.Images.Compressors.Insert(0, new AtalaImageCompressor());

This will provide tools that will allow the PdfImageManager method FromImage to accept
AtalaImage objects. All pixel formats are accepted by the AtalaImageCompressor. In addition, if the
AtalaImageCompressor object is constructed with instances of the Atalasoft Jpeg2000Encoder and
Jb2Encoder objects, then images can be compressed using JPX and JBIG2 encoding.

There is also another image compressor, the AtalaJpegStreamCompressor. This compressor accepts
a .NET stream object and if the stream contains a JPEG image, it will create an image resource with
the already compressed stream and will not degrade the image by decoding and re-encoding it.

To make this process easier, AtalaImageCompressor has a static factory method called
CreateDocument which will create a new, empty PdfGeneratedDocument object with the
AtalaImageCompressor and AtalaJpegStreamCompressor preinstalled.

C#
PdfGeneratedDocument doc = AtalaImageCompressor.CreateDocument();
PdfGeneratedDocument doc1 = AtalaImageCompressor.CreateDocument(new Jpeg2000Encoder(),
 null);

string imName = doc.Resources.Images.AddImage(atalaImage);
string imName1 = doc1.Resources.Images.AddImage(atalaImage);

In this example, doc1 is created with the Atalasoft Jpeg2000Encoder which will provide JPX
compression, if it is available.

Since AtalaImage objects may contain calibrated color profiles through the ColorProfile property,
it is advantageous to pass this on to the generated PDF. This can be done manually, by creating a
PdfColorSpace resource through the PdfColorSpaceManager, but it can be done automatically via
the static method AddImageResource in the AtalaImageCompressor:

C#
AtalaImage image = new AtalaImage(200, 200,
PixelFormat.Pixel24bppBgr);
image.ColorProfile = ColorProfile.FromSrgb();
string[] names = AtalaImageCompressor.AddImageResource(doc.Resources, image);

In this example, AddImageResource will first see if the image has a non-null ColorProfile and if so it
will create a PdfColorSpaceResource for that ColorProfile and will then make a PdfImageResource

109

Kofax Web Capture Developer's Guide

for the AtalaImage using the created PdfColorSpaceResource. The method returns an array of two
strings. The first string is the name of the image resource and the second will be the name of the
color space resource or null if there was no color profile.

When working with PdfImageShape objects, it is necessary to size the resulting object to
PDF dimensions. This can be done automatically by using the static methods ImageSize and
ImageSizeAt in AtalaImageCompressor. Given an AtalaImage object, these methods return a
PdfBounds object that is sized in PDF units to match the image's real-world dimensions as specified
by the Width, Height, and Resolution property of the image. If the units are not specified in the
resolution, they will be treated as if they were pixels per inch.

Finally, there are a pair of utility methods in AtalaImageCompressor to make PdfImageShapes as
automatically as possible. They are called CreateImageShape() and CreateImageShapeAt(). Both
are passed the PdfGeneratedDocument Resources property and the source AtalaImage and return
a new PdfImageShape object representing that image. CreateImageShapeAt() also takes an x and
y in PDF coordinates specifying location of the lower left corner of the image. Note that once a
PdfImageResource or PdfImageShape object has been created from an AtalaImage, the source
image is no longer necessary and may be disposed freely. The PdfImageShape object and the
PdfImageResource are themselves very lightweight when compared with the original AtalaImage
as the actual image data will have been written out to a temporary stream on resource creation and
is kept out of memory entirely - even at the point of calling PdfAuthoredDocument.Save(), the data
is streamed across from the temporary stream to the final PDF and never stays in memory beyond
buffering.

Actions
PDF defines a set of actions that can be performed in response to user interaction on a page or
in response to other events that happen at a page or document level. In general, anything that
cause or respond to an event usually has a suite of actions associated with it. For example, any
PDF document may contain a list of bookmarks and instead of having each bookmark be simply
associated with a location within the document, they are instead an action list of actions to take,
one of which is likely to be a "go to view" action.

Actions may be put in a number of places within a PdfGeneratedDocument including:
• PdfGeneratedDocument.AdditionalActions: A set of actions that are triggered by document-level

events.
• PdfGeneratedDocument.GlobalJavaScriptActions: A set of JavaScript-only actions that are

performed when a document has been opened. This is intended to be used to define global
functions to be shared across all JavaScript actions in the entire document.

• PdfGeneratedPage.AdditionalActions: A set of actions that are triggered by page-level events.
• BaseAnnotation.AdditionalActions: A set of actions that are triggered by annotation events. Even

though the PDF spec allows for these to exist in all annotation types, they appear to only be
honored by Adobe Acrobat with BaseWidgetAnnotation objects.

• BaseAnnotation.ClickActions: A set of actions that are triggered when an annotation has been
clicked.

110

Kofax Web Capture Developer's Guide

PdfAction
PdfAction is an abstract base class from which all actions inherit. It has a single property in it,
ActionType, which is an enumeration that indicates the type of the action. These are the possible
values of ActionType:
• GoToView - Go to a specific page and location in the document
• GoToRemote - Go to a page and location in a remote document
• GoToEmbedded - Go to a page and location in an embedded file
• LaunchApplication - Launch an application
• ReadThread - Start reading at a threaded point
• FollowURI - Resolve a uniform resource identifier
• PlaySound - Play a sound
• PlayMovie - Play a movie
• Hide - Set an annotation's hidden flag
• PerformNamedAction - Perform a set of actions associated with a name
• SubmitForm - Submit form data to a URI
• ResetForm - Reset form data to defaults
• ImportData - Import form data from a file
• JavaScript - Execute a JavaScript script
• SetOCGState - Set the state of optional content groups
• Rendition - Control how multimedia is played
• PerformTransition - Perform a transition
• GoTo3DView - For to a view in a 3D model.

Not all types are presently supported. Those that are not supported will have the correct
ActionType, but will be represented as a PdfUnknownAction.

Go To View actions
The most common type of PdfAction is a PdfGoToView actions. A PdfGoToView action is very simple
- it contains a Destination property that defines the location to where the viewer should navigate
when the action is executed. The destination is an object of type Destination which contains
information about which page will be visited and how to zoom on that page. While it is straight-
forward to make a PdfDestionation object and construct a PdfGoToView action which contains
it, there are factory methods within PdfDestination that make both PdfDestination objects or a
PdfGoToViewAction containing the appropriate PdfDestination object with this C# code.
PdfAction action = PdfDestination.FitPageAction(targetPageIndex);

This will go to the 0-based page specified by targetPageIndex and display the page so that the
entire page fits within the viewer window.

 If you reorder pages within a document, it will be necessary to modify actions within the
document that point to that page.

111

Kofax Web Capture Developer's Guide

PdfDestination has factory methods for making the following PdfGoToViewActions:

• PointZoomAction
• FitPageAction
• FitWidthAction
• FitHeightAction
• FitRectangleAction
• FitBoundsAction
• FitBoundsWidthAction

URI actions
The PdfURIAction object represents a URI with an optional Base URI that represents a target for
a link. When activated, a typical viewer will request permission from the user to follow the URI
specified. There is also an optional parameter to allow the area (if any) represented by a link to act
as a mapped link. The coordinates of the click relative to the link area will be appended to the URI in
the form ?<x-coordinate>,<y-coordinate>.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);
doc.BookmarkTree = new PdfBookmarkTree();
doc.BookmarkTree.Bookmarks.Add(new PdfBookmark("Atalasoft", Color.Blue,
 FontStyle.Regular,
 new PdfURIAction(new Uri("http://www.atalasoft.com")), true));
doc.Save("uriaction.pdf");

JavaScript actions
PDF has the ability to define actions that execute JavaScript code when activated. The specifics for
what can be done with JavaScript actions is extensive. Please refer to the Adobe documentation for
the proper use of JavaScript action. It should be noted that the JavaScript within the actions is not
checked for syntactic or semantic correctness.

The following C# code makes a document self-printing.
PdfJavaScriptAction selfPrint = new
 PdfJavaScriptAction("this.print({bUI:true,bSilent:false,bShrinkToFit:true});");
document.GlobalJavaScriptActions.Add("MySelfPrint", selfPring);

Sound actions
PDF has the ability to play sounds to actions. This can allow you to add audible feedback when
buttons are pressed or links activated. Sounds to be played by PdfSoundAction objects can be
specified using the Sound object. Within a PdfSoundAction, you can specify the volume of the
sound, if it will be played synchronously, if it should repeat and if it should mixed with already
playing sounds.

 Acrobat version 5.0 and earlier does not support the MixWithPlayingSounds property and
Acrobat 6.0 does not correctly support the IsSynchronous property.

112

http://partners.adobe.com/public/developer/en/acrobat/sdk/AcroJS.pdf

Kofax Web Capture Developer's Guide

To make a sound action, the first step is to create a Sound object. That can be done with a
WavReader, which determines the sound characteristics (sampling rate, bits per sample, etc) and
populates a Sound object. The PdfSoundAction object refers to the sound that will be played. This
way multiple actions can refer to the same sound.

In this sample C# code, a document plays a sound when opened.
public void SoundActionOnOpened()
{
 using (FileStream stm = new FileStream(ImageUtilities.ImageDatabase + @"\PDF
\Multimedia\Sound\boing.wav", FileMode.Open, FileAccess.Read, FileShare.Read))
 {
 PdfGeneratedDocument doc = new PdfGeneratedDocument();
 PdfGeneratedPage page1 = doc.AddPage(PdfDefaultPages.Letter);

 WavReader reader = new WavReader(stm);
 Sound sound = Sound.FromWavReader(reader);
 PdfSoundAction soundAction = new PdfSoundAction(sound);
 doc.AdditionalActions.OnDocumentOpened.Add(soundAction);
 doc.Save("soundonopened.pdf");
 }
}

Show/Hide action
The PdfShowHideAction is used to make sets of annotations or form fields visible or invisible. It
does this by setting the Hidden property within an annotation or field. The action can show or hide
an arbitrary number of fields or annotations using a set of PdfAnnotationIdentifier objects. Each
PdfAnnotationIdentifier either refers to an annotation by the index of the page and the index of the
annotation within the page's collection or by FieldFullName (if the annotation is a form field).

 Generally speaking, it is more convenient to use the FieldFullName for widget annotations
instead of the page index/annotation index pair as it is immune to the annotation getting
moved from page to page or having its order on the page changed. If the annotation is a
widget annotation and is the child of a FormField, be sure to set the FieldName and ParentField
properties of the widget annotation to ensure that FieldFullName is correct. If the ParentField is
not properly set, DotPdf will set it for you on save, but this will cause the FieldFullName to change.

The following C# code shows and hides an annotation.
public void ShowHideAction()
{
 PdfGeneratedDocument doc = new PdfGeneratedDocument();
 doc.Form = new PdfForm();
 PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

 PushButtonWidgetAnnotation toHide = new PushButtonWidgetAnnotation(new PdfBounds(72,
 600, 200, 36), "Hide Me", null, null);
 page.Annotations.Add(toHide);
 doc.Form.Fields.Add(toHide);

 PushButtonWidgetAnnotation willHide = new PushButtonWidgetAnnotation(new PdfBounds(72,
 650, 200, 36), "Hide", null, null);
 willHide.AdditionalActions.OnClickUp.Add(new PdfShowHideAction(true, new
 PdfAnnotationIdentifier(toHide.FieldFullName)));
 doc.Form.Fields.Add(willHide);
 page.Annotations.Add(willHide);

113

Kofax Web Capture Developer's Guide

 PushButtonWidgetAnnotation willShow = new PushButtonWidgetAnnotation(new
 PdfBounds(300, 650, 200, 36), "Show", null, null);
 willShow.AdditionalActions.OnClickUp.Add(new PdfShowHideAction(false, new
 PdfAnnotationIdentifier(toHide.FieldFullName)));
 doc.Form.Fields.Add(willShow);
 page.Annotations.Add(willShow);

 doc.Save("annothideshow.pdf");
}

This creates a one-page document that has three button annotations. The first button is hidden
when the button named "Hide" is pressed and is shown when the button named "Show" is pressed.

Named actions
PDF defines a type of action called a Named action which includes the name of a particular
navigation action to take. These actions are ways for changing the current page being viewed. They
are more convenient for coding than PdfGoToView actions in that PdfGoToView actions always need
an absolute page number, whereas named actions are always relative to your current page.

Available names are:

• NextPage
• PrevPage
• FirstPage
• LastPage

 The PDF specification allows nearly any arbitrary name for the action, but viewers are only
responsible for responding to the four standard names. Viewers will typically ignore anything
beyond the standard names. You can use the static method PdfNamedAction.IsStandardName to
determine if a name is standard or not.

The following C# code adds navigation buttons to a page.
public void AddNavigationButtons(PdfGeneratedPage page, int pageIndex)
{
 string[] labels = new string[] { "|<", "<", ">", ">|" };
 string[] names = new string[] { "FirstPage", "PrevPage", "NextPage", "LastPage" };

 for (int i = 0; i < labels.Length; i++)
 {
 PdfBounds bounds = new PdfBounds(36 + 40 * i, page.MediaBox.Top - 40, 36, 36);
 PushButtonWidgetAnnotation button = new PushButtonWidgetAnnotation(bounds,
 String.Format("p{0}b{1}", pageIndex, i), null, null);
 // The FieldName must be unique, but the Name need not be.
 button.Name = labels[i];
 button.AdditionalActions.OnClickUp.Add(new PdfNamedAction(names[i]));
 page.Annotations.Add(button);
 }
}

public void NavigationButtons()
{
 PdfGeneratedDocument doc = new PdfGeneratedDocument();
 string fontResName = doc.Resources.Fonts.AddFromFontName("Arial Black");
 for (int i = 0; i < 4; i++)
 {

114

Kofax Web Capture Developer's Guide

 PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);
 page.DrawingList.Add(new PdfTextLine(fontResName, 300, String.Format("{0}", i + 1),
 new PdfPoint(200, 400)));
 AddNavigationButtons(page, i);
 }
 doc.Save("navbuttons.pdf");
}

Submit Form Actions
The PdfSubmitFormAction is an action that will cause data within the form of the current PDF to
be submitted to a remote client. The action has a number of flags that control what data will be
submitted and the format of the submission. Formats include FDF, XFDF, HTML, and PDF. The action
also has a property called Fields which can be used to exclude or include any particular field within
the document.

 Like PdfShowHideAction, the fields in PdfSubmitFormAction are referenced with a
PdfAnnotationIdentifier. Using PdfAnnotationIdentifier with a form full name will be more reliable
to changes than page/annoation indexes.

Reset Form Action
The PdfResetFormAction is an action that will cause fields within the form of the current PDF to be
reset to their default value. Most fields have a DefaultValue property that will be used for the field.
The action also has a property called Fields which can be used to exclude or include any particular
field or fields within the document in the reset.

 Like PdfShowHideAction, the fields in PdfResetFormAction are referenced with a
PdfAnnotationIdentifier. Using PdfAnnotationIdentifier with a form full name will be more reliable
to changes than page/annoation indexes.

Annotations
PDF comes with a rich set of annotations and the means of representing the annotation on the
page and controlling the interactions with the user. Annotations can be anything from simple marks
on the page to a complex set of appearances with attendant complex behaviors. Most annotations
in PDF are supplied with a default appearance by the viewer, but using drawing template resources,
it's easy to make annotations appear as you wish.

Each PdfGeneratedPage object contains a property called Annotations, which is a collection of all
annotations on the page. Annotations are located on the page with a Bounds property that defines
the location and dimensions of the annotation. The location and orientation by default follows the
page orientation unless it is a sticky note/popup or if the NoRotate property is set to true.

Annotations fall into three broad categories:

General annotations
• LinkAnnotation
• OpaqueAnnotation

115

Kofax Web Capture Developer's Guide

• PopupAnnotation
• SoundAnnotation

Mark up annotations
• CaretAnnotion
• CalloutAnnotation
• EllipseAnnotation
• LineAnnotation
• PolygonAnnotation
• PolylineAnnotation
• RectangleAnnotation
• RedactionProposalAnnotation
• RubberStampAnnotation
• StickyNoteAnnotation
• TextBoxAnnotation
• TextMarkupAnnotation
• TypeWriterAnnotation

Widget annotations
• CheckboxWidgetAnnotation
• ChoiceWidgetAnnotation
• PushButtonWidgetAnnotation
• RadioButtonWidgetAnnotation
• SignatureWidgetAnnotation
• TextWidgetAnnotation

Mark up annotations are annotation types that are used to describe annotations that are used for
document mark up or review. Widget annotations are used to define form fields for data collection
or user interaction. General annotations are all else.

All annotations will inherit from the abstract class BaseAnnotation. All markup annotations will
inherit from BaseMarkupAnnotation. All widget annotations inherit from BaseWidgetAnnotation.

Properties common to all annotations
All annotation inherit from the class BaseAnnotation. BaseAnnotation defines a set of properties
that are common to all annotation types. While all annotations have these properties, not all
annotations use them, or use them in the same way.

116

Kofax Web Capture Developer's Guide

Property name Property type Description

AdditionalActions AnnotationAdditionalActions A collection of annotation events
by name with an associated
collection of actions to take
when that event happens.
These are usually reserved for
widget annotations, but the PDF
specification demands that they
are available in all annotation
types whether or not they are
meaningful.

AnnotationType string Gets the original type of the
annotation if read from a PDF file,
else empty string.

Appearance AppearanceSet A collection of appearances to be
used for this annotation.

Border AnnotationBorder For simple annotation types
(circle, rectangle, polygon), sets
the corner radii (if applicable),
line width, and line dash pattern.
It is generally easier to control
the actual appearance of a
custom annotation by creating an
appearance.

BorderStyle BorderStyle For any annotation with a border,
define the line style of the
annotation. It is generally easier to
control the actual appearance of a
custom annotation by creating an
appearance.

Bounds (Required) PdfBounds Gets or sets the boundary
rectangle for this annotations. This
rectangle is in page coordinate and
PDF standard units. The Bounds
will be oriented relative to the page
and its Rotation unless NoRotate is
set to true. (Required)

ClickActions PdfActionList A set of actions performed when
the annotation has been clicked.

Color IPdfColor Gets or sets the dominant
color for the annotation. The
interpretation of Color depends on
the annotation. It may represent
the color of the annotations
icon (if any) or the border of the
annotation.

117

Kofax Web Capture Developer's Guide

Property name Property type Description

Contents string Represents the text of the
annotation. Its interpretation
depends on the annotation type.
For sticky note annotations, it will
be the contents of the note.

DefaultAppearanceState string Represents the initial/default
state of an annotation.
When an annotation is
"Normal" (no interaction),
the appearance that will be
used for the annotation will be
Appearance.Normal[DefaultAppearanceState].

Hidden bool If true, the annotation will neither
be visible nor will it print.

Invisible bool If true, if the annotation type is not
recognized by the viewer, it will
not be displayed, otherwise the
viewer will try to make a substitute
appearance.

IsParentRequired (Required) bool If true, this annotation type
requires the Parent property to be
set. (Required)

IsTransparent bool If set to true, indicates that the
Color property will be ignored. This
does not indicate opacity.

Locked bool If set to true, indicates that the
annotation may not be selected or
moved (although its Contents may
be editable).

ModificationDate DateTime Gets or sets the modification date
of the annotation. DotPdf does not
track or modify this property.

Name string Gets or sets the name of the
annotation. This string is an
identifier that is typically used
for JavaScript actions to locate a
particular annotation. It should be
unique for annotations on a given
page. If there are annotations with
duplicate names, DotPdf will make
the names unique if necessary on
save.

NoRotate bool If set to true, the annotation will
not be rotated with the page
rotation.

118

Kofax Web Capture Developer's Guide

Property name Property type Description

NoView bool If set to true, the annotation will
not be visible and will not interact
with the user, but it will be printed.
This is one way of making a print-
only watermark on a page.

NoZoom bool If set to true, the annotation will
not zoom with the viewer but
instead will be displayed in its
native size.

ParentPage
(Sometimes required)

PdfGeneratedPage Gets or sets the page on which
the annotation is attached. This
property is encouraged but is only
required on ScreenAnnotations.

Print bool If set to true, indicates that the
annotation should be printed with
the document.

ReadOnly bool If set to true, the annotation will
not interact with the user.

ToggleNoView bool If set to true, indicates that when
the mouse enters the annotation,
the NoView property should be
toggled.

Properties common to all mark up annotations
BaseMarkupAnnotation defines a set of properties that are common to all annotation types. While
all mark up annotations have these properties, not all mark up annotations use them, or use them
in the same way.

Property names Property type Description

AuthorName string Gets or sets the author of the
annotation. Conventionally, this
will be set to the current username
or the full name of the user who is
making the annotation.

CreationDate
(Required, automatic)

DateTime Gets the date and time
when the annotation was
created. This value is set
automatically by the constructor
of BaseMarkupAnnotation to the
current time. (Required)

InReplyTo BaseAnnotation Null unless the annotation is
meant to be a reply to another
existing annotation.

InReplyToRelation ReplyRelation Describes the relationship of a
reply annotation. Not required, but
only meaningful if InReplyTo is set.

119

Kofax Web Capture Developer's Guide

Property names Property type Description

Intent
(Required, automatic)

AnnotationIntent Describes the intent of the
annotation. When required, this is
set by individual classes.

Popup PopupAnnotation Gets or sets an annotation to be
displayed as a Popup to a markup
annotation. In the original version
of Acrobat, a sticky note was the
only annotation type with a pop-
up text window and was a special
case. In later versions, the ability
to add pop-up information to an
annotation was added to all mark
up annotations.

RichTextContent XmlDocument RichTextContent is an XML
representation of marked up text
for display. It allows the body, p,
i, b, and span tags. If you set the
RichTextContent property, be sure
to set the Content property to the
plain text equivalent.

Transparency double Gets or sets the overall
transparency of the annotation.
A value of 1.0 means fully
transparent and a value of 0.0
means fully opaque.

Properties common to all widget annotations
BaseWidgetAnnotation defines a set of properties that are common to all widget annotation types.
While all widget annotations have these properties, not all annotations use them, or use them in the
same way.

Property name Property type Description

BackgroundColor IPdfColor Gets or sets the color of the
background.

BorderColor IPdfColor Gets or sets the color of the border.

ChildFields IList<IFormElement> Null

DefaultTextAppearance PdfTextAppearance Gets or sets the default
appearance of text in the
annotation.

DefaultValueAsString string Gets the default value of the
annotation as a string.

FieldAlternateDescription string A string used to describe the
field for use in display in a user
interface. This typically gets
displayed in a tooltip.

120

Kofax Web Capture Developer's Guide

Property name Property type Description

FieldFullName string Returns the full name of the
field. This is created by starting
with the parent-most field's
FieldNameForExport (or FieldName
if FieldNameForExport is
null), descending down to the
annotation and separating
them with '.' characters (ex:
Address.Street.Number). It is the
user's responsibility to ensure that
if a widget annotation is a child of
another field that its ParentField is
set.

FieldName
(Required)

string Gets or sets the field's name.
This name is used for submitting
form information (unless
FieldNameForExport is set) and
display in the user interface. The
FieldName should be selected
so that the FieldFullName will be
unique. (Required)

FieldNameForExport string Gets or set a field name that will
be used for data export. The
FieldNameForExport, if present,
will be used instead of FieldName.
It should therefore be chosen so
that FieldFullName is unique.

HighlightAppearance WidgetHighlightAppearance Gets or sets how the widget will
appear when it receives a mouse
down event.

IsFieldNoExport boolean If set to true, this field will not be
exported.

IsFieldReadOnly boolean If set to true, this field cannot be
edited.

IsFieldRequired boolean If set to true, this field must be set
by the user.

ParentField IFormElement This property should represent the
parent field of this widget (if any).
Widget annotations may not be the
parent of any other form element.

ValueAsString string Returns the value of the form
element as a string.

General annotations
General annotations are annotations that don't really fit into any other category. These include:

• LinkAnnotation

121

Kofax Web Capture Developer's Guide

• OpaqueAnnotation
• PopupAnnotation
• SoundAnnotation

LinkAnnotation
In the original version of Acrobat, a link annotation was a set of regions bound to a destination
within the document. When actions were added to the PDF specification, link annotations were
changed to be a set of regions that included a ClickAction that described what should happen when
the link was clicked.

The regions are defined by a set of PdfQuadrilateral objects. This intended so that you can delimit
a set of words that are not axis aligned and they will highlight correctly. If the Regions is empty, the
Bounds will be used as the link area. If the Regions is not empty, the Bounds will be automatically
expanded to contain all the quadrilaterals.

The LinkAnnotation object comes with a number of convenience constructors for making simple
URI links or single click actions.

Property name Property type Description

HighlightAppearance LinkHighlightAppearance Gets or sets how the link will
appear when it is clicked. Can be
one of None, Invert, Outline, and
PushDown

Regions PdfQuadrilateralCollection A set of quadrilateral regions that
define the annotation.

The following C# code creates a simple link annotation.
LinkAnnotation annot = new LinkAnnotation(new PdfBounds(72, 500, 72, 72),
new PdfURIAction(new Uri("http://www.atalasoft.com")));

OpaqueAnnotation
An OpaqueAnnotation represents an annotation type that is not currently supported by DotPdf.
These can only be generated by reading in a PDF file that contains unknown annotations.

PopupAnnotation
A PopupAnnotation is a companion annotation to any kind of BaseMarkupAnnotation. As such it
can never appear on its own. A PopupAnnotation may be open (in view) or closed (out of view). The
PopupAnnotation is connected to the BaseMarkupAnnotation via the ParentAnnotation property
and the BaseMarkupAnnotation is connected to the the PopupAnnotation via its Popup property.
When in view, the PopupAnnotation will appear within its Bounds.

 Even though the PopupAnnotation expects a BaseMarkupAnnotation for its ParentAnnotation
property, the property is a BaseAnnotation. The PDF specification allows this, even though it is not
strictly correct. If the ParentAnnotation is not a BaseMarkupAnnotation, the properties will not
reflect each other.

122

Kofax Web Capture Developer's Guide

The PopupAnnotation has properties that represent the Contents, AuthorName, ModificationDate,
and Color of the parent annotation. When the PopupAnnotation is connected to an appropriate
parent BaseMarkupAnnotation, it these properties will reflect or modify the matching properties in
the ParentAnnotation.

 If you set the Contents, AuthorName, or ModificationDate before setting the
ParentAnnotation, these property values will be lost.

Property Name Property Type Definition

AuthorName string Gets or sets the author of the
annotation. Conventionally, this
will be set to the current username
or the full name of the user who is
making the annotation.

Color IPdfColor Gets or sets the dominant
color for the annotation. The
interpretation of Color depends on
the annotation. It may represent
the color of the annotations
icon (if any) or the border of the
annotation.

Contents string Represents the text of the
annotation. Its interpretation
depends on the annotation type.
For sticky note annotations, it will
be the contents of the note.

IsOpen bool Gets or sets whether the
PopupAnnotation should be
in view when the document is
opened.

ModificationDate DateTime Gets or sets the modification date
of the annotation. DotPdf does not
track or modify this property.

ParentAnnotation BaseAnnotation Gets or sets the parent annotation
for the PopupAnnotation. The
parent annotation should be a
BaseMarkupAnnotation even
though the PDF specification
allows for any type of annotation.

The following C# code creates a RectangleAnnotation with an attached PopupAnnotation.
public void RectangleWithPopup()
{
 PdfGeneratedDocument doc = new PdfGeneratedDocument();
 doc.EmbedGeneratedContent = false;

 PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);
 RectangleAnnotation rectAnnot = new RectangleAnnotation(new PdfBounds(36, 300, 200,
 200));
 rectAnnot.InternalColor = PdfColorFactory.FromRgb(1, 1, 0);
 rectAnnot.Color = PdfColorFactory.FromRgb(0, 0, 0);

123

Kofax Web Capture Developer's Guide

 page.Annotations.Add(rectAnnot);
 PopupAnnotation popup = new PopupAnnotation(new PdfBounds(36, 400, 150, 350),
 rectAnnot);
 popup.Color = PdfColorFactory.FromRgb(.7, 0, 0);
 popup.IsOpen = true;
 page.Annotations.Add(popup);
 rectAnnot.Contents = "This space intentionally left blank.";
 rectAnnot.AuthorName = "Ignatius P. Reilly";

 doc.Save("rect_and_popup.pdf");
}

SoundAnnotation
A SoundAnnotation is a note on a page with an associated Sound object. A SoundAnnotation
appears on the page with an icon specified by IconName. When the icon is double-clicked (or
activated in some other way) by the user, it will play the sound. The PDF specification has two
recommended icon names, Speaker and Mic. The specification alludes that other names may be
supported, but there is no further information as to what those names might be.

 If you want a specific icon, it's best to create a custom appearance for the annotation.

The following C# code creates a sound annotation.
using (FileStream stm = new FileStream(@"mysound.wav",
 FileMode.Open, FileAccess.Read, FileShare.Read))
{
 WavReader reader = new WavReader(stm);
 Sound sound = Sound.FromWavReader(reader);
 PdfGeneratedDocument doc = new PdfGeneratedDocument();
 PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);
 SoundAnnotation anno = new SoundAnnotation(new PdfBounds(72, 600, 72, 72));
 anno.Sound = sound;
 page.Annotations.Add(anno);
 doc.Save("soundannot.pdf");
}

Markup annotations
Markup annotations are intended for document editing and collaboration. The annotations include:
• CalloutAnnotation
• CaretAnnotation
• EllipseAnnotation
• LineAnnotation
• PolygonAnnotation and PolylineAnnotation
• RectangleAnnotation
• RedactionProposalAnnotation
• RubberStampAnnotation
• StickyNoteAnnotation
• TextBoxAnnotation
• TextMarkupAnnotation
• TypeWriterAnnotation

124

Kofax Web Capture Developer's Guide

CalloutAnnotation
A CalloutAnnotation is a TextBoxAnnotation that also serves to point to content on the page. A
CalloutAnnotation includes a Line that defines where the annotation points as well as a LineEnding
that defines how the end of the line should appear. There are no guidelines as to how the Line
should appear, but generally speaking, it should start from one edge of the Bounds nearest to
the target and end at the point of interest. While the point of origin doesn't have to start at the
annotation, if a user moves the annotation in Acrobat, the viewer will change the point of origin.

To make it easier to use there CalloutAnnotation constructor that includes a PdfPoint describing
where the annotation will point and it will choose an appropriate set of points in order to make
the call out line look least offensive. In addition, the CalloutAnnotation also has a method called
PointAt(PdfPoint target) which will return a new CalloutLine object that points to the given point.

Property name Property type Description

Line CalloutLine Gets or sets an object that
defines the geometry of the
line that will be drawn for the
annotation. CalloutLine is an
abstract type and may be either
a TwoPointCalloutLine or a
ThreePointCalloutLine. Oddly
enough, this property is valid
if it is null. In this case, the
CalloutAnnotation will render the
same as a TextBoxAnnotation.

LineEnding LineEndingKind Gets or sets the line ending for the
callout line which will appear at the
target point.

The following C# code creates a CalloutAnnotation.
CalloutAnnotation annot = new CalloutAnnotation(new PdfBounds(72, 360,
300, 200),
 "Lorem ipsum sic dolor", new PdfPoint(144, 200));
somePage.Annotations.Add(annot);

CaretAnnotation
A CaretAnnotation represents an editor's markup where text or other content should be inserted.
The caret is defined by the Bounds of the annotation. The caret symbol will be drawn such that it
fills the bounds with the point of the caret centered left/right and pointing to the top of the bounds.

Property name Property type Description

InsetArea PdfBounds A rectangle that specifies margins
around the caret symbol. The
rectangle needs to be fully
contained within the Bounds
rectangle.

125

Kofax Web Capture Developer's Guide

Property name Property type Description

Symbol CaretSymbol Changes the symbol used for
the caret. When set to none, the
symbol will be the default caret
shape. When set to Paragraph, it
will be the paragraph symbol (¶).

The following C# code creates a caret annotation and shows its bounds.
public void Caret()
{
 PdfGeneratedDocument doc = new PdfGeneratedDocument();
 PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);
 string font = doc.Resources.Fonts.AddFromFontName("Times New Roman");
 page.DrawingList.Add(new PdfTextLine(font, 18, "Here is some sample text", new
 PdfPoint(72, 750)));
 CaretAnnotation caret = new CaretAnnotation(new PdfBounds(80, 730, 20, 20));
 page.Annotations.Add(caret);
 page.DrawingList.Add(new PdfRectangle(caret.Bounds.Expand(0.5),
 PdfColorFactory.FromRgb(1, 0, 0), .5));
 doc.Save("caret.pdf");
}

The code snippet produces the following output.

EllipseAnnotation
An EllipseAnnotation is identical to a RectangleAnnotation except that it is rendered as an ellipse
that fits within the Bounds property.

LineAnnotation
A LineAnnotation is representation of a line on the page. It may contain decorative line endings,
a caption, and an intended usage. Usage refers to the intent of the line which may be one of Line,
Arrow, or Dimension.

When a line annotation has a caption, the caption may be positioned above the line or within the
line by setting the CaptionPositioning property. Normally, captions are positioned centered along
the length of the line and at a fixed vertical position based on CaptionPositioning, but by setting
the CaptionOffset property, the caption will be moved relative to its normal placement based
on that value. For example, if you wanted to position the caption below the line, you would set
CaptionPositioning to Top and set CaptionOffset to new PdfPoint(0, -fontAscentInPoints).

A line may have a set of leader lines attached to it. Leader lines are perpendicular ends that extend
from the line, usually to indicate a dimension.

126

Kofax Web Capture Developer's Guide

A leader line is made from three parts, a leader line, a leader line extension and a leader line offset.
A line should only have a leader line extension and a leader line offset if it also has a leader line.
These elements are in PDF units.

Property name Property type Description

CaptionOffset PdfPoint The relative offset of placement
from its normal position.

CaptionPositioning CaptionPositionKind One of either Top or Inline,
specifying whether the text will
appear above or within the line
itself.

EndPt
(Required)

PdfPoint Gets or sets the end point of the
line.

IsCaptioned bool Gets or sets whether the Content
property will be used as a caption.

LeaderLineExtensionLength double Gets or sets the length of the
leader line extensions (see
diagram).

LeaderLineLength double Gets or sets the length of the
leader lines.

LeaderLineOffset double Gets or sets the offset of the
leader line from an object being
measured.

LineEnding LineEndingKind[] A two entry array containing the
LineEndingKind for the start and
the end of the line.

StartPt
(Required)

PdfPoint Gets or sets the start point of the
line.

Usage LineUsageKind Gets or sets the intent of the line.

127

Kofax Web Capture Developer's Guide

PolygonAnnotation and PolylineAnnotation
A PolygonAnnotation is an annotation that is represented by three or more points connected in a
closed path.

Property name Property type Description

Effect BorderEffect Gets or sets an effect to apply to
the border of the polygon when it
is rendered.

InternalColor IPdfColor Gets or sets an internal color of the
polygon.

IsInternalColorTransparent bool When set to true, the internal color
is transparent.

LineEnding LineEndingKind[] Gets or sets the line ending
for an open polygon. The PDF
specification indicates that for
a polygon, these elements may
be present even though they are
ignored. The will be honored in
PolylineAnnotation.

Vertices IList<PdfPoint>
List<PdfPoint>

A collection of PdfPoint that
represent the vertices of the
polygon. There should be a
minimum of three points in the
collection for a valid polygon.

A PolylineAnnotation is identical to a PolygonAnnotation except that it the LineEndings will be
honored and a PolylineAnnotation is valid with a minimum of two points.

RectangleAnnotation
A RectangleAnnotation is an annotation that represents a rectangle drawn on the page. The
rectangle may have an outline or it may be filled with a color. It may also have an effect applied to
the border. The EllipseAnnotation inherits directly from RectangleAnnotation and is no different
except in the shape that will be drawn on the page.

Property name Property type Meaning

Effect BorderEffect Gets or sets an effect to apply
when rendering the border of the
rectangle.

InternalColor IPdfColor Gets or sets the color used to fill
the rectangle.

RedactionProposalAnnotation
The RedactionProposalAnnotation is an annotation that indicates an area on the page to be
redacted later by a viewer or other PDF processing tool. The RedactionProposalAnnotation does not
perform actual redaction nor does it change page content in any way. When a redaction is applied

128

Kofax Web Capture Developer's Guide

by a viewer, the annotation is removed from the page, all content within the area of redaction will
be stripped and the redaction appearance will be added to the page's content.

At a minimum, the RedactionProposalAnnotation needs the Bounds to be set to the area of the
document to be redacted. You can also use the Regions property to create a set of PdfQuadrilateral
objects that will be used for the redaction area.

There are a number of properties that can be set that affect how the redaction will appear after it
has been applied. For example, if you set the OverlayText property, that text will be written into the
redaction area. This is useful if you wanted each redaction to have a note on it to alert the reader
why the content is not present ("removed by court order," for example).

Property name Property type Description

AutoGenerateBasicAppearance bool If set to true, the annotation will
autogenerate a simple appearance
upon being rendered. If the
Regions collection is empty, it
will generate a single rectangle
outlined with the annotation's
Color. If the Regions collection is
not empty, it will generate a single
PdfPath with each quadrilateral
outlined in the annotation's Color.

DefaultTextAppearance PdfTextAppearance This property, if set, will represent
how the OverlayText will appear on
the annotation. If not set, the text,
if any, will appear in Helvetica 12
point.

IsOverlayTextRepeated bool If set to true, the OverlayText string
will be repeated over the surface
of the redacted area when the
redaction is applied.

OverlayText string Gets or sets text that will be
rendered on the redaction area
after the redaction has been
applied.

RedactionInteriorColor IPdfRgbColor An RGB color that will be used
to render the interior area of the
redaction after it has been applied.
If RedactionTemplate is set, this
will be ignored.

RedactionTemplate string Gets or sets the name of a
template resource to use when
rendering redaction after it has
been applied.

129

Kofax Web Capture Developer's Guide

Property name Property type Description

Regions PdfQuadrilateralCollection Gets a collection of
PdfQuadrilateral objects to use
for the area(s) to be redacted. If
this collection is non-empty, upon
rendering, the Bounds property
will be adjusted to reflect the
contents of the Regions.

TextAlignment AnnotationTextAlignment Gets or sets how the OverlayText
will appear when rendered.

The following C# code adds a simple redaction proposal to a page.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

PdfTextBox box = new PdfTextBox(new PdfBounds(72, 400, 250, 150), "Times-Roman", 12,
 "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer sed diam id ipsum
 egestas lacinia. Nulla vel nulla sit amet elit aliquet feugiat. Donec varius euismod
 augue, vel lacinia arcu mollis nec. In tempor neque vitae velit dapibus cursus. Etiam
 ut sodales neque. Integer quis sem orci. Praesent tincidunt odio non sapien adipiscing
 vestibulum. Duis porttitor quam ut metus posuere at venenatis velit gravida. Nulla
 facilisi. Ut dapibus suscipit risus, vitae tempor velit adipiscing id. Vestibulum ante
 ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Fusce mattis
 volutpat metus, ac molestie tortor tristique sed. Cras lacinia facilisis lobortis.
 Duis elementum congue bibendum.");
page.DrawingList.Add(box);

RedactionProposalAnnotation redaction = new RedactionProposalAnnotation(new
 PdfBounds(72, 450, 150, 36));
redaction.Color = PdfColorFactory.FromRgb(1, 0, 0);

page.Annotations.Add(redaction);

doc.Save("simpleredact1.pdf");

This will add a red hollow box on page which when the redaction is actually applied by a viewer will
remove the text below it and leave a blank spot behind.

RubberStampAnnotation
The RubberStampAnnotation is an annotation that is used to mark a page with standard text as
if it was created by a rubber stamp. The PDF specification defines a list of standard rubber stamp
types for use in this annotation. Even though the text of the rubber stamp can be set to anything,
the specification indicates that only this set needs to be supported:
• Approved
• AsIs
• Confidential
• Departmental
• Draft
• Experimental
• Expired

130

Kofax Web Capture Developer's Guide

• Final
• ForComment
• ForPublicRelease
• NotApproved
• NotForPublicRelease
• Sold
• TopSecret

 If you want to ensure that you create RubberStampAnnotation objects with supported rubber
stamp kinds, either use the RubberStampAnnotation that takes a RubberStampKind or use the
utility method FromRubberStampKind() to covert a RubberStampKind to a string.

Property Name Property Type Description

StampLabel
(Required)

string This is the label that will be used
for the rubber stamp. Although it
can be any non-null, non-empty
string, there is no guarantee that
anything but the standard types
can be rendered by a viewer.
(Required)

The following C# code creates a TopSecret stamp.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

RubberStampAnnotation annot = new RubberStampAnnotation(RubberStampKind.TopSecret, new
 PdfBounds(72, 650, 144, 72));
page.Annotations.Add(annot);

doc.Save("topsecretstamp.pdf");

StickyNoteAnnotation
A StickyNoteAnnotation represents a note of information placed on the page. The text of the
information is stored in the Contents property of the annotation. The annotation can also have
one of a set of standard icons associated with it on the page and the annotation may be either an
"open" or "closed" state. When a StickyNoteAnnotation is closed, only the icon is visible. When it
is open, a PopupAnnnotation will be shown that shows the Contents and (possibly) allows it to be
edited. Finally, StickyNoteAnnotations can be used as part of a review process. The PDF specification
defines a general ReviewProcess and two specific ones that each have discrete states of the review.
It is possible to define your own kinds of review process, but there is no guarantee that it will be
supported by any particular PDF viewer.

Property name Property type Description

IconName string A name of an icon to use for the
annotation on the page. If this
property is not set, the icon will
default to "Note."

131

Kofax Web Capture Developer's Guide

Property name Property type Description

IsOpen bool Gets or sets the open state of the
sticky note.

ReviewProcess ReviewProcess Gets or sets the review process for
this sticky note.

 The IconName can be set to a standard name by using static properties in
StickyNoteAnnotation. The entire list can be retrieved from the StandIconNames static property.

The following C# code makes a help sticky note.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

StickyNoteAnnotation sticky = new StickyNoteAnnotation(new PdfBounds(144, 400, 72, 72),
 "note text here", new PdfBounds(156, 420, 100, 100));
sticky.Color = PdfColorFactory.FromRgb(1, 1, .8);
sticky.IconName = StickyNoteAnnotation.HelpIconName;
page.Annotations.Add(sticky);
doc.Save("stickynote.pdf");

 If you use the StickyNoteAnnotation constructor that has a popupBounds parameter, the
constructor will also construct and attach a PopupAnnotation to the StickyNote annotation.

TextBoxAnnotation
A TextBoxAnnotation is simply a box on the page with text in it. Unlike the StickyNoteAnnotation,
the text box annotation doesn't have an open/closed state, but is instead always open and
constrained by the bounds. The text may be either plain text, using the Content property or rich
text, using the RichTextContent and the Content properties (the Content property should be set to a
plain text equivalent of the rich text).

Property name Property type Description

DefaultTextAppearance PdfTextAppearance Gets or sets the appearance of text
in the text box. If not set or set
to null, the text appearance will
default to 10pt Helvetica.

DefaultRichTextTyleString string Gets or sets the default style string
used for rich text, for example
"font: 12pt Arial".

Effect BorderEffect Gets or sets a border effect for the
text box.

InsetArea PdfBounds Gets or sets the inset area for the
text box, creating margins for the
text. This property should be set so
that it is fully contained within the
Bounds property.

132

Kofax Web Capture Developer's Guide

Property name Property type Description

TextAlignment AnnotationTextAlignment Gets or sets how the text will be
aligned or justified in the Bounds.

The following C# code creates a TextBoxAnnotation.
TextBoxAnnotation annot = new TextBoxAnnotation(new PdfBounds(72, 360,
300, 200), "Lorem ipsum sic dolor");
annot.Color = PdfColorFactory.FromRgb(.39, .58, .92);
somePage.Annotations.Add(annot);

TextMarkupAnnotation
A TextMarkupAnnotation is not an annotation that contains text. Instead, it is a set of possible mark-
ups to add to text on a page. The annotation is not itself associated with the text on the page at all.
Any associations or relationships between the annotation and the text is made by the PDF viewing
software.

The location of the markup is represented by the Regions property, which is a
PdfQuadrilateralCollection of (possibly) disjoint quadrilaterals that surround areas of interest.

The appearance of the markup is determined by the MarkupKind property which is one of:
• Highlight
• Underline
• Squiggly
• StrikeOut

The particular markup will be rendered in the Color of the annotation.

Property name Property type Description

MarkupKind TextMarkupKind Gets or sets the type of the
markup.

Regions PdfQuadrilateralCollection Defines the areas of interest for the
annotation.

The following C# code creates a highlight TextMarkupAnnotation.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

PdfTextBox box = new PdfTextBox(new PdfBounds(72, 400, 250, 150), "Times-Roman", 12,
"Lorem ipsum dolor sit amet, consectetur adipiscing elit.");
page.DrawingList.Add(box);

TextMarkupAnnotation textMarkup = new TextMarkupAnnotation(TextMarkupKind.Highlight);
textMarkup.Color = PdfColorFactory.FromRgb(1, 1, 0);
textMarkup.Regions.Add(new PdfQuadrilateral(72, 410, 94, 480, 80, 500, 68, 440));
page.Annotations.Add(textMarkup);
doc.Save("highlightmarkupannot.pdf");

133

Kofax Web Capture Developer's Guide

TypeWriterAnnotation
The TypeWriterAnnotation is used for placing text on the page in a way that implies no real
constraints to the text boundary and very little extra in the appearance beyond the text itself.
The annotation itself inherits from the TextBoxAnnotation. By default, the text is placed using
the annotation's StartPoint property. This point will be the left edge and baseline of the text in
the annotation. The PDF specification uses the Bounds property for the placement of the text,
but this can be cumbersome. If the AutoGenerateBounds property is true, the Bounds will be
calculated from the StartPoint, otherwise the bounds will be taken as is and the appearance may be
unpredictable.

Property name Property type Description

AutoGenerateBounds bool If set to true (default), the
annotation will use the StartPt
property, the Contents property,
and the font information to
calculate the Bounds property at
render time. Lines will be split at
"\r" or "\n" characters.

AutoGenerateInsetArea bool If set to true and if
AutoGenerateBounds is true, then
the InsetArea will be calculated
as if it were the bounds and the
Bounds will be calculated by
expanding the InsetArea by the
margins.

LeftRightMargin double If AutoGenerateBounds is true,
this value will be used to create
margins on the left and right
edges. Must be non-negative.

StartPoint PdfPoint If AutoGenerateBounds is true,
this is starting point for text within
the annotation. The X coordinate
will be the left edge of the text and
the Y coordinate will be the text
baseline.

TopBottomMargin double If AutoGenerateBounds is true,
this value will be used to create
margins on the top and bottom
edges. Must be non-negative.

 Even though the PDF specification is clear about the intent and usage of the InsetArea of
a TypeWriterAnnotation, Adobe Acrobat does not honor it correctly, nor does Acrobat honor a
custom appearance for the annotation. The LeftRightMargin an TopBottomMargin are therefore
not recommended for use with Adobe Acrobat.

The following C# code creates a TypeWriterAnnotation and shows its bounds.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
string fontName = "Helvetica";

134

Kofax Web Capture Developer's Guide

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

TypeWriterAnnotation annot = new TypeWriterAnnotation(new PdfPoint(72, 750), "This is
\rannotation text.");
annot.DefaultTextAppearance = new PdfTextAppearance(fontName, 8);
page.Annotations.Add(annot);

// this is the method used by the annotation during rendering
PdfBounds bounds = annot.CalculateBounds(doc.Resources, annot.StartPoint,
 annot.Contents);
PdfRectangle boundsRect = new PdfRectangle(bounds, PdfColorFactory.FromRgb(1, 0, 0),
 1);
page.DrawingList.Add(boundsRect);
doc.Save("typewriter.pdf");

Widget annotations
Widget annotations are used for interactive forms. Each widget represents a specific type of user-
interface element and implements the interface IFormElement, which describes the contents and
behavior of a PDF form field. The supported types of widget annotations are:
• CheckboxWidgetAnnotation
• ChoiceWidgetAnnotation
• PushButtonWidgetAnnotation
• RadioButtonWidgetAnnotation
• SignatureWidgetAnnotation
• TextWidgetAnnotation

CheckboxWidgetAnnotation
A checkbox widget annotation is a widget annotation that represents a two-state selection. It is
typically represented by an empty box when it is not selected and a box with a mark in it (an x or a
tick mark).

The checkbox widget annotation does not include any text, it is just the graphic representation.
The AppearanceSet is used to define how the widget will be drawn in the Normal, Rollover
and Activated appearances. Within each appearance, there should be an appearance entry
named after each state. The appearance entry for a checked widget will be named "Yes"
and the appearance entry for not checked will be named "Off." You can use the properties
CheckboxWidgetAnnotation.CheckedValue and CheckboxWidgetAnnotation.ClearedValue instead.

 While the values for the checkbox on/off states can be any two different strings, you are
strongly encouraged to use "Yes" and "Off."

Property name Property type Description

CheckedValue string Gets the recommended checked
value string "Yes."

135

Kofax Web Capture Developer's Guide

Property name Property type Description

ClearedValue string Gets the recommended cleared
value string "Off."

Value string The current value of the widget.

DefaultValue string The default value of the widget.

Since there can be a great deal of code for creating appearances for checkboxes, DotPdf includes
standard appearances which will be installed in your document Resources Templates. These
templates will be shared among all CheckBoxWidgets that share them. This is done internally via
the DefaultWidgetTemplates object.

 If you do not supply appearances, Adobe Acrobat does not reliably render the widget.

The following C# code makes a check box.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);
CheckboxWidgetAnnotation annot = new CheckboxWidgetAnnotation(doc.Resources, new
 PdfBounds(72, 360, 18, 18), "check", null, null);
annot.Value = CheckboxWidgetAnnotation.CheckedValue;
page.Annotations.Add(annot);
doc.Save("checkdocsimp.pdf");

Use this constructor to implicitly install default appearances in the widget and your document
resources.

The following C# code manually installs standard appearances.
DefaultWidgetTemplates.InstallDefaultAppearances(doc.Resources, false);
myCheck.Appearance.Normal.Add(CheckboxWidgetAnnotation.CheckedValue,
 DefaultWidgetTemplates.CheckboxCheckedNormalName);
myCheck.Appearance.Normal.Add(CheckboxWidgetAnnotation.ClearedValue,
 DefaultWidgetTemplates.CheckboxClearedNormalName);
myCheck.Appearance.Activated.Add(CheckboxWidgetAnnotation.CheckedValue,
 DefaultWidgetTemplates.CheckboxCheckedActivatedName);
mycheck.Appearance.Activated.Add(CheckboxWidgetAnnotation.ClearedValue,
 DefaultWidgetTemplates.CheckboxClearedActivatedName);

When you add appearances, the second argument is always the name of a Template resource.
InstallDefaultAppearances() will add in new Template resources using the names shown above.

ChoiceWidgetAnnotation
A choice widget annotation is an annotation that lets a user select one or more items from a list of
possible choices. The list can either appear as a list in a box, a pop-up list, or a pop-up list with a text
entry field (also called a combo box). The choices are set via a list of pairs of string objects. Each pair
contains a display name and an export name. The export value is optional. If omitted, the display
value will instead be used. The purpose of the pair is so that, for example, it would be possible to
generate separate forms in different languages that display in the native language but all submit
with the same export values, making the data submitted language neutral.

136

Kofax Web Capture Developer's Guide

Like all widgets, ChoiceWidgetAnnotation requires an appearance for the widget. This appearance
can't be shared between different ChoiceWidgetAnnotations and is built lazily - just before a render
- so that it will be unaffected by changes in Bounds.

Text of items in the list will be rendered using the DefaultTextAppearance property.

Property name Property type Description

AllowMultiSelect bool If set to true, the user can have
multiple items selected.

AutoGenerateBasicAppearance bool If set to true (default), the widget
will make and install a basic
appearance for the widget.

Choices IList<ChoicePair> A list of elements to present to
the user. Each choice pair has a
DisplayName and an optional
ExportName. The DisplayName
will be presented to the user. The
ExportName (or the DisplayName,
if the ExportName is null)will be
used when submitting the data.

CurrentSelection IList<int> Contains a list of indexes of current
selections. If AllowMultiSelect is
false, only the first value (if any) will
be used.

FirstVisibleChoice int Gets or sets the index of the first
visible choice in the list.

ValueAsString string Returns a comma separated list of
the choices.

The following C# code creates a simple ChoiceWidgetAnnotation.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);
ChoiceWidgetAnnotation anno = new ChoiceWidgetAnnotation(ChoiceWidgetKind.ListBox,
 "choices", new PdfBounds(72, 400, 288, 144),
 "once", "twice", "maybe three times", "my uncle is a mime");
anno.DefaultTextAppearance = new PdfTextAppearance();
anno.DefaultTextAppearance.FontName = "Times-Italic";
anno.DefaultTextAppearance.FontSize = 24;
anno.AutoGenerateBasicAppearance = true;
anno.CurrentSelection.Add(2);

doc.Form = new PdfForm();
page.Annotations.Add(anno);
doc.Form.Fields.Add(anno);
doc.Save("choicelist.pdf");

137

Kofax Web Capture Developer's Guide

The following C# code creates the appearance for the list.
private double StartLineBottom(PdfBounds bounds, int index, double lineHeight)
{
 return bounds.Top - 1 - ((index + 1) * lineHeight);
}

private string MakeBasicAppearanceList(GlobalResources gr, PdfBounds bounds,
 PdfTextAppearance app, double borderWidth, IPdfColor outlineColor, IPdfColor
 fillColor, IList<ChoicePair> choices, IList<int> currentSelection)
{
 var res = gr.Fonts.Get(app.FontName);
 double lineHeight = res.Metrics.LineSpacing(app.FontSize);
 double baseLine = (res.Metrics.Descent * app.FontSize) / -1000.0;

 bounds = new PdfBounds(0, 0, bounds.Width, bounds.Height);
 DrawingTemplate template = new DrawingTemplate(bounds);
 if (outlineColor == null && fillColor == null)
 return null;

 PdfRectangle rect = new PdfRectangle(bounds, fillColor);
 template.DrawingList.Add(rect);

 PdfMarkedContent markedContent = new PdfMarkedContent("Tx");
 template.DrawingList.Add(markedContent);

 PdfBounds inset = new PdfBounds(bounds.Left + 1, bounds.Bottom + 1, bounds.Width - 2,
 bounds.Height - 2);
 rect = new PdfRectangle(inset, outlineColor);
 rect.Clip = true;
 markedContent.DrawingList.Add(rect);

 markedContent.DrawingList.Add(new GSave());

 if (currentSelection != null)
 {
 IPdfColor selColor = PdfColorFactory.FromRgb(0.6, 0.75866, 0.854904);
 foreach (int sel in currentSelection)
 {
 double selY = StartLineBottom(bounds, sel, lineHeight);
 PdfBounds selBounds = new PdfBounds(1, selY, inset.Width - 1, lineHeight);

138

Kofax Web Capture Developer's Guide

 rect = new PdfRectangle(selBounds, selColor);
 markedContent.DrawingList.Add(rect);
 }
 }

 for (int i = 0; i < choices.Count; i++)
 {
 ChoicePair pair = choices[i];
 double selY = StartLineBottom(bounds, i, lineHeight) + baseLine;
 PdfTextLine line = new PdfTextLine(app.FontName, app.FontSize, pair.DisplayName ??
 pair.ExportName,
 new PdfPoint(2.0, selY));
 markedContent.DrawingList.Add(line);
 }

 markedContent.DrawingList.Add(new GRestore());

 string name = gr.Templates.Add(template);
 return name;
}

 The actual content of the list is put within a PdfMarkedContent object with the "Tx" mark,
setting it off as the text content of the box.

PushButtonWidgetAnnotation
A PushButtonWidgetAnnotation is the simplest type of widget annotation. It has no
value associated with it. Instead, it only serves to trigger actions of some kind. This is
done by adding a new action to its AdditionalActions.ClickDown list. Like other widgets, a
PushButtonWidgetAnnotation needs to have one or more appearances in order to be rendered.
The class includes a property to automatically generate an appearance as well as a public factory
method for creating one.

To ensure that an appearance is made for the button, set the AutoGenerateAppearance property to
null.

 The auto-generated appearance for a button is an outlined round-cornered rectangle with
centered text clipped to the outline.

The following C# code creates a button that plays a sound.
using (FileStream stm = new FileStream(@"mysound.wav",
 FileMode.Open, FileAccess.Read, FileShare.Read))
{
 WavReader reader = new WavReader(stm);
 Sound sound = Sound.FromWavReader(reader);

 PdfGeneratedDocument doc = new PdfGeneratedDocument();
 PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);
 PushButtonWidgetAnnotation button = new PushButtonWidgetAnnotation(new PdfBounds(72,
 400, 144, 40),
 "Now Hear This", null, null);
 button.AutoGenerateBasicAppearance = true;
 PdfSoundAction action = new PdfSoundAction(sound);
 button.AdditionalActions.OnClickDown.Add(action);

 doc.Form = new PdfForm();
 page.Annotations.Add(button);

139

Kofax Web Capture Developer's Guide

 doc.Form.Fields.Add(button);
 doc.Save("soundbutton.pdf");
}

RadioButtonWidgetAnnotation
RadioButtonWidgetAnnotation are a button widget that is represented by a set/cleared state.
When radio buttons are cleared, they are represented by the value "Off". When they are set,
they are represented by a string value that is unique among the group of radio buttons.
RadioButtonWidgetAnnotations are unusual among widgets in that they are not usable in isolation.
RadioButtonWidgetAnnotation objects need to have a parent RadioButtonFormField which contains
the semantics for the entire group.

 Like CheckBoxWidgetAnnotation objects, RadioButtonWidgetAnnotations do not have any
particular text associated with their appearance - they are usually just the button itself. It does
need its own set of appearances, but these can be created at construction time and can be shared
among all radio buttons.

The steps for creating a set of RadioButtonWidgetAnnotation objects is as follows:

1. Make RadioButtonWidgetAnnotations for each choice, setting the FieldName to null and
passing in the string name of the "selected" value as the onValue.

2. Set the Value and DefaultAppearanceState to the either
RadioButtonWidgetAnnotation.ClearedValue or to the string name of its "selected" value.

3. Create a RadioButtonFormField object.

4. Set the form field's Value and Default Value to the radio button you would like selected.

5. Set the form field's FieldName.

6. Put each radio button into the form field's ChildFields collection.

7. Set each radio button's ParentField to the form field.

8. Add each radio button to the page's Annotations collection.

9. Construct a new PdfForm and assign it to the document's Form property.

10. Add the form field to the document's Form's Fields collection.

These steps are illustrated (in a slightly different order) in this sample C# code for making radio
buttons:
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.Form = new PdfForm();
PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);
string font = doc.Resources.Fonts.AddFromFontName("Arial");
RadioButtonWidgetAnnotation yesButton = new RadioButtonWidgetAnnotation(doc.Resources,
 new PdfBounds(72, 700, 12, 12),
 null, null, null, "Yes", true);
yesButton.DefaultAppearanceState = yesButton.Value = "Yes";

RadioButtonWidgetAnnotation noButton = new RadioButtonWidgetAnnotation(doc.Resources,
 new PdfBounds(72, 680, 12, 12),
 null, null, null, "No", true);
noButton.DefaultAppearanceState = noButton.Value =
 RadioButtonWidgetAnnotation.ClearedValue;

140

Kofax Web Capture Developer's Guide

RadioButtonWidgetAnnotation undecidedButton = new
 RadioButtonWidgetAnnotation(doc.Resources, new PdfBounds(72, 660, 12, 12),
 null, null, null, "Undecided", true);
undecidedButton.DefaultAppearanceState = undecidedButton.Value =
 RadioButtonWidgetAnnotation.ClearedValue;

page.Annotations.Add(yesButton);
page.DrawingList.Add(new PdfTextLine(font, 12, "Yes",
 new PdfPoint(yesButton.Bounds.Right + 4, yesButton.Bounds.Bottom)));

page.Annotations.Add(noButton);
page.DrawingList.Add(new PdfTextLine(font, 12, "No",
 new PdfPoint(noButton.Bounds.Right + 4, noButton.Bounds.Bottom)));

page.Annotations.Add(undecidedButton);
page.DrawingList.Add(new PdfTextLine(font, 12, "Undecided",
 new PdfPoint(undecidedButton.Bounds.Right + 4, undecidedButton.Bounds.Bottom)));

RadioButtonFormField ff = new RadioButtonFormField();
ff.FieldName = "Choice";
ff.ChildFields.Add(yesButton);
yesButton.ParentField = ff;
ff.ChildFields.Add(noButton);
noButton.ParentField = ff;
ff.ChildFields.Add(undecidedButton);
undecidedButton.ParentField = ff;
ff.Value = "Yes";
ff.DefaultValue = "Yes";
doc.Form.Fields.Add(ff);
doc.Save("threechoice.pdf");

 RadioButtonFormField has several factory methods that do most of this work for you. It is
strongly recommended that you use these methods to avoid errors in creation of the fields.

The following C# code creates a radio button set using the convenience factory method.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.Form = new PdfForm();
PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);
string font = doc.Resources.Fonts.AddFromFontName("Arial");

string[] values = new string[] { "Yes", "No", "Undecided" };
PdfBounds[] bounds = new PdfBounds[] {
 new PdfBounds(72, 700, 12, 12),
 new PdfBounds(72, 680, 12, 12),
 new PdfBounds(72, 660, 12, 12)
};

RadioButtonFormField ff = RadioButtonFormField.MakeRadioSet(doc.Resources, page,
 "Choice", values[0], values[0],
 values, bounds);
doc.Form.Fields.Add(ff);

for (int i = 0; i < values.Length; i++)
{
 page.DrawingList.Add(new PdfTextLine(font, 12, values[i],
 new PdfPoint(bounds[i].Right + 4, bounds[i].Bottom)));
}
doc.Save("threechoiceeasy.pdf");

141

Kofax Web Capture Developer's Guide

SignatureWidgetAnnotation
The SignatureWidgetAnnotation is used to indicate an area that needs to be signed by a user
reading the document. The SignatureWidgetAnnotation does not sign the document, it indicates
that a document needs a signature. The area for the signature is represented by the Bounds. This
annotation doesn't need an appearance added it.

The following C# code adds a signature to a document.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.Form = new PdfForm();
PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);
SignatureWidgetAnnotation sig = new SignatureWidgetAnnotation(new PdfBounds(72, 600,
 200, 40), "Signature", null, null);
page.Annotations.Add(sig);
doc.Form.Fields.Add(sig);
doc.Save("signhere.pdf");

TextWidgetAnnotation
The TextWidgetAnnotation is a widget that is used to building forms with text entry. It has a
number of properties that dictate the formatting of text in the widget, making it one of the most
configurable widgets. Like most of the widget annotations, it should have an appearance associated
with it, which can be done for you if AutoGenerateBasicAppearance is true.

Property name Property type Description

AutoGenerateBasicAppearance bool If set to true, before rendering
the widget will generate a basic
appearance for the text box.

DefaultRichTextStyleString string Gets or sets a default rich text
string to be used to define the style
of the RichTextValue of the widget.
Note that if you use RichTextValue,
you need to also set the Vlue
property to a plain text version of
the rich text.

DefaultTextValue string Gets or sets the default value for
the widget.

IsColumns bool If set to true, the MaximumLength
property will be used to define
columnar layout of the text. Note
that IsColumns only makes sense
if IsPassword, IsScrollable, and
IsFileSelection are all false.

IsFileSelection bool If set to true, the text is meant to
represent a file selection, in which
case the value entered is supposed
to be the path to the file.

142

Kofax Web Capture Developer's Guide

Property name Property type Description

IsMultiLine bool If set to true, the text entered will
be allowed to be multiple lines,
otherwise it will be forced to be a
single line. The default is false.

IsPassword bool If set to true, then the text entered
will be treated as a password and
will not be displayed direction.
Note that text entered as a
password should never be stored
within the PDF, but should instead
be used and removed from the
field. If the PDF is saved without
encryption and with a password
value entered, the password will be
stored in clear text.

IsRichText bool If set to true, then the content of
the field will be rendered using rich
text. Even if RichText is set to true,
any setting of the RichTextValue
should be reflected in the Value
property as well.

IsScrollable bool If set to true, then the text widget
will have a scroll bar on it if
needed.

IsSpellChecked bool If set to true, then the text in the
text widget will be marked for
any spelling errors using a client
service, if available.

MaximumLength int The greatest number of characters
that may be entered into the field.
This value must be non-negative.

RichTextValue XmlDocument The representation of the text
content using rich text.

TextAlignment AnnotationTextAlignment Gets or sets the justification of the
text displayed in the widget.

TextValue string The value to display in the text box.

The following C# code creates a text field with existing text.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);
TextWidgetAnnotation tw = new TextWidgetAnnotation(new PdfBounds(72, 350, 300, 50),
 "noname", "");
tw.TextValue = "Spoon";

tw.DefaultTextAppearance = new PdfTextAppearance();
tw.DefaultTextAppearance.FontName = "Times-Italic";
tw.DefaultTextAppearance.FontSize = 42;
page.Annotations.Add(tw);

doc.Form = new PdfForm();

143

Kofax Web Capture Developer's Guide

doc.Form.Fields.Add(tw);
doc.Save("textwidget.pdf");

Use annotations
The following is a set of common tasks that can be done with the DotPdf annotation objects.

Place an annotation
This C# sample creates a page with a large light blue rectangle on it and then adds a yellow
rectangle annotation with no border.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);
page.DrawingList.Add(new PdfRectangle(new PdfBounds(72, 72, page.MediaBox.Width - 144,
 page.MediaBox.Height - 144),
PdfColorFactory.FromRgb(.8, .8, 1)));

RectangleAnnotation rectAnnot = new RectangleAnnotation(new PdfBounds(36, 600, 200,
 100));
rectAnnot.InternalColor = PdfColorFactory.FromRgb(1, 1, 0);
rectAnnot.Color = null;
page.Annotations.Add(rectAnnot);

doc.Save("simpleannot1.pdf");

144

Kofax Web Capture Developer's Guide

Create an annotation with a custom border
This C# sample creates a page with a light blue rectangle and a yellow rectangle annotation with an
orange dashed border.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);
page.DrawingList.Add(new PdfRectangle(new PdfBounds(72, 72, page.MediaBox.Width - 144,
 page.MediaBox.Height - 144),
PdfColorFactory.FromRgb(.8, .8, 1)));

RectangleAnnotation rectAnnot = new RectangleAnnotation(new PdfBounds(36, 300, 200,
 200));
rectAnnot.InternalColor = PdfColorFactory.FromRgb(1, 1, 0);
rectAnnot.Color = PdfColorFactory.FromRgb(1, .5, 0);
rectAnnot.Border = new AnnotationBorder(0, 0, 1.5, new double[] { 4, 1 });
page.Annotations.Add(rectAnnot);

doc.Save("simpleannot2.pdf");

145

Kofax Web Capture Developer's Guide

Add a pop-up to a markup annotation
This C# sample shows how to add an open pop-up annotation to a markup annotation (in this case
a rectangle annotation). Note that setting the pop-up color also changes the border color of the
rectangle annotation

146

Kofax Web Capture Developer's Guide

Create an annotation with transparency
This C# sample shows how to set transparency in a rectangle annotation.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

147

Kofax Web Capture Developer's Guide

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);
page.DrawingList.Add(new PdfRectangle(new PdfBounds(72, 72, page.MediaBox.Width - 144,
 page.MediaBox.Height - 144),
PdfColorFactory.FromRgb(.8, .8, 1)));

RectangleAnnotation rectAnnot = new RectangleAnnotation(new PdfBounds(36, 300, 200,
 200));
rectAnnot.InternalColor = PdfColorFactory.FromRgb(1, 1, 0);
rectAnnot.Color = null;
rectAnnot.IsTransparent = true;
rectAnnot.Transparency = 0.75;
page.Annotations.Add(rectAnnot);

doc.Save("simpleannot4.pdf");

Skin an annotation
This C# sample demonstrates how to create an annotation with a custom "Normal" appearance. For
simple skinning, you should create exactly one appearance and put it in the Normal collection under
the name AppearanceSet.DefaultAppearanceName. This creates a rectangle with an x.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

148

Kofax Web Capture Developer's Guide

DrawingTemplate template = new DrawingTemplate(new PdfBounds(0, 0, 100, 100));
IPdfColor outlineColor = PdfColorFactory.FromRgb(0, 0, .25);
IPdfColor fillColor = PdfColorFactory.FromRgb(.7, 1, 1);
template.DrawingList.Add(new PdfRectangle(new PdfBounds(1, 1, 98, 98), outlineColor, 1,
 fillColor));
PdfPath path = new PdfPath(outlineColor, 1, null);
path.MoveTo(1, 1); path.LineTo(99, 99);
path.MoveTo(1, 99); path.LineTo(99, 1);
template.DrawingList.Add(path);
string templateName = doc.Resources.Templates.Add(template);

RectangleAnnotation annot = new RectangleAnnotation(new PdfBounds(72, 300, 102, 102));
annot.Appearance = new AppearanceSet();
annot.Appearance.Normal.Add(AppearanceSet.DefaultAppearanceName, templateName);
page.Annotations.Add(annot);
doc.Save("simpleannot5.pdf");

Make an annotation with a rollover appearance
Annotations can have different appearances for their normal and rollover states. The following C#
code creates a rollover appearance.

public string MakeAppearance(PdfBounds bounds, IPdfColor outline, IPdfColor fill,
 GlobalResources resources)
{
 DrawingTemplate template = new DrawingTemplate(bounds);
 bounds = bounds.Expand(-1);
 template.DrawingList.Add(new PdfRectangle(bounds, outline, 1, fill));
 PdfPath path = new PdfPath(outline, 1);
 path.MoveTo(bounds.Left, bounds.Bottom);
 path.LineTo(bounds.Right, bounds.Top);
 path.MoveTo(bounds.Left, bounds.Top);
 path.LineTo(bounds.Right, bounds.Bottom);
 template.DrawingList.Add(path);
 return resources.Templates.Add(template);
}

public void MakeAnAnnotationWithARolloverAppearance()
{
 PdfGeneratedDocument doc = new PdfGeneratedDocument();
 doc.EmbedGeneratedContent = false;
 PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

149

Kofax Web Capture Developer's Guide

 RectangleAnnotation annot = new RectangleAnnotation(new PdfBounds(72, 300, 102, 102));
 annot.Appearance = new AppearanceSet();
 PdfBounds bounds = new PdfBounds(0, 0, 100, 100);
 annot.Appearance.Normal.Add(
 AppearanceSet.DefaultAppearanceName,
 MakeAppearance(
 bounds,
 PdfColorFactory.FromRgb(0, 0, 0),
 PdfColorFactory.FromRgb(.7, 1, 1),
 doc.Resources));
 annot.Appearance.Rollover.Add(
 AppearanceSet.DefaultAppearanceName,
 MakeAppearance(
 bounds,
 PdfColorFactory.FromRgb(.25, .25, .25),
 PdfColorFactory.FromRgb(1, 1, .7),
 doc.Resources));
 page.Annotations.Add(annot);
 doc.Save("simpleannot6.pdf");
}

Make a sticky note annotation
This C# code sample shows how to make a closed StickyNoteAnnotation with a "Help" icon.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

StickyNoteAnnotation sticky = new StickyNoteAnnotation(new PdfBounds(144, 400, 72, 72),
 "note text here", new PdfBounds(156, 420, 100, 100));
sticky.Color = PdfColorFactory.FromRgb(1, 1, .8);
sticky.IconName = StickyNoteAnnotation.HelpIconName;
page.Annotations.Add(sticky);
doc.Save("simpleannot7.pdf");

Add a review state to a sticky note
This C# sample shows how to add review conditions to a Sticky Note annotation.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

150

Kofax Web Capture Developer's Guide

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

StickyNoteAnnotation sticky1 = new StickyNoteAnnotation(new PdfBounds(72, 600, 72, 72),
 "nothing", new PdfBounds(156, 420, 100, 100));
sticky1.IconName = StickyNoteAnnotation.CommentIconName;
sticky1.Color = PdfColorFactory.FromRgb(0, 1, .8);
sticky1.AuthorName = "Steve";
page.Annotations.Add(sticky1);

StickyNoteAnnotation sticky = new StickyNoteAnnotation(new PdfBounds(144, 600, 72, 72),
 "Completed set by steve hawley", new PdfBounds(156, 420, 100, 100));
sticky.Color = PdfColorFactory.FromRgb(1, 1, .8);
sticky.IconName = StickyNoteAnnotation.CommentIconName;
GeneralReview generalReview = new GeneralReview();
generalReview.CurrentState = GeneralReview.CompletedStateIndex;
sticky.ReviewProcess = generalReview;
sticky.InReplyTo = sticky1;
sticky.Hidden = true;
sticky.AuthorName = "Steve";

page.Annotations.Add(sticky);
doc.Save("simpleannot8.pdf");

Make a highlight annotation
Highlight annotations are represented by a set of quadrilaterals. They are not directly associated
with any text on the page. Any correspondence with text on the page must be made by the creation
software.

The following C# code creates a highlight association.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

PdfTextBox box = new PdfTextBox(new PdfBounds(72, 400, 250, 150), "Times-Roman", 12,
 "...lorem ipsum text...");
page.DrawingList.Add(box);

TextMarkupAnnotation textMarkup = new TextMarkupAnnotation(TextMarkupKind.Highlight);
textMarkup.Color = PdfColorFactory.FromRgb(1, 1, 0);
textMarkup.Regions.Add(new PdfQuadrilateral(72, 410, 94, 480, 80, 500, 68, 440));

151

Kofax Web Capture Developer's Guide

page.Annotations.Add(textMarkup);
doc.Save("simpleannot10.pdf");

Make a bow tie annotation
When the mark up type is changed to an underline, you can see where the line is drawn relative to
the quadrilateral. For underline, it is oriented towards the logical bottom which is the edge from the
first point to the second point.

Quadrilaterals may look unusual if the points are ordered differently. If the quadrilateral is a simple
rectangle, the first point is the lower left, the second point is the lower right, the third point is the
upper right, and the last point is the upper left. By swapping the second and third points, you will
get a "bowtie" shape, as shown in the following C# sample.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

PdfTextBox box = new PdfTextBox(new PdfBounds(72, 400, 250, 150), "Times-Roman", 12,
 "...lorem ipsum text...");
page.DrawingList.Add(box);

TextMarkupAnnotation textMarkup = new TextMarkupAnnotation(TextMarkupKind.Highlight);
textMarkup.Color = PdfColorFactory.FromRgb(1, 1, 0);
textMarkup.Regions.Add(new PdfQuadrilateral(72, 410, 80, 500, 94, 480, 68, 440));
page.Annotations.Add(textMarkup);
doc.Save("simpleannot11.pdf");

152

Kofax Web Capture Developer's Guide

When the mark up type is changed to an underline, you can see where the line is drawn relative to
the quadrilateral. For underline, it is oriented towards the logical bottom which is the edge from the
first point to the second point, as shown in this C# sample.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

PdfTextBox box = new PdfTextBox(new PdfBounds(72, 400, 250, 150), "Times-Roman", 12,
 "...lorem ipsum text...");
page.DrawingList.Add(box);

TextMarkupAnnotation textMarkup = new TextMarkupAnnotation(TextMarkupKind.Highlight);
textMarkup.Color = PdfColorFactory.FromRgb(1, 1, 0);
textMarkup.Regions.Add(new PdfQuadrilateral(72, 410, 94, 480, 80, 500, 68, 440));
page.Annotations.Add(textMarkup);

textMarkup = new TextMarkupAnnotation(TextMarkupKind.Underline);
textMarkup.Color = PdfColorFactory.FromRgb(1, 0, 0);
textMarkup.Regions.Add(new PdfQuadrilateral(72, 410, 94, 480, 80, 500, 68, 440));
page.Annotations.Add(textMarkup);
doc.Save("simpleannot12.pdf");

153

Kofax Web Capture Developer's Guide

If the TextMarkupAnnotation is constructed with TextMarkupKind.StrikeOut, the line will run
midway between the top and bottom edges. If it is constructed with Squiggly, a zig-zag line will be
drawn along the bottom edge.

Show the underline location relative to a highlight annotation
C#
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

PdfTextBox box = new PdfTextBox(new PdfBounds(72, 400, 250, 150), "Times-Roman", 12,
 "...lorem ipsum text...");
page.DrawingList.Add(box);

TextMarkupAnnotation textMarkup = new TextMarkupAnnotation(TextMarkupKind.Highlight);
textMarkup.Color = PdfColorFactory.FromRgb(1, 1, 0);
textMarkup.Regions.Add(new PdfQuadrilateral(72, 410, 94, 480, 80, 500, 68, 440));
page.Annotations.Add(textMarkup);

textMarkup = new TextMarkupAnnotation(TextMarkupKind.Underline);
textMarkup.Color = PdfColorFactory.FromRgb(1, 0, 0);
textMarkup.Regions.Add(new PdfQuadrilateral(72, 410, 94, 480, 80, 500, 68, 440));
page.Annotations.Add(textMarkup);
doc.Save("simpleannot12.pdf");

154

Kofax Web Capture Developer's Guide

Set a redaction area
The RedactionProposalAnnotation is used to set an area for later redaction by the viewer. The
annotation itself does not remove content from the document but instead requires the viewing
application to perform that task. This example shows how a redaction can be placed with custom
text to show when the redaction has been applied.

The following C# code places a redaction with redaction text.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.EmbedGeneratedContent = false;

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

PdfTextBox box = new PdfTextBox(new PdfBounds(72, 400, 250, 150), "Times-Roman", 12,
 "...lorem ipsum text...");
page.DrawingList.Add(box);

RedactionProposalAnnotation redaction = new RedactionProposalAnnotation(new
 PdfBounds(72, 450, 150, 36));
redaction.Color = PdfColorFactory.FromRgb(1, 0, 0);
redaction.DefaultTextAppearance.FontSize = 18;
redaction.DefaultTextAppearance.StrokeColor = PdfColorFactory.FromRgb(1, 1, 0);
redaction.OverlayText = "Bowdler was here.";
redaction.IsOverlayTextRepeated = true;
redaction.RedactionInteriorColor = PdfColorFactory.FromRgb(.8, .8, .8);

page.Annotations.Add(redaction);
doc.Save("simpleredact2.pdf");

155

Kofax Web Capture Developer's Guide

Use JavaScript to calculate values
PDF documents can contain form fields for user data entry. Using JavaScript, you can create actions
to attach to actions to calculate values of make other dynamic changes to the document. For more
information, see the JavaScript for Acrobat API Reference.

The following C# example uses the built-in function AFSimple_Calculate, which is provided by Adobe
Acrobat (formerly, this was in the AForm.js file, but has been precompiled into byte code). Note that
the sum field is marked read-only so that it will only show the sum.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.Form = new PdfForm();
PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

TextWidgetAnnotation tw = new TextWidgetAnnotation(new PdfBounds(72, 500, 36, 24),
 "Addend1", "0");
page.Annotations.Add(tw);
doc.Form.Fields.Add(tw);

PdfTextLine tl = new PdfTextLine("Helvetica-Bold", 20, "+", new PdfPoint(114, 506));
page.DrawingList.Add(tl);

tw = new TextWidgetAnnotation(new PdfBounds(130, 500, 36, 24), "Addend2", "0");
page.Annotations.Add(tw);
doc.Form.Fields.Add(tw);

tl = new PdfTextLine("Helvetica-Bold", 20, "=", new PdfPoint(172, 506));
page.DrawingList.Add(tl);

tw = new TextWidgetAnnotation(new PdfBounds(188, 500, 36, 24), "Sum", "0");
tw.IsFieldReadOnly = true;
page.Annotations.Add(tw);
doc.Form.Fields.Add(tw);
tw.AdditionalActions.OnFieldRecalculating.Add(new
 PdfJavaScriptAction("AFSimple_Calculate(\"SUM\", new Array (\"Addend1\",
 \"Addend2\"));"));
doc.Form.FieldCalculationSequence.Add(tw);

doc.Save("simplesum.pdf");

156

http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/js_api_reference.pdf

Kofax Web Capture Developer's Guide

Similarly, you can use the contents of fields together to join data. For example, if you wanted to
create a signable document that contained fields for the user's first and last names with a place to
display their entire name you could make a read-only full name field which takes its values from the
other fields
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.Form = new PdfForm();
PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

TextWidgetAnnotation tw = new TextWidgetAnnotation(new PdfBounds(72, 500, 50, 24),
 "First", "");
page.Annotations.Add(tw);
doc.Form.Fields.Add(tw);

PdfTextLine tl = new PdfTextLine("Helvetica-Bold", 12, "First Name", new PdfPoint(72,
 480));
page.DrawingList.Add(tl);

tw = new TextWidgetAnnotation(new PdfBounds(140, 500, 75, 24), "Last", "");
page.Annotations.Add(tw);
doc.Form.Fields.Add(tw);

tl = new PdfTextLine("Helvetica-Bold", 12, "Last Name", new PdfPoint(140, 480));
page.DrawingList.Add(tl);

tw = new TextWidgetAnnotation(new PdfBounds(72, 200, 200, 24), "Full", "0");
tw.IsFieldReadOnly = true;
page.Annotations.Add(tw);
doc.Form.Fields.Add(tw);
tw.AdditionalActions.OnFieldRecalculating.Add(new PdfJavaScriptAction("var
 fname = this.getField(\"First\").value + \" \" + this.getField(\"Last\").value;
 this.getField(\"Full\").value = fname;"));
doc.Form.FieldCalculationSequence.Add(tw);

SignatureWidgetAnnotation sig = new SignatureWidgetAnnotation(new PdfBounds(72, 230,
 200, 40), "Signature", null, null);
page.Annotations.Add(sig);
doc.Form.Fields.Add(sig);

doc.Save("simplenamer.pdf");

157

Kofax Web Capture Developer's Guide

PDF Forms
PDF Forms are a mechanism within PDF to display information and provide interaction and data
collection facilities. In the PDF Specification, these are referred to AcroForms. A PDF Form is
a hierarchical collection of fields that represent the form data as well as some information to
indication calculation order and general field appearance characteristics.

Fields are any object that implements the interface IFormElement, this interface defines core
characteristics that are common to all fields, but in practice there are two broad types of fields:
nodes and leaves. A node can have child fields and a leaf can have no child fields. In DotPdf, all
leaves will be a subclass of BaseWidgetAnnotation and all nodes will be BaseFormField.

 In the PDF specification, certain properties in a form field will be inherited from its parent.
DotPdf does not support this directly. When a form is read in, the inheritance is flattened, but
projecting parent properties onto their children. Upon writing, the properties are written directly
from each field. It is the client's responsibility to enforce the effect of inheritance.

158

Kofax Web Capture Developer's Guide

PdfForm
PdfForm is the object that represents a form for data collection and all its elements. If a document
has a PdfForm, it will be accessed through the Form property of a PdfGeneratedDocument object.
Through this object, you can access the fields in a document and their values (if any). The form also
contains properties that define default appearances for text in the fields as well as information
regarding digital signatures.

 The Form property in a PdfGeneratedDocument is null by default. To create a form, you
need to assign a new PdfForm object to this property. PdForm objects can be moved from one
document to another, but care must be taken in the process because the leaf nodes of a PdfForm
tree are all BaseWidgetAnnotation obects and therefore must also be placed on appropriate
pages in the target document. Further, the PdfForm and its form fields may refer to JavaScript
methods that are defined in the source document's GlobalJavaScript actions which must also be
moved to the target document. It is strictly the client's responsibility to

The process of making a new form from scratch can be as simple as making a PdfForm object and
assigning it to a PdfGeneratedDocument then putting fields in the form and on the pages of the
document. However, PdfForm objects can represent a tree of hierarchical fields. In order for the
hierarchy to be properly represented, each parent node will contain a collection of child nodes. Each
child should also have a reference to its parent. Since many operations may be performed before
putting a form element in a parent collection, DotPdf allows the client code to set the parent-child
and child-parent relationships. There is a utility method in PdfForm called EnforceParentage() which
will descend the tree and ensure that the relationship is correct. Be aware that if you depend on any
particular form field's FieldFullName to be correct, the parentage must be set correctly.

 When you save a PdfGeneratedDocument which contains a PdfForm, EnforceParentage()
will get called automatically. The form will also be checked for cycles and other field relationship
issues. If there are issues that cannot be repaired, DotPdf will throw an exception.

The following C# code creates a simple form.
public class WidgetPagePair {
 public BaseWidgetAnnotation Field { get; set; }
 public int PageIndex { get; set; }
}
// ...
public void PlaceFields(PdfGeneratedDocument doc, IEnumerable<WidgetPagePair> pairs)
{
 foreach (WidgetPagePair pair in pairs)
 {
 PdfGeneratedPage page = doc.Pages[pair.PageIndex] as PdfGeneratedPage;
 if (page == null) continue;
 if (doc.Form == null) doc.Form = new PdfForm();
 if (!page.Annotations.Contains(pair.Field))
 page.Annotations.Add(pair.Field);
 doc.Form.Fields.Add(pair.Field);
 }
}

159

Kofax Web Capture Developer's Guide

Node form fields
PDF forms may represent a tree of form information. For example, you may want to collect similar
information in different places, but want to use similar names for the actual data fields. You can do
this by having a tree structure to your form. For example, you might have a parent node named
"Contact" with a child named "Phone" that has three children named "Work," "Home," "Mobile,"
each with a child named "Number." "Contact" might have another child named "Address" with
children named "Work" and "Home," each with children named "Street," "City," "State," and "Zip."
In this way, the names of the leaves can be the same and can be treated generically by consuming
code.

If the child and parent relationships of the fields are enforced, the full name of the phone
number fields would be Contact.Phone.Work.Number, Contact.Phone.Home.Number, and
Contact.Phone.Mobile.Number.

In DotPdf, there are several types of node form fields. Each is typed against what its expected
children would be. For example, a TextFormField would expect to have children that are either
TextFormField or TextWidgetAnnotation and a PushButtonFormField would expect to have children
that are either PushButtonFormField or PushButtonWidgetAnnotation. If a form field is expected to
have heterogeneous children, it is best to use a GenericFormField.

All form fields, whether they are node or leaf form fields will implement the interface IFormElement.
This element defines the properties and behaviors of a PDF form field. A node form field can have
children and will therefore have a valid ChildFields property, whereas a leaf form field will always
have a null ChildFields property.

 While the PDF specification does not forbid that a CheckBoxFormField having non-CheckBox
children, it is likely the field inheritance in the final PDF will do unexpected things. When a
document with a PdfForm is saved, DotPdf will flag and optionally repair fields that have
mismatched children by substituting the appropriate form field type or a GenericFormField if the
children are heterogeneous.

RadioButtonWidgetAnnotations will not function as a group without a parent.
The RadioButtonFormField comes with a set of static factory methods for making
a RadioButtonFormField and correctly constructing and associating a set of
RadioButtonWidgetAnnotations with that field. When accessing the "value" of a radio set, it is more
common to look at the parent field rather than all of the children to determine the current value.

Leaf form fields
In PDF forms, leaf form fields are form elements that can have no children and in nearly all cases
contain the actual data of a field value. In DotPdf, all leaf form fields are implemented as subclasses
of BaseWidgetAnnotation. For specifics of using widgets annotations, see Widget annotations.

Visiting nodes
While it's straight forward to lop over all the nodes within a PdfForm object, DotPdf provides a
number of utility methods for enumerating through the nodes in a form. The main mechanism for
doing this is via the FormVisitor object, which provides methods for visiting each of the nodes in

160

Kofax Web Capture Developer's Guide

breadth first and depth first order as well as specializations for visiting only BaseWidgetAnnotation
objects.

Each of the methods returns IEnumerable<IFormElement> or
IEnumerable<BaseWidgetAnnotation>.

The following C# code converts a PdfForm to XML.
private static XDocument ToXml(PdfForm form)
{
 XDocument xdoc = new XDocument(new XElement("fields",
 from widget in FormVisitor.WidgetsDepthFirst(form)
 select new XElement("field",
 new XAttribute("bounds", String.Format("{0} {1} {2} {3}",
 widget.Bounds.Left, widget.Bounds.Bottom, widget.Bounds.Width,
 widget.Bounds.Height)),
 new XAttribute("type", TypeFromWidget(widget)),
 widget.FieldFullName != null ? new XAttribute("name", widget.FieldFullName) : null,
 widget.ValueAsString != null ? new XAttribute("value", widget.ValueAsString) : null,
 widget.DefaultValueAsString != null ? new XAttribute("default",
 widget.DefaultValueAsString) : null
)));
 return xdoc;
}

private static string TypeFromWidget(BaseWidgetAnnotation widget)
{
 if (widget is TextWidgetAnnotation) return "text";
 if (widget is CheckboxWidgetAnnotation) return "check";
 // etc...
 return "unknown";
}

Form actions
There are two global form actions available: reset and submit. Upon executing a
PdfResetFormAction, all fields or all specified fields will be reset to their default value. Upon
executing a PdfSubmitFormAction, all fields or all specified fields (and other data) will be submitted
to a URI.

The following C# code creates a form with a field reset.
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.Form = new PdfForm();
PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);

TextWidgetAnnotation color = new TextWidgetAnnotation(new PdfBounds(36, 700, 400, 24),
 "color", "Orange");
color.TextValue = color.DefaultTextValue;
doc.Form.Fields.Add(color);
page.Annotations.Add(color);

PdfTextLine label = new PdfTextLine("Helvetica", 14, "Favorite Color:", new
 PdfPoint(36, 730));
page.DrawingList.Add(label);

PushButtonWidgetAnnotation reset = new PushButtonWidgetAnnotation(new PdfBounds(36,
 670, 100, 25), "Reset", null, null);
reset.ClickActions.Add(new PdfResetFormAction());
page.Annotations.Add(reset);

161

Kofax Web Capture Developer's Guide

doc.Save("resetform.pdf");

 In this example, the reset button was added to the page, but not to the form. This will
prevent it from being subjected to the reset. This could also have been accomplished by putting
the button in the form and adding it to the Fields property of the PdfResetFormAction. Since
PushButtonFields and PushButtonWidgetAnnotation objects do not have a value, resetting them
to doesn't make sense.

Merge PDF forms
An interactive form - sometimes referred to as an AcroForm - is a collection of fields for gathering
information interactively from the user. Each field is associated with one or more widget
annotations that define its appearance on the page.

For example, a Date field could be associated with multiple widget annotations, each of which could
be placed on different pages. If one of these annotations is filled, the rest of them are automatically
given the same value.

The field may have a partial field name. A fully qualified field name is constructed from the partial
field name of the field and all of its ancestors.

The fully qualified field name for ZipCode is PersonalData.Address.ZipCode (a period (.) is used
as a separator for fully qualified names). If the form contains fields with identical fully qualified
names, the annotations of these fields are invalid.

In order to merge PDF documents that contain forms, it is necessary to merge forms as well. If
forms in different documents contain fields with the same name, the user should either rename or
merge them.

The PdfGeneratedDocument class provides tools for merging PDF documents with forms.

162

Kofax Web Capture Developer's Guide

Import pages
PdfGeneratedDocument contains the ImportPages() method. This method loads pages from
an external PDF document. The ImportPages() method has two arguments: path to file and
import options.

The ImportOptions object has properties to specify passwords and RepairOptions for
opening external documents, indexes of pages, and inserting at the specified location. If the
current PdfGeneratedDocument and external PDF document contain one or more forms, use
ImportOptions.FormFieldsConflictHandler to define the merge behavior.

Merge forms
If the current PdfGeneratedDocument and external PDF document contain forms, they should
be merged. FormFieldsConflictHandler is called if there are fields from external and current
documents with identical fully qualified names. This handler must resolve conflicts by choosing one
of the following conflict resolution strategies (defined as FormFieldsConflictResult enum):
• KeepCurrentFieldAndMergeChildren - only keep the field from the current form and merge

children with the external field's children.
• KeepExternalFieldAndMergeChildren - only keep the field from the external form and merge

children of the external and current fields.
• KeepBoth - keep both fields. In this case one of the fields should be renamed.

Sample for merging fields with same type and renaming fields with different types

 public void CombinePdfForms()
 {
 using (var stm = File.OpenRead(@"TwoPagesForm.pdf"))

 using (var genDoc = new PdfGeneratedDocument(stm))
 using (var streamForImport = File.OpenRead(@"docWithForms.pdf"))
 {
 genDoc.ImportPages(streamForImport, new ImportOptions
 {
 FormFieldsConflictHandler = ResolveFormFieldsConflict
 });

 using (var outStm = File.Create("CombinedForm.pdf"))
 genDoc.Save(outStm);
 }
 }

 private void ResolveFormFieldsConflict(object s, FormFieldsConflictEventArgs a)
 {
 if (a.AreFieldTypesEqual)
 {
 a.ConflictResolution =
 FormFieldsConflictResult.KeepCurrentFieldAndMergeChildren;
 return;
 }
 // generate new name for field
 a.ExternalField.FieldName = "new" + a.ExternalField.FieldName;
 a.ConflictResolution = FormFieldsConflictResult.KeepBoth;
 }

163

Kofax Web Capture Developer's Guide

Default merging
If the FormFieldsConflictHandler property is not set, all fields with identical fully qualified
names and the same field types are merged:
• The current field of the current form is not changed.
• All child fields of the external field are added to the children collection of the current field.

If fields with equal fully qualified names have different field types PdfException is thrown with the
following message:

Fields with different types have identical fully qualified names. Use ImportOptions to specify a conflict
resolving handler and rename one of the fields.

DotPdf repair
Starting with DotPdf version 10.4, DotPdf includes the facility to detect and repair damaged PDF
documents. These repairs include:

• Repairing dictionary objects that have missing required values.
• Repairing dictionary objects that have incorrect optional values.
• Repairing array objects that have syntactically incorrect values or references to non-existent

objects.
• Repairing stream objects that have incorrect length values or are missing the endstream keyword

or have incorrect line-ending placement.
• Repairing damaged or incorrect cross-reference tables.
• Repairing incorrect PDF file versions.
• Restoring "orphaned" pages.
• Substitute blank pages for unreadable pages.

In most cases, client code will use the repair mechanism as is, but it is possible to hook into the
repair process to help inform decisions for repairs to the document and its contents. This can
include allowing or disallowing repairs that may remove content from the document or otherwise
change the document's appearance, reporting errors and repairs as they happen, or providing an
alternative to the value that will be used to replace an incorrect or missing value in a repair.

DotPdf repair process
Generally speaking, DotPdf avoids reading entire PDF documents at any one time. For example,
when you create a PdfDocument object from an existing PDF document, DotPdf only reads the
document metadata and enough information to determine how many pages are in the document
as well as the orientation of each page.

No other information will be read from the PDF document until PdfDocument.Save() is called.
At this point only the "live" objects in the PDF document will be read. For example, if you open a
multipage PdfDocument and remove one or more pages from the document then save, the pages

164

Kofax Web Capture Developer's Guide

you removed (and all the objects they reference, provided they aren't referenced by other pages)
are no longer live and won't be read.

By contrast, PdfGeneratedDocument reads in substantially more objects when constructed from an
existing PDF.

Error detection happens at three possible points in time: when a PDF document is initially opened,
when PDF objects are read, and when PDF objects are written. When errors are detected, they
are reported and a request is made to accept the error for potential repair. If errors are not
accepted for potential repair, DotPdf will throw a PdfException. Often an entire PDF object has
been read, any errors will be checked for repair. An error will be repaired if the repair system is
configured to perform that class of repair and if the consequences of the repair are acceptable. If
the proposed repair and consequences are acceptable, it will be performed. After all repairs have
been completed for the object, if there were any unperformed repairs, a PdfException is thrown,
otherwise processing continues.

When a PdfException is thrown during repair, it may get caught inside DotPdf and induce further
repairs. If it was not caught, it will be passed on to client code and the repair has failed.

One exception to the process is the repair of the document cross-reference table. The cross-
reference table is a structure within a PDF that is used to locate all the other objects within the file.
If the cross-reference table is damaged or can't be located, then the cross-reference table will be
rebuilt by scanning the entire contents of file. If this error is not repaired, nothing else can be done
with the file.

Detect errors
In general, any time any content is loaded or saved from a PDF document an a PdfException is
thrown, the document is a candidate for repair. DotPdf defines two types of exception, PdfException
and PdfParseException. The latter inherits from PdfException and is thrown when DotPdf is unable
to locate the document cross reference table or the cross reference table is damaged.

The following C# code detects errors.
public bool PdfHasErrors(Stream inPdf)
{
 Stream outStm = GetTemporaryStream();
 try {
 PdfDocument doc = new PdfDocument(inPdf);
 doc.Save(outStm);
 return false;
 }
 catch (PdfException) {
 return true;
 }
 finally {
 RemoveTemporaryStream(outStm);
 }
}

It should be noted that this will be a potentially expensive process as the entire document will be
scanned. In a workflow environment, it may be more convenient to catch PdfException when a file is
being processed, mark it as a failure, repair it later and then resubmit it for processing.

Errors can also be fixed as part of the normal course of events. Be aware that not all errors can be
repaired and repairing some errors may remove or otherwise change visual content in a PDF.

165

Kofax Web Capture Developer's Guide

 It is never acceptable to blindly copy a repaired document over the original document.

Repair errors
In order to request that errors should be repaired in a PDF in the course of processing it, construct a
PdfDocument object or a PdfGeneratedDocument passing in a RepairOptions object. Passing in null
is equivalent to performing no repair.

The RepairOptions object contains sets of properties that determine if and in some cases how
errors will be repaired. It also contains event objects that an application can use to track errors.

The default values in RepairOptions represent a good balance of repairing problems without
excessively damaging the appearance or content of the document.

The following C# code repairs errors.

RepairOptions repairOptions = new RepairOptions();
try
{
 PdfDocument doc = new PdfDocument(null, null, pdfStream, null, repairOptions);
 doc.Save(outputStream);
}
catch (PdfException)
{
 // clean up outputStream
}
finally
{
 if (repairOptions.StructureOptions.RepairedStoredStream != null)
 repairOptions.StructureOptions.RepairedStoredStream.Dispose();
}

This example opens a PDF document (with no passwords) and copies it to the output, repairing
errors. The try/catch is necessary since repairs may fail and client code should manage the output
stream since it may contain partial/invalid PDF. The finally clause is necessary since repairs may
require rebuilding the entire file. Under such circumstances, a temporary file will be created. The
call to Dispose() will remove the temporary file.

As a convenience, PdfDocument contains several flavors of the static method Repair() which is
equivalent to the above code except with no catch block:
try {
 PdfDocument.Repair(pdfStream, outputStream, new RepairOptions());
}
catch (PdfException)
{
 // clean up outputStream
}

Repair events
In order to provide feedback about what is happening during the repair process, the RepairOptions
object contains the following events:

• ProblemEncountered: Fired when a problem is first encountered.

166

Kofax Web Capture Developer's Guide

• ProblemRepaired: Fired when a problem has been repaired.
• ProblemSkipped: Fired when a problem was skipped during repair.

Each event will include the ProblemEventArgs object. Within the ProblemEventArgs is a property
named Problem of type BaseProblem. This object describes the nature of the problem in the
Description property and possible consequences of enacting the repair in the Consequences
property.

In the case of DotPdf, the Consequences object will be of type PdfRepairConsequences. This object
contains information about the severity of the problem as well as a description of what may happen
if the repair is enacted.

int problemsEncountered = 0;
int problemsRepaired = 0;
int problemsSkipped = 0;
RepairOptions repairOptions = new RepairOptions();
repairOptions.ProblemEncountered += (s, e) => problemsEncountered++;
repairOptions.ProblemRepaired += (s, e) => problemsRepaired++;
repairOptions.ProblemSkipped += (s, e) => problemsSkipped++;
PdfDocument.Repair(pdfInStream, pdfOutStream, options);
Console.WriteLine("The document had {0} errors, {1} repaired, {2} skipped.",
 problemsEncountered, problemsRepaired, problemsSkipped);

This C# code sample shows how to track the number of errors and repairs in a PDF document.

The event mechanism is separate from the problem selection process. No filtering is done with
events.

Repair filtering
The RepairOptions object in DotPdf has two levels of filtering, the first is when a problem is
encountered. This is to decide if the problem should be accepted for repair. The second is at repair
time to choose if a repair will be enacted. An application could choose to filter based on the type of
problem or on the severity of the consequences or on the number of problems encountered.

The properties are named ProblemSelectorand RepairSelector. It is not necessary to set either.
Setting them to null (default) will instruct DotPdf to ignore them.

Both delegates return enumerated types which include the value Default, which is an indication that
DotPdf should take its default action.

The following C# code sets RepairOptions to filter based on severity.
RepairOptions options = new RepairOptions();
options.RepairSelector = (sender, problem) =>
 {
 PdfRepairConsequences consequences = problem.Consequences as
 PdfRepairConsequences;
 if (consequences == null) return RepairAction.Default;
 if ((int)consequences.Severity > (int)Severity.Serious)
 return RepairAction.NoRepair;
 return RepairAction.Repair;
 };

167

Kofax Web Capture Developer's Guide

 You can get this same behavior without a filter by setting
RepairOptions.MaximumAllowableSeverity.

Structure options
In the RepairOptions object there is a property named StructureOptions of type
StructureRepairOptions. This object contains a set of properties that are used to control what
structural elements within a PDF will be repaired.

Property name Property type Default value Description

RebuildCross
ReferenceTable

bool false If set to true, a PDF
with a damaged cross-
reference table will have
the entire file rebuilt
with a correct cross-
reference table. Upon
completion, the property
RepairedStoredStream,
if non-null will be set to
the StoredStream that
was used for a temporary
file. This type of repair
may be expensive
in terms of time and
storage. It is appropriate
to use this repair if
opening a PDF throws a
PdfParseException.

StoredStreamProvider IStoredStreamProvider TempFileStreamProvider This object is used to
create a StoredStream
object that is used to hold
the contents of a PDF file
that had to have its cross-
reference table rebuilt.

RepairedStoredStream StoredStream null After repairing a cross
reference table, this
property will be non-
null and will contain the
Stream that holds the
repaired PDF.

 Dispose this
object after you
are done with the
document.

168

Kofax Web Capture Developer's Guide

Property name Property type Default value Description

RestoreOrphanedPages bool true If set to true and
RebuildCrossReference
Table is set to true, then
any pages found in
the document during
rebuilding that aren't
part of the document's
page collection will be
appended to the end of
the page collection.

CreateBlankPageIf
NoPagesFound

bool true PDF documents must
have at least one page.
If set to true and a
document contains no
pages or nothing but
damaged pages, a blank
letter-sized page will
be added to the page
collection. Although the
document will have no
content on pages, it is still
may be possible to access
metadata, forms and
form data, scripts, and
other non-page content.

CorrectInvalidData
StreamLengths

bool true If set to true, embedded
data stream objects with
incorrect lengths will be
repaired by measuring
the actual length of the
stream.

RepairNameTrees bool true Name trees are structures
stored within PDF
documents that hold
information associated
with names. For example,
there is a name tree
that is used to hold
JavaScript objects that are
used globally within the
document. If set to true,
damaged name trees will
be repaired.

DuplicateNameTree
EntryRepairAction

DuplicateNameTree
EntryRepairAction

None Determines an action
to take when duplicate
name entries are found.
None is equivalent to
ignoring any newer
duplicates. Other options
include remove the
previous one or renaming
either.

169

Kofax Web Capture Developer's Guide

Property name Property type Default value Description

AllowPartialNameTrees bool true If an unrecoverable error
happens while reading
a name tree, this will
allow whatever name tree
entries have already been
read to be passed on.
Partial name trees may
result in later errors when
links try to find missing
named destinations or
named JavaScripts.

NameSelector NameReplacer null Given a
DuplicateNameTree
EntryRepairAction that
requires renaming an
element, this property
will be used to rename
the duplicate entry. This
delegate will be passed
the name to rename
and a list of all other
names in the tree. This
delegate should return
a new name that is not
contained within the list.

Array options
When elements of arrays are damaged, this set of options will be used to determine how to repair
the elements

Property name Property type Default value Description

RepairDamaged Elements bool true If set to true, DotPdf
will attempt to repair
damaged elements PDF
arrays. This is done, be
default, by putting in a
reasonable default for the
item.

ElementReplacer ArrayElementReplacer null This delegate, when
non-null, will be called
by DotPdf to create an
appropriate value for a
damaged array element.

Property repair
Most of the internals of PDF documents consist of Dictionary objects that have property names
associated with values. The PDF specification defines the content and meaning of elements within

170

Kofax Web Capture Developer's Guide

dictionaries. For example, a dictionary may have a property that is required and the dictionary is
incorrect if the property is missing.

DotPdf has a mechanism for tracking the meanings and settings of PDF dictionaries and
automatically determines appropriate ways to repair them if they are damaged or missing. It is
possible to override the default behaviors in DotPdf by setting the PropertyValueReplacer in the
PropertyRepairOptions object.

Note that it is not possible for client code to make appropriate substitutions for all damaged
dictionary properties since many dictionary properties (including the dictionaries themselves) are
internal types and inaccessible to client code. Further, changes to dictionary contents typically
require deep understanding of the PDF specification.

The following C# code repairs damaged URI objects.
RepairOptions options = new RepairOptions();
options.PropertyOptions.Replacer = UriRepairer;
//...
public bool UriRepairer(PropertyInfo property, string propertyName, object
 propertyOwner,
 object defaultValue, object fileParsedValue, object fileSuppliedValue,
 ref object replacementValue)
{
 if (property.PropertyType == typeof(Uri))
 {
 replacementValue = new Uri("http://www.mywebsite.com");
 return true;
 }
 return false;
}

By default, DotPdf replaces invalid URI objects with a Uri that points to http://127.0.01. This code will
override that setting and replace them with http://www.mywebsite.com.

Digital signatures
Digital signing is process whereupon an electronic document can be marked so that the document's
origin can be verified and changes to the document can be detected.

In PDF, there are two main operations for signing a document: certification, and signing.

Both operations involve the signature annotation widget, but the meanings of certification and
signature are different.

In the case of a certification, you are placing a signature widget annotation on the document (either
visible or invisible) along with a set of rules that dictate what changes are allowed to be made to the
document as a whole. When a document has been certified, the person applying the certification
is saying, "I declare that the content of this document is exactly what it should be at the time of the
certification and you may only make the following changes..."

In the case of signing, you are placing an equivalent to a physical signature in the document and
which carries the same implications of physical signing (accepting terms of a contract, verifying that
information is complete and so on). The signature may dictate that other widget annotations should
become locked when it has been signed.

171

Kofax Web Capture Developer's Guide

In DotPdf, you can certify an unsigned, uncertified document and you can sign a certified or
uncertified document. In addition, you can sign an already signed or unsigned document as long as
there are signature annotations that are unsigned and that the document allows that.

DotPdf signs a document using the PKCS7 standard and the modification detection can be
configured to use any of SHA1, SHA256, SHA384, and SHA512 as the message digest. The actual
digital signature content is represented by an X509 certificate or a chain of X509 certificates.

When working with DotPdf for digital signatures, there are four main actions that are available:

1. Certifying a PDF document

2. Getting information about a signed or certified document

3. Making allowable changes to a signed or certified document

4. Signing a document

This document will be organized around each of these actions and how to do them.

Note the following:
• DotPdf only supports signing and getting information about PDF documents signed using the

PKCS7 standard.
• DotPdf tries to use the .NET object RSACryptoServiceProvider to perform signing and certifying

operations. This object is retrieved from the X509Certificate2 object provided by client
code. Some versions of this object can not sign with anything but the SHA1 message digest
algorithm. The CmsInformation object, upon construction, checks to see if the requested
message digest algorithm is supported by the RSACryptoServiceProvider. If it is not, the
CmsInformation object checks to see if the X509Certificate2 object can be transferred to
an equivalent supported by BouncyCastle. If not, then at signing time, the signing code will
either fall back to using SHA1 or will throw an exception. This behavior is controlled by the
UnsupportedContentDigestAlgorithmAction property in the CmsInformation object, set by
the constructor. If the X5092Certificate came from a file, such as a .pfx file and was opened
requesting the ability to export the private key, then if the RSACryptoServiceProvider is unable to
sign the document then BouncyCastle will be used.

• SHA1 digest method is deprecated in PDF 2.0. CmsInformation with the SHA1 digest method
call causes PdfException("SHA1 PdfContentDigestMethod is not supported in PDF 2.0.") in
PdfDocumentSigner on the signing PDF 2.0 document attempt.

• Future version of DotPdf digital signatures are likely to include more direct access to certificates
via BouncyCastle.

Certify documents
To certify a PDF document is to apply an X509 certificate to the document and a set of rules to
prevent and detect tampering with the original document. In DotPdf, this is done through the
PdfDocument object or the PdfGeneratedDocument object. Both objects contain a property called
DocumentCertification which describes how the document should be certified when it is saved.

The DocumentCertification property is either a PdfDocumentCertification object or a
PdfGeneratedDocumentCertification object. Both objects descend from a common base class. The
main properties are:

172

Kofax Web Capture Developer's Guide

Property name Property type Description

IsVisible bool Determines if the certification
should be visible in the document
or not. Typically certifications are
invisible, but the user should have
the choice.

CmsInformation CmsInformation This object contains the chain of
X509 digital signatures that will
be used for the object. As well an
information on how the digital
signature will be built.

AllowedChanges DocumentMDPAllowed Changes Specifies what changes may be
made to the document after
certification
• None: No changes are allowed.
• FillFormsAndSigning: Only

widget annotations (form fields)
may be modified.

• FillFormsSigningAnd
Annotation: Widget annotations
(form fields) may be modified
and any type of annotation can
be added to the document.

The real difference between the two is that the PdfDocument object is extremely light weight and
can only describe the certification and how it is to be applied in very simple ways. For certifying
a Pdf through PdfDocument, you can only specify the page number of the page upon which the
signature annotation that will represent the certificate will appear and the bounding box that will
contain it. The appearance of the signature will be the default appearance and is not changeable.
Using PdfGeneratedDocument, you can have the entire suite of PDF generation tools available and
the signature can have a custom appearance. Rather than calling out a page and location for the
signature, you place a SignatureWidgetAnnotation on PdfGeneratedPage through its annotation
collection as well as putting it in the PdfGeneratedDocumentCertification object.

Select PdfDocument or PdfGeneratedDocument for certification
Consider the following criteria when selecting between PdfDocument and PdfGeneratedDocument
for certification.

Criteria PdfDocument PdfGeneratedDocument

Certification signature will be
invisible.

X X

Memory may be an issue on target
system.

X

Appearance of signature is
important.

X

173

Kofax Web Capture Developer's Guide

Criteria PdfDocument PdfGeneratedDocument

Placement of signature is
important relative to other
annotations.

X

Controlling changes to certified documents
You can choose a set of global rules for how the document may be used post certification. This is
done by setting the AllowedChanges property of the DocumentCertification object. This setting will
depend upon your needs for the document. Use this guide to help choose the appropriate setting:

Value When to use

None The document should never be changed in any
way after it has been certified. For example, a
transcription of an agreement.

FillFormsAndSigning Only widget annotations (form fields) may be
modified after certification. This is useful for creating
a document that will to be signed by another party
at a later date and will might have other information
added to the document. For example, a permission
form might contain a signature box as well as a
checkbox to indicate that the signer is acting as a
parent or guardian.

FillFormsSigningAndAnnotations It will be possible to edit any and all annotations that
are associated with the document (unless they have
been locked by a previous signature). This setting
is useful if you are creating a document that should
not be modified in its content, but is under review by
other people who will mark up the document with
annotations.

NotSpecified This value cannot be used in DotPdf when certifying a
document nor will DotPdf generate a document with
this value. It is present because it is possible to create
documents with other tools that have no meaningful
value for this property. One would only see this value
in examining the certification settings on an existing
PDF.

Get signer information
When examining a PDF document, you might want a way to display or act on information about
signature or certification properties present in the document. PdfDocumentSignatureInformation
provides a lightweight mechanism for accessing this information as well as additional tools present
to verify the PDF-oriented aspects of the document and its contents.

 DotPdf does not attempt to validate the content of the X509 certificate chain used in the
document, but the objects representing the certificate chain are readily available.

174

Kofax Web Capture Developer's Guide

In the PdfDocumentSigner object, there is a method, GetInfo() which accepts a PDF stream and
optionally a password and returns a new PdfDocumentSignatureInformation object which describes
the certificate and signatures, if any, that were in the supplied PDF.

PdfDocumentSignatureInformation contains the following properties:

Property name Property type Description

HasSignatures bool True if the document is contains
signature widget annotations,
false otherwise. If the document
contains signatures, those
signatures may be unsigned.

IsCertified bool True if the document contains
a certification signature, false
otherwise.

AllowedChanges DocumentMDPAllowedChanges If IsCertified is true, this property
indicates what changes may be
made to the document (if any). If
IsCertified is false, this property
will contain NotSpecified.

Certificate PdfSignatureInformation If IsCertified is true, this
property will contain a
PdfSignatureInformation object
that describes the certificate. If
IsCertified is false, this property
will be null.

SignatureCount int Returns the total number of
signature widget annotations in
the document, 0 if there are none.

SignedSignatureCount int Returns the total number of
signature widget annotations that
are signed, 0 if there are none.

Signatures IList<PdfSignatureAnnotation> Gets a list of information about
all signature widget annotations
in the document. This list will
contain both signed and unsigned
signature widgets. There are no
signatures, this list will be empty.

175

Kofax Web Capture Developer's Guide

Property name Property type Description

ErrorsEncountered IList<SignatureValidationError> If any errors occurred in the
process of retrieving the document
signature information, this list
will contain a description of
those errors. Errors may be
either PDF specification related
errors or errors encountered
while retrieving the signature
data. Unlike PdfDocument and
PdfGeneratedDocument, repair
of errors within a damaged PDF
are not possible because repairing
the errors would invalidate any
signature in the file. Errors will be
marked with their severity.

 Getting the PdfDocumentInformation object does not perform an exhaustive check on all
signatures as that can be very time-consuming. For example, when a signature widget has
been signed it may forbid changes to any (or all) other widget annotations on the page. The
PdfDocumentSignatureInformaion object will not give feedback about this class of errors. To do
that, call the Validate() method in PdfDocumentSignatureInformation, which will do an exhaustive
check to ensure that no changes have been made to the document that violate the allowable
changes. Validate() returns a list of SignatureValidationError describing what problems were
found. Validate does not attempt to validate the contents of any of the X509 certificates used to
sign signatures.

PdfSignatureInformation object
The PdfSignatureInformation object describes an individual signature with a PDF document. This
information includes the physical location of the signature as well the X509 Certificate used with
that signature. It contains the following properties:

Property name Property type Description

IsSigned bool True if the signature widget
annotation associated with the
PdfSignatureInformation object
has been signed, false otherwise.

IsVisible bool True if the signature is visible on
page, false otherwise. The PDF
specification has multiple ways of
determining if a signature widget
annotation is visible. IsVisible will
be false if any of those indicate
that the signature is not visible.

Certification PdfCertification Returns an object that describes
the certificate used to sign the
signature widget annotation or null
if it is not yet signed.

176

Kofax Web Capture Developer's Guide

Property name Property type Description

PageNumber int The 0-based index on which the
signature widget annotation can
be found. Note that even invisible
signatures should exist on a page.

AnnotationIndex int The 0-based index within the
annotation collection where the
signature widget annotation can
be found.

SignatureIteration int Each time one of more signatures
in an existing PDF document
has been signed, all changes
are encapsulated within the PDF
document as a revision. This
number indicates in which revision
the signature has been signed. It is
meaningless if IsSigned is false.

SignatureFieldName string This is the dot-qualified name of
the signature widget annotation. In
PDF the fields can be represented
as a tree of fields. The name of
any given field will be its name
prepended by its parent name and
a period character in "parent.child"
format. This corresponds to the
FieldFullName property of the
signature widget annotation.

PdfCertification and CmsInformation
The PdfCertification object is a container for the certificate that was used to sign a given signature.
Currently, it only represents X509 certificate objects, but in the future may represent other types of
certificates as well. CMS is Cryptographic Message Syntax which is used to sign, digest, authenticate
or encrypt information. The CmsInformation object in DotPdf contains the chain of certificates
that were used to sign a document. It also contains the digest algorithm that will be used when
creating a digital signature, but that property does not reflect the actual file content when getting
information about a file at present.

For documents version PDF 2.0, certificates with ECDSA private key algorithms are supported.

Document signing operations
A document that has been certified or contains signed signatures has to be handled in a very
particular way. For example, a PDF document that has been certified may not allow any changes
to the document whatsoever or it may allow form fields to be filled in. Both PdfDocument and
PdfGeneratedDocument operate in a way that requires them to rewrite the entire document upon
doing a save operation. This type of action would completely invalidate and certificate or signed
signatures. In PDF, when making changes to such a document, it is necessary to append any
changes as a revision to the existing document.

177

Kofax Web Capture Developer's Guide

DotPdf manages this class of operation through the PdfDocumentSigner object.
PdfDocumentSigner in many ways is similar to PdfGeneratedDocument in that it has a
representation of the PdfForm object contained within a PDF as well as the a representation of all
annotations on all pages and a set of document resources.

With PdfDocumentSigner, you can add, remove, or change annotations or form fields
contained within a PDF, but only if those changes are allowed by the document's certification
or signatures. For example, if a field within a PDF document had been marked read-only
as a side-effect of a signature being applied, then attempting to change properties in that
field will generate an exception. BaseWidgetAnnotation and BaseFormField have new
properties, IsReadOnlyOrFieldReadOnly and IsFieldReadOnly respectively. When that property
is true, any attempt to change another public property within that object will throw an
InvalidOperationException.

PdfDocumentSigner Object
A PdfDocumentSigner Object is constructed from a Stream that allows both read and write
operations (an ImageOutputStream). Once constructed, the object gives you access to the
annotations and fields contained within the PDF document and allows/disallows editing of those
objects (depending on the permissions). When the changes are committed, they will be appended
onto the supplied stream.

Note the following:
• The PdfDocumentSigner object can only commit one round of changes. If you need multiple sets

of changes, you will need to construct a new PdfDocumentSigner object for each revision.
• PdfDocumentSigner appends changes to the stream supplied in the constructor. If you

cannot make changes to your source PDF, it is your responsibility to make a copy first.
PdfDocumentSigner will not make a copy for you.

The following properties are available in the PdfDocumentSigner object:

Property name Property type Description

Info PdfDocumentSignatureInformation Upon construction,
PdfDocumentSigner will create a
PdfDocumentSignatureInformation
object that is uses (in part) to
create the rest of the contents of
PdfDocumentSigner. This object
provides information as to what
signatures are present within the
document, if they are signed, and
what changes are allowable to the
document.
For more information, see Get
signer information.

178

Kofax Web Capture Developer's Guide

Property name Property type Description

Resources GlobalResources This object is used to hold
resources that are necessary
for rendering new annotations
or editing existing annotations
(for example, Templates to
use as appearances). Unlike
PdfGeneratedDocument, no
effort is made to import existing
resources from the PDF document.
Sharing or changing previous
resources may produce a
document that is either invalid or
violates the security of previous
signatures or certifications.

PagesOfAnnotations ReadOnlyCollection
<IList<BaseAnnotation>>

This collection represents the
annotations on each page by using
one entry for every page. Each
entry in PagesOfAnnotations is a
list of annotations that are on the
corresponding page. If a page has
no annotations, the corresponding
list will be non-null, but empty.
If document forbids adding or
removing fields or annotations,
each sub-collection will also be
read-only.
If a document forbids editing
annotations or fields, those
objects will be marked read-only
and any attempt to change a
property in that object will throw
an InvalidOperationException.

 Although the top level
properties in annotations are
read-only, sub-objects such
as AppearanceSet objects are
not. Even though it appears
like you can change these
objects, changes to sub-
elements in a read-only
object will be ignored. This
prevents malicious code
from attempting to change
the appearance of a signed
signature widget annotation
(for example).

179

Kofax Web Capture Developer's Guide

Property name Property type Description

Form PdfForm The form fields in a PDF
document are represented as
a conceptual tree of fields such
that the leaves of the tree, which
will always be a sub-class of
BaseWidgetAnnotation, contain
the actual data. Although the tree
can be built in exactly one level, it
is possible to organize data in the
tree such that related elements
are in the same hierarchy (for
example Person.Name.First and
Person.Name.Last share the same
general structure in the tree except
for the terminal fields First and
Last).
If a document forbids adding
or removing fields or widget
annotations, each collection of
child fields will be read-only.

 When adding or removing
a widget annotation
from the document via
PagesOfAnnotations, it is
imperative that the parallel
change be made in Form.

Use signatures and certifications
See the following for instructions on using signatures and certifications.
• Retrieving Field Data
• Collecting Signature Information
• Editing Annotations and Fields During Review
• Editing Annotations, Fields, and Signature Widgets

 For each of these procedures, the Append...Final() methods have a bool argument that
instructs DotPdf to close the stream once the changes are made. Although closing the stream
is not strictly necessary, this is there to remind you that the changes that you have made to the
stream represent a final step. Any attempt to call these methods subsequently will result in a
PdfException.

Customize signature appearance
In PDF the appearance of a signature widget annotation is managed through the regular
annotation appearance mechanism. Any annotation may choose to associate a set of appearances
with itself that will be used by PDF viewers to determine the visual styling of the object. If there is

180

Kofax Web Capture Developer's Guide

no style present, it is up to the viewed to determine the appearance. For more details, see Skin an
annotation.

The easiest way to manage the appearance of a signature annotation is to allow DotPdf to
do it for you. When you create a PdfDocumentSignature object, there is a property named
AutoGenerateSignatureAppearance which, when set to true, will induce DotPdf to call the method
SignatureWidgetAnnotation.MakeBasicAppearance. This method generates a new Template
resource and returns the name of the resource.

When this is method is called automatically, it will use the signature widget annotations
Bounds, BorderColor, BackgroundColor, and DefaultTextAppearance values. If either
BorderColor and BackgroundColor are null, black and white respectively will be used instead. If
DefaultTextAppearance is null, DotPdf will use 12 point Helvetica.

When you call the method yourself, you can set any of these values as you want and can also
disable the default logo, if you so choose.

Beyond these customizations, you can also retrieve the automatically generated Template resource
and edit it directly as well. You can also choose to not use the automatically generated appearance
and make your own from scratch.

Certify a document with PdfDocument
This sample certifies an existing PDF with an X509 certificate. The certificate will be invisible.

If you do not choose to provide a diget method to the CmsInformation constructor, it will use
SHA256 by default.

 While the SHA1 digest method is available, the PDF specification does not recommend its use.

The following C# code certifies a document.
public void CertifyDocument(Stream inPdf, Stream outPdf,
 X509Certificate2Collection certChain, PdfContentDigestMethod
 digestMethod)
{
 PdfDocument doc = new PdfDocument(inPdf);
 CmsInformation cmsInfo = new CmsInformation(certChain, digestMethod,
 UnsupportedContentDigestAlgorithmAction.FallBackToSHA1);
 doc.DocumentCertification = new PdfDocumentCertification(cmsInfo,
 DocumentMDPAllowedChanges.None,
 false, 0, PdfBounds.Empty);
 doc.Save(outPdf);
}

Determine if a document is certified or signed
This C# sample opens an existing PDF and determines if it has been signed or certified.
public bool DocumentIsSigned(Stream inPdf)
{
 PdfDocumentSignatureInformation info = PdfDocumentSigner.GetInfo(inPdf);
 if (info.ErrorsEncountered.Count > 0)
 ReportErrors(info.ErrorsEncountered);
 return info.IsCertified || info.SignedSignatureCount > 0;
}

181

Kofax Web Capture Developer's Guide

Fill fields of a certified document
This C# sample fills in text fields in a previously signed PDF document.
public void FillFields(Stream inPdf, Dictionary<string, string> fieldNamesAndValues)
{
 PdfDocumentSigner doc = new PdfDocumentSigner(inPdf, null);
 if (doc.Info.AllowedChanges == DocumentMDPAllowedChanges.None)
 throw new Exception("Document may not be changed.");
 foreach (BaseWidgetAnnotation anno in FormVisitor.WidgetsBreadthFirst(doc.Form)) {
 string value = null;
 TextWidgetAnnotation txAnno = anno as TextWidgetAnnotation;
 if (txAnno == null || anno.IsReadOnlyOrFieldReadOnly)
 continue;
 if (fieldNamesAndValues.TryGetValue(txAnno.FieldFullName, out value))
 txAnno.TextValue = value;
 }
 doc.AppendChangesFinal(true); // close the stream
}

Sign a document with an existing signature
This C# sample signs a preexisting signature widget annotation in a PDF document. Specifically, it
signs the first unsigned annotation in the document.
private SignatureWidgetAnnotation FindFirstSig(PdfDocumentSigner doc)
{
 SignatureWidgetAnnotation sig = null;
 for (int i = 0; i < doc.PagesOfAnnotations.Count; i++) {
 for (int j=0; j < doc.PagesOfAnnotations[i].Count; j++) {
 sig = doc.PagesOfAnnotations[i][j] as SignatureWidgetAnnotation;
 if (sig != null && !sig.IsSigned) return sig;
 }
 }
 return null;
}
public void SignFirstSignatureWidget(Stream stm, CmsInformation sigData)
{
 PdfDocumentSigner doc = new PdfDocumentSigner(stm, null);
 SignatureWidgetAnnotation sig = FindFirstSig(doc);
 if (sig == null)
 throw new Exception("No signature found.");
 PdfDocumentSignature docsig = new PdfDocumentSignature(sigData, sig, true, true);
 doc.AppendSignaturesFinal(true, new PdfDocumentSignature[]{ docsig });
}

Add a signature to a document
This C# sample signs a possibly certified document by adding a widget annotation and signing it.
public void AddAndSign(Stream stm, CmsInformation sigData, PdfBounds bounds)
{
 PdfDocumentSigner doc = new PdfDocumentSigner(stm, null);
 if (doc.Info.AllowedChanges !=
 DocumentMDPAllowedChanges.FillFormsSigningAndAnnotations)
 throw new Exception("No changes allowed.");
 SignatureWidgetAnnotation sig =
 new SignatureWidgetAnnotation(bounds, "NewSig", null, null);
 doc.PagesOfAnnotations[0].Add(sig);

182

Kofax Web Capture Developer's Guide

 doc.Form.Fields.Add(sig);
 PdfDocumentSignature docsig = new PdfDocumentSignature(sigData, sig, true, true);
 doc.AppendSignaturesFinal(true, new PdfDocumentSignature[]{ docsig });
}

Linearized PDF
A Linearized PDF-file (also known as "Fast Web View") is a PDF-file with a specific structure and
additional information that makes it possible to display the first page quickly, before the entire
file is downloaded from the Web server. So, the total number of pages and size of the linearized
PDF document should have little or no effect on the user-perceived performance of viewing any
particular page.

In order to be linearized, a PDF file must meet the following criteria:
• The linearization parameter dictionary must be entirely contained within the first 1024 bytes

of the PDF file. This limits the amount of data a conforming reader must read before deciding
whether the file is linearized.

• A mismatch in the length of the file in the linearization dictionary and the actual file size indicates
that the file is not linearized. Such files will be treated as an ordinary PDF. In this case the
linearization information will be ignored. (If the mismatch resulted from appending an update,
the linearization information may still be correct but requires validation).

• Linearized PDF files must have a specific structure according section F.3 of PDF 32000#1:2008
(found at http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/
PDF32000_2008.pdf.)

• If hint tables are damaged or missed the PDF is not linearized.

DotImage allows create linearized PDF using these classes:
• PdfDocument - linearizes existing PDF files
• PdfGeneratedDocument - generates a new linearized PDF files and linearizes existing PDF files
• PdfEncoder - allows generate new linearized PDF files from images.

PdfDocument and PdfGeneratedDocument integraton
PdfDocument and PdfGeneratedDocument have an overload of Save() method with the
PdfSaveOption parameter. Set the linearization flag in PdfSaveOption and include it in the
Save() method to get a linearized PDF document.

The following example shows how to save linearized PDF using PdfDocument:

PdfDocument document = new PdfDocument("fileName.pdf");
 PdfSaveOptions options = new PdfSaveOptions {Linearized = true};
 document.Save("linearizedPdf.pdf", options);
This C# code linearizes PDF file using PdfGeneratedDocument
 using (var stm = File.Open("fileName.pdf", FileMode.Open, FileAccess.Read))
 {
 PdfGeneratedDocument document = new PdfGeneratedDocument(stm);
 PdfSaveOptions options = new PdfSaveOptions {Linearized = true};
 document.Save("linearizedPdf.pdf", options, null);
 }

183

http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/PDF32000_2008.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/PDF32000_2008.pdf

Kofax Web Capture Developer's Guide

PdfEncoder integration
To create linearized PDF with PdfEncoder, set the linearization flag in PdfEncoder. The following
C# sample shows how to save linearized PDF using PdfEncoder:

 FileSystemImageSource fs =
 new FileSystemImageSource(new[] {@"images.tif"}, true);
 PdfEncoder encoder = new PdfEncoder {Linearized = true};
 string outFile = "output.pdf";
 using (FileStream outfs =
 File.Open(outFile, FileMode.Create, FileAccess.ReadWrite))
 {
 encoder.Save(outfs, fs, null);
 }

PDF/A
PDF/A is a version of the Portable Document Format (PDF) designed to use in the archiving and
long-term preservation of electronic documents. It restricts certain features as well as enforcing
requirements to preserve the visual appearance of the document. All images must include color
profiles to ensure proper color reproduction. All fonts must be embedded within generated PDF
documents.

PDF/A in PdfDocument
For document-level manipulation of PDF documents Atalasoft DotImage provides the PdfDocument
class, which can be used to add, move and remove pages, edit bookmarks and perform other
operations on documents.

The PdfDocument class is designed to work with existent PDF documents and cannot be used to
create PDF (or PDF/A) documents from the scratch. Nor can it fully work with page elements such as
annotations, images and text.

The PdfDocument class cannot be used to convert PDF documents into PDF/A compliant
documents because it order to do this it is necessary to access a page's elements such as images
and text, which is not possible with PdfDocument.

However, the PdfDocument class can be used to work with existing PDF/A documents of the
following versions:
• Pdf/A-1 (a, b).
• Pdf/A-2 (a, b, u).
• Pdf/A-3 (a, b, u) (if it does not contain a portfolio).

Changing part and conformance level of PDF/A is not supported.

A PDF/A document can be saved using the PdfDocument class, if:
• All source PDF documents conform to the PDF/A specification.
• All source PDF documents have color profiles with equal color spaces.

184

Kofax Web Capture Developer's Guide

Saving a PDF/A document
If the source document is PDF/A compliant, the PdfDocument class saves PDF/A document without
additional configuration.

 var pdfDoc = new PdfDocument("inPdfA.pdf");
 // ...
 pdfDoc.Save("outPdfA.pdf");

If the source file (or one of source files) is not PDF/A compliant, the behavior of the PdfDocument
class can be configured with PdfASavingBehavior property of the PdfSavingOptions class. The
following options are available:
• PreserveOriginalPdfType - saves a PDF/A document or throws a PdfAException, if all source

documents are PDF/A. Otherwise a regular PDF document will be saved. This value is used by
default.

• SavePdfA - saves a PDF/A document, if all source documents are PDF/A and have color profiles
with the same color spaces. Otherwise, it throws a PdfAException.

• SavePdf - saves regular PDF document without PDF/A metadata, regardless of the source
document.

Saving behavior for single source document

Single source document typePdfASavingBehavior

Regular PDF PDF/A

PreserveOriginalPdfType Regular PDF PDF/A

SavePdfA PdfAException PDF/A

SavePdf Regular PDF Regular PDF

Example using PdfASavingBehavior:

 var pdfDoc = new PdfDocument("inPdfA.pdf");
 // ...
 var options = new PdfSaveOptions
 {
 PdfASavingBehavior = PdfASavingBehavior.SavePdf
 };
 pdfDoc.Save("regularPdf.pdf", options);

In order to save pages from several PDF/A documents into a single one, the following requirements
are applied to the source documents:
• All source documents are PDF/A compliant.
• All source PDF documents have color profiles with equal color spaces.

Saving behavior for multiple source document

Multiple source document typePdfASavingBehavior

Regular PDF Mixed PDF/A

185

Kofax Web Capture Developer's Guide

PreserveOriginalPdfType Regular PDF Regular PDF PDF/A or PdfAException

SavePdfA PdfAException PdfAException PDF/A or PdfAException

SavePdf Regular PDF Regular PDF Regular PDF

 PDF/A or PdfAException means that result depends on versions of source PDF/A documents
(see the PDF/A compatibility table) and main color profiles.

According to the specification, a single ICC color profile should be defined for a PDF/A document
and placed in the OutputIntents PDF dictionary. Only color profiles with RGB or CMYK color
spaces should be used.

OutputIntents provides the means for matching the color characteristics of a PDF document with
those of a target output device or production environment in which the document will be printed.

Therefore, if one of the PDF documents contains a color profile with a different color space, the PDF/
A document cannot be saved. In this case, the PdfDocument class will throw a PdfAException.

In order to find out whether a PDF/A document can be saved, the IsPdfACompatible() method
of the PdfDocument class can be used. The IsPdfACompatible() method checks the main color
profiles and the compatibility level (obtained from metadata) of all source documents.

 The IsPdfACompatible() method does not check for compliance with the PDF/A standard.

 var firstDoc = new PdfDocument("first.pdf");
 var secondDoc = new PdfDocument("second.pdf");
 firstDoc.Pages.AddRange(secondDoc.Pages);
 var options = new PdfSaveOptions
 {
 PdfASavingBehavior = firstDoc.IsPdfACompatible()
 ? PdfASavingBehavior.SavePdfA
 : PdfASavingBehavior.SavePdf
 };

 firstDoc.Save("output.pdf", options);

In case of saving PDF document, which contains pages from several documents with different part
and conformance level of PDF/A standard, part and conformance level for the target document will
be set according to the PDF/A compatibility table. The resulting conformance level is determined
based on input documents levels that are read from metadata in the PDF/A compatibility table.

Pdf/A-1 Pdf/A-2 Pdf/A-3

a b a b u a b u

a Pdf/A-1a
Pdf/A-1

b Pdf/A-1b Pdf/A-1b

a exception exception Pdf/A-2a

b exception exception Pdf/A-2b Pdf/A-2bPdf/A-2

u exception exception Pdf/A-2b Pdf/A-2b Pdf/A-2u

186

Kofax Web Capture Developer's Guide

a exception exception exception exception exception Pdf/A-3a

b exception exception exception exception exception Pdf/A-3b Pdf/A-3bPdf/A-3

u exception exception exception exception exception Pdf/A-3b Pdf/A-3b Pdf/A-3u

PDF/A data in PdfDocumentMetadata
Most PDF documents contain metadata in XML format that stores information about the time of
creation and modification of the document, the author, etc.

According to the specification, a PDF/A document should contain XML-metadata with information
about the part and compliance level of the PDF/A standard.

This data can be obtained from the PdfAVersion property of the PdfDocumentMetadata object:

 public enum PdfAVersion
 {
 PdfA1a,
 PdfA1b,
 PdfA2a,
 PdfA2b,
 PdfA2u,
 PdfA3a,
 PdfA3b,
 PdfA3u,
 NotPdfA
 }

 The PdfAVersion property value is set based on metadata retrieved from the PDF document.
This metadata may be incorrect if PDF document itself does not conform to the PDF/A standard
at all or to the specified version of the PDF/A standard. The PdfDocument class does not check
for compliance with the PDF/A standard, therefore, the PdfAVersion property value may also be
incorrect.

The PdfAVersion property can be obtained from:
• PdfDocument.Metadata.PdfAVersion

• ExaminerResults.Metadata.PdfAVersion

• PdfGeneratedDocument.Metadata.PdfAVersion

• PdfDocumentMetadata.FromStream(…).PdfAVersion

PDF/A in PdfGeneratedDocument
PdfGeneratedDocument can be saved as PDF/A-1b using PdfARenderer class.

PdfARenderer is inherited from PdfRenderer and placed in Atalasoft.dotImage.PdfDoc. It is
responsible for creating PDF/A-1b files/streams from PdfGeneratedDocument objects.

The following code is a demonstration of PdfARenderer usage:
 using (var source = File.OpenRead("doc.pdf"))
 using (var genDoc = new PdfGeneratedDocument(source))
 using (var cmykProf = new PdfIccColorSpaceResource(
 File.OpenRead("CMYK.icm"), true)) // see "Color Spaces"

187

Kofax Web Capture Developer's Guide

 using (var result = File.Create("result.pdf"))
 {
 PdfARenderer renderer = new PdfARenderer(result)
 {
 // see "Color Spaces"
 CmykColorSpace = cmykProf,
 // see "Page Extraction"
 ImageExtractor = new AtalaImageExtractor(),
 // see "Annotations and Actions"
 IgnoreUnsupportedAnnotsAndActions = true,
 // see "Convert pages to images"
 ConvertIncompatiblePagesToImages = true
 };
 // see "Streamless Fonts"
 renderer.StreamlessFontFound += (o, arg) =>
 arg.AlternativeFontPath = GetTTFont(arg.FontResource);

 renderer.Render(genDoc);
 }

For more information about properties and methods used in this sample, see subsequent chapters
in this guide.

Convert pages to images
Not all components in a PDF document can be converted to the PDF/ A standard. To handle this
case, PdfARenderer has a ConvertIncompatiblePagesToImages property. If this property is set to
the "true" value and the page cannot be converted to PDF/A, the page is converted to the image
instead of generating a PdfAException.

If the ConvertIncompatiblePagesToImages flag is set, AtalaImageExtractor should be
provided to PdfARenderer and AtalaImageCompressor should be provided to compressors of
PdfGeneratedDocument. Otherwise, the PdfARenderer class throws a PdfAException with the
following message:

"To use ConvertIncompatiblePagesToImages, ImageExtractor is required."

AtalaImageExtractor is a class that can be set to ImageExtractor-property to extract a page
image from a PDF document. This class located in Atalasoft.dotImage.PdfDoc.Bridge.dll and uses
PdfDecoder from Atalasoft.dotImage.PdfReader.dll.
 using (var source = File.OpenRead("doc.pdf"))
 using (var genDoc = new PdfGeneratedDocument(source))
 using (var result = File.Create("result.pdf"))
 {
 genDoc.Resources.Images.Compressors.Add(new AtalaImageCompressor());
 PdfARenderer renderer = new PdfARenderer(result, false)
 {
 ConvertIncompatiblePagesToImages = true,
 ImageExtractor = new AtalaImageExtractor()
 };

 renderer.Render(genDoc);
 }

188

Kofax Web Capture Developer's Guide

Color spaces
According to the PDF/A specification, each image and color space should use a specific color profile.
PdfARenderer uses RgbColorSpace and CmykColorSpace to provide a specific color profile stream
for each image. ICC and ICM files can be used as color profiles.

If RgbColorSpace is not specified, DefaultRgbColorSpace is used.

If a CMYK image is found and CmykColorSpace is not specified, the
PdfAImageAndColorSpaceException is thrown with the following message:

"The PDF document contains an image with the DeviceCMYK color space. The PDF/
A specification requires the use of a specific color profile. Please, provide
the CmykColorSpace."

 using (var source = File.OpenRead("doc.pdf"))
 using (var genDoc = new PdfGeneratedDocument(source))
 // Provide CMYK color profile
 using (var cmykProf = new PdfIccColorSpaceResource
 (File.OpenRead("Microsoft Free CMYK Standard - RSWOP.ICM"), true))
 // Provide RGB color profile
 using (var rgbProf = new PdfIccColorSpaceResource(
 File.OpenRead("ISO22028-2_ROMM-RGB.icc"), true))
 using (var result = File.Create("result.pdf"))
 {
 PdfARenderer renderer = new PdfARenderer(result)
 {
 CmykColorSpace = cmykProf,
 RgbColorSpace = rgbProf
 };
 renderer.Render(genDoc);
 }

Images
PdfARenderer does not support images with a mask. If a page contains an image with a mask,
PdfARenderer throws an PdfAImageAndColorSpaceException with the following message:

"The PDF/A standard does not support images with a mask. Use
ConvertIncompatiblePagesToImages to convert the page to an image."

As mentioned in the error message, the user can use the ConvertIncompatiblePagesToImages flag
to convert the entire page into the image.

The PDF/A-1 standard prohibits images with more than 8 bits per color component. Such images
will be extracted and converted using an ImageExtractor.

In addition, the PDF/A-1 standard prohibits images with JPEG2000 compression. Such images will be
extracted using an ImageExtractor and then recompressed.

Fonts
A PDF document can use streamless fonts, which are based on metrics and descriptions, but do not
contain a font stream (FontFile, FontFile2 and FontFile3 in terms of the PDF specification). These
fonts should be well-known to PDF readers.

189

Kofax Web Capture Developer's Guide

According to the PDF/A specification, all fonts must be embedded to the target file; in addition to
the metrics and descriptions of fonts, the document should contain a font stream.

Standard fonts
The PDF standard contains 14 Standard Type 1 Fonts (standard fonts) that are well-known to PDF
readers and specified only by font name in PDF documents.

According to the PDF/A specification, standard fonts used in a document must be embedded in the
target file. Therefore, a standard font used in the document is replaced by the system font, which is
loaded from the system font directory according to the following table.

Original Standard Font System Font

Times-Roman Times New Roman

Times-Bold Times New Roman Bold

Times-Italic Times New Roman Italic

Times-BoldItalic Times New Roman Bold Italic

Helvetica Arial

Helvetica-Bold Arial Bold

Helvetica-Oblique Arial Italic

Helvetica-BoldOblique Arial Bold Italic

Courier Courier New

Courier-Bold Courier New Bold

Courier-Oblique Courier New Italic

Courier-BoldOblique Courier New Bold Italic

Symbol *Not supported

ZapfDingbats *Not supported

* No similar system fonts exist for the Symbol and ZapfDingbats standard fonts. PdfARenderer can't
save PDF/A documents with these fonts without generating a PdfAException at runtime with the
following message:

"Could not find alternate font file for font with name [Symbol/ZapfDingbats].
You can handle the StreamlessFontFound event by providing your own font."

Or, if ConvertIncompatiblePagesToImages property is set, the pages that use these fonts are
converted to images.

To replace a standard font with another one, the event StreamlessFontFound is used. See the next
section.

Streamless fonts
If no stream exists in the font, PdfGeneratedDocument tries to find a similar system font by the
name specified in /BaseFont.

190

Kofax Web Capture Developer's Guide

Then the StreamlessFontFound event, placed in the PdfARenderer class, is called. The arguments of
the StreamlessFontFound event contain:
• FontResource: PDF font resource that contains information about the font.
• GlobalFontName: Global name of PDF font resource that does not have a stream. If for some

reason the font is not imported to global resources, this value is null.
• AlternativeFontPath: Path to a file with a similar system font. If a similar font is not found, the

value is null.

The user can replace AlternativeFontPath with the path to a specific file with a TrueType font on
handling this event.

 using (var source = File.OpenRead("doc.pdf"))
 using (var genDoc = new PdfGeneratedDocument(source))
 using (var outStm = File.Create("mergedPdfA.pdf"))
 {
 var renderer = new PdfARenderer(outStm);
 renderer.StreamlessFontFound += (o, arg) =>
 arg.AlternativeFontPath = GetTTFont(arg.FontResource);
 renderer.Render(genDoc);
 }

If a similar font is not found or is not provided by the user, PdfAFontException is thrown with the
following message:

"Could not find alternate font file for font with name [base font name]. You
can handle the StreamlessFontFound event by providing your own font"

Or, if ConvertIncompatiblePagesToImages property is set, the pages that use this font are
converted to images.

If a font file is found in system fonts or a user file is provided, the PDF file font is converted to
TrueType and the preceding file is used as the stream.

Encoding
According to PDF specifications, fonts may include encoding to support the use of ANSI character
codes that represent Unicode symbols, without using Unicode strings and CID fonts.

If a file contains a Type 1 streamless font, it is converted to the TrueType font by PdfARenderer.
However, this capability is limited, because nonsymbolic TrueType fonts can have only
WinAnsiEncoding or MacRomanEncoding. PdfARenderer does not support the Type 1 fonts with
custom encoding. Therefore, if any input document contains such fonts, the PdfAFontException is
thrown. To avoid the exception, be sure to edit your input document to remove Type 1 fonts that
include custom encoding.

Transparency
A PDF document can contain objects or groups of objects with full or partial transparency (see
"11 Transparency" in PDF 32000-1:2008). Text, images, annotations and other objects can be
transparent.

According to the PDF/A-1b specification, transparency is not supported. So, all transparent objects
become opaque.

191

Kofax Web Capture Developer's Guide

Annotations and Actions
The following action types are not permitted in PDF/A.
• ImportData
• JavaScript
• Launch
• Movie
• ResetForm
• SetState
• Sound

If PdfGeneratedDocument contains one of these actions, PdfARenderer throws a
PdfAActionException with the following message:

"PDF/A does not support [action type] actions."

The following annotation types are permitted in PDF/A:
• Text
• Link
• FreeText
• Line
• Square
• Circle
• Highlight
• Underline
• Squiggly
• StrikeOut
• Stamp
• Popup
• Widget
• PrinterMark
• TrapNet

If PdfGeneratedDocument contains other annotations, PdfARenderer throws a
PdfAAnnotationException with the following message:

"PDF/A does not support [annotation type] annotations."

The IgnoreUnsupportedAnnotsAndActions-property of PdfARenderer class allows the ability to
ignore annotations and actions that not supported by the PDF/A-1b standard, instead of generating
an exception.

All partially transparent annotations become opaque, because transparency is not supported by the
PDF/A-1b standard.

192

Kofax Web Capture Developer's Guide

Merge PDF/A documents
To merge PDF documents, create a PdfGeneratedDocument object based on one of the documents,
call the ImportPages() method with the path to other documents. For more information, see Merge
PDF Forms.

After that, use PdfARenderer to save PDF/A document:

 using (var stream = File.OpenRead(@"first.pdf"))
 using (var genDoc = new PdfGeneratedDocument(stream))
 using (var streamForImport = File.OpenRead(@"second.pdf"))
 {
 genDoc.ImportPages(streamForImport);
 using (var outStm = File.Create("mergedPdfA.pdf"))
 {
 var renderer = new PdfARenderer(outStm)
 {
 ImageExtractor = new AtalaImageExtractor()
 };

 renderer.Render(genDoc);
 }
 }

Error handling
While saving the PDF/A document using the PdfARenderer class, the following types of
PdfAExceptions can be thrown.

Error type Message Solution

PdfAException To use
ConvertIncompatiblePagesToImages,
ImageExtractor is required.

Set AtalaImageExtractor to the
PdfARenderer.ImageExtractor-
property.

PdfAException PDF/A standard does not support
transparency.

Set
ConvertIncompatiblePagesToImages
= true.

PdfAException PDF/A standard does not support
transfer functions.

Set
ConvertIncompatiblePagesToImages
= true.

PdfAException Form or form elements do not
comply with the PDF/A standard.
See the inner exception for details.

Solve the inner exception or
remove Form from the document.
This issue and inner exception
cannot be solved with the
ConvertIncompatiblePagesToImages
or
IgnoreUnsupportedAnnotsAndActions
flags.

PdfAActionException PDF/A does not support [action
type] actions.

Set
IgnoreUnsupportedAnnotsAndActions
= true.

193

Kofax Web Capture Developer's Guide

PdfAActionException PDF/A does not support
AdditionalActions in widget
annotations.

Clear AdditionalActions property
in widget annotations or set
IgnoreUnsupportedAnnotsAndActions
= true.

PdfAActionException PDF/A does not support
ClickActions in widget annotations.

Clear ClickActions-property
in widget annotations or set
IgnoreUnsupportedAnnotsAndActions
= true.

PdfAActionException PDF/A does not support
AdditionalActions in form fields.

Clear AdditionalActions-
property in form fields or set
IgnoreUnsupportedAnnotsAndActions
= true.

PdfAAnnotationException PDF/A does not support
[annotation type] annotations.

Set
IgnoreUnsupportedAnnotsAndActions
= true.

PdfAAnnotationException Annotation appearance does not
comply with the PDF/A standard.
See the inner exception for details.

Solve inner exception, replace
annotation appearance or set
IgnoreUnsupportedAnnotsAndActions
= true.
This and inner exception
cannot be solved with
ConvertIncompatiblePagesToImages
flag.

PdfAFontException Could not find alternate
font file for font with name
[BaseFont]. You can handle the
StreamlessFontFound event by
providing your own font.

Handle StreamlessFontFound
event and provide font
to AlternativeFontPath
argument. Or set
ConvertIncompatiblePagesToImages
= true.

PdfAFontException Type1 streamless fonts with
custom encoding are not
supported.

Use external tool to modify input
document to remove any Type 1
fonts with custom encoding. Or set
ConvertIncompatiblePagesToImages
= true.

PdfAImageAndColorSpaceException PDF/A standard does not
support images with a mask. Use
ConvertIncompatiblePagesToImages
to convert the page to an image.

Set
ConvertIncompatiblePagesToImages
= true.

PdfAImageAndColorSpaceException The PDF document contains an
image with the DeviceCMYK color
space. The PDF/ A specification
requires the use of a specific
color profile. Please provide the
CmykColorSpace.

Provide CMYK color profile
stream to CmykColorSpace-
property. Or set
ConvertIncompatiblePagesToImages
= true.

PdfAImageAndColorSpaceException The PDF document contains
content with the DeviceCMYK color
space. The PDF/ A specification
requires the use of a specific
color profile. Please provide the
CmykColorSpace.

Provide CMYK color profile
stream to CmykColorSpace-
property. Or set
ConvertIncompatiblePagesToImages
= true.

194

Kofax Web Capture Developer's Guide

PdfAImageAndColorSpaceException Page contains unimported images
that may contain prohibited
parameters for PDF/A-1b.

Set
ConvertIncompatiblePagesToImages
= true.

PdfAImageAndColorSpaceException Image [global name] has [value]
bits per color component. PDF/
A-1 prohibits the use of images
that exceed 8 bits. Provide
ImageExtractor to extract and
convert the image.

Set AtalaImageExtractor to the
PdfARenderer.ImageExtractor
property.

PdfAImageAndColorSpaceException Image [global name] used
JPEG2000 compression.
PDF/A-1 prohibits the use of
JPEG2000 compression. Provide
ImageExtractor to recompress the
image.

Set AtalaImageExtractor to the
PdfARenderer.ImageExtractor
property.

PdfAImageAndColorSpaceException Image [global name] has an
unknown color space that can be
prohibited for PDF/A-1. Provide
ImageExtractor to extract and
convert the image.

Set AtalaImageExtractor to the
PdfARenderer.ImageExtractor
property.

PDF 2.0
PDF 2.0 is an ISO-standardized second version of the PDF, that extend basic standard with new
features.

PdfGeneratedDocument supports creation, opening, saving, editing of PDF 2.0 documents.

Document update to version 2.0 is also supported if all annotations contain an Appearance.
Otherwise PdfException is thrown.
using (var doc = new PdfGeneratedDocument(stm))
{
 doc.PdfVersion = 2.0;
 doc.Save("result.pdf");
}

Sound annotations and actions are deprecated in PDF 2.0. SoundAnnotation and PdfSoundAction
classes are preserved for PDF 1.7 and earlier, but they should not be used in PDF 2.0 documents.
Otherwise, PdfGeneratedDocument will skip them or throw PdfException ("Object cannot be saved.
Object type: {objectType}. Reason: object deprecated in PDF 2.0") on the document save attempt.
For more information, see Document upgrade to PDF 2.0.

Creation of new digital signatures, 3D-annotations and other objects, specified in PDF 2.0, are not
supported. But these objects will be preserved "As Is" if they already exist in the original document.

195

Kofax Web Capture Developer's Guide

Document upgrade to PDF 2.0
Several PDF objects are deprecated in PDF 2.0. Some of the deprecated objects can be safely
skipped because they contain redundant data. Skipping other deprecated objects may cause data
loss. Here the list of such objects:
• XFA
• Sound annotation
• Movie annotation
• Sound action
• Movie action

During the upgrade document with deprecated objects, that cannot be safely skipped,
PdfDocument and PdfGeneratedDocument can skip these objects or throw PdfException with object
type and reason.

For this purpose, ObjectCannotBeSaved-event is added to PdfSaveOptions. This event occurs on
saving PDF 2.0 document, before writing deprecated objects.
 using (var stm = File.OpenRead(@"pdf1_5.pdf"))
{
 var doc = new PdfGeneratedDocument(stm);
 doc.PdfVersion = 2.0;
 var options = new PdfSaveOptions();
 options.ObjectCannotBeSaved += (arg, obj) =>
 {
 switch (obj.ObjectType)
 {
 case "XFA":
 obj.Action = ObjectCannotBeSavedEventArg.SaveObjectAction.Skip;
 break;
 case "SoundAnnot":
 obj.Action =
 ObjectCannotBeSavedEventArg.SaveObjectAction.ThrowException;
 break;
 }
 };
 doc.Save("pdf2_0.pdf", options, null);
}

196

Chapter 7

BarcodeReader

The Kofax Web Capture BarcodeReader add-on provides advanced bar code image recognition
for your .NET applications. This component is very easy to use and designed specifically for
Microsoft .NET.

 Licensing is runtime royalty free for desktop applications.

Features
• Recognizes all bar codes in an image
• Returns the string value of each bar code recognized
• Reads twenty-one industry 1D symbologies as well as QR Code, PDF417 and DataMatrix 2D

symbologies
• Automatically detects orientation of bar code (East, South, West, North)
• Returns the bounding rectangle of all recognized bar codes
• Returns the coordinates of the start and end lines, can be used to construct a polygon

encompassing the bar code area
• Detects the type of bar code recognized
• Integrates with Kofax Web Capture with the ability to include an image viewer and pre-processing

capabilities such as deskew, despeckle, and annotations. Returns position of checksum character
(if present)

• Returns any supplemental bar codes
• Deploys as a single managed assembly alongside Kofax Web Capture dependencies

Supported symbologies

1D Barcodes

Codabar Code93 Patch code RM4SCC (Royal Mail)

code 11 EAN-13 Planet Telepen

code 128 EAN-8 Plus 2 UPC-A

code 32 Interleaved 2 of 5 Plus 5 UPCE-E

code 39 ITF-14 Postnet

2D Barcodes

Aztec

DataMatrix

PDF417

197

Kofax Web Capture Developer's Guide

2D Barcodes

QR Code

Deployment
When using the BarcodeReader, the assemblies that need to be copied with your application
include:

Assembly Description

Atalasoft.Shared.dll Shared classes such as licensing
management

Atalasoft.dotImage.Lib.dll Web Capture low level library assembly

Atalasoft.dotImage.dll Web CaptureKofax Web Capture class
library assembly

Atalasoft.dotImage.Barcoding.Reading.dll Barcode Recognition Engine

Use the BarcodeReader
The BarcodeReader was designed to be very easy to use. An application needs just a few lines of
code to read all supported bar codes located within an image.

The following examples demonstrate how to read bar codes from an Atalasoft.Imaging.AtalaImage
object.

The steps involved in reading a bar code are as follows:

1. Create an instance of BarCodeReader by passing in an AtalaImage object.

2. Create an instance of the ReadOpts class and set the symbology(s) and directions you wish to
read.

3. Invoke the ReadBars() method in the BarCodeReader class. This returns an array of Barcode
instances. Each element of the array corresponds to a bar code read from the image:

Reading a bar code
You can use a single BarCodeReader instance to read the same image a number of times, each time
with different options as shown in the example that follows.

C#
// 1: Load the image containing bar codes
AtalaImage myImage = new AtalaImage("barcodes.tif");
// 2: Create BarCodeReader for specified image.
using (BarCodeReader br = new BarCodeReader(myImage))
{
 // 3: Create a ReadOptions.
 ReadOpts options = new ReadOpts();
 // 4: Read left to right.
 options.Direction = Directions.East;
 // 5: Symbology to read.

198

Kofax Web Capture Developer's Guide

 options.Symbology = Symbologies.Code128;
 // 6: Read the bar codes contained in the image.
 BarCode[] bars = br.ReadBars(options);
 // 7: Process the results.
 for (int i = 0; i < bars.Length; i++)
 System.Console.WriteLine(bars[i].ToString());
}

Read a bar code with options set
C#
// 1: Load the image containing bar codes
AtalaImage myImage = new AtalaImage("barcodes.tif");
// 2: Create BarCodeReader for specified image.
using (BarCodeReader br = new BarCodeReader(myImage))
{
 // 3: Create a ReadOptions.
 ReadOpts options = new ReadOpts();
 // 4: Read left to right.
 options.Direction = Directions.East;
 // 5: Symbology to read.
 options.Symbology = Symbologies.Code128;
 // 6: Read the barcodes contained in the image.
 BarCode[] bars = br.ReadBars(options);
 if (bars.Length == 0)
 {
 // No bar codes read. Maybe the image was scanned upside down. Recheck by
 scanning the opposite direction.
 options.Direction = Directions.West;
 bars = br.ReadBars(options);
 }
}

199

	Table of Contents
	Preface
	Related documentation
	Training
	Getting help with Kofax products

	Deploy Kofax Web Capture
	Visual C++ Runtime dependencies
	Deploy Kofax Web Capture in ASP.NET
	Dependencies using Kofax Web Capture class library
	Dependencies using Kofax Web Capture with WebControls

	Generating licenses

	Web scanning
	Getting Started with Web Capture
	Kofax Web Capture demos
	Set up a new project
	Add the Web Document Viewer handler
	Add the Web Capture handler
	Set up the scanning controls and viewer
	Wrap-up
	Deploy on multiuser environment
	Terminal server
	Citrix
	Installation
	Upgrade

	Web scanning server
	Troubleshoot Web Capture Handlers
	Extend the KicHandler
	Connect to Kofax Import Connector services
	Modify web.config
	Specify the Kofax Import Connector endpoint

	Configure Kofax Import Connector
	Required license
	Configure the service
	Configure the Electronic Documents plugin
	Test the configuration

	Web scanning client
	Initialize the control on the client
	Include WebCapture Javascript
	Initialize

	Connect to UI controls
	Examples of UI controls
	Scan button
	Scanner device list
	Kofax Import Connector content types
	Kofax Import Connector content type descriptions
	Kofax Import Connector import button
	Kofax Import Connector track import button
	Kofax Import Connector index fields
	Kofax Import Connector batch fields
	Kofax Import Connector import with index fields

	Filter selection lists
	Connect controls with no UI
	Import loose pages
	Batch fields
	Display and enter values
	Filter the displayed list
	Set values through the initialize parameter list
	Batch field validation

	Index fields
	Index field list filtering
	Required fields
	Hidden fields
	Set index field values without connecting to UI
	Index field validation
	Skin the generated table

	Handle events
	ImageProxy properties and methods
	imageProxy.discard
	imageProxy.originalImage
	imageProxy.filename
	imageProxy.barcodes
	imageProxy.patchCode
	imageProxy.width, imageProxy.height
	imageProxy.bitsPerPixel
	imageProxy.pixelType
	imageProxy.dpi
	imageProxy.sheetNo (optional)
	imageProxy.newSheet
	imageProxy.asBase64String (format [, options[, callback]])
	imageProxy.clear()
	imageProxy.thumbnail(w, h)
	imageProxy.saveEncryptedLocal(format [,options[, callback]])
	imageProxy.asBase64String(fmt)
	Handler: onScanCompleted(eventName, eventObj)
	Handler: onUploadStarted(eventName, eventObj)
	Handler: onUploadError(msg, params)
	Handler: onUploadCompleted(eventName, eventObj)

	Handle errors
	Handler: onScanError(msg, params)
	Handler: onScanClientReady()

	Set scanning options
	Upload Options
	Connect to the Web Document Viewer
	Licensing
	File Formats and File Options

	Use VirtualReScan (VRS)
	Test your application
	Test in Edge, Firefox and Chrome
	Test for error conditions

	Troubleshoot scanning problems
	Uninstall Web Capture MSI
	Client API reference
	Atalasoft.Controls.Capture.WebScanning
	Atalasoft.Controls.Capture.CaptureService

	Web Document Viewer
	Program with DotPdf
	Mathematical model
	Transformations
	PdfGeneratedDocument
	Pages
	Standard page sizes
	Create stationery
	Clipping
	Colors
	Rendering
	Resources
	Font resources
	Type 1 symbol font encoding
	Embed fonts
	Color space resources
	Image resources
	Template resources

	Shapes
	PdfPath
	PdfRectangle
	PdfRoundedRectangle
	PdfCircle
	PdfArc
	PdfImageShape
	PDF text shapes
	PdfTable
	PdfTemplateShape
	PostnetBarcodeShape
	GSave / GRestore
	Transform
	Marked content
	Make custom shapes

	Round trip documents
	Integrate with Web Capture
	Actions
	PdfAction
	Go To View actions
	URI actions
	JavaScript actions
	Sound actions
	Show/Hide action
	Named actions
	Submit Form Actions
	Reset Form Action

	Annotations
	Properties common to all annotations
	Properties common to all mark up annotations
	Properties common to all widget annotations
	General annotations
	LinkAnnotation
	OpaqueAnnotation
	PopupAnnotation
	SoundAnnotation

	Markup annotations
	CalloutAnnotation
	CaretAnnotation
	EllipseAnnotation
	LineAnnotation
	PolygonAnnotation and PolylineAnnotation
	RectangleAnnotation
	RedactionProposalAnnotation
	RubberStampAnnotation
	StickyNoteAnnotation
	TextBoxAnnotation
	TextMarkupAnnotation
	TypeWriterAnnotation

	Widget annotations
	CheckboxWidgetAnnotation
	ChoiceWidgetAnnotation
	PushButtonWidgetAnnotation
	RadioButtonWidgetAnnotation
	SignatureWidgetAnnotation
	TextWidgetAnnotation

	Use annotations
	Place an annotation
	Create an annotation with a custom border
	Add a pop-up to a markup annotation
	Create an annotation with transparency
	Skin an annotation
	Make an annotation with a rollover appearance
	Make a sticky note annotation
	Add a review state to a sticky note
	Make a highlight annotation
	Make a bow tie annotation
	Show the underline location relative to a highlight annotation

	Set a redaction area
	Use JavaScript to calculate values

	PDF Forms
	PdfForm
	Node form fields
	Leaf form fields
	Visiting nodes
	Form actions

	Merge PDF forms
	Import pages
	Merge forms
	Default merging

	DotPdf repair
	DotPdf repair process
	Detect errors
	Repair errors
	Repair events
	Repair filtering
	Structure options
	Array options
	Property repair

	Digital signatures
	Certify documents
	Select PdfDocument or PdfGeneratedDocument for certification
	Controlling changes to certified documents

	Get signer information
	PdfSignatureInformation object
	PdfCertification and CmsInformation

	Document signing operations
	PdfDocumentSigner Object
	Use signatures and certifications

	Customize signature appearance
	Certify a document with PdfDocument
	Determine if a document is certified or signed
	Fill fields of a certified document
	Sign a document with an existing signature
	Add a signature to a document

	Linearized PDF
	PdfDocument and PdfGeneratedDocument integraton
	PdfEncoder integration

	PDF/A
	PDF/A in PdfDocument
	Saving a PDF/A document

	PDF/A data in PdfDocumentMetadata
	PDF/A in PdfGeneratedDocument
	Convert pages to images
	Color spaces
	Images
	Fonts
	Standard fonts
	Streamless fonts
	Encoding

	Transparency
	Annotations and Actions
	Merge PDF/A documents
	Error handling

	PDF 2.0
	Document upgrade to PDF 2.0

	BarcodeReader
	Use the BarcodeReader
	Reading a bar code

	Read a bar code with options set

