
Kofax SignDoc Standard
Administrator's Guide
Version: 3.0.0

Date: 2021-08-16

© 2021 Kofax. All rights reserved.

Kofax is a trademark of Kofax, Inc., registered in the U.S. and/or other countries. All other trademarks
are the property of their respective owners. No part of this publication may be reproduced, stored, or
transmitted in any form without the prior written permission of Kofax.

Table of Contents
Preface.. 5

Related documentation...5
Training... 5
Getting help with Kofax products...5
Definitions... 6

Chapter 1: Licensing...7
License handling...7
SignDoc license.. 7
Account license...8
Global license... 8
Reset license (special license)...9

Chapter 2: Logging... 10
On-premise logging.. 10

Chapter 3: Configuration..11
Configuration service.. 11

Configuration levels... 11
Change configuration options..12

Configuration files... 16
Configure the 'autoprepare' functionality... 17
Fonts used in the final document..18

Configuration values... 18
System... 18
Documents and packages... 24
Security.. 26
Mail...27
Plugins..33
Client.. 34
Advanced signing settings...38

Chapter 4: Plugins.. 41
Plugin handling... 41
Plugin administration.. 43
Plugin development.. 49

Plugin interface.. 49
Plugin implementation..50

3

Kofax SignDoc Standard Administrator's Guide

How SignDoc uses plugins... 50
Signing plugin... 51

SigningEvent plugin description.. 51
Minimal SigningEvent implementation...51
SigningRSA interface...51
Minimal SigningRSA implementation.. 52
Core plugins...52

Notification plugin... 53
Notification plugin description..53
Core plugins...54

Package state change plugin...58
Package state change plugin description..58
Core plugins...60

Signer search plugin...62
Signer search plugin description... 62

Document scan plugin..64
Document scan plugin description.. 64
Core plugins...64

TSP plugin.. 67
Trusted service provider plugin description...67
Sample development package.. 71
Core plugins...71

Chapter 5: Mail.. 76
SMTP configuration.. 76
S/MIME configuration... 77

Chapter 6: BankID... 78
BankID Windows service configuration..78
Installing the external SignDocBankIdService... 79
Configuration parameters... 79

BankID authentication..80
BankID signing...81

Audit.. 83
Localization... 83
References..83

Chapter 7: Tenant-specific URL...84
Chapter 8: Google Chrome Group Policy (GPO)...86

4

Preface

This guide provides information on SignDoc Standard licensing, logging, configuration, and plugins.

Related documentation
The full documentation set for SignDoc Standard is available at the following location:

https://docshield.kofax.com/Portal/Products/SD/3.0.0-7s9x4v5c5f/SD.htm

In addition to this guide, the documentation set includes the following items:
• Help for Kofax SignDoc Standard
• Help for Kofax SignDoc Standard Administration Center
• Help for Signing Documents with Kofax SignDoc
• Kofax SignDoc Standard Developer's Guide
• Kofax SignDoc Standard Installation Guide
• Kofax SignDoc Technical Specifications

Training
Kofax offers both classroom and online training to help you make the most of your product. To learn more
about training courses and schedules, visit the Kofax Education Portal on the Kofax website.

Getting help with Kofax products
The Kofax Knowledge Base repository contains articles that are updated on a regular basis to keep you
informed about Kofax products. We encourage you to use the Knowledge Base to obtain answers to your
product questions.

To access the Kofax Knowledge Base, go to the Kofax website and select Support on the home page.

Note The Kofax Knowledge Base is optimized for use with Google Chrome, Mozilla Firefox or Microsoft
Edge.

The Kofax Knowledge Base provides:
• Powerful search capabilities to help you quickly locate the information you need.

Type your search terms or phrase into the Search box, and then click the search icon.

5

https://docshield.kofax.com/Portal/Products/SD/3.0.0-7s9x4v5c5f/SD.htm
https://learn.kofax.com/
https://knowledge.kofax.com/
https://www.kofax.com/

Kofax SignDoc Standard Administrator's Guide

• Product information, configuration details and documentation, including release news.
Scroll through the Kofax Knowledge Base home page to locate a product family. Then click a product
family name to view a list of related articles. Please note that some product families require a valid
Kofax Portal login to view related articles.

• Access to the Kofax Customer Portal (for eligible customers).
Click the Customer Support link at the top of the page, and then click Log in to the Customer Portal.

• Access to the Kofax Partner Portal (for eligible partners).
Click the Partner Support link at the top of the page, and then click Log in to the Partner Portal.

• Access to Kofax support commitments, lifecycle policies, electronic fulfillment details, and self-service
tools.
Scroll to the General Support section, click Support Details, and then select the appropriate tab.

Definitions
• INSTALLDIR is the directory with the unpacked signdoc-standard-3.0.0.zip file. See Related

documentation, SignDoc Standard Installation Guide, chapter "Quickstart procedure".
• CIRRUS_HOME and SDWEB_HOME are the directories of the web applications that compose SignDoc

Standard.

Note Starting with SignDoc Standard 2.1.0, these home directories are consolidated by default in
one single directory. See Related documentation, SignDoc Standard Installation Guide, chapter
"Directories".

6

Chapter 1

Licensing

License handling
To use SignDoc Standard it is required to install a valid SignDoc license for SignDoc Standard .

For on-premise installations the SignDoc license file (KofaxSignDoc.key) will be provided by the Kofax
Order Fulfillment team based on a sales order. You will get a set of license files which is specially made
out for the customer.

SignDoc license
To run SignDoc an appropriate license key file has to be installed. The license key contains information
about the permissions. The key file can be opened in a text editor. The order of the license defines the
permissions.

A SignDoc license can be installed only if the following requirements are met:
• It must be a valid SignDoc license
• The license is not expired

Starting with SignDoc 2.1.0.1 a SignDoc license (KofaxSignDoc.key) can either be used for an individual
account or for all accounts of an installation.

Example for the content of a SignDoc license key:
h:SPLM2 4.10
i:ID:9923379
i:Product:KofaxSignDoc
i:Manufacturer:Kofax Deutschland GmbH
i:Customer:Dummy corporation
i:Version:99
i:OS:all
a:product:unlimited
a:signware:unlimited
a:sign:2018-12-31
a:capture:unlimited
a:render:unlimited
ps:ACCOUNT_INFORMATION:F4D22WO65F
ps:CustomerCompany:Dummy corporation
ps:COUNTER_RENEWAL_PERIOD:MONTHLY
pi:LICENSE_TYPE:1
pi:MAX_SIGNING_PACKAGES:100000
pi:MAX_USERS:100

7

Kofax SignDoc Standard Administrator's Guide

s:7372e410285f21fcd7cecd5669190394f951fa032889e97be8f7bdad2c8091ef
s:7c414338328c13d0ace0e55501fa640e97ed322b5f89a941355212223f4e8c84
s:3914e3749ffd5e80c49c592ef9f89819f11774b84355d285ca0f50c8d54d732e
s:79ae6555d940d0c7f06bfec65714e33985db5f306e897f6e05e91516c546b25d

Explanation of application-related license parameters:

a:sign:2018-12-31 contains the date of expiry.

pi:MAX_SIGNING_PACKAGES:100000 describes the number of licensed signing packages.

pi:MAX_USERS:100 shows the maximum number of SignDoc users that can be created.

ps:ACCOUNT_INFORMATION:F4D22WO65F is a customer-unique string and is important if you need an
upgrade of the license, for example if you need more packages or if you want to increase the number of
users. Only a license with the same ps:ACCOUNT_INFORMATION entry can be used for a subsequent
license import for the account. Once installed, this ps:ACCOUNT_INFORMATION is dedicated for a
specific account, that means, that a license with the same ps:ACCOUNT_INFORMATION cannot be used
for more than one account.

ps:COUNTER_RENEWAL_PERIOD:MONTHLY causes a monthly package counter reset (default is
YEARLY).

Account license
A SignDoc license will become an account license when the license file is applied for an individual
account of the SignDoc installation. The account license includes permissions which are only valid for this
specific SignDoc account. Any other accounts in the system need a separate license in each case. An
account license must be installed during account creation. It is not possible to install an account license
separately from the account creation. It is only possible to upgrade the license afterwards.

An account license can be installed for the first time only by a SignDoc server administrator during
account creation. An upgrade of an account license can be installed by a SignDoc server administrator or
by an account administrator.

An account license can be upgraded only with another license with the same
ps:ACCOUNT_INFORMATION entry. Additionally, the following is required:
• It must be a valid SignDoc license.
• The license is not expired.
• The number of already processed packages must not exceed the number of licensed packages.
• The number of already existing account-specific users must not exceed the number of licensed users.

Global license
A SignDoc license will become a global license when the license file is not applied for a specific account.
In this case, the license can be used as system-wide license which is valid for all accounts. The included
permissions are valid for all accounts without the necessity of an individual license for each account. The
licensed number of packages and/or users are shared between all accounts.

8

Kofax SignDoc Standard Administrator's Guide

A global license can be installed by a SignDoc server administrator before any account is created. If a
global license is installed an arbitrary number of accounts can be installed. No additional account-specific
licenses are needed.

Important If a global license is installed once it is not possible to return back to account-specific
licenses! In general, if a global license is installed, any installed account-specific licenses are invalidated
or rather removed.

A global license can be upgraded only with another license with the same ps:ACCOUNT_INFORMATION
entry. Additionally, the following is required:
• It must be a valid SignDoc license.
• The license is not expired.
• The number of already processed packages must not exceed the number of licensed packages.
• The number of already existing account specific users must not exceed the number of licensed users.

Use an installed account license as global license

It is possible to use an applied account license as global license for the system. When the license key file
will be applied again as global license the number of already processed packages for this account is used
as base number of packages for the global license. All subsequent created signing packages (including
templates) are count on base of this number. During installation of the global license it is checked whether
the total number of all account-related users exceeds the number of licensed users. In this case the
license cannot be installed.

Apply a global license as replacement for already installed account licenses

It is possible to install a new SignDoc license as global license even if you have installed any account-
specific licenses.

Reset license (special license)
A reset license is a special license which must be requested from Kofax if the installed license is invalid
or corrupted for any reason. Since this is an unrecoverable problem, it requires a special treatment. If an
account license or a global license is corrupted it is required to ‘reset’ the license by this specific reset
license. Only the import of a reset license allows the application to continue with an installation of a valid
‘normal’ license (account or global license).

It is not necessary (and also not possible) to use a reset license if the already installed license is valid
or only expired or if any maximum (of users or packages) is reached. A reset license is a time restricted
license file which cannot be used as production license.

9

Chapter 2

Logging

On-premise logging
SignDoc Standard is able to trace any application messages into a log. This log is independent from the
audit trail which records package processing steps into the SignDoc Standard database.

SignDoc Standard uses an inbuilt logging framework, which can be turned on/off using the configuration
id 'signdoc.logger.handler.enabled'. It supports log levels (ALL, FINEST, FINER, FINE, CONFG,
INFO, WARNING, SEVERE, OFF) which can be easily configured by the administrator user using the
configuration id 'signdoc.logger.level'. The logging configurations can only be viewed and updated by an
administrator user.

By default SignDoc Standard creates log files on disk. Cirrus-specific log files are written to
SIGNDOC_HOME/logs/signdoc/signdoc.log by default, if the parent directory does not exist it will be
created.

The directory containing the signdoc logs should solely be used to store the signdoc logs controlled by
signdoc.logger.* configurations and should not contain any subdirectories, i.e. in this case, the "signdoc"
folder inside the "logs" folder should not contain any more subdirectories and should not be referenced to
write any other logs e.g. logs for the Tomcat server.

Cirrus writes its log by default into a primary file signdoc.log. A series of log files are created when the
existing log file size exceeds the defined size limit. The log file with name signdoc.log always contains
the most recent logs. The older log files exceeding the size limit are archived and have a timestamp
appended to the filename for transparency. When a new log is written signdoc.log is first checked for the
size limit defined in the configuration 'signdoc.logger.handler.logfile.maxsize', if the current log exceeds
this size a new log file is created with name signdoc.log and the older file is archived at the same location
and renamed as e.g signdoc_{TIMESTAMP}.log. The lowest possible allowed size is 10K kilobytes.

The user also has an option to control the maximum number of the log files to be archived at one time by
using the configuration 'signdoc.logger.handler.logfile.maxnumber', when a new log line is written it checks
if the total number of files including the new one does not exceed the defined limit. If the total number of
log files exceeds this value, then all the oldest log files are deleted, only storing the total number of newest
log files within the defined maxnumber limit.

This kind of file logging is intended only for on-premise usage.

10

Chapter 3

Configuration

Important SignDoc Standard before version 2.1.0 was mainly configured with the configuration file
cirrus.properties. This file moved to INSTALLDIR_conf_templates\cirrus.properties with
version 2.1.0.

Since SignDoc Standard 2.1.0, it is highly recommended to use the file INSTALLDIR
\service_configuration.properties (instead of cirrus.properties) whenever it is required to
configure SignDoc with a configuration file. Configurations set in this file are applied as Java system
property and have therefore highest precedence.

Configuration service
The reasons for using a configuration service are:
• Changing configuration options on the fly, without a server restart.
• Setting configuration values individually on an account basis.
• Providing help and validation on configuration values via a GUI.

Configuration levels
One configuration value can be set on following levels:
• Default value

The default value for a configuration option can be provided by the application. This value applies if no
configuration is set by the user. This value cannot be changed.

• Global (application-wide) value
This value can be set by the server administrator and applies to all accounts.

• Account-specific value
This value can be set by an account administrator (permission dependent) or by the server
administrator. It only applies to the account it has been set for. Not all configuration values can be set
account specific.

The application uses following precedence when determining the value to apply for one configuration
option and account:

1. If an account-specific value exists, it is used.

2. If no account-specific value exists, the global value is used if available.

3. If no global value exists, the default value is used.

4. If no default value is defined, no value is returned.

11

Kofax SignDoc Standard Administrator's Guide

Change configuration options
All configuration service values are set using the REST API. Both the Administration Center and the
Manage Client provide user interfaces to view and edit configuration values. They use the underlying
REST API to apply the changes.

Configuration using the Administration Center
Server administrators use the Administration Center to change configuration values. They can change
both global and account-specific values.

From the Administration Center starting page click the System settings link in the navigation panel to
change global values.

The System settings menu is displayed which includes settings related to the system, documents and
packages, plugins, security and signing.

The configuration options are grouped in categories shown on the left.

Each configuration option will have:
• A title

12

Kofax SignDoc Standard Administrator's Guide

• The configuration option id
• A description of the configuration option

The entry field is used to edit the configuration option value. The configuration value on the current level
(in this case global) is shown in normal text. If it is not set and a lower precedence level (in this case
default) exists, that value will be shown grayed out.

A configuration value will be validated by the client before it is used.

Multiple configuration values can and should be set in one go. Related configuration values should be
changed together. When everything is set, the Save button will store the new configuration on the server.

Account-specific configuration options can be set by first selecting the account:

Clicking Edit will take you to a similar view as above, where the account-specific settings can be edited.

13

Kofax SignDoc Standard Administrator's Guide

Configuration using the Manage Client
Account administrators will use the Manage Client to change configuration settings. To get to the
configuration settings, click Administration in the title bar:

14

Kofax SignDoc Standard Administrator's Guide

The configuration options are grouped in categories shown on the left. The display and editing of
individual configuration options is similar to the Administration Center.

Configuration using the REST API
All configuration options can also be set programmatically using the REST API.

15

Kofax SignDoc Standard Administrator's Guide

Using the REST API is documented in the SignDoc Standard Developer's Guide, see Related
documentation.

Configuration files
Important SignDoc Standard before version 2.1.0 was mainly configured with the configuration file
cirrus.properties. This file moved to INSTALLDIR_conf_templates\cirrus.properties with
version 2.1.0.

Since SignDoc Standard 2.1.0, it is highly recommended to use the file INSTALLDIR
\service_configuration.properties (instead of cirrus.properties) whenever it is required to
configure SignDoc with a configuration file. Configurations set in this file are applied as Java system
property and have therefore highest precedence.

Configuration options
• cirrus.rest.hide.app.version

If set to true, the REST API will not reveal the application version information without authentication.
Supported values: true, false. Default: false
Example
cirrus.rest.hide.app.version=false

• cirrus.tenant.url.supported
In the cirrus.properties configuration file this setting determines whether tenant-specific URL handling is
supported or not. Supported values: true, false. Default: false

For information on LDAP properties, see SignDoc Standard Installation Guide, chapter "Authentication
LDAP". See Related documentation.

16

Kofax SignDoc Standard Administrator's Guide

The number of rest requests for a user in a time frame can be restricted using the below configuration
options. Both the configurations should have a positive value for the rate limiting to work.
• cirrus.rest.request.max.size

Defines the number of rest requests allowed for a user with a authentication token. Default value -1,
allows infinite requests.
Example
cirrus.rest.request.max.size=-1

• cirrus.rest.request.max.size.time
Time frame in seconds to restrict the maximum number of rest requests for the configuration
'cirrus.rest.request.max.size. Default value: -1, allows infinite requests.
Example
cirrus.rest.request.max.size.time=-1

Configure the 'autoprepare' functionality
Important SignDoc Standard before version 2.1.0 was mainly configured with the configuration file
cirrus.properties. This file moved to INSTALLDIR_conf_templates\cirrus.properties with
version 2.1.0.

Since SignDoc Standard 2.1.0, it is highly recommended to use the file INSTALLDIR
\service_configuration.properties (instead of cirrus.properties) whenever it is required to
configure SignDoc with a configuration file. Configurations set in this file are applied as Java system
property and have therefore highest precedence.

During preparation of a signing package the user may choose to ‘autoprepare’ a document after the
upload. This means that for every defined signer a signature field is added to the document automatically.

Signature fields are placed in rows and columns starting at top/left margin. If a field would exceed the right
margin it will be placed in a next row. If there is no space left on the page, an exception is thrown.

Properties used for configuring the 'autoprepare' functionality

Add configuration properties to INSTALLDIR\service_configuration.properties configuration
file.
• cirrus.autoprepare.option Autoprepare first or last page, defaults to first.
• cirrus.autoprepare.margin.top The top margin of the page where signature fields are placed.
• cirrus.autoprepare.margin.left The left margin of the page where signature fields are placed.
• cirrus.autoprepare.margin.bottom The bottom margin of the page where signature fields are placed.
• cirrus.autoprepare.margin.right The right margin of the page where signature fields are placed.
• cirrus.autoprepare.padding.horiz The space between rows of signature fields.
• cirrus.autoprepare.padding.vert The space between columns of signature fields.

All numeric values are in pixel units. The default value is always 10.

17

Kofax SignDoc Standard Administrator's Guide

Fonts used in the final document
Important SignDoc Standard before version 2.1.0 was mainly configured with the configuration file
cirrus.properties. This file moved to INSTALLDIR_conf_templates\cirrus.properties with
version 2.1.0.

Since SignDoc Standard 2.1.0, it is highly recommended to use the file INSTALLDIR
\service_configuration.properties (instead of cirrus.properties) whenever it is required to
configure SignDoc with a configuration file. Configurations set in this file are applied as Java system
property and have therefore highest precedence.

When building the final document, the application searches for compatible fonts in INSTALLDIR
\signdoc_home\fonts directory by default. Copy any fonts that might be used in the application in that
location.

The font for the final package PDF document’s can be controlled by the system administrator, using pre-
defined configurations for font name and font directory.
• cirrus.document.signing.final-package.font-directory

Defines the location where fonts are available, the path should be a valid path on the server and should
contain the font defined in the font name. If this path is not explicitly defined by the system administrator
then INSTALLDIR\signdoc_home\fonts is used.

• cirrus.document.signing.final-package.font-name
Defines the font name that should be used for the final document. The user has flexibility to choose
his/her own font. The font name defined here should be either available in the font directory or in the
system. By default ‘Noto Sans’ is used.

When the final document is created, if the font is no longer valid (e.g if the font folder is deleted) then the
application falls back to the default font and font directory. If there are issues locating the default font and
font directory the final package is not assembled and the email containing the final document will not be
sent.

Configuration values

System
This section lists the system settings.

General system settings
• Configuration cache check time

cirrus.config.cache_check_period
The time interval in milliseconds to check if the configuration cache has to be updated.

18

Kofax SignDoc Standard Administrator's Guide

• List of configurable languages
cirrus.config.locales
The comma separated list of locale strings for storing and retrieving the locale-specific configuration
values, like email subject and body. A locale string must be a valid IETF BCP 47 language tag, e.g. en-
US, see https://tools.ietf.org/html/bcp47.

• Audit trails language
cirrus.general.audittrail.locale
Language to be used for the audit trails. It must be a valid IETF BCP 47 language tag, see https://
tools.ietf.org/html/bcp47.
Default value: en
Example: en for English or pt-BR for Brazilian Portuguese.

• Customized localization data for the audit trails
cirrus.general.localization.audittrail
User defined customized localization for the audit trails. The data expected is a valid key value pair e.g.
key=value. User can provide a complete set or a subset for the localization of a specific language.
Default value: audittrail.properties

• Customized localization data for the Manage Client
cirrus.general.localization.client.manage
User defined customized localization for the Manage Client. The data expected is a well formed json.
User can provide a complete set or a subset for the localization of a specific language.
Default value: mc_language.json

• Customized localization data for the Signing Client
cirrus.general.localization.client.signing
User defined customized localization for the Signing Client. The data expected is a well formed json.
User can provide a complete set or a subset for the localization of a specific language.
Default value: sc_language.json

Note
• cirrus.general.localization.*, if the structure of the localization messages is changed between the

releases, the customer should adapt to the new changes manually, also layout changes are not in
the scope of these configurations. Message keys that are not included in the original localization
files or are not in the correct tree structure will be ignored.

• The final audit trail message is based on the language defined in the configuration
"cirrus.general.audittrail.locale" at the time of writing the audit trail message. Hence if the language
is changed when a signing package is in progress, the audit trail for that signing package will
contain messages in mixed languages. This also affects the final pdf document for the signing
package.

• Prefer officially supported languages by Kofax
cirrus.general.localization.prefer.kofax.languages
Kofax maintains a list of officially supported GUI languages. If set to "on" (default) and one of the
accepted languages in the browser configuration is an officially supported Kofax language, that
language will be preferred over other languages in the user's language list. If set to "off" the browser

19

https://tools.ietf.org/html/bcp47

Kofax SignDoc Standard Administrator's Guide

will always try to use the user's most preferred language. This can lead to an English UI, if there is no
language file installed for the requested language.
Default value: On

• State change query interval (minutes)
cirrus.statechange.polling.interval
Defines the database query interval in minutes for signer- and signing package tables for pending state
change.

• Certificate expiration warning threshold (days)
client.account.certificate.expiry.warn.threshold
The threshold in days when the client will start warning of expiring certificate (1-365).

• License expiration warning threshold (days)
client.account.license.expiry.warn.threshold
The threshold in days when the client will start warning on expiring account licenses (1-365).

Single Sign-on settings
• Single Sign-on authentication module URL

cirrus.sso.auth.module.url
The URL of the Single Sign-on authentication module. Examples: http://localhost:6612, https://
sso.mysigndocserver.com

• Automatically login with Single Sign-on
cirrus.sso.autologin
If the context URL is opened in the browser, SignDoc tries to authenticate the user automatically by
querying the configured Single Sign-on authentication module. Default value: Off

• Create new users
cirrus.sso.create.user
Automatically create new Single Sign-on users in SignDoc. Default value: On

• Default account id
cirrus.sso.create.user.account
The default account id to use for Single Sign-on user creation/authentication when account information
is missing.

• Sanitize external user id
cirrus.sso.sanitize.userid
Sanitize external user id for automatically created Single Sign-on users. Default value: On

REST API settings
• Time to live for an in-person signing session authentication token

cirrus.rest.authentication.signing.token.ttl.common
The time to live in minutes for an in-person signing session token (X-S-AUTH-TOKEN) of the Signing
Client.

• Time to live for a remote signing session authentication token
cirrus.rest.authentication.signing.token.ttl.remote
The time to live in minutes for a remote signing session token (X-S-AUTH-TOKEN) of the Signing
Client.

20

Kofax SignDoc Standard Administrator's Guide

• Time to live for a Manage Client authentication token.
cirrus.rest.authentication.token.leasetime
Defines the time to live in minutes for a Manage Client authentication token (X-AUTH-TOKEN).

• Activate Content-Security-Policy header
cirrus.rest.csp.enable
If set to 'on', the value of cirrus.rest.csp.value will be used as Content-Security-Policy header in HTTP
responses. Default value: On

• Content-Security-Policy header value
cirrus.rest.csp.value
Sets the value of the Content-Security-Policy header. Only used, if cirrus.rest.csp.enable is set to 'on'.

• Allow to use the field name to reference document fields
cirrus.rest.document.field.use_name_as_id_fallback
Instead of having to use field id values in the JSON data of a POST /v6/package request to reference
document fields (text, checkbox, signature), it is possible to reference the fields also per field name if
this configuration setting is set to 'On'. Default value: On

• Timeout event request
cirrus.rest.event.request.timeout
The maximum wait time in seconds (for long polling) if one or more events are requested via REST API.

• User authentication check time
cirrus.rest.event.user.authenticated.request.authid_check_period
The time interval in seconds to check if the user was authenticated with another authentication id. The
verification is needed by the Manage Client for auto logoff.

• Default auto-prepare option for documents
cirrus.rest.expresspackage.auto-prepare
If set to true, creates one signature field for each signer in every document of the express signing
package. Default value: Off

• Default delete-existing option for signing package
cirrus.rest.expresspackage.delete-existing
Deletes existing package with the same id before creating a new express signing package. Default
value: Off

• Default 'required' flag for signature fields
cirrus.rest.expresspackage.signaturefield.required.default
Default setting for the required flag of signature fields in a express signing package when no signature
field is marked required. Default value: On

• Default signer authentication method
cirrus.rest.expresspackage.signer.authentication.default
The default authentication method that is used for the signer when creating an express signing
package.

• Signer default name
cirrus.rest.expresspackage.signer.default.name
Default name for signer in the express signing package, if signer name is not specified in the request.

21

Kofax SignDoc Standard Administrator's Guide

• Automatic field masking
cirrus.rest.field.masking.automatic
If set to 'on', fields that cannot be edited by the current signer or reviewer are masked in the signing
client and cannot be read by the current signer. Fields that are not assigned to a particular signer or
reviewer can be read by all signers or reviewers. Default: 'off'

• Automatic field masking for reviewers
cirrus.rest.field.masking.reviewer
If set to 'off', a reviewer will see the values of all document fields when "Automatic field masking" is
turned 'on'. If set to 'on', the reviewer will only see values of fields assigned to 'Any'. Default: 'off'

• Validate HTML input and reject, if invalid or dangerous
cirrus.rest.html_input.validate
If HTML fragments contain invalid or dangerous constructs, the data will be rejected. Default value: On

• Sanitize HTML input, if invalid or dangerous
cirrus.rest.html_output.sanitize
If HTML fragments contain invalid or dangerous constructs, the data will be sanitized. Default value: On

• General REST result set size limit
cirrus.rest.resultset.size.max.general
General size limit of result sets for lists which are retrieved via REST API. The general settings can be
overwritten by resource-specific settings.

• Package REST result set size limit
cirrus.rest.resultset.size.max.packages
Size limit of result sets for package lists which are retrieved via REST API. If this configuration value is
not set then the general setting cirrus.rest.resultset.size.max.general is used for result set limitation.

• Signer REST result set size limit
cirrus.rest.resultset.size.max.signers
Size limit of result sets for signer lists which are retrieved via REST API. If this configuration value is not
set then the general setting cirrus.rest.resultset.size.max.general is used for result set limitation.

• Signer REST result set size limit if a search criteria is being used
cirrus.rest.resultset.size.max.signers.autocomplete
Size limit of result sets for signer lists which are retrieved via REST API in case one of the search
criteria is being used. This is the case for the client autocomplete function.

• User REST result set size limit
cirrus.rest.resultset.size.max.users
Size limit of result sets for user lists which are retrieved via REST API. If this configuration value is not
set then the general setting cirrus.rest.resultset.size.max.general is used for result set limitation.

• Include the locking signer's email when a signing package is locked
cirrus.rest.signingsession.status.return.signer.email
When this setting is 'on' and a signing package is locked the GET signingsession/status endpoint will
include the email of the signer who is currently locking the signing package. Default value: On

• Include the locking signer's name when a signing package is locked
cirrus.rest.signingsession.status.return.signer.name
When this setting is 'on' and a signing package is locked the GET signingsession/status endpoint will
include the name of the signer who is currently locking the signing package. Default value: On

22

Kofax SignDoc Standard Administrator's Guide

• Require password to change a user's email address
cirrus.rest.user.email_change.require_password
If set to 'on' the authenticated user must also supply the own password to change any user's email
address. Default value: On

• REST API V6 default resolution
cirrus.rest.v6.default.resolution
Defines the default resolution of the coordinates passed to the REST API V6 for the POST /package
resource.

Logging settings
• SignDoc log console logging

signdoc.logger.handler.console.enabled
Enables console logging via the SignDoc log console logging. If 'on', SignDoc will print out qualified log
lines on the console. Default value: On

• SignDoc log Date format
signdoc.logger.handler.date.format
Sets the format of the timestamp used in the SignDoc log file.

• Enable SignDoc log
signdoc.logger.handler.enabled
Controls the SignDoc log. If 'off', the following settings are completely ignored:
signdoc.logger.handler.file.enabled, signdoc.logger.handler.logfile, signdoc.logger.handler.date.format,
signdoc.logger.handler.console.enabled, signdoc.logger.handler.logfile.maxsize,
signdoc.logger.handler.logfile.maxnumber. Default value: On

• Enable SignDoc file logging
signdoc.logger.handler.file.enabled
Controls the SignDoc file logging. If 'on', SignDoc will print out qualified log lines in the specified log file.
See signdoc.logger.handler.logfile. Default value: On

• SignDoc log file name
signdoc.logger.handler.logfile
Defines the file used by the SignDoc log. The SignDoc process must be able to write to the file. If the
file does not exist, the application will try to create the file as well as all needed parent directories.

Note For this feature to work the best, the directory with the signdoc log files should not contain any
other sub directories and should be used solely to store signdoc logs.

• SignDoc log files maximum number
signdoc.logger.handler.logfile.maxnumber
Defines the maximum number of SignDoc log files that can be stored or maintained. If the total number
of SignDoc log files exceeds this set number all the previous log files are deleted. The lowest possible
allowed size is 10K kilobytes.

• SignDoc log file maximum size
signdoc.logger.handler.logfile.maxsize
Defines the maximum size of a SignDoc log file in kilobytes, if the SignDoc log file size is more than the
set limit a new log file is created for future logs.

23

Kofax SignDoc Standard Administrator's Guide

• SignDoc log logging level
signdoc.logger.level
Sets the system wide logging level for all instances. Warning: A level lower than INFO (CONFIG, FINE,
FINER, FINEST, ALL) can slow down the system and reduce performance. Valid log levels: OFF,
SEVERE, WARNING, INFO, CONFIG, FINE, FINER, FINEST, ALL.

• Enable external SignDoc log output
signdoc.logger.parent_handlers.enabled
If 'on', all log lines will also sent to the standard java logging framework. Default value: On

Documents and packages
This section lists the settings related to documents and packages.
• Source of the signer id which is assigned to a signature (line) field

cirrus.document.prepare.msword.signatureline.signerid.source
A Microsoft Word document can be uploaded to a signing package. The document can contain Word
specific signature lines. A signature field is created in the converted pdf document for each signature
line. In addition a signer is assigned to the new created signature field. The signer is either already
available in the package or it will be created automatically. If the value is 'field_name' then the signer id
is set from the signature line tag id (which is also used for the new created signature field). If the value
of this setting is 'signer_name' then the source of the id for this signer is the 'Suggested signer' name
from the Signature setup dialog (visible during insert signature line action). Note: The entered signer
name must be conform to the allowed characters for an id [a-zA-Z0-9_-] and must not contain spaces.
Otherwise a random UUID is set as signer id. Allowed values for this configuration settings are either
field_name or signer_name.

• The maximum document size
cirrus.document.prepare.size.max
The maximum size of a document that can be uploaded.

• Maximum number of files for a supplemental document type
cirrus.document.prepare.supplemental.file.max-number
The maximum number of supplemental files that can be uploaded by a signer for one document type.
Changing this number does not have an automatic impact on already configured document types or
document type instances. This setting is only considered if you change or add a document type.

• Maximum number of supplemental document type instances
cirrus.document.prepare.supplemental.type-instance.max-number
The maximum number of supplemental document type instances that can be created for a signer.

• Controls if documents are tested after upload
cirrus.document.prepare.validate.on.upload
If 'On' documents lacking advanced compliance or having known vulnerabilities will be rejected. Default
value: On

24

Kofax SignDoc Standard Administrator's Guide

• The script font for Click-to-Sign signatures
cirrus.document.signing.c2s.font.script
Click-to-Sign signatures need a "script font" that is used to render the signers's name. If the uploaded
data is not usable it will be rejected.
The default Click-to-Sign script font covers only a small subset (Western-Latin) of Unicode. If other
characters are entered, they will not show up in the resulting Click-to-Sign signature. To circumvent this,
it is necessary to upload a font that contains all the required characters.

• The text font for Click-to-Sign signatures
cirrus.document.signing.c2s.font.text
Click-to-Sign signatures need a "text font" that is used to render the text data in a Click-to-Sign
signature. If the uploaded data is not usable it will be rejected.

• The resolution in DPI for Click-to-Sign signatures
cirrus.document.signing.c2s.resolution.dpi
Click-to-Sign signatures will be rendered in this resolution. Valid range: >=72 and <=600

• The cover page of the final document package
cirrus.document.signing.final-package.cover-document
The cover page of the final document package can be customized by uploading a flat PDF document. If
the uploaded data is not usable it will be rejected.

• Lock all interactive fields of finished signing package documents
cirrus.document.signing.final-package.lock-fields
If a signing package is completed and this setting is enabled, all interactive fields of all documents will
be locked to prevent further modifications. Default value: Off

• Font directory for the final document package
cirrus.document.signing.final-package.font-directory
The customized font directory for the final document of the package. The directory defined should be a
valid path and should contain the valid required font.
Default value: SIGNDOC_HOME/fonts

• Font name for the final document package
cirrus.document.signing.final-package.font-name
The font name defined should be either present in the font directory or the system font directory.
Default value: Noto Sans

• Maximum size of supplemental documents
cirrus.document.signing.supplemental.file.max-size
The maximum size (in kilobytes) of a single supplemental documents that can be uploaded by a signer.

• Accepted supplemental documents file suffixes
cirrus.document.signing.supplemental.file.suffixes
List of accepted file type extensions (file name suffix after period) for supplemental documents. Listed
file type extensions must be separated by ',' and should not include any whitespace. By default the
following file types are accepted: jpg,jpeg,png,doc,docx,pdf.

25

Kofax SignDoc Standard Administrator's Guide

• The screen of the signature pad
cirrus.document.signing.tablet.screen
Defines the layout and content of the screen when signing with a signature pad. If the uploaded data
is not correct it will be rejected. Please note that Chinese and Japanese characters are currently not
supported.

• Enable delegate signing
cirrus.package.delegate.enabled
Controls the delegation of a signing session for a recipient. If set 'on', the recipient can delegate it's
signing session to a new recipient. This flag will be ignored and is overridden if the signing package
creator explicitly enables or disables delegate option for a recipient. Default value: On

• Controls if delegate signing is overwritable
cirrus.package.delegate.overwritable
If 'on' the signing package creator can overwrite the default delegate signing session option else it is not
allowed to make any changes. Default value: On

• Delete audit trail together with package
cirrus.package.delete.audittrail
Defines whether all package related audit trail entries are deleted automatically if the package is
removed. Default value: On

• Enable in-person signing
cirrus.package.inperson.enabled
Controls the in-person signing. If 'on' in-person signing of a package is allowed else not allowed. This
flag will be ignored and is overridden if the user explicitly enables or disables in-person signing during
package create/update. Default value: On

• Controls if in-person signing option is overwritable
cirrus.package.inperson.overwritable
If 'on' the user can overwrite the in-person signing option. If 'off' user is not allowed to do any changes.
Default value: On

Security
This section lists the security related settings.
• Signer blocked time

security.fail.accesscode.blocked.time
Period of time in milliseconds a signer user is blocked before next 2-factor authentication attempt is
allowed. This is effective for signers that were blocked after unsuccessful authentication attempts.

• Maximum number of failed signer authentication attempts
security.fail.accesscode.max.attempts
Maximum number of failed signer 2-factor authentication attempts allowed until the signer is blocked
(see security.fail.accesscode.blocked.time).

• Reset duration after unsuccessful signer access code authentication
security.fail.accesscode.max.life.seconds
Maximum number of seconds before the counter for unsuccessful 2-factor authentication attempts
for a signer is reset (as long as the signer blocked). The max life time is counted after first failed

26

Kofax SignDoc Standard Administrator's Guide

authentication with a wrong access code. If further authentication attempts fail within the max life time,
the signer is blocked (see security.fail.accesscode.blocked.time).

• Action after too many failed user authentication trials
security.fail.login.action
Action to be taken if maximum number of failed user authentications is reached, supported values are
SUSPEND and BLOCK. SUSPEND will suspend the user, only an administrator can activate the user
again. BLOCK will block any authentication attempts. The period of blocked time is set by configuration
parameter security.fail.login.blocked.time. A reactivation by an administrator is not possible during this
time period. This is also effective for users that could not be suspended. A user cannot be suspended if
he is the last user with role ADMIN for an account or if the affected user is the last SUPERUSER in the
system.

• User blocked time
security.fail.login.blocked.time
Period of time in milliseconds a user is blocked before next authentication attempt is allowed. This is
effective only for users that were blocked after unsuccessful login attempts.

• Maximum number of failed login attempts
security.fail.login.max.attempts
Maximum number of failed login attempts allowed until a user is suspended or blocked (see
security.fail.login.action).

• Reset duration after unsuccessful user authentication
security.fail.login.max.life.seconds
Maximum number of seconds before the counter for unsuccessful attempts for a user is reset (as long
as the user is not suspended or blocked). The max life time is counted after first failed authentication.
If further authentication attempts fail within the max life time, the user is suspended or blocked (see
security.fail.login.action).

• Add additional HTTP response headers
security.http.response.headers.add
Add additional HTTP Headers. Each line must contain a header entry in the format
<HEADER_NAME>:<HEADER_VALUE>. Example: MY_HEADER:MY_VALUE

• Set HTTP response headers
security.http.response.headers.set
Set (and overwrite if necessary) existing HTTP Headers. Each line must contain a header entry in the
format <HEADER_NAME>:<HEADER_VALUE>. Example: MY_HEADER:MY_VALUE

Mail
This section lists the mail related settings.

S/MIME related settings
• S/MIME Certificate

mail.s-mime.certificate
Certificate which will be used to sign the MIME data.

27

Kofax SignDoc Standard Administrator's Guide

General mail settings
• Default communication language

cirrus.communication.locale
Default communication language which is used for email notifications. It must be a valid IETF BCP
47 language tag, see https://tools.ietf.org/html/bcp47. Example: en for English or pt-BR for Brazilian
Portuguese.

• Delegate link in email
cirrus.mail.delegate.enabled
If 'On', the delegate link is visible to the recipient in the email else not shown. Default value: On

• Default delegate message
cirrus.mail.delegate.message.default
The default message which is send when a signer delegates the signing session to another person.
The placeholders $DELEGATED_SIGNER and $SIGNER can be used. $DELEGATED_SIGNER is
replaced by the name of the person to which the signing session is delegated. $SIGNER is replaced by
the name of the current signer.

• Delegate message prefix
cirrus.mail.delegate.message.prefix
This message is prefixed to the actual delegate message provided by the recipient when delegating the
signing session.

• Final document notification
cirrus.mail.finaldocument.notification.enabled
Email notifications for the final document. Default value: On
Description
Currently a Final Document is sent automatically to all signers with an email address after completion of
a package.
The Final Document contains all signed documents and audit trails of a package.
The default of this account-specific setting cirrus.mail.finaldocument.notification.enabled=[true|false] is
true.
The roles ADMIN and SUPERUSER have read/write access to this setting.
If the setting is set to false, no email notification is sent to any of the included recipients if a package is
completed.
There are 2 locations for the setting that control the behaviour:
[Configuration Database] cirrus.mail.finaldocument.notification.enabled=[true|false]
[cirrus.properties file] cirrus.mail.finaldocument.notification.enabled=[true|false]
Important A configuration setting in the configuration database takes precedence over a setting in
cirrus.properties file.

• Send a mail if a user password has been changed
mail.enabled.password.changed
Send a notification mail to the user if his password has been changed.

• Access code text for missing delivery plugin
mail.message.accesscode.error
The access code text for a missing or removed delivery plugin. No placeholder expansion is performed
here, since this is a placeholder content.

28

https://tools.ietf.org/html/bcp47

Kofax SignDoc Standard Administrator's Guide

• Access code text for manual delivery
mail.message.accesscode.manual
The access code text for a manual access code delivery. No placeholder expansion is performed here,
since this is a placeholder content.

• Access code text for delivery by plugin
mail.message.accesscode.plugin
The access code text for delivery by plugin. The only placeholder allowed is %
%NOTIFICATIONPLUGINTYPE%% which will query the plugin type used.

• Account disabled email body
mail.message.account.disabled.body
The body for account disabled emails.

• Account disabled email subject
mail.message.account.disabled.subject
The subject line for account disabled emails.

• User invitation email body
mail.message.account.invited.body
The body for user invitation emails.

• User invitation email subject
mail.message.account.invited.subject
The subject line for user invitation emails.

• Changed password email body
mail.message.changed.password.body
The body for changed password emails.

• Changed password email subject
mail.message.changed.password.subject
The subject line for changed password emails.

• Document copy email body
mail.message.email.me.a.copy.body
The body for document copy emails.

• Document copy email subject
mail.message.email.me.a.copy.subject
The subject line for document copy emails.

• Password forgotten email body
mail.message.forgotten.password.body
The body for password forgotten emails.

• Password forgotten email subject
mail.message.forgotten.password.subject
The subject line for password forgotten emails.

• Reviewer complete email body
mail.message.inform.owner.about.reviewer.complete.body
The body for owner email after reviewer complete.

29

Kofax SignDoc Standard Administrator's Guide

• Reviewer complete email subject
mail.message.inform.owner.about.reviewer.complete.subject
The subject line for owner email after reviewer complete.

• Signer complete email body
mail.message.inform.owner.about.signer.complete.body
The body for owner email after signer complete.

• Signer complete email subject
mail.message.inform.owner.about.signer.complete.subject
The subject line for owner email after signer complete.

• Package complete owner email body
mail.message.package.complete.owner.body
The body for owner email after package complete.

• Package complete owner email subject
mail.message.package.complete.owner.subject
The subject line for owner email after package complete.

• Package complete recipient email body
mail.message.package.complete.recipient.body
The body for recipient email after package complete.

• Package complete recipient email subject
mail.message.package.complete.recipient.subject
The subject line for recipients email after package complete.

• Decline reason text R1 (documents problem)
mail.message.reason.R1
The decline reason text for R1 (documents problem). No placeholder expansion is performed here,
since this is a placeholder content.

• Decline reason text R2 (sender not recognized)
mail.message.reason.R2
The decline reason text for R2 (sender not recognized). No placeholder expansion is performed here,
since this is a placeholder content.

• Decline reason text R3 (no online signing)
mail.message.reason.R3
The decline reason text for R3 (no online signing). No placeholder expansion is performed here, since
this is a placeholder content.

• Decline reason text R4 (unacceptable terms)
mail.message.reason.R4
The decline reason text for R4 (unacceptable terms). No placeholder expansion is performed here,
since this is a placeholder content.

• Decline reason text R5 (unacceptable terms of GDPR statement)
mail.message.reason.R5
The decline reason text for R5 (unacceptable terms of GDPR statement). No placeholder expansion is
performed here, since this is a placeholder content.

30

Kofax SignDoc Standard Administrator's Guide

• Signer declined email body
mail.message.rejected.body
The body for signer declined emails.

• Signer declined email subject
mail.message.rejected.subject
The subject line for signer declined emails.

• Reminder email notification body
mail.message.reminder.body
The body for reminder email notifications.

• Reminder email notification subject
mail.message.reminder.subject
The subject for reminder email notifications.

• Password reset email body
mail.message.reset.password.body
The body for password reset emails.

• Password reset email subject
mail.message.reset.password.subject
The subject line for password reset emails.

• Reviewer notification email body
mail.message.reviewing.body
The body for reviewer notification emails.

• Reviewer notification email subject
mail.message.reviewing.subject
The subject for reviewer notification emails.

• Custom reminder email body
mail.message.send.message
The body for custom reminder emails.

• Custom reminder with link email body
mail.message.send.message.with.link
The body for custom reminder with link emails.

• Signer notification email body
mail.message.signing.body
The body for signer notification emails.

• Signer notification email subject
mail.message.signing.subject
The subject for signer notification emails.

• Default value for signer notification email subject
mail.message.signing.subject.default
The default subject text for package specific signer notification emails. When necessary, this string
can contain special characters that are replaced with meaningful data at runtime. Available special
characters are $USER which is replaced by the current user name and $NOW which is replaced by the
current time.

31

Kofax SignDoc Standard Administrator's Guide

• Default value for signer notification email text
mail.message.signing.text.default
The default value for the package specific message in signer notification emails. When necessary,
this string can contain special characters that are replaced with meaningful data at runtime. Available
special characters are $USER which is replaced by the current user name and $NOW which is
replaced by the current time.

• Team invitation email body
mail.message.user.add.to.team.invited.body
The body for team invitation emails.

• Team invitation email subject
mail.message.user.add.to.team.invited.subject
The subject line for team invitation emails.

• Mail debug
mail.debug
Sets debug for mail, 'off' by default. Setting the value to 'on' will cause JavaMail to print debugging
messages as it attempts to load each configuration file. Default value: Off

SMTP related settings
• Start up Email

cirrus.startup.email
Defined destination recipient email address to receive email on startup. Requires valid functional SMTP
system configuration, will not work if only account specific SMTP configurations are available.

• Host
mail.smtp.host
The domain name of the SMTP server.

• Port
mail.smtp.port
Port of the SMTP server.

• User
mail.smtp.user
Username to connect to SMTP server to use SMTP authentication.

• Password
mail.smtp.password
User password to connect to SMTP server to use SMTP authentication.

• From
mail.smtp.from
Default 'From' email address. Please use a valid email address.

• Start TLS enabled
mail.smtp.starttls.enable
Enables or disables SMTP Start TLS setting. Default value: On

• Start TLS required
mail.smtp.starttls.required
Enables or disables SMTP Start TLS required setting. Default value: On

32

Kofax SignDoc Standard Administrator's Guide

• SSL Check Server identity
mail.smtp.ssl.checkserveridentity
Enables or disables SMTP check server identity setting. Default value: On

• SSL enabled
mail.smtp.ssl.enable
Enables or disables use of SSL for SMTP connections. Default value: On

• SMTP Authentication
mail.smtp.auth
Defines if SMTP connection should be authenticated. If the value is not provided in the setting, it is
derived from username and password. If username and password are set, this is 'true' by default.

• SMTP connection timeout
mail.smtp.connectiontimeout
Socket connection timeout value in milliseconds for opening a SMTP socket connection. This timeout is
implemented by java.net.Socket. Default is infinite timeout.

• SMTP Local host name
mail.smtp.localhost
Local host name used in the SMTP HELO or EHLO command. Defaults to
InetAddress.getLocalHost().getHostName(). Should not normally need to be set if your JDK and your
name service are configured properly, however useful to avoid issues with problematic DNS settings.

• SMTP connection I/O timeout
mail.smtp.timeout
Socket I/O timeout value in milliseconds. This timeout is implemented by java.net.Socket. Default is
infinite timeout.

• SMTP connection write timeout
mail.smtp.writetimeout
Socket write timeout value in milliseconds. This timeout is implemented by using a
java.util.concurrent.ScheduledExecutorService per connection that schedules a thread to close the
socket if the timeout expires. Thus, the overhead of using this timeout is one thread per connection.
Default is infinite timeout.

Plugins
This section lists the general settings related to plugins.

Plugin implementations

This section contains the implemented plugins.

Enabled

This section contains the enabled plugins.

Configuration

In this section the enabled plugins can be configured.

33

Kofax SignDoc Standard Administrator's Guide

General
• Plugin directory

plugin.directory
The directory where plugins will be located (in addition to the CLASSPATH).

• Plugin load list
plugin.loadlist
The list of plugin ids to be loaded. Ids must be separated by ','.

Client
This section lists the client related settings.

Signing Client related settings
• Requirement for e-sign consent

client.signing.esign.consent.required
The requirement for displaying the e-sign consent text which must be agreed by a recipient before
signing or reviewing a signing package. Default value: On

• E-sign consent text
client.signing.esign.consent.text
The e-sign consent text which must be agreed by a recipient before signing or reviewing a signing
package.

• The external e-sign consent URL
client.signing.esign.consent.url
The custom e-sign consent URL which is provided as link in the Signing Client in addition the e-sign
consent text (max 2000 chars).

• Requirement for GDPR consent
client.signing.gdpr.required
The requirement for displaying the GDPR (EU General Data Protection Regulation) consent text which
must be agreed by a recipient before signing or reviewing a signing package. Default value: Off

• GDPR statement
client.signing.gdpr.text
GDPR (EU General Data Protection Regulation) text which must be agreed by a recipient before
signing or reviewing a signing package.

• The external GDPR policy URL
client.signing.gdpr.url
The custom GDPR (EU General Data Protection Regulation) URL which is provided as link in the
Signing Client in addition the GDPR data protection statement (max 2000 chars).

• Signing Client online help URL
client.signing.general.onlinehelp.url
The URL for the Signing Client online help. See also: client.signing.general.onlinehelp.visible

• Enable Signing Client online help
client.signing.general.onlinehelp.visible
If 'off', the configured link for the online help will not be shown in the GUI. See also:
client.signing.general.onlinehelp.url. Default value: On

34

Kofax SignDoc Standard Administrator's Guide

• Enable persistent browser storage for images
client.signing.image.local.storage.enabled
When a signer uploads a signature- or stamp image from the filesystem, the image is stored in the local
browser's storage. If 'on', it is stored in the browser persistently. So the signer can re-use the image
also in his following signing sessions. If 'off', the image is removed from the local browser's storage
when the signer closes the tab or the browser. In this case, the signer has to upload the image from the
filesystem in his next signing session again.
Default value: On

• Document auto-adjustment on mobile devices
client.signing.mobile.document.adjustment.enabled
If set to 'on,' the signing document is scaled to the available screen width on mobile devices (tablets
and phones) automatically when the document is opened in the Signing Client. If set to 'off,' the
document is displayed in its default resolution of 96 DPI. Please note that the document can only be
scaled to a maximum resolution of 200 DPI. So for very large mobile screens, the document may not
cover the whole screen width.
Default value: On

• Clear signature action availability
client.signing.signature.clear.available
Defines if there is an opportunity for a signer to clear a signature field that is already signed. If set to
'off', the action to clear a signed signature field is not available. Default value: On

• Show decline action
client.signing.view.general.decline.visible
Defines if the decline action is visible in the Signing Client. If the action is not visible the signer is not
able to decline a signing session. Default value: On

• Show footer
client.signing.view.general.footer.visible
Defines if the footer is shown in the signing client. Default value: On

• Show header
client.signing.view.general.header.visible
Defines if the header is shown in the signing client. Default value: On

• Show instructions
client.signing.view.general.instructions.visible
Defines if the instructions are shown in the signing client. Default value: On

• Show wizard-steps
client.signing.view.general.wizardsteps.visible
Defines if the wizard-steps are shown in the signing client. Default value: On

• Show "In-person Signing" view
client.signing.view.inperson.visible
Defines if the "In-person Signing" view is shown in the Signing Client. If set to 'off' the "In-person
Signing" view is skipped when there is only one signer in an in-person signing session. Default value:
On

• Show download in "Review & Sign" view
client.signing.view.reviewsign.download.visible
Defines if the download actions are shown in the review & sign view. Default value: On

35

Kofax SignDoc Standard Administrator's Guide

• Show progress in "Review & Sign" view
client.signing.view.reviewsign.progress.visible
Defines if the progress bar is shown in the review & sign view. Default value: On

• Show "RESUME LATER" action in "Review & Sign" view
client.signing.view.reviewsign.resume_later.visible
Defines if the resume later action is shown in the review & sign view. Default value: On

• Show "Review & Sign" view
client.signing.view.reviewsign.visible
Defines if the "Review & Sign" view is shown in the Signing Client. If set to 'off' the "Review & Sign"
view is skipped when only one document is used in the signing session and no view-specific features
are assigned to the signer, like TSP and supplemental documents. Default value: On

• The external finish URL
client.signing.view.finish.url
The custom URL which is called when a signing session is finished by the remote signer. If no URL is
provided the default finish page is displayed in the signing-client. Default value: On

• The external resume later URL
client.signing.view.resume_later.url
The custom URL which is called when a signing session is resumed for the latter by the remote signer.
It could be configured by placeholders for accountId, packageId and signerId that are automatically
replaced by data (ex: http://www.myserver.com/mypage.html?accountid=$ACCOUNT_ID&packageid=
$PACKAGE_ID&signerid=$SIGNER_ID). If no URL is provided, the default finish page is displayed in
the Signing Client.

• The session expired URL
client.signing.view.session_expired.url
The custom URL which is called when a signing session of a remote signer expired. It could be
configured by placeholders for accountId, packageId and signerId that are automatically replaced
by data (ex: http://www.myserver.com/mypage.html?accountid=$ACCOUNT_ID&packageid=
$PACKAGE_ID&signerid=$SIGNER_ID). If no URL is provided, the default session expired page is
displayed in the Signing Client.

• Show "Welcome" view
client.signing.view.welcome.visible
Defines if the "Welcome" view is shown in the Signing Client. If set to 'off' the "Welcome" view is
skipped when no signer authentication (access code or external authentication) is used. Default value:
On

Manage Client related settings
• Signer names client colors

client.general.signer.colors
The client displays each signer in a specific color. The setting contains a list of hexadecimal RGB colors
(#RRGGBB) separated by commas. If there are more signers than colors, the colors are repeated.

• Word to pdf document fonts directory
client.manage.document.word-pdf.font-directory
Path to the fonts directory used to convert the signing package document from Word to pdf in the
Manage Client. The directory defined should be a valid path and should contain the valid required font.

36

Kofax SignDoc Standard Administrator's Guide

If a fonts directory is defined here, it will override the systems and the default fonts. By default, fonts
from the system and 'SIGNDOC_HOME' are used.

• Skip the landing page
client.general.skip.landing
Skips the initial landing page displayed before the login form. Default value: On

• Manage Client online help URL
client.manage.general.onlinehelp.url
The URL for the Manage Client online help. See also: client.manage.general.onlinehelp.visible

• Enable Manage Client online help
client.manage.general.onlinehelp.visible
If 'off', the configured link for the online help will not be shown in the GUI. See also:
client.manage.general.onlinehelp.url. Default value: On

• Default signing package expiry date
client.manage.package.expiration
The default number of days after a signing package expires. The value 0 means that a signing package
never expires. The maximum supported value is 365 days.

• Recipients must be selected
client.manage.restrict.recipients.input
If set 'on', recipients cannot be entered manually, but must be selected from a list. Default value: Off

• Setting to display the administration center link
client.manage.show.admincenter.link
If set 'on', the administration center link is shown to the user on the login page of the manage client else
not shown. Default value: On
Default value: On

• Takeover attributes of selected signer
client.manage.signer.autocomplete.takeover
Signer attributes are adopted from the selected signer after autocomplete search. Default value: On

• Generate first and last name proposal
client.manage.signer.name.proposal
Defines whether the client fills the first name and last name fields with proposals derived from the
signer name if external authentication is selected as authentication method for a signer. Default value:
On

Administration Client related settings

• Administration Center online help URL
client.admin.general.onlinehelp.url
The URL for the Administration Center online help. See also: client.admin.general.onlinehelp.visible

• Enable Administration Center online help
client.admin.general.onlinehelp.visible
If 'off', the configured link for the online help will not be shown in the GUI. See also:
client.admin.general.onlinehelp.url. Default value: On

37

Kofax SignDoc Standard Administrator's Guide

Advanced signing settings
This section lists the advanced settings related to the signing process.
• 2FAOn access code length

cirrus.security.2fa.accesscode.length
The length of the generated random access code for the two factor authentication.

• The external authentication provider name
cirrus.security.external.authentication.name
The external authentication provider name. This name is displayed in the Manage Client as well as in
the Signing Client as identification for the implemented external authentication service.

• The external authentication service shared secret
cirrus.security.external.authentication.sharedsecret
The external authentication service shared secret used to authenticate the system REST calls.

• The external authentication service URL
cirrus.security.external.authentication.url
The custom authentication service application URL.

• Variable part of the application configuration shared secret
cirrus.security.ksd_appconf_shasec
The application configuration shared secret is used to encrypt client to server communication. This
setting lets you personalize the encryption.

• Display text field values in audit trail
client.signing.audittrail.textfield.value.enabled
If 'on' the text field data is displayed in the audit trail. Default value: On

• Preferred signature field overlay
client.signing.overlay.display.prefer
Per default, an overlay image for a particular signing method of a signature field is displayed if the
signing method is required for the signature field. This setting allows the display of the overlay image of
a particular signing method also if this signing method is optional for the signature field. Currently, only
'TSP', which stands for the 'TSP signature' signing method, is supported as value.

• Clear signature action availability
client.signing.signature.clear.available
Defines if there is an opportunity for a signer to clear a signature field that is already signed. If set to
'off', the action to clear a signed signature field is not available. Default value: On

• Signature image maximum size
client.signing.signature.image.size.max
The maximum size (in KB) of an uploaded signature image which can be used for signing. The allowed
range is between 1 and 1000 (KB).

• Signature (certificate) type
client.signing.tsp.signature.type
Signature (certificate) type which is needed for signing (BASIC, ADVANCED or QUALIFIED).

38

Kofax SignDoc Standard Administrator's Guide

• Device Connector URL
client.signing.deviceconnector.url
The URL of the Device Connector server.

• Encrypt Device Connector communication
client.signing.deviceconnector.encrypted
Specifies if the communication with the Device Connector server is encrypted. Default value: On

• Require Device Connector on desktop devices
client.signing.deviceconnector.required
Specifies if the Device Connector and a signature pad are required to capture signatures from the
signers. If set to 'on', signing on Windows or Linux desktop devices requires a signature pad. If set to
'off', signing is also possible in the browser when no signature pad is available. Note that on all other
devices, signing is always done in the browser. Default value: Off

Expert configuration

The following configuration should only be used, if there are special requirements for the digital signing
process:
• plugin.cfg.SignDocDefaultSigningHandler.sdsdk.SignatureParameters
• plugin.cfg.SignDocDefaultSigningHandler.sdsdk.VerificationParameters
• plugin.cfg.SignDocDefaultSigningHandler.sdsdk.VerificationParameters.DSS
• plugin.cfg.SignDocDefaultSigningHandler.sdsdk.SignatureParameters.DTS
• plugin.cfg.SignDocDefaultSigningHandler.sdsdk.VerificationParameters.DTS

The format is XML and the DTD can be found here:

INSTALLDIR/signdoc_home/conf/SignDocParameters.dtd

More detailed documentation concerning the listed SignDoc SDK functions below can be found in the
SignDoc SDK documentation. See Related documentation.

The evaluation and mapping of the setting values in SignDoc Standard goes like this:

[pseudo code]

if (plugin.cfg.SignDocDefaultSigningHandler.sdsdk.SignatureParameters != null) {
 plugin.cfg.SignDocDefaultSigningHandler.sdsdk.SignatureParameters =>
 de.softpro.doc.SignDocSignatureParameters
}
if (plugin.cfg.SignDocDefaultSigningHandler.sdsdk.VerificationParameters != null) {
 plugin.cfg.SignDocDefaultSigningHandler.sdsdk.VerificationParameters =>
 de.softpro.doc.SignDocVerificationParameters
}
// Add regular signature using the settings above
SignDocDocument.addSignature(SignDocSignatureParameters, SignDocVerificationParameters)

if (plugin.cfg.SignDocDefaultSigningHandler.sdsdk.VerificationParameters.DSS != null) {
 // Extend the validity of the signatures in a PDF document (long term validity, LTV,
 PAdES-LTA)
 plugin.cfg.SignDocDefaultSigningHandler.sdsdk.VerificationParameters.DSS =>
 de.softpro.doc.SignDocVerificationParameters
 SignDocDocument.updateDSS(v2, SignDocVerificationParameters);
}
if (plugin.cfg.SignDocDefaultSigningHandler.sdsdk.SignatureParameters.DTS != null ||
 plugin.cfg.SignDocDefaultSigningHandler.sdsdk.VerificationParameters.DTS != null) {

39

Kofax SignDoc Standard Administrator's Guide

 // Add a document time stamp
 plugin.cfg.SignDocDefaultSigningHandler.sdsdk.SignatureParameters.DTS =>
 de.softpro.doc.SignDocSignatureParameters
 plugin.cfg.SignDocDefaultSigningHandler.sdsdk.VerificationParameters.DTS =>
 de.softpro.doc.SignDocVerificationParameters
 SignDocDocument.addSignature(SignDocSignatureParameters,
 SignDocVerificationParameters)
}

40

Chapter 4

Plugins

Plugin handling
SignDoc Standard supports the extension and/or customization of server logic via server side plugins.
These event plugins are triggered by certain events on server side and enable the plugins to handle these
events in an appropriate way.

There are 2 kinds of plugins: core plugins and custom plugins

• Core plugins are always loaded and are enabled by default for all accounts.
• Custom plugins must be explicitly loaded and enabled for the desired accounts before they can be

used. These actions can be done at runtime and do usually not require a service restart.

How to implement a plugin

The required resources to implement a plugin can be found in the directory signdoc_home/interfaces/
plugins/

This directory contains the required components

• Documentation
• SignDoc Standard plugin definitions: cirrus-plugin-definitions-VERSION-javadoc.zip
• Plugin Interface: spplugin-if-VERSION-javadoc.zip

• Minimal compile time dependencies
• cirrus-plugin-definitions-VERSION.jar
• spplugin-if-VERSION.jar
• spplugin-fw-VERSION.jar

See Minimal SigningEvent implementation and Minimal SigningRSA implementation for some basic
examples of plugins.

How to deploy a plugin

The CIRRUS_HOME (signdoc_home) directory of SignDoc Standard contains a directory where all
plugins can be installed:

signdoc_home/plugins

General directory structure

41

Kofax SignDoc Standard Administrator's Guide

It is possible to organize multiple plugins in subdirectories of signdoc_home/plugins/. SignDoc Standard
will create in each newly created directory 2 sub-directories: classes/ and lib/.

There is one plugin directory that is treated in a special way: default/. This directory is always present and
has the highest priority amongst all plugin directories. If unsure, plugins should be deployed in this i.e. the
default/ directory.

• classes/
The classes directory can hold single classes and resources and overrides the same classes of a lib
directory in the same plugin directory. The classes and resources must be organized in a directory
structure that represent the package of a very class.
Example: the class com.company. PluginClass must be put in the directory com/company/ to be
recognized by SignDoc Standard.

• lib/
The lib directory can hold jar files.

42

Kofax SignDoc Standard Administrator's Guide

Important
• Classes in the classes directory override classes with the same class name in jar files (same behavior

like war files).
• Classes in plugin directory cannot override classes that have already been loaded by the SignDoc

Standard server application.
• The default plugin directory has the highest priority. I.e. a class deployed in the default/ directory

will always be preferred over a class with the same class name in a custom plugin directory (e.g.
a_custom_plugin/).

• The priority of the plugin directories other than the default/ plugin directory is undefined. I.e. if a class
with the same classname is present in different directories it is undefined, which of these classes will
be used.

• A plugin must be deployed with all required dependencies.
• If a new plugin is deployed, the files are immediately available for the SignDoc Standard application.

A restart of the server application is not required.
• If plugin directories and/or plugin files are removed, the files are immediately unavailable for the

SignDoc Standard application. A restart of the server application is not required.
• If the default/ plugin directory is deleted, it will be immediately recreated with empty classes/ and lib/

directories. All prior existing classes or resources will be immediately unavailable for the SignDoc
Standard application.

Plugin administration
In the Administration Center

Plugins can be administered and configured for all accounts in the SignDoc Standard Administration
Center.

Tasks that can be done in the Administration Center are:

• Load or unload a plugin.
Loading or unloading a plugin can only be done in the Administration Center.

• Enable or disable a plugin.
If a plugin is enabled or disabled in the Administration Center it will be used as default setting for all
accounts.

• Assign a plugin implementation to a specific event.
If a plugin is assigned to a specific event in the Administration Center, it can be used as default/global
implementation for all accounts.

• Configure a plugin.
The plugin configuration that is set in the Administration Center will be used as default/global
configuration for all accounts.

In the Manage Client

Plugins can be configured by account administrators in the SignDoc Standard Manage Client. An account-
specific configuration will override any global setting done in the Administration Center.

43

Kofax SignDoc Standard Administrator's Guide

Tasks that can be done as account-specific administration are:

• Enable or disable a plugin.
This overrides any default/global settings.

• Assign a plugin implementation to a specific event.
This overrides any default/global settings.

• Configure a plugin.
This overrides any default/global settings.

Load a plugin (only in the Administration Center)

On the System Settings menu, click Plugins > General.

Add the class name of the plugin to the Plugin load list and save the settings.

Enable or disable a plugin (Administration Center and account administration in Manage Client)

Note Before a plugin can be enabled, it must be loaded.

In the Administration Center, on the System Settings menu, click Plugins > Enabled. Enable or disable
the plugin by clicking the control and then save the settings.

44

Kofax SignDoc Standard Administrator's Guide

In the Manage Client, on the Administration menu, click Plugins > Enabled. Enable or disable the plugin
by clicking the control and then save the settings.

Assign a plugin implementation to a specific event

Note Before a plugin can be assigned to an event, it must be loaded.

45

Kofax SignDoc Standard Administrator's Guide

In the Administration Center, on the System Settings menu, click Plugins > Plugin implementations.

Enter the plugin id and then save the settings.

In the Manage Client, on the Administration menu, click Plugins > Plugin implementations.

Enter the plugin id and then save the settings.

46

Kofax SignDoc Standard Administrator's Guide

After a plugin has been enabled, it must be assigned to a specific event to modify or extend the SignDoc
Standard behavior.

Configure plugins

In the Administration Center, on the System Settings menu, click Plugins > Configuration.

Select a plugin id from the list.

Set the value for the implementation class and save the settings.

47

Kofax SignDoc Standard Administrator's Guide

In the Manage Client, on the Administration menu, click Plugins > Configuration.

Select a plugin id from the list.

Set the value for the implementation class and save the settings.

48

Kofax SignDoc Standard Administrator's Guide

Plugins can provide specific configuration options that can be configured in the Administration Center and
in the account administration of the Manage Client.

Plugin development

Plugin interface
SignDoc Standard plugins support the ‘event’ plugin interface. In addition to that, they support the
definition of plugin configuration data and the parameter description.

A plugin must implement the following interfaces.

IPlugin

The de.softpro.sppluginif.IPlugin interface defines the general plugin parameters. This includes the:
• Plugin id – used to identify the plugin. This has to be unique.
• General plugin information – such as vendor, description, copyright.
• Error message information – provide localized information for a particular error.
• Injection point for plugin configuration information – is called by the application with the plugin

configuration data when the plugin is instantiated.

IEventPlugin

49

Kofax SignDoc Standard Administrator's Guide

The de.softpro.sppluginif.IEventPlugin interface defines the calling procedure for event based plugins. A
plugin defines which events it supports by returning a list with supportedEvents. The application will then
post an event to eventCallback providing a parameter map with event specific content and getting a result
map, also with event-specific content.

Each event definition will also provide a list of supported input and output parameters.

IConfigurablePlugin

The de.softpro.cirrus.plugins.IConfigurablePlugin interface defines how a SignDoc Standard plugin can
make its configurable parameters known to the application.

The application will use getSettingDescriptions to query what configuration settings the plugin supports.
The plugin will return an array of PluginSettingDescription, where each element describes one setting:
• The name used to identify the setting.
• The description of the setting.
• If the setting is mandatory or optional.
• A Java regular expression that can be used to validate the setting value.

This information can be used by the application to provide an administrator GUI to allow plugin
configuration. It is also used by the configuration service to validate entries.

The setting descriptions have to be returned localized, in the locale requested.

Plugin implementation
It is recommended to use the abstract classes provided where applicable. The AbstractEventPlugin can
be used as a basis for event plugins. If settings are needed, the IConfigurablePlugin interface has to be
implemented.

For exceptions thrown by the plugin, use de.softpro.sppluginif.PluginException and error numbers
defined in de.softpro.sppluginif.EPluginMsgs as far as possible. Even though you can define
your own exception class and error number range, the application will only be able to react in an
individual manner to exceptions it knows about. All custom exceptions will be treated the same as a
PLUGIN_UNKNOWN_EXCEPTION.

How SignDoc uses plugins
• For a plugin to be used, the server administrator (role SUPERUSER) has to add a plugin to the loadlist.

After the loadlist is changed with the configuration service, the application will dynamically reload the
plugins in the loadlist.

• For each plugin on the loadlist, the application will use the IConfigurablePlugin interface, if
it is implemented, to query the configuration information that the plugin supports. For each
PluginSettingDescription returned, the configuration service will generate a configuration description
according to the values returned. It will also generate an enabled setting for the plugin id.

• The server administrator and/or the account administrators can then enable the plugin globally or
for specific accounts by setting the plugin.enabled.<pluginId> configuration setting to true. For every
enablement an instance of the plugin will be created. If the plugin is enabled globally, only one instance
will be created that is accessible for all accounts. If the plugin is enabled on an account-specific basis,
each account will use its own instance. This is also true if an account overrides the global setting.

50

Kofax SignDoc Standard Administrator's Guide

• They can also provide the configuration information according to the settings provided by the plugin.
This information can be account specific.

• The application will inject the configuration information via injectPluginConfiguration from the IPlugin
interface. This is done for every instance of the plugin on an account-specific basis.

• The plugin can now be used. The application will post supported events to the plugin using
eventCallback from the IEventPlugin interface.

Signing plugin

SigningEvent plugin description
It is possible to use a SigningEvent plugin for signing signature fields. This plugin enables the user to use
for example HSM services for signing a signature field or control the appearance of the signature filed
completely.

For a simple sample implementation, see Minimal SigningEvent implementation.

SignDoc Standard provides a default SigningEvent plugin. The implementation of this plugin is described
in SignDocDefaultSigningHandler.

Use and configure a custom SigningEvent plugin

• Deploy the plugin as described in Plugin handling.
• Load, enable, assign and configure the plugin as described in Plugin administration.

Minimal SigningEvent implementation
SampleSigningHandler is an example for a minimal implementation of a SigningEvent plugin and can be
found in:

signdoc_home\interfaces\plugins\cirrus-plugin-samples-*.zip

This plugin uses SignDoc SDK to sign the document's signature field.

SigningRSA interface
This interface is used to delegate the actual calculation of the digital signature. The default implementation
calculates the signature in the local SignDoc process using the provided account-specific certificates and
private key.

Note If it is required to keep the private key in an HSM and calculate the signature at/with a trusted
location/entity, it is recommended to use this interface to delegate the signature calculation.

This interface is rather simple and focuses only on the task to calculate the digital signature. For
example, a custom implementation does not have to take care for other important required actions, such
as set signature appearance or encrypt biometric data, since SignDoc will provide for this using the
SignDocDefaultSigningHandler.

51

Kofax SignDoc Standard Administrator's Guide

For a simple sample implementation, see Minimal SigningRSA implementation.

Configure a custom SigningRSA implementation
• Make sure that the implementation including dependencies (either single class files or a jar file) is

available in the CIRRUS_HOME/plugins/default directory. It is not required to restart the SignDoc
service after having done this.
• Single class files must be provided in CIRRUS_HOME/plugins/default/classes
• Jar files must be provided in CIRRUS_HOME/plugins/default/lib
• See also Plugin handling

• Log in to the Administration Center or as an account administrator
• Assign the full class name of this class, for example com.mycompany.plugins.MyRSASigner to the

setting:
System Settings > Plugins > Configuration > SignDocDefaultSigningHandler >
plugin.cfg.SignDocDefaultSigningHandler.signing.rsa.class

• After applying these settings, the SignDocDefaultSigningHandler will use the assigned class to
calculate the RSA signature for signature fields.

Minimal SigningRSA implementation
SampleRSASigner is an example for a minimal implementation of a SigningRSA plugin and can be found
in:

signdoc_home\interfaces\plugins\cirrus-plugin-samples-*.zip

This plugin uses the BouncyCastleProvider to calculate the RSA signature based on the provided
certificate settings of the SignDoc account.

Core plugins

SignDoc default signing handler plugin
This is the default SigningEvent implementation in SignDoc Standard. The SignDocDefaultSigningHandler
is responsible for the following actions when signing a signature field:

• Signing the PDF Digital signature field
• By default the SignDocDefaultSigningHandler uses the account-specific signing certificates.
• This action can be delegated completely to an HSM service, if an alternative implementation (see

SigningRSA interface) is provided and configured.
• Assigning the visual appearance of the signed signature filed. The appearance depends on the different

input methods (handwritten signature, click to sign, sign with image, photo)
• Securely storing biometric data (if applicable) together with the signature field

• It uses the account-specific biometric (public) key to encrypt the data

52

Kofax SignDoc Standard Administrator's Guide

Notification plugin

Notification plugin description
The notification plugin interface is used to access a notification service to send out notification data.
Currently this is the two factor authentication code a signer has to enter when an authentication code is
required.

The sample implementation uses a SMS service (Clickatell) to send out the notification information via
SMS.

Supported events

The notification service supports two events:
• Notification parameter event - used to query the parameter information available
• Notification event - used to actually send a notification

The application will usually first issue a parameter event to check what parameters a particular notification
channel needs (in case of a SMS notification for instance the phone number). It will generate input fields
for the parameters described by the plugin to capture the necessary parameters.

Once a signer needs to be notified, the application will issue a notification event, providing the parameters
captured above.

Notification parameter event

The de.softpro.cirrus.plugins.event.NotificationParametersEvent describes the notification parameters
event. This event is used to query the parameters of a particular notification service.

The event input parameters describe what is requested:

Parameter Description

IN_INFORMATION_LIST The list of information to be queried. Can be:
IN_INFO_TYPE_DESCRIPTION (return the description of the notification
service ())
IN_INFO_MAX_MESSAGE_SIZE (return the maximum message size that can
be sent out in one message based on the current plugin configuration)
IN_INFO_PARAMETERS (return the parameter descriptions needed to use
the notification event)
If no selection list is supplied, all of the above will be returned.

IN_LOCALE The locale the information should be returned in (IETF BCP 47 tag). If not
specified the default locale is English.

The event will return the requested information as a list of output parameters containing
OUT_NOTIFICATION_TYPE_DESCRIPTION, OUT_MAX_MESSAGE_SIZE and OUT_PARAMETERS.
In case of OUT_PARAMETERS the parameter will contain a list of NotificationTargetParameterDescription
objects, that each describe one input parameter to the notification event:
• name

53

Kofax SignDoc Standard Administrator's Guide

• help text
• placeholder
• validation regular expression (used to validate the input)

The information above should be returned in the language specified by the IN_LOCALE parameter.

Notification event

The de.softpro.cirrus.plugins.event.NotificationEvent describes the event issued to actually trigger a
notification.

The event input parameters are:

Parameter Description

IN_TARGET A map of target parameters described by the list retrieved by the previous event.

IN_MESSAGE The message to be sent.

There are no output parameters.

Core plugins

SMS notification plugin
• Notification and the SMS plugin
• Registering an account with the SMS service
• Configuration

Notification and the SMS plugin

The notification service is designed to send a message to the user / signer. For a two factor authentication
the login information is split into two parts: the login link and the access code.

The access code has to be delivered via a different channel than the login link.

To be able to support different types of delivery channels, the feature is implemented via a plugin. Thus
additional delivery channels can be supported without changes to the product.

The core plugin supports an SMS notification channel.

Registering an account with the SMS service

To use the SMS plugin you will have to own a user account with Clickatell (http://www.clickatell.com).

Clickatell changed its account structure and API in November 2016. Therefore two different plugins are
provided, depending on the type of account you have registered:
• Accounts registered before November 2016 (Clickatell Central): use the NotificationSMSClickatell

plugin.
• Accounts registered after November 2016 (Clickatell Platform): use the

NotificationSMSClickatellPlatform plugin.

54

http://www.clickatell.com

Kofax SignDoc Standard Administrator's Guide

The plugins can be used at the same time in an installation. Usually one account will only use a single
plugin. Both plugins return ‘SMS’ as a delivery channel.

Configuration

All settings described here are configured via the Cirrus configuration service.

Currently the configuration service is reachable via the REST API, or the configuration editors in the
Manage Client or Administration Center.

The following sections will describe the configuration for each type of plugin.

Clickatell Central API

Plugin load list

The load list specifies which plugins are supported by Cirrus. To make the SMS notification plugin usable,
it has to be added to the load list.

The load list is a ‘,’ delimited list of plugin class names.

plugin.loadlist =
de.softpro.cirrus.plugins.notification.NotificationSMSClickatell

Enabling the plugin

Once the plugin has been loaded via the load list it can be enabled:
• For one or more specific accounts
• For all accounts globally

To enable the plugin, you have to set the setting

plugin.enabled.NotificationSMSClickatell = true

either as a global setting (no account) or for a specific account id.

SMS plugin settings

Plugin settings are set as:

plugin.cfg.<pluginId>.<settingName>

Example

plugin.cfg.NotificationSMSClickatell.url

Following settings are supported by the NotificationSMSClickatell plugin:
• url SMS service URL. The URL where the Clickatell SMS service can be reached. Usually https://
api.clickatell.com/http/sendmsg

• userid SMS service user id. The user id of the Clickatell SMS service user used to authenticate with
the service.

• password SMS service password. The password of the Clickatell SMS service user used to
authenticate with the service.

55

Kofax SignDoc Standard Administrator's Guide

• apiid SMS service API id. The API ID you received when setting up the user and http service at
Clickatell.

• senderid Sender id to use (numeric only 16 digits or alphanumeric 11 characters, registered). If you
want to use a sender id with the sent SMS messages, you have to register the sender id at Clickatell.
After successful registration you can specify the registered sender id here. The sender id can be either
a telephone number, or an alphanumeric id. Alphanumeric sender ids are limited to 11 characters in
length.

• utf16 Use UTF-16BE encoding (true / false). The SMS alphabet is limited regarding the characters that
can be used for the message. If special characters or locales (Chinese, Japanese, etc.) or symbols will
be used in the message, UTF16 encoding can be used. The UTF encoding however limits the message
length. Thus it should only be used if necessary.

• maxparts Maximum number of message parts to be used (1-3, default 3). SMS messages are limited
in length. Longer messages can be sent by chaining SMS parts together (at additional cost). This
setting specifies the maximum number of message parts the system will send.

• userparam Additional parameters to be sent to the service (use URL encoding). If additional Clickatell
settings need to be used they can be specified here. The parameters will have to be URL encoded.

Testing howto

The steps needed with the Swagger UI to get a plugin configured are described below:

1. Get access token for ksdadmin (no account). Use:
users > create an authentication token

2. Set plugin load list account independent. Use:
configuration > set configuration settings
[
 {
 "k": "plugin.loadlist",
 "v": "de.softpro.cirrus.plugins.notification.NotificationSMSClickatell"
 }
]

3. Set plugin cfg (can be account specific). Use:
configuration > set configuration settings
[
 {
 "k": "plugin.enabled.NotificationSMSClickatell",
 "v": "true"
 },
 {
 "k": "plugin.cfg.NotificationSMSClickatell.url",
 "v": "http://smscatcher.sdlabs.de:8080/sendmsg"
 },
 {
 "k": "plugin.cfg.NotificationSMSClickatell.userid",
 "v": "test_user"
 },
 {
 "k": "plugin.cfg.NotificationSMSClickatell.password",
 "v": "test_password"
 },
 {
 "k": "plugin.cfg.NotificationSMSClickatell.apiid",
 "v": "1234567"
 }

56

Kofax SignDoc Standard Administrator's Guide

]

Clickatell Platform API

Plugin load list

The load list specifies which plugins are supported by Cirrus. To make the SMS notification plugin usable,
it has to be added to the load list.

The load list is a ‘,’ delimited list of plugin class names.

plugin.loadlist =
de.softpro.cirrus.plugins.notification.NotificationSMSClickatellPlatform

Enabling the plugin

Once the plugin has been loaded via the load list it can be enabled:
• For one or more specific accounts
• For all accounts globally

To enable the plugin, you have to set the setting

plugin.enabled.NotificationSMSClickatellPlatform = true

either as a global setting (no account) or for a specific account id.

SMS plugin settings

Plugin settings are set as:

plugin.cfg.<pluginId>.<settingName>

Example

plugin.cfg.NotificationSMSClickatellPlatform.url

Following settings are supported by the NotificationSMSClickatellPlatform plugin:
• url SMS service URL The URL where the Clickatell SMS service can be reached. Usually https://
platform.clickatell.com/messages/http/send

• apikey SMS service API key. The Clickatell Platform API key you have set up by creating a new http
integration on your Clickatell account.

• senderid Optional sender id to use (numeric only 16 digits or alphanumeric 11 characters, registered).
If you want to use a sender id with the sent SMS messages, you have to register the sender id at
Clickatell. After successful registration you can specify the registered sender id here. The sender id
can be either a telephone number, or an alphanumeric id. Alphanumeric sender ids are limited to 11
characters in length.

Testing howto

The steps needed with the Swagger UI to get a plugin configured are described below:

1. Get access token for ksdadmin (no account). Use:
users > authentication

57

Kofax SignDoc Standard Administrator's Guide

2. Set plugin load list account independent. Use:
configuration > set configuration settings
[
 {
 "k": "plugin.loadlist",
 "v":
 "de.softpro.cirrus.plugins.notification.NotificationSMSClickatellPlatform"
 }
]

3. Set plugin cfg (can be account specific). Use:
configuration > set configuration settings
[
 {
 "k": "plugin.enabled.NotificationSMSClickatellPlatform",
 "v": "true"
 },
 {
 "k": "plugin.cfg.NotificationSMSClickatellPlatform.url",
 "v": "https://platform.clickatell.com/messages/http/send"
 },
 {
 "k": "plugin.cfg.NotificationSMSClickatellPlatform.apikey",
 "v": "Your-API-key=="
 },
]

Package state change plugin

Package state change plugin description
The state change event lets you write a plugin that can perform additional processing whenever a signing
package or a signer change state.

The plugin should publish which state changes it wants to process, to avoid generating too many audit
trail entries for state changes where no action is taken. See the SupportedStateChange event below.

State change events will be sent to all enabled plugins that support the state change events.

Supported events
• Supported state change event
• Package state change event
• Signer state change event

Supported state change event

The SupportedStateChange event is generated for each state change (both signing package and signer
state changes) before the main event is triggered. It is used to inquire if the plugin intends to process the
state change specified.

58

Kofax SignDoc Standard Administrator's Guide

If the plugin responds with true, the main state change event is triggered and the relevant audit trail
entries are generated. If the plugin responds false, the main state change event will not be sent to the
plugin.

If the plugin does not implement this event, the main state change event will be sent to it.

If additional information is needed by the plugin, it can use a REST API call to query package or signer
information. For this purpose, the owner token parameter is provided, that can be used to authenticate the
REST API call.

The input event parameters describe what state change will be processed:

Parameter Description

IN_EVENT_TYPE The type of the state change. Can be either TYPE_SIGNINGPACKAGE or
TYPE_SIGNER.

IN_OLD_STATE The state (string) before the state change.

IN_NEW_STATE The new state (string) after the state change.

The output parameters give the plugin response as to if it intends to process that particular change or not:

Parameter Description

OUT_SUPPORTED The plugin answer if it intends to process the state change given by the
input parameters. The type is Boolean. If the response is TRUE, the event
will be passed to the plugin. If FALSE, the event will not be passed and no
audit trail entries will be generated.

Package state change event

The PackageStateChange event will be generated when a signing package change state. This does not
apply for the initial signing package state upon creation.

The input event parameters give the details of the signing package state change:

Parameter Description

IN_ACCOUNT_OID The account OID (string) of the signing package account.

IN_SIGNINGPACKAGE_OID The signing package OID (string).

IN_SIGNINGPACKAGE_NAME The signing package name (string).

IN_OLD_STATE The signing package state before the state change (string).

IN_NEW_STATE The new signing package state after the state change (string).

IN_OWNER_TOKEN The authentication token that can be used to authenticate a REST API
call to obtain further package details.

There are no output parameters.

Signer state change event

The SignerStateChange event will be generated when a signer changes state. This does not apply for the
initial signer state upon creation.

The input event parameters give the detail of the signer state change:

59

Kofax SignDoc Standard Administrator's Guide

Parameter Description

IN_ACCOUNT_OID The account OID (string) of the signing package account.

IN_SIGNINGPACKAGE_OID The signing package OID (string).

IN_SIGNER_OID The signer OID (string).

IN_SIGNER_FIRST_NAME The signer first name, if recorded (string, optional).

IN_SIGNER_LAST_NAME The signer last name, if recorded (string, optional).

IN_SIGNER_DISPLAY_NAME The signer display name (usually first name + last name), if recorded
(string, optional).

IN_OLD_STATE The signer state before the state change (string).

IN_NEW_STATE The new signer state after the state change (string).

IN_OWNER_TOKEN The authentication token that can be used to authenticate a REST API
call to obtain further package and signer details.

There are no output parameters.

Core plugins

KTA state change plugin
• KTA
• State change events
• Configuration

KTA

This plugin implements the communication with the KTA (Kofax TotalAgillity) system. KTA will create
signing packages with documents to be signed as part of its workflow. After the documents have been
signed, this plugin will report the status change back to the KTA system and let it continue its workflow.

Refer to the KTA documentation on how to configure the KTA system to generate signing packages with
SignDoc.

Kofax SignDoc Standard introduces this new KTA state change plugin with version 2.1.0.

State change events

The plugin implements the state change event interface and reacts to SignDoc state changes:
• Signing package state changes: Change from any state to CANCELED, REJECTED, EXPIRED or

COMPLETE
• Signer state changes: Change from any state to COMPLETE

Upon receiving the relevant state change events, the plugin will generate KTA calls to inform KTA on the
new processing state.

60

Kofax SignDoc Standard Administrator's Guide

Configuration

Plugin load list

The load list specifies which plugins are supported by Cirrus. To make the KTA state change plugin
usable, it has to be added to the load list.

The load list is a ‘,’ delimited list of plugin class names.

plugin.loadlist =
de.softpro.cirrus.plugins.state_change.KTAStateChangeNotification

Enabling the plugin

Once the plugin has been loaded via the load list it can be enabled:
• For one or more specific accounts individually
• For all accounts globally

To enable the plugin, you have to set the setting

plugin.enabled.KTAStateChangeNotification = true

either globally (no account id), or for a specific account.

Plugin settings

Plugin settings are set as

plugin.cfg.<pluginId>.<settingName>

Example

plugin.cfg.KTAStateChangeNotification.ktaurl

Following settings are supported by the KTA state change notification plugin:
• ktaurl The KTA URL to send information to.
• cirrusurl The Cirrus (Signdoc Standard) REST API URL. The plugin will use the REST API to obtain

additional signing package and signer information needed to process the request. Specify the URL
without the REST API version number! Example: http://your.host.name/cirrus/rest

• sessionid The KTA session id.
• jobnotetemplate Optional. If you need to change the job note template you can set this parameter.

This was previously done by providing a job note template in the Cirrus home directory.

Additional required configuration setting

If the KTA state change plugin is enabled it is required that the setting

cirrus.document.prepare.msword.signatureline.signerid.source = field_name

in the category "Documents and packages" is set.

61

Kofax SignDoc Standard Administrator's Guide

Signer search plugin

Signer search plugin description
The signer search plugin enables you to write a plugin that performs a signer search which is used by the
Manage Client for the signer entry "autocomplete" function in the package wizard. This functionality should
help the user to find a specific signer which should sign a signing package.

After entering some characters in the name field of the "Add recipients" section of the "Recipients &
Documents" view of the package wizard a signer name search is triggered by the client in order to get a
list of signers which contain the entered string as part of their name. The same functionality is provided for
the email address of the wanted signer.

If one or more signers could be found according the provided name and/or email address part a list of
name and email pairs are returned to the client.

The following REST API is used for retrieving the signer list:

GET /rest/v8/signerlist

The query parameters are:

Parameter Description

searchname The signer name for searching. A signer is included only if his name contains the
provided text. This is case-insensitive. searchname and searchemail can be set at the
same time.

searchemail The signer email for searching. A signer is included only if his email address contains the
provided text. This is case-insensitive. searchname and searchemail can be set at the
same time.

limit The number of results to be returned. If 0 or no limit is set then the value from
configuration entry 'cirrus.rest.resultset.size.max.signers.autocomplete' is used as
default limit.

custom Any custom character data which is passed through to the called plugin.

The REST API implementation gets the signer list by calling the plugin which supports the
SignerSearchEvent.

62

Kofax SignDoc Standard Administrator's Guide

The default SignDocSignerSearch implementation performs a search on the SignDoc database within the
current account of the requesting user.

Since only one plugin implementation of SignerSearchEvent can be used for a signer search, it is
necessary to define a specific pluginid for this event which is the SignDoc internal SignDocSignerSearch
by default. Prerequisite for the usage of the plugin is that the specified plugin definition is included in the
plugin.loadlist and it must be enabled, either globally or account specific.

Which plugin implementation is used for the "autocomplete" signer search is defined in the account
specific setting plugin.singleton.id.signersearchevent which contains the unique id of SignerSearchEvent
plugin. The account independent default setting is SignDocSignerSearch for this configuration entry.

If no plugin is enabled for the SignerSearchEvent event then the "autocomplete" function is suspended
because the REST call would produce always an empty list.

Supported events
• Signer search event

Signer search event

The following input parameters are provided in the SignerSearchEvent:

Parameter Description

IN_USER_ID The plugin can use the requesting userid and user's email for identification.

IN_USER_EMAIL The email address of the requesting user.

IN_SIGNER_NAME Substring of the requested signer name - the plugin must support the search for
name and/or email based on a substring of the search criteria.

IN_SIGNER_EMAIL Substring of the requested signer email address – can be provided as combination
together with IN_SIGNER_NAME.

IN_LIMIT The limit input parameter contains the maximum number of result entries which are
returned to the caller.

IN_CUSTOM Additional custom input which can be provided via REST interface. This
optional input attribute is not considered in the default plugin implementation
SignDocSignerSearch.

The following output is expected from the plugin for this event:

Parameter Description

OUT_SIGNER_LIST The output contains a list of SignerSearchResult (class) elements with the attributes
name and email. The list is empty if the search has no result.

The default plugin implementation SignDocSignerSearch performs a substring search on all signers in all
packages within the account where the requesting user belongs to.

The search criteria are either the substring of the signer name or a substring of the signer’s email or a
combination of both if name and email are provided.

The search is distinct without duplicate entries.

63

Kofax SignDoc Standard Administrator's Guide

Document scan plugin

Document scan plugin description
The document scan event lets you write a plugin that can verify the content of an uploaded document or
supplemental document. This can be used to verify or validate the content. The most common use is to
scan uploaded documents for viruses.

A sample implementation using the open source ClamAV scanner is available, but the customer can
implement an interface to the scanner of his choice.

Supported events
• Document scan event

Document scan event

The de.softpro.cirrus.plugins.event.document_scan.DocumentScanEvent describes the document scan
event. Whenever a document or a supplemental document is uploaded, a document scan event is posted
to all plugins registering this event and enabled for the account. If any of the plugins returns an invalid
result, the document will be rejected.

The event input parameters are:

Parameter Description

IN_CONTENT The document content (binary, byte array), required

IN_NAME The name of the file being uploaded (string), optional

The output parameters are:

Parameter Description

OUT_RESULT The Boolean result of the scanning, required. True means a scanning issue has
been detected, false that the document does not contain any issues (viruses).

OUT_CAUSE The cause of scanning problems found (string), optional. Can be one of:
OUT_CAUSE_GENERAL – no specific cause information, default
OUT_CAUSE_VIRUS – a virus has been detected
OUT_CAUSE_INVALID_TYPE – an invalid document type has been uploaded
OUT_CAUSE_CONTENT – the document contains invalid content

OUT_DETAILS Details on the failure (string), optional. If specified, the information will be logged.
Can provide additional information on the cause of failure, like the type of virus that
has been detected.

Core plugins

64

Kofax SignDoc Standard Administrator's Guide

ClamAV virus scan plugin
• Document scan event
• ClamAV virus scanner
• Configure the ClamAV document scan plugin
• Test the scanning

Document scan event

To prevent invalid documents from being uploaded or viruses being spread to customers via uploaded
infected documents, SignDoc Standard supports the document scan event interface.

Whenever a document or supplemental document is being uploaded, a document scan event is posted
to all registered plugins on the affected account. All plugins can scan the document content. If any plugin
responds with ‘true’ as to invalid content being detected, the document upload is rejected.

A sample implementation of this plugin for the ClamAV virus scanner is provided. The customer can
implement any other scan implementation of his choice, if a different scanner is required.

ClamAV virus scanner

ClamAV

For the sample document scan implementation the ClamAV virus scanner has been used. The main
reasons for this choice are:
• ClamAV is an open source virus scanner
• Is available free of charge
• Available on all major operating systems

Information on ClamAV can be found under https://www.clamav.net

Kofax does not provide support on installing or running a ClamAV server.

Running the ClamAV scan server

To scan documents via the sample ClamAV document scan plugin a ClamAV server and a ClamAV REST
endpoint need to be running.
• Documentation on running a ClamAV server can be found under https://www.clamav.net
• The REST endpoint is documented under https://github.com/solita/clamav-rest

The easiest way to run this combination is using a Docker Compose setup (docker-compose.yml):

version: '3'
services:
clamav:
 image: mkodockx/docker-clamav
 ports:
 - "3310:3310"
 clamav-rest:
 image: lokori/clamav-rest
 links:
 - clamav
 ports:

65

https://www.clamav.net
https://www.clamav.net
https://github.com/solita/clamav-rest

Kofax SignDoc Standard Administrator's Guide

 - "8080:8080"
 environment:
 - CLAMD_HOST=clamav

The above docker-compose.yml shows how to start two Docker containers:
• clamav runs a normal ClamAV server
• clamav-rest runs the REST endpoint connected to clamav server

The compose setup can be started using ‘docker-compose up -d’. The URL endpoint for this setup will be
http://hostname:8080/scan.

Kofax does not provide support on installing or running the ClamAV server. Refer to the links above and to
https://www.docker.com for additional information.

Configure the ClamAV document scan plugin

Plugin load list

The load list specifies which plugins are supported by Cirrus. To make the ClamAV document scan plugin
usable, it has to be added to the load list.

The load list is a ‘,’ delimited list of plugin class names.

plugin.loadlist = de.softpro.cirrus.plugins.document_scan.ScanClamAV

Enabling the plugin

Once the plugin has been loaded it can be enabled:
• For one or more specific accounts individually
• For all accounts globally

To enable the plugin you have to change the setting

plugin.enabled.ScanClamAV = true

either globally (no account id), or for a specific account.

Plugin settings

Plugin settings are set as

PLUGIN.CFG.<PLUGINID>.<SETTINGNAME>

Example

plugin.cfg.ScanClamAV.url

Following settings are supported by the ScanClamAV plugin:
• url The URL to the ClamAV server REST endpoint (see above). For the sample server configuration

provided it has the form:
http://hostname:8080/scan

66

https://www.docker.com

Kofax SignDoc Standard Administrator's Guide

Test the scanning

To test virus detection one can upload the test EICAR virus signature as a document and verify that the
scanner works (http://www.eicar.org).

TSP plugin

Trusted service provider plugin description
The trusted service provider interface is used to add a TSP digital signature to the document if a signer is
registered with the TSP.

This interface is used both by SignDoc Standard and SignDoc Web, which accounts for some peculiarities
with the configuration. In SignDoc Standard the IConfigurablePlugin interface and the account-specific
instantiation is used to inject account-specific configuration data via IPlugin. SignDoc Web does not
support account-specific configuration. Therefore, the event interfaces will use an optional settings
parameter that SignDoc Web will pass with every call and that will override general settings. Thus, if a
settings parameter is present, it should be given precedence over any settings injected via IPlugin at
plugin instantiation.

Supported events

The trusted service provider interface supports three events:
• TSP info event

Provides information about the TSP provider the plugin implements.
• TSP validation event

Used to validate the credentials of a signer for a specific type of digital signature, before the actual
signing takes place.

• TSP signing event
Used to actually sign a document via the trusted service provider.

In case a specific provider does not support the validation step, the validation event does not need to be
supported.

TSP info event

The de.softpro.cirrus.plugins.event.tsp.TSPInfoEvent returns information specific to the TSP provider this
plugin supports:

Parameter Description

IN_LOCALE Optional. The locale information should be returned in (IETF BCP 47 tag). If not
specified the default locale is English.

67

http://www.eicar.org

Kofax SignDoc Standard Administrator's Guide

Parameter Description

IN_SETTINGS Optional. If present, the settings map will completely override the settings provided at
plugin instantiation via IPlugin.injectPluginConfiguration. This is necessary, because
SignDoc Web has no account-specific plugin mechanism, thus the account-specific
parameters need to be passed for each call. The plugin has to be able to re-initialize
on a ‘by call’ basis.

The output will provide provider-specific information needed to display input and information pages related
to the TSP validation and signing process:

Parameter Description

OUT_CREDENTIALS_DESCRIPTION The list of validation credentials needed by the TSP to perform
a validation and/or signing. See below.

OUT_PROVIDER_INFO Provider-specific information that will be used when displaying
input pages (descriptions, help, registration URL). This returns
a map of settings described below.

OUT_PROVIDER_NAME The (localized) name of the trusted service provider
implemented by this plugin.

Currently supported provider info fields are:
• PI_VALIDATION_TEXT ("validation_text"): An optional text that describes the provider-specific

validation procedure.
• PI_SIGNING_TEXT ("signing_text"): An optional text that describes the provider-specific signing

procedure.
• PI_HELP_TEXT ("help_text"): An optional text that provides help and background information regarding

the TSP provider.
• PI_REGISTRATION_URL ("registration_url"): An optional URL to the provider registration page where a

signer can register a new user with this provider.

Each validation credential description element
(de.softpro.cirrus.plugins.event.tsp.TSPParameterDescription) will consist of:
• A parameter id.
• A label to be shown for the entry field.
• A description (to be provided as a help text).
• A type.
• An indicator if the parameter is optional or mandatory.
• A placeholder text to be used in the entry field if needed.
• A Java regular expression to be used to validate the user input.

The calling application can use the TSP info event to query the plugin on the information needed. The
TSP name and the validation text will be displayed in the validation window, together with a list of entry
fields defined by the validation credentials descriptions. If a registration URL is present, the application will
display it, as part of a message where new users can create credentials if they are not yet registered.

TSP validation event

68

Kofax SignDoc Standard Administrator's Guide

The de.softpro.cirrus.plugins.event.tsp.TSPValidationEvent describes the actual validation call. The input
parameters are:

Parameter Description

IN_CREDENTIALS The credentials, according to the information provided by the info event.
Credentials are provided as a map with the parameter id as a key and the
value given for that parameter. To avoid exceptions, parameters should be
validated with the regular expression returned by the info event.

IN_SETTINGS Optional. If present, the settings map will completely override the settings
provided at plugin instantiation via IPlugin.injectPluginConfiguration.
This is necessary, because SignDoc Web has no account-specific plugin
mechanism, thus the account-specific parameters need to be passed for
each call. The plugin has to be able to re-initialize on a ‘by call’ basis.

IN_SIGNATURE_TYPE The type of the digital signature requested. Currently BASIC, ADVANCED
or QUALIFIED.

The output only provides a true / false condition depending on the validation outcome:

Parameter Description

OUT_RESULT A boolean value indicating the result of the validation. True denotes a
successful validation of the credentials for the specified signature type.

In case of processing errors, an appropriate exception will be thrown.

TSP post document signature event

The de.softpro.cirrus.plugins.event.tsp.PostDocumentSignatureEvent starts the signing process with the
TSP provider. The input parameters are:

Parameter Description

IN_CREDENTIALS The credentials, according to the information provided by the info event.
Credentials are provided as a map with the parameter id as a key and the
value given for that parameter. To avoid exceptions, parameters should
be validated with the regular expression returned by the info event.

IN_AUTHENTICATION_TOKEN An authentication token, if available.
In case the TSP uses a short lived authentication token to authenticate
the service, the token can be passed here.

IN_SIGNATURE_TYPE The requested signature type (BASIC, ADVANCED or QUALIFIED).

IN_DOCUMENT The document to be signed (byte array).

IN_DOCUMENT_DESCRIPTION The description of the document.

IN_DOCUMENT_NAME The name of the document to be signed.

IN_REDIRECT_URL_OK URL to be redirected to if signing was successful.

IN_REDIRECT_URL_CANCEL URL to be redirected to if signing has been canceled.

IN_REDIRECT_URL_ERROR URL to be redirected to if a signing error occurred.

69

Kofax SignDoc Standard Administrator's Guide

Parameter Description

IN_SETTINGS Optional. If present, the settings map will completely override the settings
provided at plugin instantiation via IPlugin.injectPluginConfiguration.
This is necessary, since SignDoc Web has no account-specific plugin
mechanism, thus the account-specific parameters need to be passed for
each call. The plugin has to be able to re-initialize on a ‘by call’ basis.

IN_SIGNATURE_FIELD_NAME Optional. Should be used when signing a signature field using TSP. The
name of the signature field that supports 'TSP' signing mode and that will
be signed using the TSP plugin.

Note This parameter is added to be used as an identifier for the
signature field in the pdf document and final signature can be applied
to this field in the TSP plugin.

The output data includes:

Parameter Description

OUT_AUTHENTICATION_TOKEN A new authentication token after successful authentication, in
case the TSP uses an authentication token mechanism.

OUT_DOCUMENT_VERIFICATION_URL The TSP document verification URL.
The Signing Client will redirect to this TSP URL letting
the signer authenticate with the TSP service and sign the
document.

OUT_SIGNATURE_PROCESS_TOKEN The signature token returned by the TSP after initiating
the document signing. This token is used to identify this
particular signing process.

TSP get document signature event

The de.softpro.cirrus.plugins.event.tsp.GetDocumentSignatureEvent is used to retrieve a signed
document from the TSP previously sent for signing.

The input parameters are:

Parameter Description

IN_AUTHENTICATION_TOKEN An authentication token, if available.
In case the TSP uses a short lived authentication token to
authenticate the service, the token can be passed here.

IN_SETTINGS Optional. If present, the settings map will completely
override the settings provided at plugin instantiation via
IPlugin.injectPluginConfiguration. This is necessary, because
SignDoc Web has no account-specific plugin mechanism,
thus the account-specific parameters need to be passed for
each call. The plugin has to be able to re-initialize on a ‘by
call’ basis.

IN_SIGNATURE_PROCESS_TOKEN The signature token that identifies this signing process
(received by PostDocumentSignatureEvent).

The output data includes:

70

Kofax SignDoc Standard Administrator's Guide

Parameter Description

OUT_AUTHENTICATION_TOKEN A new authentication token after successful authentication,
in case the TSP uses an authentication token mechanism.

OUT_DOCUMENT The content of the signed document (byte array).

OUT_DOCUMENT_NAME The name of the document being returned.

Sample development package
A complete sample development package for TSP plugins can be found in

INSTALLDIR\signdoc_home\interfaces\plugins\simpletsp-<version>.zip

Note The sample development package can be used for platform independent development (Windows,
Linux), but the contained service installer can only be run on a Windows operating system.

Core plugins

TSP plugin
• Digital document signing and trusted service providers
• Registering an account with Bundesdruckerei
• Configuration
• New SignDoc 3.0.0 TSP features

Digital document signing and trusted service providers

As of release 1.3.1 Kofax SignDoc supports digitally signing documents according to the EIDAS standard.
The document is signed by an external trusted service provider, independent of the Kofax SignDoc
installation. The TSP is accessed via a plugin interface, allowing for multiple TSP support and expansion
independent of a new product release.

The standard plugin delivered with the product supports DTrust GmbH / Bundesdruckerei GmbH as a
trusted service provider. Other providers can be added by writing and configuring additional plugins. This
chapter describes the configuration of the plugin mentioned above.

Registering an account with Bundesdruckerei

To use the service, both the operator and the signers need to have an account registered with
Bundesdruckerei GmbH.

The operator has to register with Bundesdruckerei GmbH and obtain a partner id and authentication
settings.

Any signer that will have a digital signature appended during the signing process has to register with
Bundesdruckerei GmbH as a user.

71

Kofax SignDoc Standard Administrator's Guide

Click https://cloud-ref.sign-me.de/signature/start to go to the registration webpage of Bundesdruckerei
GmbH.

Configuration

All settings described here are configured via the Cirrus configuration service. No specific SignDoc
Web configuration is needed, since the component will request the configuration settings via the Cirrus
configuration API.

Plugin load list
plugin.loadlist = de.softpro.cirrus.plugins.tsp.TSPBundesdruckerei

The load list specifies which plugins are supported by Cirrus. This is a system-wide setting and can only
be set account independent. To load the TSP plugin it has to be added to it, which is a list of ‘,’ delimited
class names.

Enabling the plugin
Once a plugin has been loaded via the load list it can be enabled:
for one or more specific accounts
for all accounts globally
To enable the plugin, you have to set the setting
plugin.enabled.TSPBundesdruckerei = true

either as a global setting (no account) or for one or more specific account ids.

TSP plugin settings

Plugin settings are set as

plugin.cfg.<pluginId>.<settingName>

Example

plugin.cfg.TSPBundesdruckerei.visibility

They can be set either as global values or on an account-specific basis.

Following settings are supported by the TSPBundesdruckerei plugin:
• regurl The registration URL where new Bundesdruckerei GmbH users can register an account.
• apiurl SignMe API url.
• basicauthuid Basic authenticaton user id received from Bundesdruckerei GmbH.
• basicauthpw Basic authentication password received from Bundesdruckerei GmbH.
• partnerauthuid Partner authentication user id received from Bundesdruckerei GmbH.
• partnerauthpw Partner authentication password received from Bundesdruckerei GmbH.
• visibility Visibility of document signatures. Possible values are INVISIBLE, FIRSTPAGE, ALLPAGES,

default being INVISIBLE.
• padesform PAdES format. Possible values are BASIC or ENHANCED, default being BASIC. When

using ENHANCED the parameter visibility has to be set to FIRSTPAGE or ALLPAGES.
• replacefilename Replace file names sent for signing if they contain unsupported characters. Possible

values: true or false. If true the file name will be changed for display in SignMe to “document.pdf”.

72

https://cloud-ref.sign-me.de/signature/start

Kofax SignDoc Standard Administrator's Guide

Sample TSP plugin configuration

Enable TSP plugin for Bundesdruckerei via configuration REST API (required role SUPERUSER):

POST /rest/v8/configuration

Add plugin to plugin load list:

{
 "list": [
 {
 "k": "plugin.loadlist",
 "v": "de.softpro.cirrus.plugins.notification.NotificationSMSClickatell,
 de.softpro.cirrus.plugins.tsp.TSPBundesdruckerei"
 }]
}

Enable plugin for specific account (here signdoc):

POST /rest/v7/configuration?accountid=signdoc

{
 "list": [
 {
 "k": "plugin.enabled.TSPBundesdruckerei",
 "v": "true"
 }
]
}

Provide plugin settings for specific account:

{
 "list": [
 {
 "k": "plugin.cfg.TSPBundesdruckerei.basicauthuid",
 "v": "basic"
 },
 {
 "k": "plugin.cfg.TSPBundesdruckerei.basicauthpw",
 "v": "kjusd-hgd./Jgd$3!"
 },
 {
 "k": "plugin.cfg.TSPBundesdruckerei.partnerauthuid",
 "v": "partner"
 },
 {
 "k": "plugin.cfg.TSPBundesdruckerei.partnerauthpw",
 "v": "lnjlkjsf/%fgLNf=FnmXCkflfkg"
 },
 {
 "k": "plugin.cfg.TSPBundesdruckerei.apiurl",
 "v": "https://cloud-ref-sp.sign-me.de:443/api/v2"
 },
 {
 "k": "plugin.cfg.TSPBundesdruckerei.padesform",
 "v": "ADVANCED"
 },
 {
 "k": "plugin.cfg.TSPBundesdruckerei.visibility",
 "v": "INVISIBLE"
 },

73

Kofax SignDoc Standard Administrator's Guide

 {
 "k": "plugin.cfg.TSPBundesdruckerei.regurl",
 "v": "https://cloud-ref.sign-me.de/signature/start"
 }
]
}

New SignDoc 3.0.0 TSP features

As part of release 3.0.0, a TSP plugin can also be used to sign a signature field. When a signer tries to
sign a ‘TSP’ signature field, the signer is directed to an external ‘TSP’ service registered by the package
creator for the signer. Based on the outcome of the signing process a message is displayed to the signer
in the signing session console.

The parameter IN_SIGNATURE_FIELD_NAME is optional and should be used when signing a signature
field using TSP. The name of the signature field that supports 'TSP' signing mode and that will be signed
using the TSP plugin.

Note This parameter is added to be used as an identifier for the signature field in the pdf document and
final signature can be applied to this field in the TSP plugin.

TSP-Loopback-Plugin is a test TSP plugin which can be used for reference purposes.

Activating the TSP-Loopback-Plugin:

Add ‘de.softpro.cirrus.plugins.tsp.TSPLoopbackPlugin‘ to the existing ‘plugin.loadlist’ configuration from
the administrator's section. This plugin can then be enabled to one account or all the accounts setting the
configuration setting plugin.enabled.TSP-Loopback-Plugin = true.

A developer who wants to support the new features in their ‘TSP’ plugin should use below configurations:
• plugin.cfg.<pluginId>.tsp.signature.enabled

Defines if the TSP plugin supports 'TSP' signing mode.
Default value: true

Note It is necessary that the plugin if defines this configuration should have a default value ‘true’ and
have plugin setting type ‘BOOLEAN’. The ‘clientCertificateRequired’ option for a signer is mutually
exclusive when used along with this configuration i.e. a signer with ‘clientCertificateRequired’ set
to true will not be able to have a signature field with ‘TSP’ signing mode and vise versa even if this
setting is enabled. It is necessary that this configuration allows view access to at least 'ROLE_USER',
'ROLE_ADMIN' and 'ROLE_SUPER'.

The below configurations are optional:
• plugin.cfg.<pluginId>.tsp.field.redirect.message.enabled

Defines if a redirect message should be available to the signer after initiating the TSP signing at the
signature field level. If enabled, a redirect message is shown else the signer is taken directly to the TSP
signing process.

Note If this configuration is not provided a redirect message will be displayed by default to the signer.
It should have plugin setting type ‘BOOLEAN’. It is necessary that this configuration allows view
access to at least 'ROLE_SIGNER' ,'ROLE_ADMIN', and 'ROLE_SUPER'.

74

Kofax SignDoc Standard Administrator's Guide

• plugin.cfg.<pluginId>.tsp.field.overlay.image
Overlay image for TSP signature field. Supported image formats are JPG and PNG

Note This configuration should support MediaType.APPLICATION_OCTET_STREAM and have
plugin setting type ‘BINARY’. It is necessary that this configuration allows view access to at least
'ROLE_USER', 'ROLE_SIGNER', 'ROLE_ADMIN', and 'ROLE_SUPER'.

• plugin.cfg.<pluginId>.tsp.document.redirect.message.enabled
Defines if a redirect message should be available to the signer after initiating the TSP signing at the
document level. If enabled, a redirect message is shown else the signer is taken directly to the TSP
signing process.

Note If this configuration is not provided, a redirect message will be displayed by default to the signer.
It should have plugin setting type ‘BOOLEAN’. It is necessary that this configuration allows view
access to at least 'ROLE_SIGNER', 'ROLE_ADMIN', and 'ROLE_SUPER'.

TSP document signing can also be switched on/off for a particular TSP plugin in an account using the
below configuration. However this configuration is optional and if not defined the TSP document signing
will be allowed by default for the TSP plugin.
• plugin.cfg.<pluginId>.tsp.document.enabled

Defines if the TSP plugin supports document signing using 'TSP'.

Note It is necessary that the plugin if defines this configuration should have a default value ‘true’
and have plugin setting type ‘BOOLEAN’. It is necessary that this configuration if defined allows view
access to at least 'ROLE_USER', 'ROLE_ADMIN', and 'ROLE_SUPER'.

75

Chapter 5

Mail

SMTP configuration
Description

All possible SMTP related settings can be configured per SignDoc account or as a global database
configuration using the managed client.

Prerequisites

A valid SMTP server

Configuration

mail.smtp.host

mail.smtp.port

mail.smtp.user

mail.smtp.password

mail.smtp.ssl.enable

mail.smtp.from

mail.smtp.starttls.enable

mail.smtp.starttls.required

mail.smtp.ssl.checkserveridentity

cirrus.startup.email

mail.smtp.auth

mail.smtp.connectiontimeout

mail.smtp.localhost

mail.smtp.timeout

mail.smtp.writetimeout

76

Kofax SignDoc Standard Administrator's Guide

mail.debug

Usage

Each SMTP configuration setting is evaluated first from the database for an account, then for global and
if neither is set is finally retrieved from the system settings. The origin or the source of these settings(if
they are retrieved from the database or are system settings) are logged at the 'DEBUG' level in the log
messages. 'cirrus.startup.email' configuration needs either the system or global configurations to work
otherwise the startup email cannot be sent.

S/MIME configuration
Description

Outgoing emails can now be signed according to the S/MIME standard using a valid certificate and
password. All certificates aligning with Java crypto architecture and compatible with JavaMail with a file
format PKCS#12 extension are accepted.

Prerequisites
• The certificate must be in PKCS#12 format
• A valid certificate passphrase

Configuration
• mail.s-mime.certificate

Usage

The emails are signed if a valid certificate and password are configured. The certificate and password can
be provided at the account level (evaluated first) or the global level (evaluated if account-specific settings
are not available) configurations. If the certificate is about to expire a message is logged if the number
of days to expiry is less than the limit defined in 'client.account.certificate.expiry.warn.threshold' once a
day when the first email is sent for an account and once a day for the global settings. The message about
the expiry of the certificate is recorded exponentially starting from number of days then hours and finally
minutes. The number of days are logged if the days left are one or greater, when the expiry date is less
than a day then the number of hours are displayed and finally when it is less than one hour the minutes
are displayed.

77

Chapter 6

BankID

BankID is a citizen identification solution that allows companies, banks and government agencies to
authenticate and conclude agreements with individuals over the internet.

To be able to use BankID's identification and signature features users must install the BankID app on a
mobile device or PC. They also need to order a BankID from their bank. The web service API of BankID
can only be accessed with a valid SSL client certificate.

As part of BankID solution provided by SignDoc users can authenticate and sign during the remote
session of the signing client using the BankID application.

The following chapters describe the supported features and how users can configure and integrate the
BankID service with SignDoc Standard managed client.

BankID Windows service configuration
The user must have a valid BankID SSL certificate along with the CA trust certificate. The path to these
certificates must be mentioned in the configuration parameters. These configuration parameters are
updated in the SignDocBankId.xml file that is part of the BankID Windows service provided to the
customer.

All the following configuration parameters are a must for the BankID service integration to work.
• service.context.url

Externally accessible Context URL of the service.
• server.port

The server port to use for the service.
• cirrus.url

The connect URL of the SignDoc Standard cirrus context.
• cirrus.extauth.shared.secret

The shared secret.
• bankid.url

Web Service BankID URL or API.
• bankid.cert

Absolute path to the SSL certificate.
• bankid.cert.password

Passphrase for the SSL certificate.
• bankid.ca

Absolute path to the SSL Root CA.

78

Kofax SignDoc Standard Administrator's Guide

After successful authentication or signing the client has an option to store the success response from
the BankID REST API using the following configuration parameters. These configuration parameters are
however optional.

• bankid.response.storage.url
Storage location for the BankID success response, should be a POST endpoint.

• bankid.response.storage.url.secret
'X-AUTH-TOKEN' header to be added for the storage 'POST' request to the
'bankid.response.storage.url'.

The maintenance of the storage URL is client's responsibility and is out of scope for SignDoc.

SSL configuration

The BankID Service can also be run with an SSL configuration by setting some configuration values. To
activate the setting they must be specified in SignDocBankId.xml.

In this file is an already commented HTTPS / TLS configuration section that can be uncommented and
adjusted.

Example settings for using a PKCS#12 cert store:

<argument>—server.ssl.key-store-type=PKCS12</argument>
<argument>--server.ssl.key-store=file:path_to_my_keystore.pfx</argument>
<argument>--server.ssl.key-store-password=2beChanged!</argument>
<argument>--server.ssl.key-alias=1</argument>

Installing the external SignDocBankIdService
Follow these steps to install the external SignDocBankIdService.

1. Unpack SignDocBankIdService-3.0-windows.zip to any folder.

2. Configure service in file SignDocBankId.xml (tailored as per above details).

3. Run service_up.cmd.

4. Test if service is started by calling localhost:6614 in the Browser. You should see now SignDoc
BankID 3.0 in the Browser.

5. To stop and remove the service run stopandremove.cmd.

Configuration parameters

79

Kofax SignDoc Standard Administrator's Guide

BankID authentication
For the authentication to work the following configuration parameters must be set in the SignDoc Standard
managed client:

• cirrus.security.external.authentication.name
E.g. BankID.

• cirrus.security.external.authentication.sharedsecret
This should be equal to the cirrus.extauth.shared.secret value in the SignDocBankId.xml file of the
SignDocBankIdService.

• cirrus.security.external.authentication.url
This URL must end with suffix /extauth, e.g. http://localhost:6614/extauth.

The package creator should then assign this external authentication to the signer in the signer's settings
while creating the signer and adding to the package.

The signer with external authentication enabled is directed to the external authentication when it starts its
remote authentication session from the SignDoc signing client.

The following options are supported as part of BankID authentication:
• Authenticate using Desktop

To complete authentication on the desktop, user needs to have a BankID application installed on the
desktop he is performing the authentication. The user does not have to start the application manually
for this to work. When user clicks on this link the launch of the BankID app is triggered on the desktop,
the user can then verify itself using its password. The user can verify or cancel the authentication
session.

• Authenticate using personal number
User can authenticate using their personal number. For this to work user should have the BankID app
installed either on their phone or on their desktop and registered with their valid personal number. The
app should be manually started on either of the devices. If the personal number is correct and the app
is started the user is then taken to the verification page, where the user can verify their identity with
correct password. The user can verify or cancel the authentication session.

• Authenticate using mobile device
The user must install the BankID app with its BankID number registered. SignDoc supports QR code
which is displayed on the authentication screen. The users must manually start their BankID app on
their mobile device and scan the QR code. The user is then asked to enter their password and verify
their identity. The user can verify or cancel the authentication session.

Upon successful verification the user is directed to the signing client with a success message. If the
user's authentication fails due to wrong password or timeout issues, the user must start the authentication
process again. If the user does not complete its authentication before the package expiration date, the
session expires, and the user is directed to the 'failed' page. The user can cancel the authentication
by clicking the Cancel button on the authentication main screen or by clicking cancel on the BankID
application. If the BankID application is not installed or if the personal number provided is incorrect or
if the user does not proceed with the authentication and decides not to click the Cancel button, the
authentication transaction times out after some time, the user is directed to the failed screen in all these
cases.

80

http://localhost:6614/extauth

Kofax SignDoc Standard Administrator's Guide

BankID signing
Installing TSPBankID plugin in SignDoc

To use BankID signing feature the user should register BankID TSP plugin in SignDoc Standard managed
client. To do so follow the below steps:

Sign in to Kofax SignDoc Administration Center.

Go to System Settings > Plugins.

1. Under General add 'de.softpro.cirrus.plugins.tsp.TSPBankID' to the configuration plugin.loadlist.

2. Under Enabled set plugin.enabled.TSPBankID to true.

3. Under Configuration, you can see TSPBankID plugin. When you click on the same you can modify
the TSPBankID plugin related configurations.

The configuration under point 1. can only be handled from the Administration Center, the others can be
managed from other Admins as well.

TSPBankID plugin configurations

The user can personalize the following configuration parameters for the TSPBankID plugin either from the
system administrator or the account administrator.

• plugin.cfg.TSPBankID.tsp_service.context.url
Context URL of the BankID TSP Integration Service.

• plugin.cfg.TSPBankID.tsp_service.display_nos_document_pages
Number of document pages that will be displayed to the signer before proceeding to the BankID
application for signing.

• plugin.cfg.TSPBankID.tsp_service.help_text
Additional TSP signing help text.

• plugin.cfg.TSPBankID.tsp_service.provider_name
The Provider name used in the user interface.

• plugin.cfg.TSPBankID.tsp_service.shared_secret
Shared secret of the Simple TSP Service.

• plugin.cfg.TSPBankID.tsp_service.signing_text
The text that is displayed to the signer before being redirected to the BankID service concerning the
signing procedure.

• plugin.cfg.TSPBankID.tsp_service.visible_data_template
The text template that is displayed to the signer in the BankID application when signing.
The following place holders can be used to set context sensitive information in the text:
{signer_name}, {document_name}, {document_page_count}, {signing_package_name},
{signing_package_owner_name}, {signing_package_owner_email}.

The default texts configured for the above configurations are as below.

• tsp_service.provider_name=Swedish BankID signing service

81

Kofax SignDoc Standard Administrator's Guide

• tsp_service.signing_text=Document signing for Swedish citizen's using the BankID is provided by
Swedish BankID signing service. To use this online service, you need a BankID identity issued by your
bank.

• tsp_service.help_text=BankID Document Signing uses the Swedish BankID federal service for signing
documents.

• tsp_service.visible_data_template=I have received and read the document {document_name} with
{document_page_count} page(s) as a recipient of the Signing Package {signing_package_name} sent
by {signing_package_owner_name} ({signing_package_owner_email}). As signer {signer_name}, I will
sign this document ({document_name}@@@description@@@ [provided with following description:
{document_description}]@@@description@@@) using BankID signing service.

** @@@description@@@ and the one enclosed in {} are just placeholders and are replaced with the
exact text before displaying to the user.

To use the TSP signing the package creator must create a TSP package with "tspPluginId": "TSPBankID".

The signer with package created using the TSPBankID plugin is directed to the external TSP signing
after it signs the document in the remote signing session using the SignDoc signing client. Based on the
outcome of the TSP signing session the package status is updated.

The following options are provided as part of BankID signing.

• Sign using Desktop
To complete Signing on the desktop, the user needs to have a BankID application installed on the
desktop it is performing the sign operation. The user does not have to start the application manually for
this to work. When the user clicks on this link the launch of the BankID app is triggered on the desktop,
the user can then sign using its password. The user is displayed verification data as configured in the
configuration 'plugin.cfg.TSPBankID.tsp_service.visible_data_template' in the BankID app. The user
can sign or cancel the TSP sign session.

• Sign using personal Number
User can sign using their personal number. For this to work user should have the BankID
app installed either on their phone or on their desktop and registered with its valid personal
number. The app should be manually started on either of the devices. If the personal number is
correct and the app is started the user is then taken to the sign page, where the user can sign
with correct password. User is displayed verification data as configured in the configuration
'plugin.cfg.TSPBankID.tsp_service.visible_data_template' in the BankID app. User can sign or cancel
the TSP sign session.

• Sign using mobile device
The user must install the BankID app with its BankID number registered. The SignDoc supports QR
code and is displayed on the sign screen. The users must manually start their BankID app on their
mobile device and scan the QR code. The user is displayed verification data as configured in the
configuration 'plugin.cfg.TSPBankID.tsp_service.visible_data_template' in the BankID app. The user is
then asked to enter its password and sign. The user can sign or cancel the TSP sign session.

Upon successful signing the user is directed to the signing client with a success message. If the signing
fails due to wrong password or timeout issues, the user must start the TSP signing process again. If the
user does not complete its signing before the package expiration date, the session expires, and the user
is directed to the signing client with an error message. The user can cancel the signing by clicking the
Cancel button on the 'Sign' main screen or by clicking cancel on the BankID application. If the BankID
application is not installed or if the personal number provided is incorrect or if the user does not proceed

82

Kofax SignDoc Standard Administrator's Guide

with the signing and decides not to click on the cancel button, the signing transaction times out after some
time, the user is directed to the signing client with an error message in all these cases.

Audit
The start and end of the external authentication and TSP signing session is recorded in the audit trails.
For a TSP signing a successful 'sign' records the BankID orderRef as well as the hash of the document for
future reference.

Localization
The external authentication and the TSP signing are localized to support other locales and languages,
English is supported by default.

References

For more information on BankID, see the following links:

https://www.bankid.com/utvecklare/rp-info

https://www.bankid.com/assets/bankid/rp/bankid-relying-party-guidelines-v3.5.pdf

83

https://www.bankid.com/utvecklare/rp-info
https://www.bankid.com/assets/bankid/rp/bankid-relying-party-guidelines-v3.5.pdf

Chapter 7

Tenant-specific URL

Important SignDoc Standard before version 2.1.0 was mainly configured with the configuration file
cirrus.properties. This file moved to INSTALLDIR_conf_templates\cirrus.properties with
version 2.1.0.

Since SignDoc Standard 2.1.0, it is highly recommended to use the file INSTALLDIR
\service_configuration.properties (instead of cirrus.properties) whenever it is required to
configure SignDoc with a configuration file. Configurations set in this file are applied as Java system
property and have therefore highest precedence.

It is possible to create several accounts in SignDoc Standard for different tenants.

If you have several accounts you have to specify with which account you want to login for processing
signing packages. This can be achieved by entering an accountid in the login panel.

As a tenant user it is very uncomfortable to enter an accountid each time for login.

A possibility is implemented to select in advance an account via tenant-specific URL.

Let’s assume that the SignDoc Standard application can be reached via https://www.signdoc.com:8083/
cirrus.

We have two accounts in SignDoc Standard, one for customer "Customer One" and one for customer
"Customer Two".

The administrator can configure in DNS (or for testing also in the local hosts file) that the SignDoc
Standard server can be reached also via
• cone.signdoc.com for tenant "Customer One"

and
• ctwo.signdoc.com for the customer "Customer Two"

The domain name prefix cone and ctwo has to be configured in the SignDoc Standard application for
identifying the appropriate account.

This can be done by the Server Administrator in the Account Details dialog using the field dnslabel.

For the tenant "Customer One" he has to enter cone in the entry field dnslabel and ctwo for tenant
"Customer Two".

Important To activate this feature the administrator has to enter cirrus.tenant.url.supported=true in
%CIRRUS_HOME%/conf/cirrus.properties. It is not activated by default! The DNS label must be unique
for each tenant and at most 63 characters.

84

Kofax SignDoc Standard Administrator's Guide

Implementation details

The SignDoc Standard application parses the domain name in the (login) URL and extracts the tenant-
specific part to provide a request parameter dnslabel with this value.

Example

If the user calls URL cone.signdoc.com the application adds a request parameter dnslabel=cone to the
call (http://cone.signdoc.com will be mapped to http://signdoc.com/cirrus?dnslabel=cone).

This dnslabel has to match with a dnslabel attribute in the ACCOUNT table for identifying an account.

In this case the SignDoc Standard application knows the requested account and the entry field for the
accountid is omitted in the login dialog.

85

Chapter 8

Google Chrome Group Policy (GPO)

When using the Google Chrome Group Policy (GPO) some adjustments have to be made to support
our SignDoc DeviceConnector browser extension. This extension is required to capture handwritten
signatures from a signature pad.

Because the browser extension uses Chrome's Native Messaging API the GPO needs to be relaxed for
two settings:

Allow user-level Native Messaging hosts

Enable user-level Native Messaging hosts via

Software\Policies\Google\Chrome\ NativeMessagingUserLevelHosts = 1

Configure native messaging whitelist

Add deviceconnector to the whitelist via

Software\Policies\Google\Chrome\NativeMessagingWhitelist\1 = "
de.softpro.sbpluginng "

86

	Table of Contents
	Preface
	Related documentation
	Training
	Getting help with Kofax products
	Definitions

	Licensing
	License handling
	SignDoc license
	Account license
	Global license
	Reset license (special license)

	Logging
	On-premise logging

	Configuration
	Configuration service
	Configuration levels
	Change configuration options
	Configuration using the Administration Center
	Configuration using the Manage Client
	Configuration using the REST API

	Configuration files
	Configure the 'autoprepare' functionality
	Fonts used in the final document

	Configuration values
	System
	Documents and packages
	Security
	Mail
	Plugins
	Client
	Advanced signing settings

	Plugins
	Plugin handling
	Plugin administration
	Plugin development
	Plugin interface
	Plugin implementation
	How SignDoc uses plugins

	Signing plugin
	SigningEvent plugin description
	Minimal SigningEvent implementation
	SigningRSA interface
	Minimal SigningRSA implementation
	Core plugins
	SignDoc default signing handler plugin

	Notification plugin
	Notification plugin description
	Core plugins
	SMS notification plugin
	Notification and the SMS plugin
	Registering an account with the SMS service
	Configuration
	Clickatell Central API
	Clickatell Platform API

	Package state change plugin
	Package state change plugin description
	Core plugins
	KTA state change plugin
	KTA
	State change events
	Configuration

	Signer search plugin
	Signer search plugin description

	Document scan plugin
	Document scan plugin description
	Core plugins
	ClamAV virus scan plugin
	Document scan event
	ClamAV virus scanner
	Configure the ClamAV document scan plugin
	Test the scanning

	TSP plugin
	Trusted service provider plugin description
	Sample development package
	Core plugins
	TSP plugin
	Digital document signing and trusted service providers
	Registering an account with Bundesdruckerei
	Configuration
	New SignDoc 3.0.0 TSP features

	Mail
	SMTP configuration
	S/MIME configuration

	BankID
	BankID Windows service configuration
	Installing the external SignDocBankIdService
	Configuration parameters
	BankID authentication
	BankID signing

	Audit
	Localization
	References

	Tenant-specific URL
	Google Chrome Group Policy (GPO)

