
Kofax SignDoc Web
Administrator's Guide
Version: 3.1.0

Date: 2022-02-21

© 2021 Kofax. All rights reserved.

Kofax is a trademark of Kofax, Inc., registered in the U.S. and/or other countries. All other
trademarks are the property of their respective owners. No part of this publication may be
reproduced, stored, or transmitted in any form without the prior written permission of Kofax.

Table of Contents
Preface... 5

Related documentation.. 5
Offline documentation.. 6

Training... 6
Getting help with Kofax products...6
SignDoc Web features.. 7

Chapter 1: Functional structure of SignDoc Web.. 10
Architecture..10
Important files and directories... 11
Communication with SignDoc Web server..15

Chapter 2: SignDoc Web installation as a Windows service...16
Definitions.. 16
General prerequisites... 16
Quickstart... 16
Content of the SignDoc Web ZIP archive.. 17
Production setup...17
Advanced configuration... 19
Advanced information.. 20
Logging configuration.. 20
Installation on Tomcat without using the provided service installer...21
Installation on other JEE compliant application servers..22
License installation..22

General.. 22
License installation on Windows... 22
License installation on Linux..23

Context security Policy (CSP)...23
Upgrade SignDoc Web... 24

Upgrade from SignDoc Web 3.0.0 to 3.1.0.. 24
Upgrade from SignDoc Web 2.2.1 to 3.0.0.. 24
Upgrade from SignDoc Web 2.2.0 to 2.2.1.. 24
Upgrade from SignDoc Web 2.1 to 2.2.0..25
Upgrade from SignDoc Web 5.2.1 (or earlier) to SignDoc Web 2.1.0................................25

Chapter 3: Deployment on Linux...26
Chapter 4: Administration and configuration..27

3

Kofax SignDoc Web Administrator's Guide

Alternative signature capturing via JavaScript - HTML5 data capture... 27
Audit trail..30
Caching custom images...33
Click to sign... 34
Cluster environment... 36
Configuration of toolbar and GUI.. 37
Configure server..38
Custom CSS configuration... 40
Digital signature certificate... 42
Dynamic tablet screens..43
Encrypt sensitive data in sdweb_config.groovy configuration file... 47
External help..48
Font mapping configuration... 48
Gestures on mobile devices.. 50
Logging... 52
Managing key pairs for encryption of biometric data...53
Multi-instance configuration..55
Page pre-fetching in WebView..56
Reduce network data... 57
Signer-specific certificates... 62
Kofax print plugin integration.. 64
TSA functionality..64
Additional notes.. 67

Chapter 5: Standard plugins...68
File DMS plugin... 68
SFTP DMS plugin... 73
Servlet DMS plugin... 76
BasicAuthenticator plugin..77
Preload plugins..79

Chapter 6: Configuration file sdweb_config.groovy.. 81
Chapter 7: Frequently asked questions.. 104

4

Preface

SignDoc Web is a strategic enterprise e-signature platform. In general, SignDoc Web is a simple
and straightforward to integrate PDF signing solution which can be used easily to replace existing
paper-based processes. The product SignDoc Web offers web-based signing using handwritten
signature, click-to-sign, or image/photo capture.

A prepared and prefilled PDF document is loaded into the browser and can be enriched with
additional data. The handwritten signature which is added to the document will be captured on
one of the available signature capture devices (e.g. sign pad, tablet PC, mobile device). Signature
capture devices can be either connected to the PC directly or in the case of a smartphone for
example accessing SignDoc Web directly. SignDoc Web supports also using the browser build-in
HTML5 capture feature.
• During the signing ceremony, the biometric characteristics of the signer's signature are collected.

With each captured signature time and date when the signature was captured will be stored
together with it.

• As an alternative or in addition to the handwritten signature it is also possible to capture photos
through a web or integrated camera and add them to the document.

• A third option is a click-to-sign signature which is simply the entering of the signers name in a
text field showing a legal consent.

Upon saving or downloading the document the integrity value (hash) of the document will be
calculated and stored in the signature field together with the biometric characteristics of the
captured signature. The biometric data of the signature (e.g. coordinates, pressure, acceleration)
is encrypted via the customer's public key. The biometric signature information can easily be
decrypted with the customer's private key and displayed in a user friendly way via SignAlyze. All
the changes and operations on a document are captured via an audit trail feature which is saved
together with the document as metadata.

SignDoc Web also offers additional capabilities such as sending documents to an archive system
and the possibility to be extended via a flexible plugin interface. The SignDoc Web application helps
to minimize the footprint on the client side, since most of the software components are installed
centrally on the server. The clients only need to have the signature capture device attached and the
Kofax SignDoc Device Support installed.

Related documentation
The full documentation set for Kofax SignDoc Web is available at the following location:

https://docshield.kofax.com/Portal/Products/SD/3.1.0-tp2w5bx8yi/SD.htm

In addition to this guide, the documentation set includes the following items:

5

https://knowledge.kofax.com/E-signature/Overview-Downloads/SignDoc_Product_Release_Information
https://docshield.kofax.com/Portal/Products/SD/3.1.0-tp2w5bx8yi/SD.htm

Kofax SignDoc Web Administrator's Guide

Release notes
• Kofax SignDoc Release Notes

Technical specifications
• Kofax SignDoc Technical Specifications

Guides
• Kofax SignDoc Web Developer's Guide

Help
• Kofax SignDoc Web Help

Software development kit
• Kofax SignDoc SDK API Documentation (C)
• Kofax SignDoc SDK API Documentation (C++)
• Kofax SignDoc SDK API Documentation (.NET with exceptions)
• Kofax SignDoc SDK API Documentation (.NET without exceptions)
• Kofax SignDoc SDK API Documentation (Java)

Offline documentation
Customers who require offline documentation can download the
KofaxSignDocDocumentation_3.1.0_EN.zip from the Kofax Fulfillment Site. The .zip file includes both
help and print folders.

1. From the Kofax Fulfillment site, download the documentation .zip file.

2. Extract the contents of the compressed documentation file.

3. Navigate for online help to folder help. Navigate for all other documentation to folder print.

Training
Kofax offers both classroom and online training to help you make the most of your product. To
learn more about training courses and schedules, visit the Kofax Education Portal on the Kofax
website.

Getting help with Kofax products
The Kofax Knowledge Base repository contains articles that are updated on a regular basis to
keep you informed about Kofax products. We encourage you to use the Knowledge Base to obtain
answers to your product questions.

To access the Kofax Knowledge Base:

1. Go to the Kofax website home page and select Support.

6

https://delivery.kofax.com/
https://learn.kofax.com/
https://knowledge.kofax.com/
https://www.kofax.com/

Kofax SignDoc Web Administrator's Guide

2. When the Support page appears, select Customer Support > Knowledge Base.

 The Kofax Knowledge Base is optimized for use with Google Chrome, Mozilla Firefox or
Microsoft Edge.

The Kofax Knowledge Base provides:
• Powerful search capabilities to help you quickly locate the information you need.

Type your search terms or phrase into the Search box, and then click the search icon.
• Product information, configuration details and documentation, including release news.

Scroll through the Kofax Knowledge Base home page to locate a product family. Then click a
product family name to view a list of related articles. Please note that some product families
require a valid Kofax Portal login to view related articles.

From the Knowledge Base home page, you can:
• Access the Kofax Community (for all customers).

Click the Community link at the top of the page.
• Access the Kofax Customer Portal (for eligible customers).

Click the Support link at the top of the page. When the Customer & Partner Portals Overview
appears, click Log in to the Customer Portal.

• Access the Kofax Partner Portal (for eligible partners).
Click the Support link at the top of the page. When the Customer & Partner Portals Overview
appears, click Log in to the Partner Portal.

• Access Kofax support commitments, lifecycle policies, electronic fulfillment details, and self-
service tools.
Go to the General Support section, click Support Details, and then select the appropriate tab.

SignDoc Web features
• Browser-independent

Simple web-based user interface. Support for most common browsers on PCs, such as Mozilla
Firefox, Google Chrome, Microsoft Edge.

• Content protection
Protect the integrity of documents by sealing them with a digital signature. Supports any
PKCS#12 certificate store file, that contains exactly one certificate, for signing and verifying a
signature. As key usage extension digital signature and/or non-repudiation have to be enabled.
The certificate can be provided through the key store (e.g. Windows certificate store) or through
plugin interface to digitally sign documents by using an external method (e.g. for usage of a
Hardware Security Module - HSM).

• Customer-specific data
Set customer metadata for workflow process.

• Customer-specific document processing
Use the plugin interface to write your own plugins for document processing.

• Customer-specific labels
Customize labels of signature fields depending on the document workflow.

7

Kofax SignDoc Web Administrator's Guide

• Customization
Enterprises can utilize SignDoc Web and launch their own e-signing solution, as well as integrate
the functionality of SignDoc Web into their own apps (SDK available). Using your enterprise .css
style is also supported.
Additionally, for user attendance to most important document content signature device (e.g. sign
pad devices) background can be dynamically updated with document specific information.

• Device-independent
Supports many different signature pads, interactive pen displays, tablet/slate PCs, iPad, Android
and Windows tablets and iOS, Android and Windows smartphones.

• Document binding
When a signature is captured it is safely embedded using an asynchronous public key encryption
into and uniquely bound to the target document. Copy/paste attacks can thus be easily detected.
SignDoc Web combines handwritten signatures with Public Key Infrastructure.

• Enter signature fields
Enter signature fields anywhere on a document. It is useful for signing non-fillable documents.

• Fill out and sign PDF forms
Complete and sign opened PDF forms or pre-populate the fields automatically.

• Flatten PDF
Content in form fields is locked so it can be assured that information may no longer be changed.
Flatten a PDF removes any layers (e.g. annotations, digital signatures) and consolidates them into
one layer, which is supported by all PDF viewers.

• Guidance in the signing process
Define and position data or signature fields and specify their completion/signing order.
Additionally, highlight mandatory signature fields, define the order in which forms have to be
signed, enforce the signing method, and much more. It is possible to disable certain functionality
for a particular document, such as deleting a predefined signature field.

• Handwritten signature capturing
A handwritten signature captured with SignDoc Web is much more than just an electronic image
of a digitized signature embedded in a PDF or TIFF document.
SignDoc Web records - forensically identifiably - the handwritten signature of a person using all
available parameters, such as writing movement, time, velocity, and acceleration.

• Identity/signature verification
SignDoc Web captures the signature of a person using all available parameters of writing
movement. If there is a doubt about the signature, an expert tool is available to forensically
analyze the biometric characteristics of the captured signature. This capability can be taken one
step further, with real-time verification of an acquired signature against a signature reference
stored in a database to ensure that only authorized people can actually sign a document.
Signature validation can be triggered for specific signature fields.

• Integration
Integration with ERP, CRM, DMS, workflow management, etc via web services (SOAP, REST), Citrix
and Terminal Server support.
For example: No need to transfer a PDF document. Users can receive a link to access the PDF
on the server and only image previews are transferred to the app. Thus, the signed original
document is securely server-based and not automatically copied (i. e. duplicated) to the mobile
device. All manipulations of the PDF are always performed in the safe data center environment.

8

Kofax SignDoc Web Administrator's Guide

• Offline
Take documents offline.

• On-premises or cloud-based
SignDoc Web is available as an on-premises installation or can be installed as a cloud-based
solution.

• PKI-based certificates
Verify an electronic document before it will be signed to know if it is valid.

• Print
Print a document before or after saving or signing.

• Signature capturing
Sign electronic documents (PDF, TIFF) using handwritten signatures, photos or click-to-sign
signatures.

• Use PDF templates
Pre-populate, complete and sign PDF forms created from a template.

• Watermark
Add watermarks like 'Confidential' or 'Draft' to your documents.

9

Chapter 1

Functional structure of SignDoc Web

This chapter provides insights into the functional structure including the various SignDoc Web
components and configurations.

Architecture
Desktop clients

A variety of browsers are supported as desktop clients on Windows via the Kofax SignDoc Device
Support.

The SignDoc Web Remote Interface can be used to have full flexibility in embedding SignDoc Web
into a customer´s web application i.e. by using an iFrame.

Mobile clients

SignDoc Web can be accessed via an iPad or Android tablet by using the SignDoc Mobile app from
the respective app store. The SignDoc Mobile app allows the displaying and editing of documents to
a certain extent as well as the capturing of the signature.

If the capturing of the signature should be performed via a pure browser-based environment on the
mobile clients, it is also possible to enable HTML5-based signature capturing.

As with the desktop clients the Remote Interface is also available with the mobile clients to embed
the SignDoc Web document frame into a customer´s web application.

 No matter if the Remote Interface is used or not, when SignDoc Web is embedded into a
customer’s web application by iFrame, both web applications must be in compliance with the
same-origin policy. How this can be achieved and how the same-origin policy can be relaxed is
described in SignDoc Web Developer's Guide, chapter "Same-origin policy".

SignDoc Web server
• Layer 1 - Operating systems

SignDoc Web can be installed on Windows and Linux operating systems with a 32 or 64bit
architecture

• Layer 2 - SignDoc Web application
The application consists of a WAR (Web Application Archive) which is deployed into a Web
Application Server. The WAR file contains Native Libraries which are used for licensing and
PDF handling. All the configuration files are stored outside of the WAR file in a folder called
SDWEB_HOME. SignDoc Web also offers a plugin interface for possible means of extension.

10

https://knowledge.kofax.com/E-signature/Overview-Downloads/SignDoc_Product_Release_Information
https://knowledge.kofax.com/E-signature/Overview-Downloads/SignDoc_Product_Release_Information

Kofax SignDoc Web Administrator's Guide

• Layer 3 - SOAP & REST interfaces
Documents can be uploaded via a web service and then accessed by using a Reference URL. It is
also possible to upload and perform operations on documents via a REST interface.

• Layer 4 - Web application server
SignDoc Web runs on the standard Web Application Server Apache Tomcat, for which Kofax
SignDoc Installation Guide offers support. Installation on other JEE compliant servers is not
supported. For prerequisites, see Kofax SignDoc Technical Specifications document.

• Layer 5 - Reverse proxy (optional)
The usage of a Reverse Proxy (e.g. Apache HTTP or Microsoft IIS) is possible with SignDoc Web.

Important files and directories
SignDoc Web consists of two parts:

1. A WAR (Web application ARchive) file which needs to be deployed into a Web Application Server

2. The so called SDWEB_HOME directory which holds configuration and work data

Directory SDWEB_HOME

In this section you can find an overview of the files and directories which are provided as part of the
SDWEB_HOME directory.
• c2s

Click-to-Sign templates

11

Kofax SignDoc Web Administrator's Guide

• conf
Configuration files

• dms
File-based DMS directory (created upon first use)

• dms/de.softpro.sdweb.plugins.impl.FileDms
SOFTPRO file DMS directory

• doctemplates
Document templates

• fonts
Font configuration

• i18n
Global translation files (Internationalization)

• interfaces
Plugin interfaces, examples and documentation

• logs
Log files (audit, error, performance)

• plugins
Non-Kofax plugins

• preloaded_docs
Preloaded documents

• resources
Resource directory for public key to encrypt biometric data of signatures and other configurable
elements like icons.

• tablet_screens
Tablet Screens (Backgrounds)

• tools
TabletScreenImageCreator and PasswordEncryptionHelper

Directory conf

The conf directory contains the configuration files of SignDoc Web. Find below some information
on the various files that are part of this directory.

 If there is a need to run multiple SignDoc Web servers on one machine and configure
them separately, have a look at the section Instance-based Configuration in the SignDoc Web
Administrator's Guide.

• cert_store.p12
A custom PKCS#12 file containing a certificate that is used for the digital signing of the PDF
document.

• cert_store_readme.txt
Readme file explaining the usage of certificates.

• configuration.xml
This is a bootstrap configuration file of the rich client which shouldn't be changed by a customer.

12

Kofax SignDoc Web Administrator's Guide

• language.properties
This is the default language properties file used by the rich client if no language file is available
for the locale.

• language_xx.properties
These files contain all labels and messages which are visible in the rich client. The actual language
file is chosen by the Java locale mechanism.

• mobile_configuration.xml
In this rich client configuration file the functionality and features of the mobile GUI can be
configured.

• sample_ssl_cert.pfx
SSL certificate file.

• sdcustom.properties
In this rich client configuration file the client logging and the supported locales can be
configured.

• sdweb_config.groovy
This file is the main configuration file for the server. It is written in a compact and structured
syntax. It can be used in an instance-based configuration scenario to have a different server
configuration for each instance.

• server_configuration.xml
This is a bootstrap configuration file of the rich client which shouldn't be changed by a customer.

• signdoc_configuration.xml
In this rich client configuration file the functionality and features of the desktop GUI can be
configured.

• signdoc-logger.properties
A standard configuration file that can be changed for customized logging output.

• tomcat-logging.properties
A properties file that contains the Tomcat logging configuration.

Directory doctemplates

The doctemplates directory contains various document templates which can be loaded in SignDoc
Web. Find below some information on the various files that are part of this directory.

 If new files are placed in the doctemplates directory a SignDoc Web server restart will be
required for them to become available.

• Sample PDF documents with generic capture and/or image capture fields.
lorem_ipsum_4_pages.pdf

TrapezaOpenJointAccounts.pdf

Directory interfaces

The interfaces directory contains various SignDoc Web sample plugins and their documentation.
Find below a brief overview of the sample plugins available.

13

Kofax SignDoc Web Administrator's Guide

 More information on the sample plugins can be found in the Kofax SignDoc Web Developer's
Guide.

• NBC2SSignatureRendererSample
An example of an alternative Click-to-Sign image renderer.

• PreparePlugin
A simple SignDoc Web Prepare plugin. The plugin automatically inserts a signature field in the
bottom left corner of the first page. Additionally to this, it will populate each text field with the
current date and check each checkbox form element.

• ReadOnlyDmsPlugin
Simple DMS plugin demonstrating, how to make interactive fields readonly before storing the
document in the DMS.

• SetDocIdPlugin
This DMS plugin demonstrates, how a DMS plugin can set the document id.

• SignatureArchivePlugin
A simple Signature Archive plugin, that stores all captured biometric signatures in the file system
using the user id as index.

• SignatureVerifcationPlugin
A plugin demonstrating the possibility to capture a signature reference and afterward's validating
against it.

• SignPKCS7Demo
A plugin demonstrating the possibility to sign documents using an external method.

• VSVTestPlugin
Combined Prepare and Signature Verification plugin, that will display a dialog with the captured
signature and the signature of Albert Einstein as reference signature.

• ZDms
A simple DMS plugin saving documents to a directory.

• ZPrepare
A prepare plugin which inserts signature fields based on location, textphrase and parts of the
document id.

Directory logs

The logs directory contains the SignDoc Web log files and subdirectories.

Directory tablet_screens

14

Kofax SignDoc Web Administrator's Guide

The tablet_screens directory contains the tablet background screens that can be used by
SignDoc Web. Find below a brief overview the files in this directory.
• Sample Tablet Screens available with SignDoc Web.
default.xml

dynamic_content_example.xml

next_screen.xml

ok_screen.xml

piggybank_example.xml

WacomSTUSeries.xml

• Test pages to test Dynamic Content displayed on the SignPad.
dynamic_content_example.html

piggybank_example.html

Piggybank_200.png

• XML Schema of Tablet Screens

TabletScreenLayout.xsd

Communication with SignDoc Web server
There are various ways of communicating with the SignDoc Web server:
• Desktop client: The communication with the SignDoc Web server takes place via the browser

directly
• Mobile client: The communication with the SignDoc Web server takes place via the iOS or Android

app or the browser directly (HTML5 capturing)
• Web service: The communication with the SignDoc Web server takes place via the SOAP protocol
• REST: The communication with the SignDoc Web server takes place via HTTP calls

15

Chapter 2

SignDoc Web installation as a Windows
service

This chapter provides information on how to install and configure SignDoc Web as a Windows
service.

Definitions
• INSTALLDIR is the directory of the unpacked SignDoc*-tomcat.zip file. See Quickstart procedure.
• SIGNDOC_HOME, SDWEB_HOME are different names for the home directory of SignDoc Web. See

Content of the SignDoc Web ZIP archive, section "Directories".

General prerequisites
Before starting the installation it is required to install and check the following prerequisites.

To be able to use SignDoc Web 3.1.0, you have to install these Microsoft Visual C++ Redistributable
Package:
• Visual Studio 2017

Depending on the Windows version, it might be necessary to install some updates via Windows
Update before this setup can be successfully installed.

• Windows PowerShell (powershell.exe) must be in the system path. This should be the normal
case for the Windows Server OS.

• If this is an upgrade of SignDoc Web, check Upgrade SignDoc Web.

 It is recommended to install SignDoc Web behind a reverse proxy. If the reverse proxy is also
used to load-balance requests, it can be done stateless (e.g. round-robin).

Quickstart
Getting a simple local accessible SignDoc Web installation running can be achieved in less than 5
minutes. It is not wasted time doing this, since it is a base for a production ready setup.

Quickstart goals
• Install SignDoc Web as a Windows service.

16

https://go.microsoft.com/fwlink/?linkid=746572

Kofax SignDoc Web Administrator's Guide

Quickstart prerequisites
• 4 GB RAM

Quickstart procedure
• Unpack the signdoc-web-*.zip file in a new directory INSTALLDIR.

Example
c:\Program Files\signdoc-web-3.1.0.

• Double-click INSTALLDIR\service_up.cmd
• Wait approximately 1 minute on first start.
• Open SignDoc Web: http://localhost:6610/sdweb.

Content of the SignDoc Web ZIP archive
The relevant and configurable content of SignDoc Web consists basically of 3 files:
• a configuration file
• a script to install and configure the SignDoc Windows service
• a script to deregister the SignDoc Windows service

Tools
• INSTALLDIR\service_up.cmd installs, applies configuration and restarts the SignDoc Windows

service.
• INSTALLDIR\service_remove.cmd stops and deregisters the SignDoc Windows service. No

files are deleted.
• INSTALLDIR\service_configuration.properties is the configuration file of the SignDoc

Windows service. This file can be edited with a regular text editor. The syntax and usage is
described in the file.

Directories
• INSTALLDIR\signdoc_home is the default SIGNDOC_HOME / SDWEB_HOME directory.

Production setup
The following sections describe basic tasks that should or must be completed for a production
setup.

Goals for production
• Configure network settings
• Configure reverse proxy setup (optional)
• Advanced configuration (optional)

Prerequisites for production setup
• Application server

• minimum 2 GB RAM. See Advance configuration, section "Tune Java memory settings".

17

Kofax SignDoc Web Administrator's Guide

• minimum 2 GB free disk space
• SignDoc Web

Install SignDoc Web as described in Quickstart.

Procedure for production

The following topics do not depend on each other and can be executed independently. The settings
are applied by double-clicking INSTALLDIR\service_up.cmd.

Configure network settings

To configure SERVICE_HTTP_PORT follow these steps:

1. Open INSTALLDIR\service_configuration.properties in a text editor.

2. Navigate to SERVICE_HTTP_PORT.

3. Set the preferred port number.

Example

SERVICE_HTTP_PORT=6611

Configure SERVICE_EXTERNAL_HOST_URL:

A production service must be accessible via official domain name, so it can be accessed from other
computers. See section "Configure reverse proxy setup".

Configure SERVICE_INTERNAL_HOST_URL:

This is the context URL that is used to transmit data that does not have to be routed over public
networks.

 Usually this setting should not be changed.

Exception: If the Tomcat server is configured for "HTTPS only" connections, the URLs scheme must
be changed from http to https. The default setting that is based on localhost is usually correct.

Example

${SERVICE_HTTP_PORT} will be replaced by service_up.cmd with the corresponding value.
SERVICE_INTERNAL_HOST_URL=http://localhost:${SERVICE_HTTP_PORT}

HTTPS/TLS support

While it is possible to use TLS with SignDoc directly, it is generally recommended to use a reverse
proxy to offload the TLS connections. This reduces the load and provides more flexibility for hosting
and maintaining the SignDoc application.

To enable HTTPS/TLS the following configuration changes must be done:

1. Edit the file INSTALLDIR\service_configuration.properties.
Use https:// for the SERVICE_EXTERNAL_HOST_URL setting.
Example
https://localhost:${SERVICE_HTTP_PORT}

18

Kofax SignDoc Web Administrator's Guide

2. Edit the file INSTALLDIR_conf_templates\service_configuration.properties.
• Comment the default http connector (as described in the documentation notes of the file).
• Uncomment and configure the https connector (as described in the documentation notes

of the file).
• By default the https connector will use a self-signed certificate that can only be used for

test purposes.
• To use an individual and trustworthy certificate, at least keystoreFile, keystorePass,

keyAlias must be adjusted.
• It is recommended to use a PKCS#12 cert store (*.pfx, *.p12) that contains a private key as

well as all required certificates.

3. Apply the configuration and restart the service using service_up.cmd.

Configure reverse proxy setup

In a reverse proxy scenario it is important to configure the application URLs correctly.

1. Open INSTALLDIR\service_configuration.properties in a text editor.

2. Navigate to SERVICE_EXTERNAL_CONTEXT_URL.
This is the context URL that is used to access the application. This URL must be reachable from
anywhere and is part of the signing links that are sent via email.

3. Change the values if required.

Example

SERVICE_EXTERNAL_CONTEXT_URL=https://signdoc.mydomain.com

Advanced configuration
General

To configure more features of SignDoc Web, there are 2 options:

1. Edit the file:
INSTALLDIR_conf_templates\sdweb_config.groovy

2. Apply the configuration by executing INSTALLDIR\service_up.cmd.

 The configuration defined in INSTALLDIR\service_configuration.properties takes
precedence over settings with the same name in cirrus.properties.

Tune Java memory settings

1. Open the INSTALLDIR_conf_templates\SignDocWeb.xml file in a text editor.

2. Look for the following lines and change the values to your needs:
<!-- minimum Java HEAP -->
<argument>-Xms1024m</argument>

<!-- maximum Java HEAP -->

19

Kofax SignDoc Web Administrator's Guide

<argument>-Xmx2048m</argument>

3. After having changed one of these values, service_up.cmd must be executed to apply the
new values.

Use SignDoc in a clustered environment

SignDoc can be used in a clustered environment. A typical use case is load balancing.

Requirement: A SignDoc load balancer must support application defined session affinity. I.e. for one
particular singing session, subsequent requests must be routed back to the same instance. This is
archived by respecting the JSESSIONID cookie that Tomcat sets in HTTP responses.

To achieve high availability for the signing sessions the tomcat server must be configured to cache
the sessions in central location. Typically, this is achieved with using separate session database
or simply by a memcached instance. This configuration must be applied separately to the tomcat
configuration.

If multiple instances should be installed on the same operating system, it must be ensured to use
a different HTTP/TCP port for each instance. See Production setup, section "Configure network
settings". The default HTTP/TCP port for SignDoc Web is 6610.

 If the server.xml file must be changed, it should be done in the file INSTALLDIR
_conf_templates\server.xml. Execute service_up.cmd to apply the change. See Content of
the SignDoc Web ZIP archive, section "Tools".

Advanced information
View service details

To view a detailed service information double-click

INSTALLDIR\service\bin\SignDocWeb.exe

It is not recommended to change settings with this tool, since they are being overwritten whenever
service_up.cmd is executed. See Content of the SignDoc Web ZIP archive, section "Tools" and
Advanced configuration.

Logging configuration
The logging configuration is defined in the file

INSTALLDIR\signdoc_home\conf\signdoc-logger.properties

and can be edited.

The default location of the signdoc-logger.properties file is

INSTALLDIR\signdoc_home\conf\.

20

Kofax SignDoc Web Administrator's Guide

The SignDoc Web Windows service uses the file INSTALLDIR\signdoc_home\conf\tomcat-
logging.properties for the logging configuration file of the Tomcat application server. Consult
the Tomcat configuration if changes should be made.

Execute service_up.cmd to apply the change. See Content of the SignDoc Web ZIP archive, section
"Tools".

Installation on Tomcat without using the provided service
installer

SignDoc can be installed on an already existing Tomcat server.

See the Technical Specifications document available on the Kofax SignDoc 3.1.0 product
documentation page for information about supported versions of Tomcat server and Java Runtime
server you must use for the installation.

Follow these steps:

1. Unpack the sdweb.war file manually in %CATALINA_HOME%\webapps so that there is a sdweb
context directory.

2. Copy the following jar files from the service\lib directory to the lib directory of the Tomcat
directory (usually CATALINA_HOME):
• splm2jni-*.jar
• SPSignDoc-*.jar

3. Make sure that the directory with the native libraries %CATALINA_HOME%\webapps\sdweb
\WEB-INF\lib\native\Win64 is in the PATH of the Tomcat process.

4. Make sure that there are no older SignDoc native libraries in the PATH of the Tomcat process.

5. Copy the signdoc_home directory to the desired location. This location must be readable and
writable for the Tomcat process.

6. Copy _conf_templates\sdweb_config.groovy to the signdoc_home/conf directory and
configure it as desired.

7. To allow big file uploads it might be required to adjust the maxPostSize attribute of the
<Connector> element of Tomcat's server.xml.

8. Start the Tomcat service with the following system properties.
Required properties:
-DSDWEB_HOME=<path_to_signdoc_home_directory>
-DSERVICE_INTERNAL_HOST_URL=<loopback_url_to_root_context>
-DSERVICE_EXTERNAL_HOST_URL=<generally_accessible_url_to_root_context>

Example:
-DSDWEB_HOME="c:/signdoc_home"
-DSERVICE_INTERNAL_HOST_URL=http://localhost:8080
-DSERVICE_EXTERNAL_HOST_URL=http://mysigndocserver.example.com

21

https://docshield.kofax.com/Portal/Products/en_US/SD/3.1.0-tp2w5bx8yi/SD.htm

Kofax SignDoc Web Administrator's Guide

Installation on other JEE compliant application servers
Installation on other JEE compliant servers is not supported.

License installation
The current licensing mechanism used with Kofax SignDoc Web is SPLM2.

To be able to run SignDoc Web, you need a license key file (i.e. SignDocWeb.key).

If you have already purchased a license you can request your permanent production license key file
by contacting Kofax Order Fulfillment. Please include your order confirmation and customer details.

If you want to purchase a license please contact the Kofax sales team.

If you require an extension of your temporary license or a temporary Partner license please contact
Kofax Order Fulfillment.

General
The location containing the splm2.dll or splm2.so needs to be in the PATH (Windows) or in the
LD_LIBRARY_PATH (Linux) environment variable of the Web Application Server process.

The correct path depends on the architecture of the Java Runtime:

For example a 32-bit Java Runtime executed on a Windows 64-bit System must have access to this
location:

<location_of_extracted_war_file>\WEB-INF\lib\native\win32

License installation on Windows
Perform the following steps to install the SignDoc Web license key on a Windows platform.

1. Copy the license file to a location that is accessible for the application server process, for
example:
C:\<your_license_file_location>SignDocWeb.key

2. Define a Java variable which is valid within your web application server process, for example:
-DSDWEB_LICENSE_KEY_FILE

3. Make the variable point to the actual location of the SignDocWeb.key file, for example:
-DSDWEB_LICENSE_KEY_FILE = C:\<your_license_file_location>SignDocWeb.key

22

Kofax SignDoc Web Administrator's Guide

4. Alternatively you can also create a Windows system environment variable
SDWEB_LICENSE_KEY_FILE and point it to the location of the SignDocWeb.key file.

 The Java variable has precedence over the system environment variable.

5. If none of the above is set Kofax SignDoc will look for the license key file in SDWEB_HOME/lic/
SignDocWeb.key by default.

License installation on Linux
Perform the following steps to install the SignDoc Web license key on a Linux platform.

1. Copy the file to a location that is accessible for the Web Application Server process.
Example
sudo mkdir -p /var/softpro/lic

sudo chmod a+rx /var/softpro/lic

sudo cp SignDocWeb.key /var/softpro/lic

2. Define a Java variable which is valid within your web application server process, for example:
-DSDWEB_LICENSE_KEY_FILE

3. Make the variable point to the actual location of the SignDocWeb.key file, for example:
-DSDWEB_LICENSE_KEY_FILE = /var/softpro/lic/SignDocWeb.key

4. Alternatively you can also create a Linux system environment variable
SDWEB_LICENSE_KEY_FILE and point it to the location of the SignDocWeb.key file.

 The Java variable has precedence over the system environment variable.

5. If none of the above is set Kofax SignDoc will look for the license key file in SDWEB_HOME/lic/
SignDocWeb.key by default.

Context security Policy (CSP)
The following CSP related HTTP headers can be set in a reverse proxy to enable Context Security
Policy for SignDoc Web.

SDWEB Client (URI: <SignDoc Web Context, usually /sdweb>)

Content-Security-Policy: default-src 'none'; style-src 'self' 'unsafe-inline'; script-
src 'self' 'unsafe-inline' 'unsafe-eval'; img-src 'self' data: blob:; frame-src 'self';
 connect-src 'self' localhost:6613; font-src 'self'; media-src 'self'; object-src
 'none'; form-action 'self'

23

Kofax SignDoc Web Administrator's Guide

Upgrade SignDoc Web
SignDoc Web can be upgraded from any version directly, it is not required to install intermediate
SignDoc Web versions. Nevertheless, possible required configuration changes must be followed as
described in the incremental version upgrade sections.

Upgrade from SignDoc Web 3.0.0 to 3.1.0
• Stop SignDoc Web 3.0.0 using service_remove.cmd. See Content of the SignDoc Web ZIP

archive, section "Tools".
• Install SignDoc Web 3.1.0 as described in Quickstart above.
• Apply the existing SignDoc Web 3.0.0 configuration to the new SignDoc Web 3.1.0 installation.

This means, applying any existing configuration from service-configuration, properties (and
possibly other configuration files) to the new installation. This usually concerns among other
things: SERVICE_EXTERNAL_HOST_URL, ...

• Optional: Copy/apply old configuration settings (e.g. sdweb_config.groovy) to the new
SDWEB_HOME.

• Start the new SignDoc Web 3.1.0 version using service_up.cmd. See Content of the SignDoc
Web ZIP archive, section "Tools".

Upgrade from SignDoc Web 2.2.1 to 3.0.0
• Stop SignDoc Web 2.2.1 using service_remove.cmd. See Content of the SignDoc Web ZIP

archive, section "Tools".
• Install SignDoc Web 3.0.0 as described in Quickstart above.
• Apply the existing SignDoc Web 2.2.1 configuration to the new SignDoc Web 3.0.0 installation.

This means, applying any existing configuration from service-configuration, properties (and
possibly other configuration files) to the new installation. This usually concerns among other
things: SERVICE_EXTERNAL_HOST_URL, ...

• Optional: Copy/apply old configuration settings (e.g. sdweb_config.groovy) to the new
SDWEB_HOME.

• Start the new SignDoc Web 3.0.0 version using service_up.cmd. See Content of the SignDoc
Web ZIP archive, section "Tools".

Upgrade from SignDoc Web 2.2.0 to 2.2.1
• Stop SignDoc Web 2.2.0 using service_remove.cmd. See Content of the SignDoc Web ZIP

archive, section "Tools".
• Install SignDoc Web 2.2.1 as described in Quickstart above.
• Apply the existing SignDoc Web 2.2.0 configuration to the new SignDoc Web 2.2.1 installation.

This means, applying any existing configuration from service-configuration, properties (and
possibly other configuration files) to the new installation. This usually concerns among other
things: SERVICE_EXTERNAL_HOST_URL, ...

• Optional: Copy/apply old configuration settings (e.g. sdweb_config.groovy) to the new
SDWEB_HOME

24

Kofax SignDoc Web Administrator's Guide

• Start the new SignDoc Web 2.2.1 version using service_up.cmd. See Content of the SignDoc
Web ZIP archive, section "Tools".

Upgrade from SignDoc Web 2.1 to 2.2.0
• Stop SignDoc Web 2.1 using service_remove.cmd. See Content of the SignDoc Web ZIP archive,

section "Tools".
• Install SignDoc Web 2.2.0 as described in Quickstart above.
• Apply the existing SignDoc Web 2.1 configuration to the new SignDoc Web 2.2.0 installation. This

means, applying any existing configuration from service-configuration.properties (and
possibly other configuration files) to the new installation. This usually concerns among other
things: SERVICE_EXTERNAL_HOST_URL, ...

• Optional: Copy/apply old configuration settings (e.g. sdweb_config.groovy) to the new
SDWEB_HOME

• Start the new SignDoc Web 2.2.0 version using service_up.cmd. See Content of the SignDoc
Web ZIP archive, section "Tools".

Upgrade from SignDoc Web 5.2.1 (or earlier) to SignDoc Web 2.1.0
To upgrade an existing SignDoc Web 5.2.1 (or earlier) to 2.1.0 perform the following steps:

1. Stop and disable automatic restart for all existing SignDoc Web instances.

2. Remove and uninstall prior installations of SignDoc Standard or SignDoc Web. Also make sure
to remove all SDWEB_HOME and/or CIRRUS_HOME directories.

3. Install SignDoc Web 2.1.0 as described in Quickstart.

4. Configure SignDoc 2.1.0 for production as described in Production setup. It is recommended to
apply the configuration fresh.

5. Start the new SignDoc Web version using service_up.cmd. See Content of the SignDoc Web
ZIP archive, section "Tools".

6. Open http://\<your_server\>:\<port\>/sdweb

25

Chapter 3

Deployment on Linux

If SignDoc is to be deployed under Linux, it is recommended to use Docker. SignDoc provides
several sample Dockerfiles (in the docker directory). These Dockerfiles contain documentation and
describe the basic installation procedure for a Linux environment. These files can also be used and
amended/adapted for deployment, if required/desired.

 Due to a bug in Docker Build Kit, it might be required to do 'docker login' before building the
SignDoc images. See also: https://github.com/moby/buildkit/issues/1271

26

https://github.com/moby/buildkit/issues/1271

Chapter 4

Administration and configuration

The following chapter gives general information and tips on how to administer and configure
SignDoc Web.

Alternative signature capturing via JavaScript - HTML5 data
capture

 The SignDoc Web HTML5 capture feature enables the acquiring of signature time series
data via a browser client directly from the device without additional installation of software
components. It should be noted that capturing data via HTML 5 does not currently provide
pressure information.

The SignDoc Web HTML5 capture is available for the following browser applications: Safari, Firefox,
Chrome, Edge, and Opera. Note that signature quality (both visual and data content) will vary
between different browsers and device types.

Limitations you should be aware of when using HTML 5 capturing are:
• The captured data are x and y screen coordinates, and time.

Time between two samples is not equidistant.
• Currently, signatures are recorded with a fixed 96 dpi entry due to technical limitations.

Some devices have different X and Y resolutions, which can stretch signatures on one axis.
• The browser used will affect the number of sample points.

The rate of captured sample points within time duration will have a strong variation depending
on the device running the browser application.

 HTML5 captured signatures are suitable for signing of documents with simple legal
requirements, and provide technical integration convenience. The HTML5 captured signatures
however may not be used for automatic signature verification, and provide very limited forensic
evidence. This is primarily due to a lack of sufficient and reproducible characteristic data of the
individual’s signature.

The mobile view is displayed by default in the SignDoc Mobile App which should be installed on the
mobile device if SignDoc Web is used for document processing. Device (and OS) specific signature
capturing is enabled within SignDoc Mobile.

Signatures can be captured in the desktop browser with the SignDoc Web client with the help of
Kofax SignDoc Device Support which allows 'native' access to the connected capture device. The
desktop view is used in the browser for displaying a loaded document.

27

Kofax SignDoc Web Administrator's Guide

With the technical capabilities of HTML5 supporting browsers it is possible to capture signatures
only with JavaScript.

With this method it is possible to capture signatures on mobile devices also without the necessity to
use SignDoc Mobile App.

In the desktop browser you can capture signatures without any additional software installed on the
machine.

It is configurable in

%SDWEB_HOME%/conf/sdweb_config.groovy

whether JavaScript capturing is used or not.
• sdweb.capture.html5_mobile Supported values: force, deny

deny - JavaScript capturing cannot be used on mobile devices. SignDoc Mobile App must be
installed if a browser loads a document in SignDoc Web.
force - JavaScript capturing must be used, SignDoc Mobile App is not called from a mobile
browser if a document is loaded with SignDoc Web.
Default: deny

• sdweb.capture.html5_desktop Supported values: force, deny
deny - JavaScript capturing cannot be used in a desktop browser. Kofax SignDoc Device Support
must be installed on the machine for capturing signatures in a document in SignDoc Web client.
force - JavaScript capturing must be used in the desktop browser. The document is loaded in
mobile view (¹) and capturing via Kofax SignDoc Device Support is disabled.
Default: deny

(¹) For now JavaScript capturing is only enabled in the mobile view. That means that always the
mobile document view is used for enabled JavaScript capturing independent from the client
requester type which could be mobile or desktop.

 These settings are overwritten when the SignDoc Web client is integrated by a webpage using
the RemoteInterface (see also SignDoc Web Developer's Guide, chapter "RemoteInterface".

In browsers that don't support HTML5 functionality the SignDoc Web client tries to execute a flash
plugin for capturing by default.

If flash plugins are not allowed in certain customer environments it is possible to disable it via
configuration entry 'Flash.Allowed' (see configuration below).

If neither JavaScript capturing nor Flash capturing is possible in a browser a corresponding
message is displayed to the user.

Configuration entries in mobile_configuration.xml that affects HTML5 capturing and desktop
browser support:

Settings for the JavaScript capture dialog

<component id="SD_SignatureCaptureDialogHtml5">
<element id="Title">
<parameter key="Label" propertyFile="language"
 propertyKey="SD_SignatureCaptureDialog.Title"/>

28

Kofax SignDoc Web Administrator's Guide

</element>
<element id="Size">
<parameter key="Frame.Width" value="740"/>
<parameter key="Frame.Height" value="375"/>
<parameter key="Width" value="745"/>
<parameter key="Height" value="380"/>
</element>
<element id="Misc">
<!--
'false' - capturing is displayed in a simple popup without an explicit dialog close
 button.
'true' - capturing is displayed in a real dialog with an explicit dialog close button
 at the bottom.
-->
<parameter key="Closable" value="false"/>
<!--
Specify if the content of this dialog should be scrollable if it exceeds the dialogs
 size.
Setting this to false would make sense if the height of the dialog is reduced in order
 to hide the capture buttons on the screens.
Doing this the capture process can only be controlled by the tablet device.
-->
<parameter key="Scrollable" value="false"/>
<!--
Specify the pressure level which defines the thickness of the rendered signature in the
 document.
The recommended value is 1023 (valid range is from 1 - 1023).
-->
<parameter key="Pressure" value="1023"/>
<!--
Specify the text which should be displayed below the signature line.
-->
<parameter key="Text" propertyFile="language"
 propertyKey="SD_SignatureCaptureDialogHtml5.Text"/>
<!--
Specify if Flash plugin is allowed when browser doesn't support HTML5.
-->
<parameter key="Flash.Allowed" value="true"/>
</element>
</component>

Settings that allow the usage of the mobile-gui in environments containing both, desktop-
and mobile browsers

Zoom settings

<component id="Lists">

<!-- The zoomlist configuration for browsers with touch support using the mobile gui.
 Hint: the zoomlist configuration for desktop browsers without touch support can be
 found below -->
<element id="ZoomList">
...
</element>

<!-- The zoomlist configuration for desktop browsers without touch support using the
 mobile gui. -->
<element id="ZoomList_Desktop">
...
</element>

</component>

29

Kofax SignDoc Web Administrator's Guide

Toolbar settings

<!-- The toolbar configuration for browsers with touch support using the mobile gui.
 Hint: the toolbar configuration for desktop browsers without touch support can be
 found at the end of this file -->
<component id="Toolbar">
...
</component>

<!-- The toolbar configuration for desktop browsers without touch support using the
 mobile gui -->
<component id="Toolbar_Desktop">
...
</component>

Audit trail
Description

SignDoc Web can record information about user actions while a document is processed. This
information can be recorded in any language if the appropriate translation files are present.

The SignDoc Web Audit Trail is activated by configuring and enabling an IAuditLog plugin in
SignDoc Web. A default Audit Trail Plugin de.softpro.sdweb.plugins.impl.SimpleAuditLog is included
in SignDoc Web as core plugin.

 Note This feature is especially important in a C2S environment.

Configuration

For example in the sdweb_config.groovy configuration file the following settings can be made:

sdweb.audittrail.enabled=true
sdweb.audittrail.plugin.impl="de.softpro.sdweb.plugins.impl.SimpleAuditLog"
sdweb.audittrail.locale="en"
sdweb.audittrail.generic=true

Options
• sdweb.audittrail.enabled (boolean): Defines, if the Audit Trail function is generally enabled and

SignDoc Web should log the user actions. Default: true
• sdweb.audittrail.plugin.impl (string): The IAuditLog plugin to use. Default:

de.softpro.sdweb.plugins.impl.SimpleAuditLog
• sdweb.audittrail.locale (string): The language to use to write the Audit Trail. Default: en
• sdweb.audittrail.generic (boolean): If set to true, a generic Audit Trail Log will be always written.

Even if the uid (c2s_uid - c2s user id) and/or the tid (c2s_tid - c2s transaction id) is not set. See also
Click to sign, section "HTTP servlet parameters".

Use SimpleAuditLog

The SimpleAuditLog plugin provides an Audit Trail logging implementation. The plugin logs the
audit information in separate log files on the file system. The output format is CVS. An example
output is listed below.

30

Kofax SignDoc Web Administrator's Guide

 The default behavior is, that the logs will be written in the directory SDWEB_HOME/logs/audit.

Logfiles are created following this rule:

<logfile_dir>/<date>/<logfiles>

logfile_dir:=log directory for the logfile_types transactions|users|generic
date:=the date of the log
logfiles:=depends on the logfile_type

Examples

Log type: Transactions

signdoc_home/logs/audit/transactions/2012-01-29/1234.log

where 1234 is the transaction id

Log type: Users

signdoc_home/logs/audit/transactions/2012-01-29/chi.log

where chi is the user id

Log type: Generic Log

signdoc/logs/audit/generic/2012-01-29/generic_audit.log

This log is a full audit log.
• Transaction Log (based on the servlet parameter c2s_tid)

• Contains all log information about a transaction
• For each unique transaction per day a new file is created: <c2s_tid>.log

• User Log (based on the servlet parameter c2s_uid)
• Contains all log information of a particular user
• For each unique user per day a new file is created: <c2s_uid>.log

• Generic Log
• A new log file is created per day that contains all audit log information of the day
• Can be explicitly enabled/disabled by the plugin configuration option: enable_generic_log (see

below)

Example

sdweb_config.groovy
sdwebplugins."de.softpro.sdweb.plugins.impl.SimpleAuditLog".transaction_log_dir="/var/
softpro/log/transaction_logs"
sdwebplugins."de.softpro.sdweb.plugins.impl.SimpleAuditLog".users_log_dir="/var/
softpro/log/user_logs"
sdwebplugins."de.softpro.sdweb.plugins.impl.SimpleAuditLog".genric_log_dir="/var/
softpro/log/genric_log"
sdwebplugins."de.softpro.sdweb.plugins.impl.SimpleAuditLog".separator="|"
sdwebplugins."de.softpro.sdweb.plugins.impl.SimpleAuditLog".dateformat="yyyy-MM-dd"
sdwebplugins."de.softpro.sdweb.plugins.impl.SimpleAuditLog".timestampformat="yyyy-MM-dd
 HH:mm:ss"
sdwebplugins."de.softpro.sdweb.plugins.impl.SimpleAuditLog".enable_generic_log=true

31

Kofax SignDoc Web Administrator's Guide

Configuration options for SimpleAuditLog

(omitting the prefix sdwebplugins."de.softpro.sdweb.plugins.impl.SimpleAuditLog" for the Name
attribute)
• transaction_log_dir (string): The path, where the transaction logs should be written to. Each

transaction will create a new file with the transaction id as file name. To write a transaction
log, the servlet parameter c2s_tid has to be set. See also: Click to sign, section "HTTP servlet
parameters". Default: SDWEB_HOME/logs/audit/transactions/<current_date>

• users_log_dir (string): The path, where the user logs should be written to. Each user will create a
new file with the user id as filename. To write a user log, the servlet parameter c2s_uid has to be
set. See also Click to sign, section "HTTP Servlet parameters". Default: SDWEB_HOME/logs/audit/
users/<current_date>

• genric_log_dir (string): The path, where the generic logs should be written to. The generic log is
written, if sdweb.audittrail.generic is set to true (see above). Default: SDWEB_HOME/logs/audit/
generic/<current_date

• separator (string): The contents of the file are organized as CSV. This string defines the separator
string. Default: "|"

• dateformat (string): The date format to be used when writing the timestamps. The format must
be compliant to the Java SimpleDateFormat class: docs.oracle.com/javase/8/docs/api/java/text/
SimpleDateFormat.html. Default: yyyy-MM-dd HH:mm:ss

• enable_generic_log (boolean): If set to true a generic log based on granularity of the dateformat
String will be created containing all audit log entries. Default: true

CSV format for SimpleAuditLog

timestamp | transaction id | user id | action code | document id | localized
action message

Example

...

2012-01-24 15:18:20|1327413414893|chi@softpro.de|1|2012-01-24_15-18-20-902|
Document was opened|

...

How to develop customer-specific audit log

To develop an own customized plugin, it is recommended to use this as your basic class definition:

public class SimpleAuditLog extends AbstractPlugin implements IAuditLog {

@Override
public synchronized Map<String, Object> logEvent(AuditLogKey auditLogKey,
 AuditEventType auditEventType, final Map<IAuditLog.PLUGIN_PARAMS, Object> params)
 throws PluginException {
 // implementation code
}

// other required methods

}

32

Kofax SignDoc Web Administrator's Guide

For further details consult the provided JavaDoc in:

SDWEB_HOME/interfaces/plugins

Caching custom images
Image caching

It is already possible to enable caching for SignDoc Web images in sdweb_config.groovy with

sdweb.view.imagecache.enable=true

This setting affects NOT the custom specific images which can be addressed via "/custom/img".

These custom images can be specified in sdweb_config.groovy via

sdweb.cache.custom_images.list=[..., ...]

The list can contain one or more regular expressions patterns.

If the client request matches with one of these patterns the request will be cached on the client.

Example

sdweb.cache.custom_images.list=[".*mobile_toolbar_.*\\.png",
".*desktop_toolbar_.*\\.png"]

This pattern causes all requests that contain 'mobile_toolbar_' and end with '.png' to be cached as
well as all requests containing "desktop_toolbar_" and ending with ".png"

The max-age cache for these custom images can be configured (in seconds) via

setting sdweb.cache.custom_images.max_age=...

The default is 259200 for 3 days in seconds (3*24*60*60).

GWT files caching

GWT specific xxx.cache.html files are cached.

The http response header "Cache-Control" is set with "max-age=..."

for these files with

sdweb.cache.gwt.max_age=...

in seconds, default is 259200 (3*24*60*60) for 3 days

(sdweb.cache.gwt.max_age=259200)

Additional requests caching

It is possible now to enable the caching of additional specific requests which matches with one of
the (regular expressions) patterns in the list

33

Kofax SignDoc Web Administrator's Guide

sdweb.cache.pattern.list=["...", "..."]

Example

sdweb.cache.pattern.list=[".*dark\\.css", ".*toolbar.*\\.png"],

which matches with either any requests ending with dark.css or with requests which have 'toolbar'
anywhere in the URI and ends with '.png'.

 It is also possible to define only one pattern in the list (without separating comma).

The http response header "Cache-Control" with "max-age=..." can be set for these files (in seconds)
with

sdweb.cache.pattern.max_age=...

Default is 259200 (3*24*60*60) for 3 days in seconds.

Click to sign
SignDoc Web normally is used in conjunction with a handwritten signature. With this feature, basic
support for Click to Sign (C2S) is added to SignDoc Web core.

Description

SignDoc Web provides basic support for c2s images. The appearance of the signature field can be
freely designed by the user. The basics of C2S consists basically of these building blocks:
• Signature Appearance Plugin (Interface: C2SSignatureRenderer)

This plugin is responsible for rendering the visual appearance of a signed signature field.
• Server settings to start the SignDoc Web Server in "C2S mode" The C2S signing ceremony differs

from a traditional signing ceremony.

Signing ceremony

Since there is no need to capture handwritten signatures in C2S environment, the user interface
when signing differs quite a bit. Instead of writing a signature, the user enters his name in a dialog
box when signing. This information is rendered into the visible signature appearance along with
other information (for details see below).

Configuration options in sdweb_config.groovy

34

Kofax SignDoc Web Administrator's Guide

C2S settings
• sdweb.c2s.mode.force (boolean): If true, the server is running in "C2S mode". This means, that

all signature fields are treated as C2S signature fields. Supported values: true, false. Default: false
• sdweb.c2s.defaults.signaturerenderer.impl (string): The Signature Renderer

Plugin to use. The default Implementation uses an SVG Renderer to create the
appearance of the signature field. Supported values: a valid PluginId. Default:
'de.softpro.sdweb.plugins.impl.SimpleC2SSVGRenderer'

• sdweb.c2s.signaturereimage.dpi (integer): DPI of the created signature image. Supported
values: > 0. Default: 300

HTTP servlet parameters
• c2s_uid Is a free to use parameter that is supposed to carry any user identification information

associated with the current document process.
This information can be part of the AuditTrail. This information can be evaluated and read out by
plugins

• c2s_tid Is a free to use parameter that is supposed to carry any transaction relevant information
associated with the current document process.
This information can be part of the AuditTrail. This information can be evaluated and read out by
plugins.

Other useful settings
• sdweb.workflow.skip_bp_detection Setting the value to false disables the check for the browser

plugin, that is executed whenever a document is opened. Supported values: true, false

Signature field appearance

If the default plugin (SimpleC2SSVGRenderer) is used, the default signature appearance can be
found in the directory:

SDWEB_HOME/c2s/softpro_c2s_template.svg

The format of the file is SVG. The file serves as template for the single C2S signatures and the
design can be adapted to meet specific needs. This svg file can contain some keywords, that will
replaced with concrete values when signing.

The keywords are:

Keyword Description

%%%C2S_VAR_TIMESTAMP%%% The signing timestamp

%%%C2S_VAR_SIGNER_NAME%%% The signer's name

%%%C2S_USER_ID%%% The signer's ID e.g. email address

%%%C2S_IP_ADDRESS%%% The IP address of the signer when applying the
signature

<?xml version="1.0" encoding="UTF-8"?>
<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:ev="http://www.w3.org/2001/xml-events"
 version="1.1" baseProfile="full" width="300px" height="100px" viewBox="0 0 300
 100">

35

Kofax SignDoc Web Administrator's Guide

 <rect id="c2s_signature_background" x="0" y="0" width="300" height="100"
 style="fill:#ffffff" />
 <text id="c2s_fixed_esigned" x="5" y="12" font-size="12"
 style="fill:#000000;font-family:Verdana">E-signed: </text>
 <text id="c2s_var_signdate" x="80" y="12" font-size="12"
 style="fill:#000000;font-family:Verdana">%%%C2S_VAR_TIMESTAMP%%%</text>
 <text id="c2s_var_signer_name" x="5" y="45" font-size="36"
 style="fill:#0000ff;font-family:Brush Script MT">%%%C2S_VAR_SIGNER_NAME%%%</text>
 <text id="c2s_var_user_id" x="5" y="65" font-size="14"
 style="fill:#000000;font-family:Verdana">%%%C2S_USER_ID%%%</text>
 <text id="c2s_fixed_ipaddress" x="5" y="80" font-size="12"
 style="fill:#000000;font-family:Verdana">IP:</text>
 <text id="c2s_var_ipaddress" x="25" y="80" font-size="12"
 style="fill:#000000;font-family:Verdana">%%%C2S_IP_ADDRESS%%%</text>
 <rect id="c2s_electronic_signature_background" x="165" y="84" rx="5" ry="5"
 width="135" height="15" style="fill:#007700" />
 <text id="c2s_fixed_electronic_signature" x="175" y="95" font-size="10"
 style="fill:#ffffff;font-family:Verdana">Electronic Signature</text>
</svg>

Cluster environment
SignDoc Web depends on a server side session. To be able to work in a clustered environment,
some configurations must be done.

SDWEB_HOME directory

Each instance of SignDoc Web requires a SDWEB_HOME directory. In a clustered environment all
nodes should have the same SDWEB_HOME. This can generally be achieved by different strategies:
• Containerize the SignDoc Web instance (e.g. by using Docker) including SDWEB_HOME
• Put the SDWEB_HOME directory on a common network share (read/write access is required)
• Explicitly synchronize the SDWEB_HOME on all nodes with a synchronization tool like e.g. rsync

Session cookie / Sticky session / Session state persistence

If SignDoc Web is hosted behind a load balancer or reverse proxy it is required to configure it to use
sticky sessions. This is achieved by respecting the applications servers session cookie.

Example for Apache Web Server: https://httpd.apache.org/docs/2.4/mod/mod_proxy_balancer.html

Replicating session state

To improve high availability, the server side session must be persisted on server side. This can be
done in different ways. It is generally recommended to use a fast in-memory cache like memcached
but traditional database are also possible. Whenever a node of a cluster fails, another node can pick
up the sessions that existed on the failing node. The user of SignDoc Web will not notice this and
can continue to work.

Example for Tomcat: https://github.com/magro/memcached-session-manager

Preloading documents

Preloading documents is a special functionality of SignDoc Web that means that documents (usually
PDF documents) are pushed to SignDoc Web - on server side - before they can be opened on client

36

https://httpd.apache.org/docs/2.4/mod/mod_proxy_balancer.html
https://github.com/magro/memcached-session-manager

Kofax SignDoc Web Administrator's Guide

side via a refid parameter. The refid parameter is usually a random UUID string. From a security
point of view, this is a best practice. Preloading must be done, whenever the application producing
the documents to sign is not a web application (e.g. a terminal application).

To be able to meet different technical requirements and/or strategies, the preload implementation
logic is implemented via an IPreloadPlugin* plugin. There are currently 3 standard preload
plugins delivered with SignDoc Web using different strategies. See Preload plugins for a detailed
description.

Configuration of toolbar and GUI
SignDoc Web starts up with a default setting for the visibility of the toolbar icons. The below icons
are available and can be enabled or disabled in the mobile_configuration.xml (Mobile GUI for
Desktop and mobile devices) or signdoc_configuration.xml (Desktop GUI) file. Please note that
mobile_configuration.xml contains two separate sections for toolbar configuration, one for touch
devices and one for desktop browsers.
• TA_FinalizeDocument Sets the visibility of the toolbar icon Send to Archive. Supported

values: true, false. Default: false
• TA_Cancel Sets the visibility of the toolbar icon Cancel document. Supported values: true,

false. Default: true
• TA_Download Sets the visibility of the toolbar icon Download Document. Supported values:

true, false. Default: true
• TA_OpenDocument (only available on Desktop if used together with Remote Interface). Sets the

visibility of the toolbar icon Open new document. Supported values: true, false. Default: false
• TA_Email (only available on Desktop if used together with Remote Interface). Sets the visibility of

the toolbar icon E-Mail document. Supported values: true, false. Default: false
• TA_Print Sets the visibility of the toolbar icon Print document. Supported values: true, false.

Default: true
• TA_FirstPage Sets the visibility of the toolbar icon First page. Supported values: true, false.

Default: true
• TA_LastPage Sets the visibility of the toolbar icon Last page. Supported values: true, false.

Default: true
• TA_NextPage Sets the visibility of the toolbar icon Next page. Supported values: true, false.

Default: true
• TA_PrevPage Sets the visibility of the toolbar icon Previous page. Supported values: true,

false. Default: true
• TA_PageInfo (only available in Mobile GUI). Sets the visibility of the toolbar icon Page Info.

Supported values: true, false. Default: true
• TA_PageInput (not available for mobile-view). Sets the visibility of the toolbar icon Select a

page within the document. Supported values: true, false. Default: not set
• TA_Highlight Sets the visibility of the toolbar icon Highlight input fields. Supported values:

true, false. Default: true
• TA_ZoomList (not available for mobile-view). Sets the visibility of the toolbar icon Select

zoom in %. Supported values: true, false. Default: true

37

Kofax SignDoc Web Administrator's Guide

• TA_ZoomIn Sets the visibility of the toolbar icon Zoom in the document. Supported values:
true, false. Default: true

• TA_ZoomOut Sets the visibility of the toolbar icon Zoom out the document. Supported values:
true, false. Default: true

• TA_ZoomToWidth (only available in Mobile GUI). Sets the visibility of the toolbar icon Zoom to
width of the document. Supported values: true, false. Default: false

• TA_About (not available for mobile-view). Sets the visibility of the toolbar icon About page.
Supported values: true, false. Default: true

• TA_ClearSignature Sets the visibility of the toolbar icon Clear Signature. This is only
supported in toolbar configuration section for touch devices. Supported values: true, false.
Default: false

• TA_DisplayFields Sets the visibility of the toolbar icon Display fields dialogue. Supported
values: true, false. Default: true

• TA_AddCaptureField Sets the visibility of the toolbar icon Add a capture field. This is only
supported in toolbar configuration section for touch devices. Supported values: true, false.
Default: false

• TA_AuditTrail Sets the visibility of the toolbar icon Audit Trail. Supported values: true, false.
Default: false

• TA_Help Sets the visibility of the toolbar icon Help. Supported values: true, false. Default: true

See further GUI or workflow configuration options in the files mobile_configuration.xml (Mobile GUI
for desktop and mobile devices) or signdoc_configuration.xml (Desktop GUI).

Configure server
sdweb_config.groovy is the main configuration file for the SignDoc Web server.

It is located at:

%SDWEB_HOME%/conf

The general syntax is:

a.config.key = <JAVA object>

Examples

integer.config.key = 123 // no quotes!
string.config.key = "John Doe" // quotes are mandatory
boolean.config.key = true // no quotes!

This example shows the general syntax of the configuration file. It is based on Groovy config slurper
file syntax, but written as traditional Java properties files.

In contrast to traditional Java properties files the values are Java Objects - not only Strings

When the Plugin configuration is injected to the plugins, the value of a key can be accessed in this
way:

void injectPluginConfiguration(Map<String,Object> configMap) {

38

http://docs.groovy-lang.org/docs/latest/html/documentation/#_configslurper

Kofax SignDoc Web Administrator's Guide

 int intValue = (Integer)configMap.get("integer.config.key")
 String strValue = (String)configMap.get("string.config.key")
 boolean boolValue = (Boolean)configMap.get("boolean.config.key")
}

Put string values in quotes like in Java programs. In traditional Java Properties files you must not use
quotes.

To quote the string values you can either use double quotes ("StringValue") or single quotes
('StringValue').

When a node contains a dot (.) character you have to put the node name (see example above) in
quotes or create a subnode with every dot.

Use forward slashes whenever a directory path is required.

If you want to use ${sdweb.home} variable (path to sdweb_home directory) in the configuration

(e.g. sdweb.signature.watermark.image.template_dir="${sdweb.home}/wm")

you have to set the following statements in sdweb_config.groovy before:

import de.softpro.sdweb.SdWebHelper

sdweb.home = SdWebHelper.SDWEB_HOME;

Further information on configuration parameters can be found in the Configuration file
sdweb_config.groovy.

Description of sdweb.browserplugin.padclass

A cable bounded pad is selected first by default if connected.

The padclass entry can contain one or more tablet class entries (separated by semicolons) which
determine the search order for capture devices.

Valid tablet classes are:
• SPTabletWSignPad interface to Wacom SignPad tablets
• SPTabletWTablet interface to Kofax eInk driver to access TabletPCs
• SPTabletRemoteTablet interface to Kofax driver to access Smartphones as tablets
• SPTabletHidDrv interface to the Kofax HID driver to access TabletPCs
• SPTabletInterlink interface to the Kofax Interlink driver (SWILUniv)
• SPTabletMobinetix interface to Mobinetix driver
• SPTabletStepOver interface to StepOver BlueM and BlueM-LCD tablets
• SPTabletTopaz interface to Topaz 1X5, 4X3 and 4X5 SE LCD tablets
• SPTabletWacom interface to Wacom Intuos, Graphire, etc. tablets
• SPTabletVerifone interface to Kofax driver to access Verifone Mx 800 series tablets
• SPTabletGeneric interface to Kofax driver to access drivers that implement the documented tablet

access

If the clients have the possibility to capture a signature with different devices you can define the
tablet search order with the padclass definition in sdweb_config.groovy.

39

Kofax SignDoc Web Administrator's Guide

 The padclass configuration in sdweb_config.groovy is not considered if FirstWT=drv is defined
in local tablet.ini, for example FirstWT=SP_WspDrv.

Description of sdweb.browserplugin.padconfiguration

The sign pad model is referenced by a specific padclass (parameter sdweb.browserplugin.padclass).

Additional configuration can be performed via this parameter on the below padclassed:
• SPTabletWSignPad interface to Wacom SignPad tablets
• SPTabletRemoteTablet interface to Kofax driver to access smartphones as tablets
• SPTabletStepOver interface to StepOver BlueM and BlueM-LCD tablets
• SPTabletTopaz interface to Topaz 1X5, 4X3 and 4X5 SE LCD tablets
• SPTabletVerifone interface to Kofax driver to access Verifone Mx 800 series tablets

Custom CSS configuration
Cascading Style Sheets (CSS) is a style sheet language used for describing the presentation
semantics (the look and formatting) of a document written in a markup language and also for
SignDoc Web.

It is possible to configure one or more custom specific CSS files in sdweb_config.groovy.

For browser desktop layout changes you can define a list of CSS files with:

sdweb.ria.signdoc.css_list_custom = ["SignDocCustom1.css",
"SignDocCustom2.css"]

The CSS files can be defined:

for iOS mobile devices

sdweb.ria.signdoc_mobile.ios.css_list_custom =
["SignDocMobileCustom_IPad_1.css"]

and for Android

sdweb.ria.signdoc_mobile.android.css_list_custom =
["SignDocMobileCustom_Android_1.css", "SignDocMobileCustom_Android_2.css"]

and all other mobile devices

sdweb.ria.signdoc_mobile.css_list_custom = ["SignDocMobileCustom.css"]

It is also possible to define an additional CSS file in the document (loadby...) request with the
style=.... parameter.

Example

style=DocSpecific.css

40

Kofax SignDoc Web Administrator's Guide

These CSS definitions have higher priority than other previously defined layout settings.

These customer specific CSS files are expected to be outside of the sdweb package in:

%SDWEB_HOME%/css

The (http) load request for a SignDoc Web document can contain some general parameters, like the
docid, the dmsid or the result url.

In addition to those parameters it is possible to define here also the 'style' parameter with a
customer specific CSS file name as value.

This CSS file must be available in the

%SDWEB_HOME%/css

directory. If defined it overwrites any other defined CSS settings (insofar there is an overlapping).

Example

http://localhost:8080/sdweb/load/bytemplate?
template=account_opening.pdf&docid=MyDoc&dmsid=
de.softpro.sdweb.plugins.impl.FileDms&style=DocSpecific.css

 Note This setting is only valid for the current document.

SignDoc Web is enabled to address image files from:

%SDWEB_HOME%/resources

External images from

%SDWEB_HOME%/resources

can be referenced if the following setting in sdweb_config.groovy is set to true:

sdweb.ria.image.custom.enabled = true

By default custom image handling is not enabled!

In order to address a custom specific image file you must define it in the context prefix custom/img.

Example usage:

You can define your own CSS file with:

sdweb.ria.signdoc.css_list_custom = ["SignDocCustom1.css"]

This CSS file (located in %SDEB_HOME%css) could include the following style information, in order to
replace the print icon with you own image (myPrint.gif):

.icon-toolbar-print {
background: url("custom/img/myPrint.gif") no-repeat center center !important;;
}

The default CSS files can be used as blueprint for customized CSS files.

41

Kofax SignDoc Web Administrator's Guide

For the desktop gui the default CSS file is:

WEB_SERVER\webapps\sdweb\gwt\de.softpro.sdweb.gwt.SignDoc\SignDoc.css

For the mobile gui the default CSS files are:

for android devices

WEB_SERVER\webapps\sdweb\gwt\de.softpro.sdweb.gwt.SignDocMobile
\SignDocMobile_Android_1.css

for iPad devices

WEB_SERVER\webapps\sdweb\gwt\de.softpro.sdweb.gwt.SignDocMobile
\SignDocMobile_IPad_1.css

and for other devices

WEB_SERVER\webapps\sdweb\gwt\de.softpro.sdweb.gwt.SignDocMobile
\SignDocMobile.css

Digital signature certificate
Description

SignDoc Web can make use of a PKCS#12 certificate store to use the embedded certificate for
signing each signature. This makes it possible to use trusted (not self signed) certificates to sign a
digital signature field, so that e.g. Adobe Reader can validate the certificate used to digitally sign the
signature field.

By default, SignDoc Web uses a Demo Certificate, that should be replaced by the user. If SignDoc
Web should not use a custom certificate, the SignDoc Web administrator should delete the demo
certificate store: SDWEB_HOME/conf/cert_store.p12

 Note Additional documentation can be found in file SDWEB_HOME/conf/cert_store_readme.txt.

Prerequisites

The certificate must be in PKCS#12 format

The PKCS#12 file must contain only 1 certificate

Useful tools

Portecle: Create PKCS#12 certificate stores

Configuration

// location of the PKCS#12 certificate store
sdweb.certificate.store.pkcs12.file="c:/sdweb_home/conf/cert_store.p12"
// the password of the PKCS#12 certificate store
sdweb.certificate.store.pkcs12.password="secret"

42

http://portecle.sourceforge.net/

Kofax SignDoc Web Administrator's Guide

Usage

Adjust the configuration options to use the certificate. The PKCS#12 file must be readable by the
SignDoc Web Server process. If the configuration setting does not point to a valid PKCS#12 file, the
server will use the standard self-signed "one time" certificates.

 Note When the Adobe Reader validates the signatures certificate, it needs to trust the
certificate to produce a green tick.

Verification in Adobe Reader

Dynamic tablet screens
Description

Creating and displaying dynamic tablet layouts for signpads depending on the document content
and the language.

What can be displayed/hidden?
• Company logo/name
• Date
• Declaration of agreement
• Disclaimer

43

Kofax SignDoc Web Administrator's Guide

• Name of the signer
• Account number, amount (e.g. cash withdrawal)

The files WacomSTUSeries.xml and TabletScreenLayout.xsd are defining the graphical display of
tablet layouts and are stored in the installation directory:

SDWEB_HOME/tablet_screens/

The WacomSTUSeries.xml file contains the default definition of the SOFTPRO dynamic layouts for
STU-300, STU-500, STU-430, STU-520, STU-530, DTU-1031, DTU-1631 and Tablet PCs.

The TabletScreenLayout.xsd file describes an XML scheme including documentation. It defines the
rules for creating the dynamic layout.

 The default coordinate system uses relative coordinates. The dimension of each tablet layout
has 1000 units in width and height.

The default coordinate system uses relative coordinates. The dimension of each tablet layout has
1000 units in width and height.

Usage

To be able to use custom dynamic signature screens, 2 basic options exist.
• Default layout

The XML document having an XML element <tns:LayoutId> set to the value default will be used
for all signing ceremonies unless a different tablet screen is defined for a specific signature field.
See SDWEB_HOME/tablet_screens/WacomSTUSeries.xml

• Custom layout for inserted signature fields
Add the attribute
screenlayout=<LayoutID>

to the cmd statement inserting a new signature field. When signing this signature field, the
specified layout will be used.
Example
name=sig1|page=1|type=formfield|subtype=signature|bottom=10|left=10|
width=150|height=50|screenlayout=piggybank_example

See SDWEB_HOME/tablet_screens/piggybank_example.xml

Description of XML elements

SDWEB_HOME/tablet_screens/WacomSTUSeries.xml

Element Description

ActionButton The element is used to submit user actions. The action is defined by content of the
sub element <ActionId>. The background-color of action buttons is set to transparent
for STU-500 and STU-300 devices.

DefaultFont The element defines the default font of the particular canvas.

Image An image can be defined inline base64 encoded or via external URL reference.

44

Kofax SignDoc Web Administrator's Guide

Element Description

TextBox The element consists of text, which is displayed as continuous text. The text will be
automatically wrapped, when the text line exceeds the defined width of the element.

TextLine The element consists of text, which is displayed in one line. The text will not be
automatically wrapped.
A suitable font size is automatically chosen, so that the text is adapted to the defined
rectangle. The default font size can be overridden by a user-defined font size.

Rectangle The element is a rectangle. As an example for the rectangle of a height=0 is a line
below the signature.

 The language of the button’s label can be changed in the TextTranslationTable.xml that is
located in the directory SDWEB_HOME/i18n by adding a new value to the translation_entry
element.

Example

Adding translation to the label of action button Back

Description of the attributes

Attribute
Description

ActionButton DefaultFont Image TextBox TextLine Rectangle

background-color
Defines the color of the
rectangle’s enclosing area.

x x x x x

blackAndWhiteDithering
Defines dithering type for the
image when reducing the colors
to black and white

x

border-color
Defines the color of the
rectangle’s border line

x x x x x

45

Kofax SignDoc Web Administrator's Guide

Attribute
Description

ActionButton DefaultFont Image TextBox TextLine Rectangle

border-width
Line width of the border in pixel.

x x x x x

default-z-order
The default z-order of the
element. 0 means background.

x x x x x

font-size
Defines dithering type for the
image when reducing the colors
to black and white

font-weight
either REGULAR or BOLD

element_id
The element id of a layout
element. This id can be used to
reference the element within
a SPDynamicContentMap
element.

x x x x x

having_round_corners
Defines, if the corners of a
rectangle are rounded.

x x x x x

height
The height of an element

x x x x x

left
The left coordinate of an
element.

x x x x x

origin
The origin of the elements
coordinate system.

x x x x x

text-color
Color of the text.

x x x

text-halign
Horizontal alignment of the text.

x x x

text-valign
Vertical alignment of the text.

x x

top
The top coordinate of an
element.

x x x x x

unit
Defines the format of
coordinates.

x x x x x

46

Kofax SignDoc Web Administrator's Guide

Attribute
Description

ActionButton DefaultFont Image TextBox TextLine Rectangle

user-z-order
The user-defined z-order of the
element.
0 means background. The
default-order is defined by
attribute default-z-order (fixed
value) and is used if 2 elements
have the same z-order.

x x x x x

width
The width of an element.

x x x x x

word-wrapping
Defines if word-wrapping should
be done.

x

Encrypt sensitive data in sdweb_config.groovy configuration
file

Sometimes it makes sense to encrypt data in the sdweb_config.groovy config file. This is especially
useful for passwords.

All String config entries can be stored encrypted in the sdweb_config.groovy file. To encrypt the data
use the PasswordEncryptionHelper tool that is located in directory:

SDWEB_HOME/tools

The file name is:

PasswordEncryptionHelper_<SignDoc Web Version>.jar

To make the encrypted values available in the config file, the "real setting key" has to be modified
and appended with the suffix ".encrypted_string". Whenever the server finds an encrypted value, it
will use the decrypted value as the value for the "real setting key".

Usage

java -jar PasswordEncryptionHelper <key-size:128|192|256> [password to
encrypt]

Example

Store the PKCS#12 password encrypted in the configuration.

Create the encrypted value

Encrypt the string "secret" using 256 bit strength so it can be used in the SignDoc Web configuration
file.

47

Kofax SignDoc Web Administrator's Guide

Command:

java -jar PasswordEncryptionHelper_4.1.jar 256 secret

Output:

PasswordEncryptionHelper version: $Name: RST#SignDocWeb#core#4-1-090 $
Encrypted Password (key-size=256): c941a5d5fddb22e067752e8741cf251b
Decrypted Password: secret

Use the encrypted value

Add the following lines to sdweb_config.groovy:

// set the encryption strength in bits
sdweb.config.encrypt.strength=256
// set the encrypted password (in one line!)
sdweb.certificate.store.pkcs12.password.encrypted_string=
 "c941a5d5fddb22e067752e8741cf251b"

In order to use an encryption key length > 128 bits the Java Cryptography Extension (JCE) Unlimited
Strength Jurisdiction Policy Files are needed. The files are currently available at the Java SE
download page. This zip file contains a couple of policy jars, which you need to copy over the top of
the ones already in the {java.home}/jre/lib/security directory of your JRE.

External help
Some customers want to create their own Help and host it separately. The Help must be available
via URL Link.

The URI to customer specific help can be specified in sdweb_config.groovy with sdweb.custom.help.

Example

sdweb.custom.help="http://customer:8080/sdweb_help"

The language code of the requesting browser client is appended to this URL with:

lang=...

Example

sdweb.custom.help="http://customer:8080/sdweb_help?lang=de"

 For desktop browsers sdweb.custom.help points to the default help URI if nothing is defined.

Font mapping configuration
The font mapping configuration is done in the file:

SDWEB_HOME/fonts/SPFontConfig.xml

48

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Kofax SignDoc Web Administrator's Guide

This defines a mapping between font files for usage in SignDoc Web documents. This file can be
edited and adjusted.

SPFontConfig.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE SPFontConfig SYSTEM "SPFontConfig.dtd">
<SPFontConfig>
 <!-- Example: Windows Standard Font Directory -->
 <!--<FontFiles>c:\Windows\Fonts\verdana*.ttf</FontFiles>-->
 <FontFiles>%%%FONT_FILES_DIRECTORY%%%\DejaVuSerif.ttf</FontFiles>
 <FontFiles>%%%FONT_FILES_DIRECTORY%%%\DejaVuSans.ttf</FontFiles>
 <Substitution>
 <FontName>SignDoc Standard</FontName>
 <FontName>DejaVu Sans</FontName>
 </Substitution>
 <Substitution>
 <FontName>Times Roman</FontName>
 <FontName>DejaVu Serif</FontName>
 </Substitution>
 <Substitution>
 <FontName>Helv</FontName>
 <FontName>DejaVu Sans</FontName>
 </Substitution>
 <Substitution>
 <FontName>Helvetica</FontName>
 <FontName>DejaVu Sans</FontName>
 </Substitution>
 <Substitution>
 <FontName>Arial</FontName>
 <FontName>DejaVu Sans</FontName>
 </Substitution>
 <Substitution>
 <FontName>TiRo</FontName>
 <FontName>DejaVu Serif</FontName>
 </Substitution>
</SPFontConfig>

SPFontConfig.dtd

<?xml version="1.0" encoding="UTF-8"?>
<!-- A font configuration file specifies font files and font substitutions. -->
<!ELEMENT SPFontConfig (FontFiles*, Substitution*)>

<!-- Contents: either the pathname of a single font or a pathname containing wildcard
 characters * and ? in the last component such as c:\fonts*.ttf. Relative pathnames
 are relative to the directory containing the font configuration file. -->
<!ELEMENT FontFiles (#PCDATA)>

<!-- Defines one font substitution. Font substitutions are tried one by one until a
 match or the end is reached. There is only one level of font substitutions, that is,
 substituted names are not subject to substitution. Substitute the first font with the
 second one. Font names are case-sensitive. -->
<!ELEMENT Substitution (FontName,FontName)>

<!-- Contents: the font family name or PostScript name of the font to be substituted or
 of the font used as substitute. -->
<!ELEMENT FontName (#PCData)>

49

Kofax SignDoc Web Administrator's Guide

Gestures on mobile devices
Support of gestures on mobile dDevices

The basic gestures Swipe (change page) and PinchSpread (zoom) are implemented.

PinchSpread can be done with two fingers and is available on iPad, Android and Windows devices.

1-finger Swipe can be done with one finger on iPad and Android > 4.0 devices.

3-finger Swipe can be done on Windows and Android < 4.1 devices (1-finger swipe is technically not
possible on these devices). For compatibility reasons a 3-finger Swipe can also be done on iPad and
Android > 4.0 devices.

To differ a swipe gesture from a scrolling gesture the swipe gesture has these characteristics:
• If image width is larger than the screen width, the current scroll position has to be either 0 or the

maximum possible position (this characteristic is only available for 1-finger swipe)
• The duration of the gesture is below a configured threshold
• The pixel distance between the gesture start and the gesture end position is above a configured

threshold factor

By default PinchSpread gestures and Swipe gestures are disabled via configuration.

PinchSpread configuration in mobile_configuration.xml

PinchSpread is enabled by adding it to the zoom list and setting it as default:

<component id="Lists">
.....
<element id="ZoomList">
<parameter key="Keys" value="PINCH_SPREAD"/>
<parameter key="Default" value="PINCH_SPREAD"/>
</element>
......
<component id="Miscellaneous">
.....
<element id="Zoomfactor">
<!--
The maximal allowed zoomfactor as provided in sdweb_config.groovy (sdweb.gui.zoom.max,
 default=300).
NOTE: should only be changed by Softpro!
-->
<parameter key="Max.Value" value="300"/>
<parameter key="Min.Value" value="75"/>
<!-- This factor is multiplied with the initial zoomfactor (1.5 * 100% = 150%) when
 pages are requested.
A higher value results in a better image quality when scaling.
This setting is only used if the default zoomlist entry is set to PINCH_SPREAD.
-->
<parameter key="PinchSpread.Factor" value="1.5"/>
</element>

Swipe configuration in mobile_configuration.xml

<component id="Miscellaneous">
.....

50

Kofax SignDoc Web Administrator's Guide

<element id="Swipe.Gesture">
<!-- Specify if the swipe gesture for changing pages should be enabled. -->
<parameter key="Enabled" value="false"/>
<!-- The maximum duration in milliseconds between touch start and touch end to identify
 a swipe event
when using 1-finger swipe (IPad, Android > 4.0). -->
<parameter key="Duration.Threshold" value="600"/>
<!-- The maximum duration in milliseconds between touch start and touch end to identify
 a swipe event
when using 3-finger swipe (Windows, Android < 4.1). -->
<parameter key="Duration.Threshold.3Finger" value="600"/>
<!-- The minimum distance factor between touch start and touch end event to identify a
 swipe event when
using 1-finger swipe (IPad, Android > 4.0).
The specified factor is multiplied with the available screen width to get the minimal
 distance in pixel which
is needed to identify the swipe gesture. If the current image width is less than the
 screen width the specified
factor is multiplied with the current image width.-->
<parameter key="Distance.Threshold.Factor" value="0.1"/>
<!-- The minimum distance factor between touch start and touch end event to identify a
 swipe event when using
3-finger swipe (Windows, Android < 4.1).
The specified factor is multiplied with the available screen width to get the minimal
 distance in pixel which
is needed to identify the swipe gesture. If the current image width is less than the
 screen width the specified
factor is multiplied with the current image width.-->
<parameter key="Distance.Threshold.Factor.3Finger" value="0.1"/>
</element>

PinchSpread is only possible if the current touch position is not in conflict with editable fields.

Swipe and PinchSpread gestures are also available when adding new capture fields.

The default zoom factor of PinchSpread is FIT_TO_WIDTH. This default is always used when:
• First page is initially displayed
• Page is changed
• Pages are pre-fetched
• Screen is rotated

Scaling the page via PinchSpread normally doesn't reload the page from the server.

The page is only reloaded if the user changes a field and scales the page afterwards (therefore the
actual user changes are not visible in the scale view).

When PinchSpread is enabled the toolbar actions ZoomIn and ZoomOut can't be used any more
(they are disabled) and should be removed from toolbar configuration.

Toolbar action

A new toolbar action FIT_TO_WIDTH has been added. This action can be used to reset the current
zoom factor to FIT_TO_WIDTH. It is not visible by default.

Toolbar configuration in mobile_configuration.xml

<component id="Toolbar">
...
<element id="TA_ZoomToWidth">

51

Kofax SignDoc Web Administrator's Guide

<parameter key="Visible" value="false"/>
<parameter key="Tooltip" propertyFile="language"
 propertyKey="Toolbar.TA_ZoomToWidth.Tooltip"/>
<parameter key="Label" propertyFile="language"
 propertyKey="Toolbar.TA_ZoomToWidth.Label"/>
<parameter key="Description" propertyFile="language"
 propertyKey="Toolbar.TA_ZoomToWidth.Mobile.Description"/>
<parameter key="Description.Android" propertyFile="language"
 propertyKey="Toolbar.TA_ZoomToWidth.Mobile.Description"/>
</element>

Logging
Since SignDoc Web 3.0.0, logging is configured with the configuration file

INSTALLDIR\signdoc_home\conf\signdoc-logger.properties

The file can be edited and the configuration settings described below can be made. Execute
service_up.cmd or restart the service to apply changes.

The SignDoc Standard Windows service uses the file

INSTALLDIR\signdoc_home\conf\tomcat-logging.properties

for the logging configuration file of the Tomcat application server. Consult the Tomcat configuration
if changes should be made.

Configuration settings

For the file

signdoc-logger.properties

a detailed documentation of the configuration options can be found in the file itself. These are the
available options with a short description:
• signdoc.logger.level The log level. Valid log levels: OFF, SEVERE, WARNING, INFO, CONFIG, FINE,

FINER, FINEST, ALL. Default: INFO
• signdoc.logger.custom_levels Customized log levels that overwrite the default log level defined

by signdoc.logger.level. Default: empty
• signdoc.logger.handler.enabled Enables/Disables the SignDoc Logging Handler. The SignDoc

Logging Handler is a specific logging handler that can write logging data in a logfile and/or on
console. Default: true

The following settings are only effective if

signdoc.logger.handler.enabled=true

• signdoc.logger.handler.date.format Sets the data format. Default: yyyy-MM-dd_HH:mm:ss.SSS
• signdoc.logger.handler.console.enabled Enables console logging. Default: false
• signdoc.logger.handler.logfile Defines the logfile. Default: SIGNDOC_HOME/logs/signdoc/

signdoc.log
• signdoc.logger.handler.logfile.maxsize Maximum allowed size of a logfile in kB. Default:

1000000

52

Kofax SignDoc Web Administrator's Guide

• signdoc.logger.handler.logfile.maxnumber Maximum allowed number of logfiles. Default: 20

Managing key pairs for encryption of biometric data
Background

SignDoc Web encrypts the biometric data of a signature using the public key of a key pair.

The private key must be kept secret and is used for decrypting the biometric data and checking
whether the document was signed with that biometric data.

A default public key is stored in a file (0001-public.key) which is shipped with SignDoc Web in the
war file. After deploying the war file the public key file can be found in the directory:
• WEB-INF/lib/native/win32 (Windows)
• or WEB-INF/lib/native/linux-i386 (Linux)

The private key is encrypted with a passphrase (ASCII only) and stored in a file which is deployed to
a special workplace where signatures are to be verified.

Install the new key pair

The name of the public key file (default:0001-public.key) that is used to encrypt the biometric data
can be set via sdweb_config.groovy setting sdweb.defaults.defaultpublickey.name, e.g.

sdweb.defaults.defaultpublickey.name = 'my-public.key'

The public key file is expected from SignDoc Web in the %SDWEB_HOME%/resources directory
(%SDWEB_HOME% is set via environment variable SDWEB_HOME).

 The location of the resource directory can be changed via sdweb.resources.dir setting in
sdweb_config.groovy.

It is essential to encrypt biometric data asymmetrically and to keep the private key secret. This
should be done via RSA cryptosystem. To create the RSA key pair, you can use either KeyTool (which
will use a proprietary file format for encrypted private keys) or any tool that creates an RSA key pair
and uses PKCS #1 format (DER or PEM) for the public key and PKCS #12 format for the private key.
Alternatively, the public key can also be specified as X.509 certificate (DER or PEM).

Create a key with KeyTool

KeyTool is available for the operating systems Windows and Linux.

For Windows use the file KeyTool.exe and for Linux use the file KeyTool.

Create a key pair

To create a private/public key pair, run KeyTool this way:

KeyTool create [-p PASSPHRASE] [BASE]

53

Kofax SignDoc Web Administrator's Guide

PASSPHRASE is the passphrase used to protect the private key. The private key will only be usable
if the correct passphrase is entered at the time biometric data is decrypted. If the -p option is
not used, KeyTool will ask for a passphrase. If the passphrase is empty, the private key won't
be encrypted (that's not recommended). Note that the passphrase can be changed later on as
described below.

If BASE is specified, files BASE-private.key and BASE-public.key will be written. If BASE is not
specified, SignDoc4ADS will be used, that is, files SignDoc4ADS-private.key and SignDoc4ADS-
public.key will be written.

Example

KeyTool create -p "Vveri Zekkret" new

Change the passphrase of a private key

To change the passphrase of a private key, run KeyTool this way:

KeyTool crypt [-pi PASSPHRASE] [-po PASSPHRASE] INPUT OUTPUT

INPUT is the pathname of an existing private key file; that file will be read. OUTPUT is the pathname
of the new private key file to be written. INPUT and OUTPUT must not reference the same file.

There are two passphrases, the old one (of the input file) and the new one (of the output file). The
old one is specified with -pi, the new one with -po. sdsdakey will ask you for any passphrases not
specified on the command line.

Example

KeyTool crypt -pi "Vveri Zekkret" -po "eeven moRR seecred" new-private.key
newer-private.key

Create a key pair using OpenSSL

Using OpenSSL on the command line you’d first need to generate a public and private key (you
could password protect this file using the -passout argument). Read OpenSSL documentation for
more information (https://www.openssl.org/).

openssl genrsa -out private.pem -aes256 2048

This creates a key file called private.pem that uses 2048 bits. This file actually has both the private
and public keys, so you should extract the public one from this file:

openssl rsa -in private.pem -out public.der -outform DER –pubout

Finally you have to create a PKCS 12 archive file:

openssl pkcs12 -export -inkey private.pem -nocerts -out private.der

The export password must be non-empty. The public key will be written to public.der, the private
key will be written to private.der and the file private.pem can be deleted.

54

https://www.openssl.org/

Kofax SignDoc Web Administrator's Guide

Multi-instance configuration
JAVA JAR files using native code via JNI

In general, some JAR files of the sdweb.war file need to be moved to a common lib directory used by
all web contexts of a J2EE application server.

 This is a must, if multiple contexts of a J2EE application server use the same JAR file accessing
native JNI code.

This is optional, if sdweb is the only context in a J2EE application server.

The files to be moved to the common directory are basically all JAR files using JAVA-JNI to load native
code. This is a constraint from the Sun JAVA JRE.

Example for the common/lib directory:

Tomcat: <TOMCAT_DIR>/common/lib

SDWEB core JAR files:

* WEB-INF\lib\splm2jni.jar [Kofax License Management]
* WEB-INF\lib\sppdfjni_*.jar (e.g. sppdfjni_4.5_9.jar) [Kofax PDF libs]
* WEB-INF\lib\SPSignDoc_*.jar (e.g. SPSignDoc_4.5_9.jar) [Kofax SignDoc libs]
* WEB-INF\lib\sputiljni.jar [Kofax utilities]

Instance-based configuration

When SignDoc Web is running in multiple instances in an Application container, it's possible to
configure the instances independently.

Procedure

Each SDWEB instance process has to set the JAVA property:

-DSDWEB_INSTANCEID=<instance name>

Example

-DSDWEB_INSTANCEID=inst1

Now it is possible to have for the following configuration files an independent configuration file in a
separate location:
• sdweb_config.groovy

The instance configuration files are located in the directory and overwrite the default files/setting
when present:

%SDWEB_HOME%/conf/<instance name>

Example

C:\Users\auser\sdweb_home\conf\inst1\sdweb_config.groovy

55

Kofax SignDoc Web Administrator's Guide

Page pre-fetching in WebView
For a better user acceptance the loading of documents can be enhanced by using the pre-fetching
mechanism in SignDoc Web.

If this feature is enabled all remaining pages of a document are loaded at once after the document
is opened in the WebView.

There are mainly two different configurable options when using pre-fetching:

1. Blocking:
The document is loaded completely (or the maximum numbers of pages are pre-fetched)
before user can start editing the document

2. Not blocking:
The user can start editing the document during pre-fetching is done in the background

In both configuration cases users are informed about remaining number of pages by a loading bar.

Depending on the configured option the loading bar appears at the bottom of the WebView screen
(not blocking) or in the center of the WebView (blocking).

Configuration entries for pre-fetching:

1. signdoc_configuration.xml:

<component id="Miscellaneous">
 ...
 <element id="Page.Prefetch">
 <!--
 Specify the page pre-fetching mode:
 0 - page pre-fetching is disabled
 1 - page pre-fetching is enabled.
 User actions are blocked until all pages are loaded.
 2 - page pre-fetching is enabled.
 User actions are immediately available and pages are loaded in the background.
 -->
 <parameter key="Mode" value="0"/>
 <!--
 Specify the page pre-fetching strategy
 0 - all document pages are pre-fetched starting with page 1 (if number of document
 exceeds the configured maximum of allowed pre-fetched pages all document pages
 up to this value are pre-fetched)
 ... (more strategies will be available in the future)
 -->
 <parameter key="Strategy" value="0"/>
 <parameter key="Label" propertyFile="language" propertyKey="Page.Prefetch.Label"/>
 <!-- The maximal number of pages which can be pre-fetched -->
 <parameter key="Max" value="500"/>
 </element>

2. mobile_configuration.xml:

<component id="Miscellaneous">
...
 <element id="Page.Prefetch">
 <!--

56

Kofax SignDoc Web Administrator's Guide

 Specify the page pre-fetching mode:
 0 - Page pre-fetching is disabled
 1 - Page pre-fetching is enabled when document is loaded.
 User actions are blocked until all pages are loaded.
 2 - Page pre-fetching is enabled when document is loaded.
 User actions are immediately available and pages are loaded in the background.
 3 - Page pre-fetching is enabled when document is loaded or screen is rotated in
 PINCH_SPREAD/FIT_TO_WIDTH zoom mode.
 User actions are blocked until all pages are loaded.
 4 - Page pre-fetching is enabled when document is loaded or screen is rotated in
 PINCH_SPREAD/FIT_TO_WIDTH zoom mode.
 User actions are immediately available and pages are loaded in the background.
 -->
 <parameter key="Mode" value="0"/>
 <!--
 Specify the page pre-fetching strategy
 0 - all document pages are pre-fetched starting with page 1 (if number of document
 exceeds the configured maximum of allowed pre-fetched pages all document pages up
 to this value are pre-fetched)
 ... (more strategies will be available in the future)
 -->
 <parameter key="Strategy" value="0"/>
 <parameter key="Label" propertyFile="language" propertyKey="Page.Prefetch.Label"/>
 <!-- The maximal number of pages which can be pre-fetched -->
 <parameter key="Max" value="500"/>
 </element>

Reduce network data
If clients use high resolution screens, the data that is sent over the network to display the rendered
document pages is quite big. This hurts especially in mobile scenarios. Depending on the contents
of the document and the resolution of the screen, an image of a single page can be, in bad cases,
multiple hundred KBytes.

There are different strategies to reduce the amount of data sent to the client.

Default page image formats

Desktop Browser (Chrome, Firefox, Edge)
• Format: PNG (with zip compression)
• Colors: 24 Bit/Pixel (true color)

Mobile Devices (SignDoc Mobile, Safari Mobile, Chrome Mobile)
• Format: GIF
• Colors: Dithering, 8 Bit/Pixel

Strategy 1 - Use jpeg and/or gif format

The jpeg format reduces the size of many images significantly (size reduction depends on jpeg
quality setting). The downside is that it produces visible artifacts for high-contrast areas. Example:
small black text on white background. The quality of the jpeg images can be adjusted. Smaller
quality numbers mean a smaller image size but also more artifacts.

The gif format usually reduces the file size significantly (~30% size reduction). The downside is that
color loss occurs and photos might look not so nice.

57

Kofax SignDoc Web Administrator's Guide

Usage in sdweb_config.groovy

sdweb.gui.render.format="jpeg" // default render format
sdweb.gui.render.jpeg.quality=60 // adjust jpeg quality [range: 0-100]
sdweb.gui.render.format_mobile="gif" // format used for known mobile browsers

Strategy 2 - Apply predefined indexed color modes

If Strategy 1 is not sufficient, custom predefined indexed color modes can be used. This means that
the color palette is limited to a fixed color number.

This makes only sende with file formats that support a color palette like PNG and GIF.

The Server provides predefined indexed color modes that can be used by configuration.

Predefined indexed color modes (grey)
• CM_2_GREY_LEVELS, CM_BW

Minimum image size! (~90% size reduction*)
• Black and White Images. All Colors are removed.

CM_3_GREY_LEVELS
• Renders the page image in 3 evenly distributed grey levels

CM_4_GREY_LEVELS
• Renders the page image in 4 evenly distributed grey levels

CM_5_GREY_LEVELS
• Renders the page image in 5 evenly distributed grey levels

CM_6_GREY_LEVELS
• Renders the page image in 6 evenly distributed grey levels

CM_7_GREY_LEVELS
• Renders the page image in 7 evenly distributed grey levels

CM_8_GREY_LEVELS
No information loss except color! (~80% size reduction*)
Renders the page image in 8 evenly distributed grey levels

Predefined indexed color modes (color)
• CM_6_COLORS (~83% size reduction*)

Produces often good or at least acceptable color images with a minimum image size.

*compared with a PNG 24 Bit image. Data is from a real customer installation.

Usage in sdweb_config.groovy

sdweb.gui.render.index_color_model="CM_8_GREY_LEVELS"
sdweb.gui.render.index_color_model_desktop="CM_8_GREY_LEVELS"
sdweb.gui.render.index_color_model_mobile="CM_2_GREY_LEVELS"

 Don’t use an indexed color mode preset with a setting sdweb.gui.render.format="jpeg" or
sdweb.gui.render.format_mobile="jpeg"! Doing so it will rerender the already reduced and
dithered image again as jpeg. This will lead to a much bigger image and many ugly artifacts!

Example

58

Kofax SignDoc Web Administrator's Guide

Default

Example

Default GIF

59

Kofax SignDoc Web Administrator's Guide

Example

CM_2_COLORS

60

Kofax SignDoc Web Administrator's Guide

Example

CM_6_COLORS

61

Kofax SignDoc Web Administrator's Guide

Signer-specific certificates
Description

This feature allows to define a specific certificate that should be used, when applying the digital
signature to a certain signature field.

62

Kofax SignDoc Web Administrator's Guide

Prerequisites
• The certificates must be in PKCS#12 format
• The certificates must all have the same password
• The PKCS#12 file must contain only 1 certificate
• The file name syntax is:

certificate_id.p12
Example
my_certificate.p12

• The files must be put in the directory:
SDWEB_HOME/conf/user_certificates
Example
/var/sdwebhome/conf/user_certificates/my_certificate.p12

Useful tools

Portecle: Create PKCS#12 certificate stores

Usage

Settings in sdweb_config.groovy configuration file:

sdweb.signerspecific.store.pkcs12.password="common password of the signer
specific certificates"

Prepare the signature field:

To enable a signature field to use a specific certificate, the document has to be prepared using a
command statement in the form request.

The in-lined key/value pair cert=certificate_id defines the certificate to use, when signing the
signature field.

Syntax

<input name="cmd_1" value="name=SignatureFixed1|cert=certificate_id|..."/>

Example

<form action="http://localhost:8080/sdweb/load/byurl" method="post" >
 <input name="docurl" value="url_of_the_document" type="hidden"/>
 <input name="cmd_1" value="name=SignatureFixed1|cert=my_certificate|page=1|bottom=10|
left=10|width=100|height=50|label=SignatureFixed1|type=formfield|subtype=signature"
 type="hidden"/>
 <input type="submit" value="OPEN DOCUMENT"/>
</form>

In this example, a signature field will be inserted at the specified coordinates. When the signature
field is signed in SignDoc Web, the server will use the file:

SDWEB_HOME/conf/user_certificates/my_certificate.p12

when applying the digital signature. If the file is missing, the configured server certificate or a one
time certificate will be used.

63

http://portecle.sourceforge.net/

Kofax SignDoc Web Administrator's Guide

Kofax print plugin integration
Description

Although SignDoc Web is used to minimize and/or eliminate paper work, some customers require a
good print functionality. With this version, SignDoc Web provides 3 print methods the customer can
choose form.
• Printing method 1: Browser printing

Pros and cons
+ No dependency on the client environment
+ Works with every browser in every operating system
+ The document stays always on the server side
- Print quality is limited
- Needs a couple of seconds until printing is ready
- Might require some print margin adjustments in the browser

• Printing method 2: Use registered mimetype handler application
Pros and cons
+ Possibly perfect printout quality (depends on the MIME type handler application)
- Dependency on the MIME type handler application e.g. Adobe Reader
- The document is possibly loaded on the client
- Possibly a local temp file is created
- Possibly a local copy of the file can be created by the user

Configuration (server side)

The print method is configured in sdweb_config.groovy by the following properties:
• sdweb.print.method.impl (string): The print method to use. Default value: "printdocument"

Example
Method 1 (default): sdweb.print.method.impl="printdocument
Method 2: sdweb.print.method.impl="print"

• sdweb.printplugin.timeout Timeout in ms for opening the document to print before an error is
reported. Default value: 25000

• sdweb.printplugin.width Initial width of the print plugin. Default value: 700
• sdweb.printplugin.height Initial height of the print plugin. Default value: 500

TSA functionality
According to the RFC 3161 standard, a trusted timestamp is a timestamp issued by a trusted third
party (TTP) acting as a Time Stamping Authority (TSA).

It is used to prove the existence of certain data before a certain point (e.g. contracts, research data,
medical records,...) without the possibility that the owner can backdate the timestamps.

64

Kofax SignDoc Web Administrator's Guide

There are basically 2 cases.

Case 1: If a document is already prepared according to the PDF standard to use a specific TSA it will
be used automatically when signing. There are no further configuration setting required.

Case 2: A simple unprepared document should use a TSA when signing.

The following configuration settings can be used:

Option Description

Option 1 TSA setting is provided in sdweb_config.groovy (see details below)
sdweb.document.signature.tsa.config="TSA-CONFIGURATION-STRING"

Option 2 Document specific TSA setting (optional)
Further, it is possible, to set the TSA configuration via the metadata key:
SDWEB_METADATA_DOCUMENT_TSA_CONFIG
This will override the global setting (option 1). To enable this, the following setting has to be
made in sdweb_config.groovy:
sdweb.document.signature.tsa.use_metadata_config=true

Options for the TSA-CONFIGURATION-STRING have to be separated by the pipe symbol (|).

Setting it via the command option as metdata for the document will require a change of the
command separator via the sdweb_config.groovy "sdweb.command.list_separator" parameter.

Parameter options available are:
• TimeStampServerUR (required): The URL of an RFC 3161 time-stamp server. If string parameter

"Timestamp" is empty and string parameter "TimeStampServerURL" is non-empty, a time
stamp will be obtained from a time-stamp server. The scheme of the URL must be either
"http" or "https". The time-stamp server URL specified by the document's signature field seed
value dictionary overrides the "TimeStampServerURL" parameter. An error will be returned by
SignDocDocument.addSignature() if a time-stamp server is to be used and integer parameter
"Method" is not m_digsig_pkcs7_detached or m_digsig_pkcs7_sha1.
See also integer parameter
TimeStampServerTimeout
and string parameters:
TimeStampClientCertificatePath
TimeStampClientKeyPath
TimeStampServerPassword
TimeStampServerTrustedCertificatesPath
TimeStampHashAlgorithm
TimeStampServerUser

• TimeStampClientCertificatePath (string, optional): The pathname of a file containing the
certificate in PEM format for authenticating to an RFC 3161 time-stamp server over HTTPS. If the

65

Kofax SignDoc Web Administrator's Guide

parameter is non-empty, string parameter "TimeStampClientKeyPath" must also be set. If the
value is empty, the client won't authenticate itself.
The default value is empty.
See also string parameters:
TimeStampServerURL
TimeStampClientKeyPath
TimeStampServerTrustedCertificatesPath

• TimeStampClientKeyPath (string, optional): The pathname of a file containing the private key in
PEM format for authenticating to an RFC 3161 time-stamp server over HTTPS. If the parameter is
non-empty, string parameter "TimeStampClientCertificatePath" must also be set. If the value is
empty, the client won't authenticate itself.
The default value is empty.
See also string parameters:
TimeStampServerURL
TimeStampClientKeyPath
TimeStampServerTrustedCertificatesPath

• TimeStampServerPassword (string, optional): The password for Basic/Digest HTTP
authentication to the time-stamp server. Non-ASCII values probably don't work. If this parameter
is set, string parameter "TimeStampServerUser" must also be set.

• TimeStampServerTrustedCertificatesPath (string, optional): The pathname of a file containing
trusted root certificates in PEM format for authenticating RFC 3161 time-stamp servers over
HTTPS. If the value is empty, time-stamp servers won't be authenticated.
The default value is empty.
See also string parameters:
TimeStampServerURL
TimeStampClientCertificatePath
TimeStampClientKeyPath

• TimeStampServerUser (string, optional): The user name for Basic/Digest HTTP authentication
to the time-stamp server. Non-ASCII values probably don't work. If this parameter is set, string
parameter "TimeStampServerPassword" must also be set.

• TimeStampServerTimeout (integer, optional): Time out in milliseconds for retrieving a time
stamp from an RFC 3161 time-stamp server. The value must be positive.
The default value is 10000.
See also string parameter:
TimeStampServerURL

• TimeStampHashAlgorithm (string, optional): Hash algorithm for RFC 3161 time-stamps. The
accepted values are 0 (default currently SHA-256), 1 (SHA-1) or 2 (SHA-256).
The default value is 0.
See also string parameter
TimeStampServerURL

66

Kofax SignDoc Web Administrator's Guide

sdweb_config.groovy string examples:

1. Public TSA Server (Example only!, No guarantee that this server is working or is online all the
time):
sdweb.document.signature.tsa.config="TimeStampServerURL=http://
zeitstempel.dfn.de"

2. Public TSA Server using SHA-256 (Example only!, No guarantee that this server is working or is
online all the time):
sdweb.document.signature.tsa.config="TimeStampServerURL=https://bteszt.e-
szigno.hu/tsa|TimeStampServerUser=teszt|TimeStampServerPassword=teszt|
TimeStampHashAlgorithm=2"

Additional notes
Note that the temporary files under "%TOMCAT_HOME%\temp\" should be monitored regularly.

The administrator may need to delete the files if there is an excessive number of files.

67

Chapter 5

Standard plugins

File DMS plugin
The File DMS plugin is a SignDoc Web standard plugin that stores the documents on a local file
system or mounted network drive.

Plugin setup

The plugin can be loaded and so used by adding the plugins class name to the 'loadlist' property in
the Configuration file sdweb_config.groovy.

Loading the plugin

Example

sdweb.plugins.loadlist = ['de.softpro.sdweb.plugins.impl.FileDms']

Configuration

It can be configured to create different files regarding the archived document.

It is possible to request up to 5 different files by configuration in sdweb_config.groovy with prefix
'sdwebplugins."de.softpro.sdweb.plugins.impl.FileDms".' followed by the appropriate setting.

1. The (archived) document file (pdf or tiff) is created with createPDFFile='true'.

2. A document describing XML file will be generated if createXMLFile='true' is set (default).
For more information see also chapter File DMS plugin, section "XML file with document
information".

3. Signature image file(s) is(are) written if createSignatureImageFile='true' is configured (default).
The image format of a captured (signware) signature can be configured with setting
createSignatureImageFormat. Possible values are "png" (default), "jpg" (or "jpeg"),
"gif" or "tiff". The resolution (in dots per inch) of the written signature image is set by
createSignatureImageDPI entry with default string value "300".
Any other (non signware signature) content of a signature field (i.e. camera captured image or
Click-to-Sign signature) is written as JPEG image by default.
With resampleImageSignatures setting it is possible to create the image in another format,
whereas createSignatureImageFormat setting is used here also for the definition of the image
format (with 'png' as default).

4. A TIFF image copy can be created from a pdf document with createTIFFCopy='true' (default is
'false').

68

Kofax SignDoc Web Administrator's Guide

5. A "rdy"-file (rdy as abbreviation for ready) is created at the end of all file operations in FileDMS
plugin if createRDYFile='true' (default) is configured.

Example

A document file can be requested with

sdwebplugins."de.softpro.sdweb.plugins.impl.FileDms".createPDFFile='true'

File name compositions

A file name can be composed of different parts.

1. The file name prefix from plugin specific setting filenamePrefix (sdweb_config.groovy), default
"" .

2. The base file name from value of MetaData entry whose key comes from
metadataKeyForFilename setting, otherwise docid is used as default file name.

3. A unique timestamp (14 chars) if forceCreateUniqueFiles is set to true, default "" .

4. If document file is requested (setting createPDFFile='true', default): The document name
postfix from setting documentFileDecoration, default "" .
If xml file is requested (setting createXMLFile='true', default): The xml name postfix from
setting xmlFileDecoration, default "" .
If Signature Image file is requested (setting createSignatureImageFile='true', default): The xml
name postfix from setting xmlFileDecoration, default "" .

5. The file name postfix from setting filenamePostfix, default ""
"!!!SIGNATURE!!!" for createSignatureImageFile='true'
"_copy" for createTIFFCopy

6. The dot character '.' .

7. The file extension, dependent from the document type for setting createPDFFile='true'.
"xml" for setting createXMLFile='true'.
"!!!EXTENSION!!!" for createSignatureImageFile='true'.
"rdy" for createRDYFile='true'.
"tiff" for createTIFFCopy='true'.
If storeStrategy setting is set to "folder" (default) the requested files are stored in a further
subfolder with the same base file name as 2. part of file name (see above).

Compendium of file name compositions

1. Document file (createPDFFile):
filenamePrefix + baseFilename + unique_timestamp + documentFilePostfix +
filenamePostfix + "." + fileExtension

2. XML file (createXMLFile):
filenamePrefix + baseFilename + unique_timestamp + xmlFilePostfix +
filenamePostfix + ".xml"

3. Signature file (createSignatureFile):
filenamePrefix + baseFilename + unique_timestamp + xmlFilePostfix +
filenamePostfix + "!!!SIGNATURE!!!" + "." + "!!!EXTENSION!!!"

69

Kofax SignDoc Web Administrator's Guide

4. Tiff document copy (createTIFFCopy):
filenamePrefix + baseFilename + unique_timestamp + filenamePostfix +
"_copy.tiff"

5. Ready file (createRDYFile):
filenamePrefix + baseFilename + unique_timestamp + filenamePostfix +
".rdy"

• sdwebplugins."de.softpro.sdweb.plugins.impl.FileDms".storeStrategy (string): The
documents are stored in separate directories having the name of the specified documentid (or
the configured file name) if 'folder' is configured. With value 'flat' the documents are stored
without the folder structure. Default: "folder"

• sdwebplugins."de.softpro.sdweb.plugins.impl.FileDms".filenamePrefix (string): File name
prefix, see section "File name compositions". Default: ""

• sdwebplugins."de.softpro.sdweb.plugins.impl.FileDms".filenamePostfix (string): File name
postfix, see section "File name compositions". Default ""

• sdwebplugins."de.softpro.sdweb.plugins.impl.FileDms".createRDYFile (string): If "true" a
"rdy" file is created as soon as all file operations has been finished by FileDMS plugin. Default:
"true"

• sdwebplugins."de.softpro.sdweb.plugins.impl.FileDms".createXMLFile (string): If "true" an
XML file with document information is generated, (see also section "XML file with document
information". Default: "true"

• sdwebplugins."de.softpro.sdweb.plugins.impl.FileDms".documentFileDecoration (string):
The document file postfix for document files if createPDFFile="true", see documentFilePostfix in
section "File name compositions". Default: "_document"

• sdwebplugins."de.softpro.sdweb.plugins.impl.FileDms".xmlFileDecoration (string): The
XML name postfix for xml files if createXMLFile="true", see xmlFilePostfix in section "File name
compositions". Default: "_content"

• sdwebplugins."de.softpro.sdweb.plugins.impl.FileDms".dmsFolder (string): Location of
FileDMS output files (Note: ${sdweb.home} is value from global SDWEB_HOME environment
variable). Default: "${sdweb.home}/dms/de.softpro.sdweb.plugins.impl.FileDms"

• sdwebplugins."de.softpro.sdweb.plugins.impl.FileDms".createTIFFCopy (string): If "true" a
TIFF image copy of the document is generated from a pdf document. Default: "false"

• sdwebplugins."de.softpro.sdweb.plugins.impl.FileDms".createSignatureImageFile (string): If
"true" Signature Image file(s) is(are) created from signed capture fields. Default: "false"

• sdwebplugins."de.softpro.sdweb.plugins.impl.FileDms".createSignatureImageFormat
(string): Signature image format from created signature images (if
createSignatureImageFile="true"). Possible image formats are "png" (default), "jpg" (or "jpeg"),
"gif" or "tiff". Default: "png"

• sdwebplugins."de.softpro.sdweb.plugins.impl.FileDms".createSignatureImageDPI
(string): The resolution (in dots per Inch) of generated Signature images (if
createSignatureImageFile="true"). Default: "300"

• sdwebplugins."de.softpro.sdweb.plugins.impl.FileDms".storeBiometricDataInXML (string):
The Base64 encoded signature (signware format) is included as value of the biosig element in
the XML file storeBiometricDataInXML is set to 'true' (default). See also section "XML file with
document information". Default: "true"

70

Kofax SignDoc Web Administrator's Guide

• sdwebplugins."de.softpro.sdweb.plugins.impl.FileDms".fileLockTimeout (integer): The
maximum lock time in minutes for a document before a lock is released. This is relevant if
document lock support is enabled for documents which are loaded from DMS. Note: The lock
from a document is released in FileDMS after the 'rdy' is written. Default: 10

• sdwebplugins."de.softpro.sdweb.plugins.impl.FileDms".createPDFFile (string): The (archived)
PDF file is written to FileDMS output folder if set to "true". Default: "true"

• sdwebplugins."de.softpro.sdweb.plugins.impl.FileDms".resampleImageSignatures (string):
If the content of a capture field is an image which was grapped by a camera or as a Click-to-Sign
signature (also not a signware signature) the image is written (createSignatureImageFile="true")
in JPEG format. The format can be changed if resampleImageSignatures="true" is set. The
changed format can be specified via createSignatureImageFormat setting.Default: "true"

XML file with document information

 There is no DTD or XML-schema file for the contents of the created XML file available. The
structure and content of this file may change over time. It is not recommended to use this file
as interface for other systems. If such an XML file is required for integration with other systems,
development of a custom DMS plugin should be considered instead.

A generated XML file contains information about the archived document within the sdweb element.

The subordinated document element has the document id as attribute.

The document element has the following subelements:

1. metadata with entry and subordinated key/value elements

2. formfields with field elements, containing the name, type and the value of the field

3. takensignatures contains a biosig entry for each signed capture field with the attributes
timestamp, name and signed='true' flag. The Base64 encoded signature (signware format) is
included as value of the biosig element if storeBiometricDataInXML is set to 'true' (default).

4. allsignatures contains similar to takensignatures also any capture field biosig elements with
the attributes timestamp, name and signed flag. The value contains also the encoded signware
signature if available and configured.

5. logicalfieldnames contains the possible mapping from any logical field names to real field
names. Each included logicalfieldname has the logical id (name) as attribute and the real field
name as subelement (realfieldname) also with an id attribute (both id's could be identical).

6. realfieldnames contains the same mapping but the other way round. The higher level element
is the realfieldname and the subelement is the logicalfieldname.

Example extract of a generated XML file from an archived TrapezaOpenJointAccounts.pdf (Kofax
sample):

<sdweb version="1.0">
<document id="2014-05-26_09-41-59-232">
<metadata>
<entry>
<key>SIGNDOCWEB_INTERNAL_VALIDATEPLUGIN_ID</key>
<value>de.softpro.sdweb.plugins.impl.DefaultValidator</value>
</entry>
<entry>
<key>SIGNDOCWEB_INTERNAL_RESULTURL</key>

71

Kofax SignDoc Web Administrator's Guide

<value>http://localhost:8080/sdweb/result/index?showoptions=true</value>
</entry>
<entry>
<key>SIGNDOCWEB_REQUIRED_form1[0].SPFID_AOPN_DEMO_SPFID[0].SPFID_ASV_permitted_SPFID[0]
 </key>
<value>false</value>
</entry>
<entry>
<key>...</key>
<value />
</entry>
....
</metadata>
<formfields>
<field name="form1[0].SPFID_AOPN_DEMO_SPFID[0].SPFID_Date_SPFID[0]" type="TEXTFIELD" />
<field name="form1[0].SPFID_AOPN_DEMO_SPFID[0].SPFID_C_Street_SPFID[0]"
 type="TEXTFIELD" />
<field name="form1[0].SPFID_AOPN_DEMO_SPFID[0].SPFID_C_First_Name_SPFID[0]"
 type="TEXTFIELD" />
<field name="form1[0].SPFID_AOPN_DEMO_SPFID[0].SPFID_Applicant_Signature_SPFID[0]"
 type="SIGNATURE_SIGNWARE" signed="true" />
....
<field name="form1[0].SPFID_AOPN_DEMO_SPFID[0].SPFID_A_Mandate_UpTo5000_SPFID[0]"
 checked="false" type="CHECKBOX" />
<field name="form1[0].SPFID_AOPN_DEMO_SPFID[0].SPFID_Customer_Name_SPFID[0]"
 type="TEXTFIELD">Max Mustermann</field>
<field name="form1[0].SPFID_AOPN_DEMO_SPFID[0].SPFID_A_City_SPFID[0]"
 type="TEXTFIELD" />
<field name="form1[0].SPFID_AOPN_DEMO_SPFID[0].SPFID_Customer_Number_SPFID[0]"
 type="TEXTFIELD" />
....
</formfields>
<takensignatures>
<biosig timestamp="1401097349000"
 name="form1[0].SPFID_AOPN_DEMO_SPFID[0].SPFID_Applicant_Signature_SPFID[0]"
 signed="true">mBkRB/ULAAAxBQAAeJxtlglsVlUQ...4GYPa9/sN9rBsX4NPFfmOuH+g==</biosig>
</takensignatures>
<allsignatures>
<biosig timestamp="0"
 name="form1[0].SPFID_AOPN_DEMO_SPFID[0].SPFID_Co_Applicant_Signature_SPFID[0]"
 signed="false" />
<biosig timestamp="1401097348000" name="SDWEB_DEMO_MODE_FIELD_1" signed="true" />
<biosig timestamp="1401097349000"
 name="form1[0].SPFID_AOPN_DEMO_SPFID[0].SPFID_Applicant_Signature_SPFID[0]"
 signed="true">mBkRB/ULAAAxBQAAeJxtlglsVlUQ...4GYPa9/sN9rBsX4NPFfmOuH+g==</biosig>
</allsignatures>
<logicalfieldnames>
<logicalfieldname id="Account_Title">
<realfieldname id="form1[0].SPFID_AOPN_DEMO_SPFID[0].SPFID_Account_Title_SPFID[0]" />
</logicalfieldname>
<logicalfieldname id="A_City">
<realfieldname id="form1[0].SPFID_AOPN_DEMO_SPFID[0].SPFID_A_City_SPFID[0]" />
</logicalfieldname>
<logicalfieldname id="A_Mandate_UpTo10000">
<realfieldname
 id="form1[0].SPFID_AOPN_DEMO_SPFID[0].SPFID_A_Mandate_UpTo10000_SPFID[0]" />
</logicalfieldname>
....
<logicalfieldname id="C_Mandate_Unlimited">
<realfieldname
 id="form1[0].SPFID_AOPN_DEMO_SPFID[0].SPFID_C_Mandate_Unlimited_SPFID[0]" />
</logicalfieldname>
</logicalfieldnames>
<realfieldnames>

72

Kofax SignDoc Web Administrator's Guide

<realfieldname id="form1[0].SPFID_AOPN_DEMO_SPFID[0].SPFID_Account_Title_SPFID[0]">
<logicalfieldname id="Account_Title" />
</realfieldname>
<realfieldname id="form1[0].SPFID_AOPN_DEMO_SPFID[0].SPFID_A_City_SPFID[0]">
<logicalfieldname id="A_City" />
</realfieldname>
<realfieldname
 id="form1[0].SPFID_AOPN_DEMO_SPFID[0].SPFID_A_Mandate_UpTo10000_SPFID[0]">
<logicalfieldname id="A_Mandate_UpTo10000" />
</realfieldname>
....
<realfieldname
 id="form1[0].SPFID_AOPN_DEMO_SPFID[0].SPFID_C_Mandate_Unlimited_SPFID[0]">
<logicalfieldname id="C_Mandate_Unlimited" />
</realfieldname>
</realfieldnames>
</document>
</sdweb>

SFTP DMS plugin
The SFTP DMS plugin is a SignDoc Web standard plugin that stores the documents on a remote
SFTP Server.

Plugin test

To test the SFTP DMS Plugin you can use freeSSHd SFTP server:

1. Download freeSSHd http://www.freesshd.com/freeSSHd.exe.

2. Install freeSSHd with default values on machine where SignDoc Web server is running.

3. freeSSHd settings (version used 1.2.4):
• Users/Add.../Login: sdweb/Authorization: Password stored as SHA1 hash/Password: sdweb/

User can use: SFTP
• SFTP/SFTP home path: specify path of choice (e.g. Documents\Download folder)
• Server status/Start SSH server

4. Add settings to sdweb_config.groovy (hostname is defaulted to localhost and port 22):
• sdweb.plugins.loadlist = ['de.softpro.sdweb.plugins.impl.SftpDms']
• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.user="sdweb"
• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.password="sdweb"

5. Restart SignDoc Web for the changes to become effective

6. Call SignDoc Web (e.g. http://localhost:8080/sdweb):
• Select "SignDocWeb SFTP DMS" as Document Management System plugin (DMS)
• Open document by URL, from template or via upload
• Sign document
• Use icon "Send document to archive"

7. Document is stored in SFTP location:
• A subfolder with the document ID is created

73

http://www.freesshd.com/freeSSHd.exe

Kofax SignDoc Web Administrator's Guide

• The document is saved as PDF, RDY and XML file

Plugin setup

The plugin can be loaded and so used by adding the plugins class name to the 'loadlist' property in
the Configuration file sdweb_config.groovy.

Load the plugin

Example

sdweb.plugins.loadlist = ['de.softpro.sdweb.plugins.impl.SftpDms']

Configuration

It can be configured to create different files regarding the archived document.

It is possible to request up to 5 different files by configuration in sdweb_config.groovy with prefix

'sdwebplugins."de.softpro.sdweb.plugins.impl.SftpDms".'

followed by the appropriate setting.

The following settings constitutes creating of the remote files:

sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.createRDYFile="..."
sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.createSignatureImageFile="...."
sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.createXMLFile="...."
sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.createTIFFCopy="....."

The conditions for the file compositions are the same as for FileDms (with the same setting
extension), see chapter File DMS plugin.
• sdwebplugins."de.softpro.sdweb.plugins.impl.SftpDms".storeStrategy (string):

The documents are stored in separate folders having the name of the specified
documentid (or the configured file name) if 'folder' is configured. With value
'flat' the documents are stored without the folder structure. Default: value from
sdwebplugins."de.softpro.sdweb.plugins.impl.FileDms".storeStrategy ("folder")

• sdwebplugins."de.softpro.sdweb.plugins.impl.SftpDms".filenamePrefix (string): File
name prefix, see File DMS plugin section "File name compositions". Default: value from
sdwebplugins."de.softpro.sdweb.plugins.impl.FileDms".filenamePrefix ("")

• sdwebplugins."de.softpro.sdweb.plugins.impl.SftpDms".filenamePostfix (string): File
name postfix, see File DMS plugin section "File name compositions". Default: value from
sdwebplugins."de.softpro.sdweb.plugins.impl.FileDms".filenamePostfix ("")

• sdwebplugins."de.softpro.sdweb.plugins.impl.SftpDms".createRDYFile (string): If "true" a
"rdy" file is created as soon as all file operations has been finished by SftpDms plugin. Default:
value from sdwebplugins."de.softpro.sdweb.plugins.impl.FileDms".createRDYFile ("true")

• sdwebplugins."de.softpro.sdweb.plugins.impl.SftpDms".createXMLFile
(string): If "true" an XML file with document information is generated, see also
File DMS plugin section "XML file with document information". Default: value from
sdwebplugins."de.softpro.sdweb.plugins.impl.FileDms".createXMLFile ("true")

• sdwebplugins."de.softpro.sdweb.plugins.impl.SftpDms".documentFileDecoration
(string): The document file postfix for document files if createPDFFile="true", see

74

Kofax SignDoc Web Administrator's Guide

documentFilePostfix in File DMS plugin, section "File name compositions". Default: value from
sdwebplugins."de.softpro.sdweb.plugins.impl.FileDms".documentFileDecoration ("_document")

• sdwebplugins."de.softpro.sdweb.plugins.impl.SftpDms".xmlFileDecoration
(string): The XML name postfix for xml files if createXMLFile="true", see xmlFilePostfix
in File DMS plugin, section "File name compositions". Default: value from
sdwebplugins."de.softpro.sdweb.plugins.impl.FileDms".xmlFileDecoration ("_content")

• sdwebplugins."de.softpro.sdweb.plugins.impl.SftpDms".dmsFolder (string): Location (folder)
of SftpDms output files on remote server. Default: "dms/de.softpro.sdweb.plugins.impl.SftpDms"

• sdwebplugins."de.softpro.sdweb.plugins.impl.SftpDms".createTIFFCopy (string): If "true"
a TIFF image copy of the document is generated from a pdf document. Default: value of
sdwebplugins."de.softpro.sdweb.plugins.impl.FileDms".createTIFFCopy ("false")

• sdwebplugins."de.softpro.sdweb.plugins.impl.SftpDms".createSignatureImageFile (string): If
"true" Signature Image file(s) is(are) created from signed capture fields. Default: "false"

• sdwebplugins."de.softpro.sdweb.plugins.impl.SftpDms".createSignatureImageFormat
(string): Signature image format from created signature images (if
createSignatureImageFile="true"). Possible image formats are "png" (default), "jpg" (or "jpeg"),
"gif" or "tiff". Default: "png"

• sdwebplugins."de.softpro.sdweb.plugins.impl.SftpDms".createSignatureImageDPI
(string): The resolution (in dots per Inch) of generated Signature images (if
createSignatureImageFile="true"). Default: "300"

• sdwebplugins."de.softpro.sdweb.plugins.impl.SftpDms".storeBiometricDataInXML (string):
The Base64 encoded signature (signware format) is included as value of the biosig element in
the XML file storeBiometricDataInXML is set to 'true' (default). See also XML file with document
information. Default: "true"

• sdwebplugins."de.softpro.sdweb.plugins.impl.SftpDms".strictHostChecking (string): The
default value "no" allows an explicit connection to any host and suppresses a strict inspection
of the Host Keys. New Host Keys are always accepted. With "yes" new Host Keys will be never
accepted automatically, they must be entered in the sshostkeys file manually. Default: "no"

• sdwebplugins."de.softpro.sdweb.plugins.impl.SftpDms".createPDFFile (string): The (archived)
PDF file is written to SftpDms output folder if set to "true". Default: "true"

• sdwebplugins."de.softpro.sdweb.plugins.impl.SftpDms".resampleImageSignatures (string):
If the content of a capture field is an image which was grabbed by a camera or as a Click-to-Sign
signature (also not a signware signature) the image is written (createSignatureImageFile="true")
in JPEG format. The format can be changed if resampleImageSignatures="true" is set. The
changed format can be specified via createSignatureImageFormat setting. Default: "true"

• sdwebplugins."de.softpro.sdweb.plugins.impl.SftpDms".serverAddress (string): Host name of
the remote SFTP server Default: "localhost"

• sdwebplugins."de.softpro.sdweb.plugins.impl.SftpDms".serverPort (integer): Port number
for connection to remote SFTP server. Default value 22 is the standard Secure Shell (SSH) port
number for encrypted file transmission. Default: 22

• sdwebplugins."de.softpro.sdweb.plugins.impl.SftpDms".user (string): User name for remote
SFTP connection Default: ""

• sdwebplugins."de.softpro.sdweb.plugins.impl.SftpDms".password (string): Password for
remote SFTP connection Default: ""

75

Kofax SignDoc Web Administrator's Guide

Servlet DMS plugin
The Servlet DMS plugin is a SignDoc Web standard plugin that pushes the documents via HTTPS or
HTTP POST request on a remote server.

Only predefined URLs are valid as target.

Plugin setup

The plugin can be loaded and used by adding the plugins class name to the 'loadlist' property in the
Configuration file sdweb_config.groovy.

Load the plugin

Example

sdweb.plugins.loadlist = ['de.softpro.sdweb.plugins.impl.ServletDms']

Interface description for receiving servlet

The following servlet parameters are used when submitting information to the receiver:
• docid (string): The document id
• docfile (base64 encoded binary data): The binary document (i.e. pdf or tiff document)
• contents (base64 encoded UTF-8 string): With XML data of the document contents
• tiffcopy (base64 encoded binary data): The document as a tiff copy (without digital signatures)

Interface description for storing servlet

The following servlet parameters are used when storing the document to the configured servlet url.
• docid (string): The document id
• docfile (base64 encoded binary data): The binary document (i.e. pdf or tiff document)
• xmlfile (base64 encoded UTF-8 string): With XML data of the document contents. An

xml structure (in utf-8) with document contents and metadata (can be disabled with
sdwebplugins.de.softpro.sdweb.plugins.impl.ServletDms.createXMLFile="false")

Configuration

The plugin is configured in sdweb_config.groovy with the following properties.

Mandatory configuration

sdwebplugins.de.softpro.sdweb.plugins.impl.ServletDms.target_urls=["url_1",
"url_2", ...]

This array of Strings defines the valid URLs where the documents can be pushed to.

A single URL is selected by the simple servlet parameter:

tui=<1_based_index>

Example load statement using the tui parameter:

76

Kofax SignDoc Web Administrator's Guide

https://<server>/sdweb/load/doc?
template=my_template.pdf&dmsid=de.softpro.sdweb.plugins.impl.ServletDms&tui=1

Optional configuration

sdwebplugins.de.softpro.sdweb.plugins.impl.ServletDms.use_all_targets=true

Default value: false

The documents will be pushed to all targets. The tui servlet parameter is optional in this case.

sdwebplugins.de.softpro.sdweb.plugins.impl.ServletDms.createXMLFile

Default value: true

On store the document the parameter contents can be disabled by setting the above parameter to
"false". This will reduce the size of the store document request.

BasicAuthenticator plugin
The BasicAuthenticator plugin is available since SignDoc Web 4.0.

The IAuthenticate interface protects, on an application bases, essential entry points of the server,
especially the load servlets that open documents. The BasicAuthenticator implements this plugin
interface.

General description

The BasicAuthenticator plugin provides a pragmatic protection of the server that is based on a
shared secret and two public parameters.

The client portal calculates a hash value of the three parameters and sends this hash together with
the other parameter in the load request.

The server will do the same calculation using the two public parameters that come with the request
and the shared secret that is not part of the request.

If the two hash values match, the request is considered to be valid.

Configuration

To enable the Basic authenticator two settings have to be done in sdweb_config.groovy file.

// Set the BasicAuthenticator as Authenticate pluign
sdweb.authenticate.pluginid="de.softpro.sdweb.plugins.impl.BasicAuthenticator"
// Enable the BasicAuthenticator
sdwebplugins.de.softpro.sdweb.plugins.impl.BasicAuthenticator.enabled=true
// OPTIONAL: Set the location of the file containing the shared secret
//sdwebplugins.de.softpro.sdweb.plugins.impl.BasicAuthenticator.keyfile="/some/path/to/
my_keyfile.txt"

The shared secret is stored in a file. The location of the file is defined by the setting:

sdwebplugins.de.softpro.sdweb.plugins.impl.BasicAuthenticator.keyfile

77

Kofax SignDoc Web Administrator's Guide

The default location is:
SDWEB_HOME/conf/auth_keyfile.txt

Example

auth_keyfile.txt
934579hgih3=9sjfhosdfk/%&&%j93

Servlet parameters
• auth (alternative: key)

The hash value calculated by the caller
• docid (alternative: referenceId)

The document id to make the hash dependent on the document
• docts (alternative: timestamp)

A timestamp to give the hash a random component (format does not matter)

Calculation of auth parameter

Pseudo code

BASE64(SHA-1((docid + docts + secretKey).getBytes("ISO-8859-1")))

Example Java code

public class AuthCalc {

public static void main(String[] args) throws Exception {
// the key file is configured by the configuration setting...
//
 sdwebplugins.de.softpro.sdweb.plugins.impl.BasicAuthenticator.keyfile="PATH_TO_A_FILE"
String defaultKeyFileName = System.getenv("SDWEB_HOME") + "/conf/auth_keyfile.txt";
byte[] data = FileUtils.readFileToByteArray(new File(defaultKeyFileName));
String secretKey = new String(data, "UTF-8");
String docid = "my_document_id_123";
String docts = "" + System.currentTimeMillis();
String auth = calulateHashExample(docid, docts, secretKey);

// print a sample request form
System.out.println("<html>");
System.out.println("<form action=\"http://localhost:8080/sdweb/load/doc\" method=\"post
\">");
System.out.println("docid: <input name=\"docid\" value=\"" + docid + "\">");
System.out.println("docts: <input name=\"docts\" value=\"" + docts + "\">");
System.out.println("auth: <input name=\"auth\" value=\"" + auth + "\">");
System.out.println("template: <input name=\"template\" value=
\"TrapezaOpenJointAccounts.pdf\">");
System.out.println("<input type=submit>");
System.out.println("</form>");
System.out.println("</body></html>");
}

private static String calulateHashExample(String docid, String docts, String secretKey)
 throws UnsupportedEncodingException, NoSuchAlgorithmException {
if (docts == null) throw new IllegalArgumentException("docts is null or empty");
if (docid == null) throw new IllegalArgumentException("docid is null or empty");
MessageDigest messageDigest = MessageDigest.getInstance("SHA"); // SHA-1
byte[] input = (docid + docts + secretKey).getBytes("ISO-8859-1"); // Latin-1
messageDigest.update(input);
byte[] hash = messageDigest.digest();

78

Kofax SignDoc Web Administrator's Guide

String hashAsString = Base64.encode(hash); // class from Apache Commons
return hashAsString;
}

}

Example request

The example code above will create this valid request for the example auth_keyfile.txt as stated
above.

<html><body>
 <form action="http://localhost:8080/sdweb/load/doc" method="post">
 docid: <input name="docid" value="my_document_id_123">

 docts: <input name="docts" value="1392985562078">

 auth: <input name="auth" value="eZgo+hOa8IP6gHd6TUhochy6EUk=">

 template: <input name="template" value="TrapezaOpenJointAccounts.pdf">

 <input type=submit>
 </form>
</body></html>

Preload plugins
SimpleFilePreloader (default)
• Pros

• The only requirement is a directory with read/write access for the application server process
• No additional configuration is required, if only a single SignDoc Web instance is used

• Cons
• Requires a network share in a clustered environment
• Orphaned files, (i.e. unused preloaded documents) must be cleaned regularly from the preload

directory
• Can be “slow” (especially when using networks shares)

• Configuration file settings
[sdweb_config.groovy]
// set it as default preload implementation
sdweb.defaults.preload.plugin.impl=
 ”de.softpro.sdweb.plugins.impl.SimpleFilePreloader”’

// Preloaded files are uploaded to this directory
// Optional config option. Default value: %SDWEB_HOME%/preloaded_docs
sdweb.preload.dir=<local_directory_or_network_sahre_with_read_write_access>

LocalCachePreloader
• Pros

• Fastest option
• No local files
• No configuration is required

• Cons
• Consumes JVM heap memory for every uploaded document
• Does not work in clustered environments, works only with single instances

79

Kofax SignDoc Web Administrator's Guide

• Configuration file settings
[sdweb_config.groovy]
// set it as default preload implementation
sdweb.defaults.preload.plugin.impl=
 ”de.softpro.sdweb.plugins.impl.LocalCachePreloader”’

MemcachedPreloader
• Pros

• Fast option for clustered environments
• Automatic cleanup of orphaned objects
• No local files

• Cons
• Requires separate memcached service

• Configuration file settings
[sdweb_config.groovy]
// set it as default preload implementation
sdweb.defaults.preload.plugin.impl=”de.softpro.sdweb.plugins.impl.MemcachedPreloader”

// expiration in seconds (Type: Integer, Default value: 600)
// preloaded document expire after the specified number of seconds
// and might be cleaned by the memcached service
// Since SignDoc Web: 5.2.0.1
sdwebplugins."de.softpro.sdweb.plugins.impl.MemcachedPreloader".expiration=600

// timeout in seconds (Type: Integer, Default value: 3)
// maximum time to wait for a memcached action. If timeout is exceeded an error is
 thrown
sdwebplugins."de.softpro.sdweb.plugins.impl.MemcachedPreloader".
 write_timeout_in_seconds=3

// write_to_all_nodes (Type: boolean, Default value: false)
// If set to true, a write action will be performed on all configured memcached
 nodes.
// If one write action passes, it is considered a success.
// If set to false, the write action will be considered as success after the first
 successful write
// on one of the configured nodes
// Remark: The configured nodes are iterated in the sequence as they are configured.
sdwebplugins."de.softpro.sdweb.plugins.impl.MemcachedPreloader".write_to_all_nodes

• Environment variable
// nodename: a simple identifier. Use only ASCII characters
// hostname: the full domain name of the memcached server
// port: optional. Port number of the service. Default value: 11211
SPEC_MEMCACHED_NODES=<nodename:hostname[:port]>[,<nodename:hostname:port>...]

Example
// single memcached instance with default port setting
SPEC_MEMCACHED_NODES=n1:mc1.example.com

// two memcached instance with an explicit port setting
SPEC_MEMCACHED_NODES=n1:mc1.example.com,n2:mc2.example.com:11211

80

Chapter 6

Configuration file sdweb_config.groovy

Parameters can fall into one of the below categories which are listed on the SignDoc Web About
page for each parameter:
• RT: Changes made to the parameter will take effect immediately during RunTime (as per

parameter sdweb.config.autoupdate.interval the config is read every 5 seconds by default)
• SR: For changes to take effect a ServerRestart will be required.
• SU: These parameters fall into the category Specification Undefined which means it depends on

the runtime scenario how they behave with regards to a server restart being required or not.
• UV: These parameters have a User Value i.e. the default value was changed.
• DV: These parameters have their Default Value set.
• NA: These parameters are not available for configuration by the user but are merely listed for

information purposes.

Find below a complete list of available configuration parameters in the same order as listed on the
SignDoc Web About page.
• gwtutils.config.directory (string): Set location of folder where configuration files are located.

Default: "${sdweb.home}/conf"
• gwtutils.config.readerclass (string): Set class that should be used to read the configuration.

Default: "de.softpro.sdweb.gwt.server.configuration.SDConfigurationReader"
• sdweb.about.display_help_url (boolean): Defines if direct links to the help topics are displayed

in the About page. Default: true
• sdweb.about.include.config_infos (boolean): Show or hide configuration section of About page.

Default: true
• sdweb.about.include.general_infos (boolean): Show or hide general section of About page.

Default: true
• sdweb.about.include.hostname_section (boolean): Show or hide host name section of About

page. Default: false
• sdweb.about.include.license_infos (boolean): Show or hide license section of About page

Default: true
• sdweb.about.include.plugin_infos (boolean): Show or hide plugin section of About page.

Default: true
• sdweb.about.include.problem_infos (boolean): Show or hide problem section of About page.

Default: true
• sdweb.about.include.usersetting_infos (boolean): Show or hide user settings section of About

page. Default: true
• sdweb.about.settings_page_url (string): Defines the URL to the Help Topics. The page should

provide HTML anchors for the configuration settings. Default: ""/help/en/adminguide/html/
configuration_file_sdweb_config_groovy.htm""

81

Kofax SignDoc Web Administrator's Guide

• sdweb.aboutbox.excludelist (string list): Each entry in the configuration list of the About page
which contains in the last parameter of a key such an exclude string is marked as a password.
The value of a password is not printed, it is masked with the value xxxxx. Default: ["password",
"configlink_proapp"]
Example: If sdweb.aboutbox.excludelist contains the string "password", the value for
configuration key sdweb.certificate.store.pkcs12.password is displayed in the about page as
"xxxxx".

• sdweb.action.allow.clearsignature (boolean): Allow the removal of a signature within a
signature field after it has been signed. Default: true

• sdweb.action.allow.deletesignature (boolean): Specifies if it is allowed to delete a signature or
not. Default: true

• sdweb.action.allow.imagesignature (boolean): Allow the capturing of an image in a document's
image field. Default: true

• sdweb.add_custom_http_header_entries (boolean): Enabling the custom http header
option enables the user to set arbitrary information in the http responses of SignDoc Web.
Supported http header types are: String, Date and Integer values. To be used together with
sdweb.http.servlet_response_header.list.xxx. Default: false
Example
sdweb.add_custom_http_header_entries=true
sdweb.http.servlet_response_header.list.string=["string_entry_1=1234", "string_entry_2=5678"]
sdweb.http.servlet_response_header.list.date=["time config read=" +
java.lang.System.currentTimeMillis()]
sdweb.http.servlet_response_header.list.integer=["a_custom_number=" + 123456]

• sdweb.audittrail.defaults.did (string): Default value that is used in the AuditTrail, if the
document id (docid parameter) is not available for an AuditTrail statement. Default: ""

• sdweb.audittrail.defaults.tid (string): Default value that is used in the AuditTrail, if the
transaction id (tid parameter) is not available for an AuditTrail statement. Default: ""

• sdweb.audittrail.defaults.uid (string): Default value that is used in the AuditTrail, if the user id
(uid parameter) is not available for an AuditTrail statement. Default: ""

• sdweb.audittrail.enabled (boolean): Enables or disables the audit trail. Default: true
• sdweb.audittrail.locale (string): Parameter to set the locale that the audit trail will be written in.

Default: "en"
• sdweb.audittrail.log.field_changes_as_image (boolean): Determines whether field changes

such as text entry in a document will be recorded not only in a protocol style report but also with
a screenshot of the area that has changed. Default: true

• sdweb.audittrail.log.signature_image.after_digsig(boolean): Determines whether the
signature and its surrounding area in the document will be recorded in the audit as an image.
Default: false

• sdweb.audittrail.log.signature_image.before_digsig (boolean): Determines whether the
signature image will be recorded on its own before being placed in the document´s signature
field. Default: true

• sdweb.audittrail.plugin.impl (string): Determines the plugin which is used for audit purposes.
Default: "de.softpro.sdweb.plugins.impl.SimpleAuditLog"

• sdweb.audittrail.ressource.xls.default (string): Determines the eXtensible Stylesheet Language
file which is used for the displaying of the Audit Trail. Default: "de/softpro/signdoc/audittrail/
at2html_plain.xsl"

82

Kofax SignDoc Web Administrator's Guide

• sdweb.authenticate.pluginid (string): Can be used to set an Authentication Plugin in SignDoc
Web. Default: ""

• sdweb.browserplugin.padclass (string): The setting sdweb.browserplugin.padclass can be
used to fix a specific search sequence for capture devices in SignDoc Web. For more details
see SignDoc Web Administrator's Guide, chapter "Configure server", section "Description of
sdweb.browserplugin.padclass". Default: ""

• sdweb.browserplugin.padconfiguration(string): This setting can be used for additional tablet
configuration. Configuration data equals the options as described in tablet.ini, depending on the
detected tablet model. For more details see SignDoc Web Administrator's Guide, chapter "Configure
server, section "Description of sdweb.browserplugin.padclass". Default: ""

• sdweb.browserplugin.padconfiguration_remotetablet.setlanguage (boolean): Defines, if a
remote tablet should use the sessions language setting. Default: true

• sdweb.browserplugin.querypad.always (boolean): The default setting "true" makes sure that
the 'QueryPad' function call to the browser plugin is invoked at each signature capturing in the
browser client. This enables the user to select various capture devices for signature capture
within a document. Default: true

• sdweb.c2s.defaults.signaturerenderer.impl (string): Default rendering engine for Click-to-Sign
signatures. Default: "de.softpro.sdweb.plugins.impl.c2s.DefaultC2SSignatureRenderer"

• sdweb.c2s.signaturereimage.dpi (integer): Determines the resolution of the Click-to-Sign
signature image. Default: 300

• sdweb.capture.html5_desktop (string): Define instruction for client to offer HTML5 capturing on
the desktop
Possible values:
"auto" - no explicit presetting, client has to decide (not yet supported)
"force" - the client is only allowed to offer HTML5 capturing via JavaScript
"deny" - the client must not offer HTML5 capturing (default for now will be replaced by auto later)
For this parameter to become effective sdweb.gui.desktop.impl="showjsmobile" needs to be set.
Default: "deny"

• sdweb.capture.html5_mobile (string): Define instruction for client to offer HTML5 capturing on
mobile devices
Possible values:
"auto" - no explicit presetting, client has to decide (not yet supported)
"force" - the client is only allowed to offer HTML5 capturing via JavaScript
"deny" - the client must not offer HTML5 capturing (default for now will be replaced by auto later)
Default: "deny"

• sdweb.capture.subtype.choice (string list): If a signature field was inserted via command
interface as capture field the user is enabled to select from a capture method choice list if he
clicks on the field. The possible choice list default entries are 'signature', Image_capture' and
'c2s' (for Click-to-Sign). These default values can be overwritten for each field via command
interface. This choice list is also available for signature fields without a specific subtype definition
('signature', 'image_capture' or 'c2s') if sdweb.digsig.unspecified.allow.subtype.choice=true is
configured. Default: ['signature', 'image_capture', 'c2s']

• sdweb.capture.tabletpc.background_image.height (integer): Sets height of capture dialog
when using Tablet PC with browser plugin. Default: 480

83

Kofax SignDoc Web Administrator's Guide

• sdweb.capture.tabletpc.background_image.width (string): Sets width of capture dialog when
using Tablet PC with browser plugin. Default: Default: 800

• sdweb.certificate.store.pkcs12.file (string): Path to default PKCS12 Certificate which is used to
digitally sign the signatures. Default: "${sdweb.home}/conf/cert_store.p12"

• sdweb.certificate.store.pkcs12.password (string): Password for default PKCS12 Certificate
which is used to digitally sign the signatures. Default: "secret"

• sdweb.cmd.allow.update.readonly.editfields (boolean): Allow the updating of read-only
document fields via a SignDoc Web command. Default: true

• sdweb.cmd.error.throwException (boolean): Throws an Exception if a passed command is
invalid, otherwise (false) only an error (or info) is logged and processing continues without the
(invalid) command. Default: true

• sdweb.command.list_separator (string): Separator sign for commands. Default: "\|"
• sdweb.config.autoupdate.enabled (boolean): Automatic update of the configuration.

If set to true the configuration will be update regularly as per parameter
sdweb.config.autoupdate.interval. Default: true

• sdweb.config.autoupdate.interval (integer): The update interval for automatic configuration
updates in milliseconds. The server periodically check for changes of the configuration files using
this interval. The check is executed independently and asynchronously of other processes/events
of the server. I.e. the maximum time that passes until a config change is recognized, is the value
of this setting. Default: 5000

• sdweb.custom.help (string): URL to customized user guide. Default: ""
• sdweb.custom.help_admin (string): URL to customized administration guide. Default: ""
• sdweb.custom.help_dev(string): URL to customized developer guide. Default: ""
• sdweb.debug.performancewatch.name.'10-00' (string): Can be used to change the

name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "LOADER-PHASE"

• sdweb.debug.performancewatch.name.'11-00' (string): can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "LP-CL

• sdweb.debug.performancewatch.name.'12-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "LP-DL"

• sdweb.debug.performancewatch.name.'20-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "PREPARE-PHASE"

• sdweb.debug.performancewatch.name.'21-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "PP-CORE-PREFILL"

• sdweb.debug.performancewatch.name.'22-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "PP-PLUGIN-COMPLETE"

• sdweb.debug.performancewatch.name.'22-01' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "PP-PLUGIN-EXT"

84

Kofax SignDoc Web Administrator's Guide

• sdweb.debug.performancewatch.name.'22-02' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "PP-PLUGIN-STD"

• sdweb.debug.performancewatch.name.'22-03' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "PP-PLUGIN-POPULATE"

• sdweb.debug.performancewatch.name.'22-04' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "PP-MISC

• sdweb.debug.performancewatch.name.'23-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "PP-INIT-DOCUMENT"

• sdweb.debug.performancewatch.name.'24-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "PP-OPTIMIZE-SIZE"

• sdweb.debug.performancewatch.name.'25-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "PP-READONLY-MODE"

• sdweb.debug.performancewatch.name.'26-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "PP-CREATE-KEY"

• sdweb.debug.performancewatch.name.'30-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "CONVERSION-PHASE"

• sdweb.debug.performancewatch.name.'40-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "INTERACTIVE-PHASE"

• sdweb.debug.performancewatch.name.'41-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "IP_PREP_SIG_PLUGIN"

• sdweb.debug.performancewatch.name.'42-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "IP_PREP_IMG_PLUGIN"

• sdweb.debug.performancewatch.name.'43-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "IP-ADD-SIG"

• sdweb.debug.performancewatch.name.'44-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "IP-DEL-SIG"

• sdweb.debug.performancewatch.name.'45-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "IP-FIELD-UPDATE"

• sdweb.debug.performancewatch.name.'45-01' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "IP-FIELD-VALIDATE-UPDATE"

85

Kofax SignDoc Web Administrator's Guide

• sdweb.debug.performancewatch.name.'46-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "IP-VALIDATE"

• sdweb.debug.performancewatch.name.'47-00' string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "IP_ADD_IMAGE"

• sdweb.debug.performancewatch.name.'50-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "FINALIZE-PHASE"

• sdweb.debug.performancewatch.name.'51-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "FP-VALIDATE"

• sdweb.debug.performancewatch.name.'52-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "FP-STORE-DMS

• sdweb.debug.performancewatch.name.'90-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "MISC-LAST-RENDERED-PAGE"

• sdweb.debug.performancewatch.name.'90-01' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "MISC-RENDER-PRINT"

• sdweb.debug.performancewatch.name.'90-02' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "MISC-DOWNLOAD-DOCUMENT"

• sdweb.debug.performancewatch.name.'90-03' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "PRINT_VIEW"

• sdweb.debug.performancewatch.name.'90-04' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "MISC-SERVERDONE"

• sdweb.debug.performancewatch.name.'90-05' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "MISC-FIRSTPAGE-SENT"

• sdweb.debug.performancewatch.name.'99-03' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "MISC-3"

• sdweb.debug.performancewatch.name.'99-04' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "MISC-4"

• sdweb.debug.performancewatch.name.'99-05' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "MISC-5"

• sdweb.debug.performancewatch.name.'99-06' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "MISC-6"

86

Kofax SignDoc Web Administrator's Guide

• sdweb.debug.performancewatch.name.'99-07' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "MISC-7"

• sdweb.debug.performancewatch.name.'99-08' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "MISC-8"

• sdweb.debug.performancewatch.name.'99-09' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "MISC-9"

• sdweb.defaults.customloader.plugin.impl (string): Name of the default custom loader plugin
to be used. Default: ""

• sdweb.defaults.defaultpublickey.name (string): The public key file name which is used to
encrypt the biometric data of a signature. Default: "0001-public.key"

• sdweb.defaults.imagecapturefield.image.halignment (integer): The horizontal alignment
(ha_left, ha_center, or ha_right) of the image (in the appearance stream of PDF documents) of an
image capture field. Possible values: 0 - ha_left, 1 - ha_center, 2 - ha_right. Default: 1

• sdweb.defaults.imagecapturefield.image.margins (integer): Margins in millimeters around a
captured image within the rectangle. Default: 0

• sdweb.defaults.imagecapturefield.image.valignment (integer): The vertical alignment (va_top,
va_center, or va_bottom) of the image (in the appearance stream of PDF documents) of an image
capture field. Possible values: 0 - va_top, 1 - va_center, 2 - va_bottom. Default: 1

• sdweb.defaults.imagecapturefield.text.position (integer): Position of the text in an image
capture field. Possible values: 0 - tp_overlay (Text and image are independent and overlap, text
is painted on image), 1 - tp_below (Text is put below the image, the image is scaled to fit), 2 -
tp_underlay (Text and image are independent and overlap, text is painted under image). Default:
1

• sdweb.defaults.preload.plugin.impl (string): The Preload Plugin which is used by default.
Default: "de.softpro.sdweb.plugins.impl.SimpleFilePreloader"

• sdweb.defaults.prepare.plugin.impl (string): The Prepare Plugin which is used by default.
Default: ""

• sdweb.defaults.signature.date.format (string): Format in which the timestamp of the signature
is displayed if sdweb.signature.display.signtime=true. Pattern follows the rules defined in Java's
DateFormat class: http://docs.oracle.com/javase/7/docs/api/java/text/DateFormat.html. Default:
"yyyy-MM-dd HH:mm"

• sdweb.defaults.signature.date.locale (string): Locale of signature timestamp which is displayed
if sdweb.signature.display.signtime=true. Default: "en"

• sdweb.defaults.signature.displaytext (string): The signature field will show the specified
signer name if sdweb.signature.display.signer=true.This setting must be assigned a String value!
sdweb.defaults.signature.displaytext= is invalid!, sdweb.defaults.signature.displaytext="" is valid.
Default: "SignDoc"

• sdweb.defaults.signature.logo (string): Defines a free text that can be displayed in a C2S
signature. Default: "E-SIGN WITH KOFAX"

• sdweb.defaults.signature.penwidth (integer): Stroke width of signature image in document
independent of signer´s signature. Default: 750

• sdweb.defaults.signaturearchive.impl (string): The Signature Archive Plugin which is used by
default. Default: ""

87

Kofax SignDoc Web Administrator's Guide

• sdweb.defaults.signaturefield.image.halignment (integer): The horizontal alignment (ha_top,
ha_center, or ha_bottom) of the image (in the appearance stream of PDF documents) of signature
field. Possible values: 0 - ha_top, 1 - ha_center, 2 - ha_bottom. Default: 1

• sdweb.defaults.signaturefield.image.margins (integer): Margins in millimeters around the
signature image within the rectangle. Default: 1

• sdweb.defaults.signaturefield.image.valignment (integer):The vertical alignment (va_top,
va_center, or va_bottom) of the image (in the appearance stream of PDF documents) of a
signature field. Possible values: 0 - va_top, 1 - va_center, 2 - va_bottom. Default: 1

• sdweb.defaults.signaturefield.text.color (string):
Color of the text in the signature field as Hexadecimal RGB value. See http://www.w3schools.com/
html/html_colors.asp. It is applicable if at least one of following settings are true:
sdweb.signature.display.signtime=true
sdweb.signature.display.signer=true
Default: "808080"

• sdweb.defaults.signaturefield.text.font.name (string): Font of the text in the signature field. It
is applicable if at least one of following settings is true:
sdweb.signature.display.signtime=true
sdweb.signature.display.signer=true
Default: "Helvetica"

• sdweb.defaults.signaturefield.text.font_size (integer): Font size of the text in the signature
field. It is applicable if at least one of following settings is true:
sdweb.signature.display.signtime=true
sdweb.signature.display.signer=true
Default: 0

• sdweb.defaults.signaturefield.text.halignment (integer): The horizontal alignment (ha_top,
ha_center, or ha_bottom) of the text (in the appearance stream of PDF documents) of signature
field. Possible values: 0 - ha_top, 1 - ha_center, 2 - ha_bottom. Default: 1

• sdweb.defaults.signaturefield.text.margins.horizontal (integer): Horizontal margins of text in
a signature field in millimeters. Default: 3

• sdweb.defaults.signaturefield.text.position (integer): Position of the text in a signature field.
Possible values: 0 - tp_overlay (text and image are independent and overlap, text is painted on
image), 1 - tp_below (text is put below the image, the image is scaled to fit), 2 - tp_underlay (text
and image are independent and overlap, text is painted under image). Default: 1

• sdweb.defaults.signaturefield.text.valignment (integer):Vertical alignment of the text within a
signature field. Possible values: 0 - va_top, 1 - va_center, 2 - va_bottom. Default: 2

• sdweb.demo_mode.enabled (boolean): In general a SOFTPRO demo logo is inserted into the
upper left corner of a document page if the user captures a signature with the SOFTPRO Mobile
App without having the Pro-App version enabled. For demo or test purposes the demo mode can
be activated for the desktop client also, to insert the demo logo after capturing by enabling this
setting. Default: false

• sdweb.digsig.unspecified.allow.subtype.choic (boolean): Signature fields in SignDoc Web can
be itemized via Command Interface as a specific subtype, like signature, image_capture or c2s
(for Click-to-Sign). In this case it is only possible to fill the signature fields with the predefined
capture methods according the specified subtype. If a digital signature field was inserted in the
document without SignDoc Web specific subtype definition it is possible to treat them as (also
SignDoc Web specific) capture field. With setting

88

http://www.w3schools.com/html/html_colors.asp
http://www.w3schools.com/html/html_colors.asp

Kofax SignDoc Web Administrator's Guide

sdweb.digsig.unspecified.allow.subtype.choice=true
the user is enabled to select a capture method according the choice list which is specified by
default with sdweb.capture.subtype.choice definition.
With
sdweb.digsig.unspecified.allow.subtype.choice=false
these unspecified signature are treated as normal signature fields without the possibility to select
any other capture method (for image capturing or click to sign signatures). Default: false

• sdweb.document.signature.tsa.config (string): Determines the Timestamp Server Authority
Server URL according to RFC 3161 which will be used for the signature timestamp. See SignDoc
Web Administrator's Guide, topic "TSA Functionality" for further information. Default: ""

• sdweb.document.signature.tsa.use_metadata_config (boolean):This setting can be used to
enable TSA functionality via a document's metadata. See SignDoc Web Administrator's Guide, topic
"TSA functionality" for further information. Default: false

• sdweb.document.text.color (string): Changes text color of document to this Hexadecimal RGB
value. See http://www.w3schools.com/html/html_colors.asp. Default: "000000"

• sdweb.document.text.opacity (string): Changes opacity of document's text. Default: "1.0"
• sdweb.documentation.display.public (boolean): The product documentation is by default

available from everywhere. If you change the setting to "false" the help can only be accessed by
local users via http://localhost:6610/sdweb/help. Default: true

• sdweb.excluded.actions (string list): Contains the context relative links which are disabled in
SignDoc Web. A status code 404 (not found) will return if anybody tries to call one of the included
links. Default: ["test/", "tools/", "status/"]

• sdweb.external_server_url (string): The server can be configured to use a fixed URL for all
absolute links. This makes it possible to use SignDoc Web behind a proxy. Default: ""
Example
sdweb.external_server_url="http://MY_PROXYSERVER/sdweb"

• sdweb.external_server_url_list (string list): This is a highly specialized setting which can be used
to run SignDoc Web behind multiple Proxy Servers. It is not recommended to make use of this
setting in a production environment. Default: []

• sdweb.flatten_document.download (boolean): If set to true this parameter will remove the
possibility to edit the fields after downloading. The fields will not show as editable anymore.
Default: false

• sdweb.font.configfile(string): Path to the default font configuration file. Default:
"${sdweb.home}/fonts\SPFontConfig.xml"

• sdweb.gui.desktop.impl (string): Show different types of GUI. For Remote Interface it is required
to use the mobile GUI. Possible values: "showjs" - standard GUI, "showjsmobile" - mobile GUI.
Default: "showjs"

• sdweb.gui.impl (boolean): Checks if the text entered in the document fields has Latin characters.
If non-Latin characters are entered a warning will be displayed and the entry of the characters
refused. Default: true

• sdweb.gui.input.text.check.islatin (boolean): Checks if the text entered in the document fields
has Latin characters. If non-Latin characters are entered a warning will be displayed and the entry
of the characters refused. Default: true

• sdweb.gui.input.text.check.pattern (boolean): The verification of text input is done in SignDoc
Web client according the validation pattern (regular expression) which can be defined via

89

http://www.w3schools.com/html/html_colors.asp

Kofax SignDoc Web Administrator's Guide

Textfield parameter (validpattern) in command. For security reason it is advisable to check
the entered text also on server side. This (additional) check is performed on server side if
sdweb.gui.input.text.check.pattern=true is set. Default: true

• sdweb.gui.mobile.impl (string): Default GUI that is used on mobile clients. Default:
"showjsmobile"

• sdweb.gui.mobile.ios.activecaching.enable (boolean): SignDoc Web mobile App under iOS
needs a specifc caching behavior for effective handling with data from the server which is
activated by default. It can be disabled by setting sdweb.gui.mobile.ios.activecaching.enable =
false, but it is not recommended. Default: true

• sdweb.gui.render.format (string): Document page image format displayed in desktop browser.
Supported image formats are "gif", "png", "bmp", "tiff" and "jpeg". See also SignDoc Web
Administrator's Guide, chapter "Reduce network data". Default: "png"

• sdweb.gui.render.format_mobile (string): Document page image format for (known) mobile
devices. Supported image formats are "gif", "png", "bmp", and "jpeg". See also SignDoc Web
Administrator's Guide, chapter "Reduce network data".

• sdweb.gui.render.index_color_model (string): Color Model to be used for rendering of
documents. See also SignDoc Web - Administrator's Guide, chapter Reduce Network Data for
more details on color models. Default: ""

• sdweb.gui.render.index_color_model_desktop(string): Color Model to be used for rendering of
documents on the Desktop client. See also SignDoc Web - Administrator's Guide, chapter Reduce
Network Data for more details on color models. Default: ""

• sdweb.gui.render.index_color_model_mobile (string): Color Model to be used for rendering of
documents on the Mobile client. See also See also SignDoc Web - Administrator's Guide, chapter
Reduce Network Data for more details on color models. Default: ""

• sdweb.gui.render.jpeg.quality (integer): Adjusts jpeg quality (range: 0-100) for rendered
document pages if jpeg image format is configured. It sets the compression quality to a value
between 0 and 100. For lossy compression schemes, the compression quality should control the
tradeoff between file size and image quality (for example, by choosing quantization tables when
writing JPEG images). For lossless schemes, the compression quality may be used to control the
tradeoff between file size and time taken to perform the compression. A compression quality
setting of 0 is most generically interpreted as "high compression is important", while a setting of
100 is most generically interpreted as "high image quality is important". Default: 60

• sdweb.gui.taborder (string): Set tab order in GUI. Possible values: "appearance" and "pdf".
Value "pdf" inherits tab order of the pdf document. The value "appearance" evaluates the
order according to the sequence of the fields appearance from top-down to left-right. Default:
"appearance"

• sdweb.http.servlet_response_header.list.date (string): This option allows the user to set
arbitrary Date information in the http responses of SignDoc Web. To be used together with
sdweb. dd_custom_http_header_entries=true. See example there. Default: []

• sdweb.http.servlet_response_header.list.integer (string list): This option allows the user to set
arbitrary Integer information in the http responses of SignDoc Web. To be used together with
sdweb. dd_custom_http_header_entries=true. See example there. Default: []

• sdweb.http.servlet_response_header.list.string (string list): This option allows the user to set
arbitrary String information in the http responses of SignDoc Web. To be used together with
sdweb. dd_custom_http_header_entries=true. See example there. Default: []

• sdweb.image_capture.dynamic_dimension_calculation (boolean): Alternative to fix image
capture size is the dynamic calculation of the image according the field size and configured

90

Kofax SignDoc Web Administrator's Guide

resolution (see sdweb.image_capture.dynamic_dimension_calculation_resolution). The minimum
image height is the value of the setting sdweb.image_capture_height. The minimum image width
is the value of the setting sdweb.image_capture_width. If "false" is set then the fixed default
capture image sizes are used (maximum size, see settings: sdweb.image_capture_height and
sdweb.image_capture_width). Default: true

• sdweb.image_capture.dynamic_dimension_calculation_resolution (integer): Default
resolution as base for the calculation of the image capture size dependent from the field size.
Default: 96

• sdweb.image_capture_height (integer): Capture image setting: Height of captured image, mm
for Scanner, pixel for camera. Default: 240

• sdweb.image_capture_width (integer): Capture image setting: Width of captured image, mm for
Scanner, pixel for camera. Default: 320

• sdweb.internal_result_page.qrcode.height (integer): With this setting it is possible to change
the height of the QR code, that is shown after finalizing a document. Default: 250

• sdweb.internal_result_page.qrcode.width (integer): With this setting it is possible to change the
width of the QR code, that is shown after finalizing a document. Default: 250

• sdweb.internal_result_page.showloadbydms (boolean): With this setting it is possible to decide,
whether the DMS link to the finalized document should be shown in the result page. Default: true

• sdweb.internal_result_page.showxcb (boolean): With this setting on true, a x-callback-url and it
´s QR code are displayed in the result page after finalizing a document. Default: false

• sdweb.load.error.fail_fast (boolean): By default a load error is redirected to the result page. If
set to true the setting sdweb.load.error.status_code is taken into account. Default: false

• sdweb.load.error.status_code (integer): HTTP response code that will be used in case that a load
error occurs and sdweb.load.error.fail_fast is set to true. Default: 404

• sdweb.load_page.open_in_new_window (boolean): With this setting it is possible to decide, if
the document that is loaded via a form opens in the same browser tab or in a new one. Default:
false

• sdweb.loader.upload.max_size (integer): This parameter specifies the file size limit for the
ByUpload method. Default: 5242880

• sdweb.loader.upload.temp_dir (string): This parameter specifies where temporary files for the
ByUpload method are to be stored. Default: "PATHTOWEBSERVER\temp"

• sdweb.lockfields.list_separator (string): This setting allows to change the separator sign
between the field names of the fields, which should be locked after signing the signature field(s).
Default: ","

• sdweb.lockfields.list_separator_uri (string): This setting allows to change the separator sign
between the field names of the fields, which should be locked after signing the signature field(s)
if used with URI syntax. Default: "\|"

• sdweb.monitor.allow_empty_filter (boolean): Allow the user to use enter an empty filter.
Default: true

• sdweb.pkcs7.pluginid (string): The plugin id of the ISignPKCS7 Plugin Interface. Default:
"" (empty) means that the internal signing method is used.

• sdweb.plugins.defaultloadlist (string list): A list of plugins which should be loaded by default.
Default: [VARIOUSPLUGINS]

• sdweb.plugins.dms.allowIdOverwriting (boolean): The dms id (e.g. FileDms) can be set in
metadata of a document (key:SIGNDOCWEB_INTERNAL_DMSPLUGIN_ID). Overwriting of a dms id

91

Kofax SignDoc Web Administrator's Guide

for a document with a servlet parameter (key:dmsid) is this case only possible, if the configuration
setting sdweb.plugins.dms.allowIdOverwriting=true is set. Default: false

• sdweb.plugins.dms.allowLoadDocuments (boolean): Opens a document from DMS in 'read
only' mode (if set to true), which means that all fields are available but cannot be changed by the
user. Default: false

• sdweb.plugins.dms.openreadonly (boolean): Opens a document from DMS in 'read only' mode
(if set to true), which means that all fields are available but cannot be changed by the user.
Default: false

• sdweb.plugins.dms.useDocumentLocking (boolean): Setting
sdweb.plugins.dms.useDocumentLocking to true will lock a document which was loaded
by DMS. This means that nobody else can load the same document from DMS during this
time. A document will be unlocked earliest if the user, which locks the document, will close
the document, either by archiving it again, or by closing it with cancel (or after an error). The
document is automatically unlocked at the latest after 10 Minutes. Default: false

• sdweb.plugins.global.dmsid.pluginid (string): Defines a default dms plugin to be used in certain
cases. The behaviour depends on the value of sdweb.plugins.global.dmsid.strategy
sdweb.plugins.global.dmsid.strategy="enforce" means always use this plugin no matter, if a dms
plugin is specified by parameter and sdweb.plugins.global.dmsid.strategy="fallback" means use
this plugin only, if no dms plugin is specified by parameter. Default: ""

• sdweb.plugins.global.dmsid.strategy (string): Is only relevant for plugin (id) definition
within MetaData. If default pluginid is defined and no pluginid is defined in MetaData and
sdweb.plugins.global.xxxpluginidxxx.strategy="fallback" is set then default pluginid is used.
The default plugin is also used if the sdweb.plugins.global.xxxpluginidxxx.strategy="enforce" is
configured. Default: "fallback"

• sdweb.plugins.global.preparepluginid.pluginid (string): Use this parameter to define a global
Prepare plugin. Default: ""

• sdweb.plugins.global.preparepluginid.strategy (string): Is only relevant for plugin (id)
definition within MetaData. If default pluginid is defined and no pluginid is defined in MetaData
and sdweb.plugins.global.xxxpluginidxxx.strategy="fallback" is set then default pluginid is used.
The default plugin is also used if the sdweb.plugins.global.xxxpluginidxxx.strategy="enforce" is
configured. Default: "fallback"

• sdweb.plugins.global.resultparamspluginid.pluginid (string): Use this parameter to define a
global Result Parameters plugin. Default: ""

• sdweb.plugins.global.resultparamspluginid.strategy (string): Is only relevant for plugin (id)
definition within MetaData. If default pluginid is defined and no pluginid is defined in MetaData
and sdweb.plugins.global.xxxpluginidxxx.strategy="fallback" is set then default pluginid is used.
The default plugin is also used if the sdweb.plugins.global.xxxpluginidxxx.strategy="enforce" is
configured. Default: "fallback"

• sdweb.plugins.global.signaturearchiveid.pluginid (string): Use this parameter to define a
global Signature Archive plugin. Default: ""

• sdweb.plugins.global.signaturearchiveid.strategy (string): Is only relevant for plugin (id)
definition within MetaData. If default pluginid is defined and no pluginid is defined in MetaData
and sdweb.plugins.global.xxxpluginidxxx.strategy="fallback" is set then default pluginid is used.
The default plugin is also used if the sdweb.plugins.global.xxxpluginidxxx.strategy="enforce" is
configured. Default: "fallback"

• sdweb.plugins.global.validatepluginid.pluginid (string): Use this parameter to define a global
Validation plugin. Default: ""

92

Kofax SignDoc Web Administrator's Guide

• sdweb.plugins.global.validatepluginid.strategy (string): Is only relevant for plugin (id)
definition within MetaData. If default pluginid is defined and no pluginid is defined in MetaData
and sdweb.plugins.global.xxxpluginidxxx.strategy="fallback" is set then default pluginid is used.
The default plugin is also used if the sdweb.plugins.global.xxxpluginidxxx.strategy="enforce" is
configured. Default: "fallback"

• sdweb.plugins.loadlist (string list): This parameter is used to specify the plugins which should be
loaded upon SignDoc Web startup. Default: []

• sdweb.preload.filedeletion (string): This setting defines, when the preloaded temp files will
be deleted by the server. "asap" - right after the SignDoc Document was created (as soon as
possible), "envcheck" - after the gui passed all env checks and document is visible, "alap" - after
successfully archiving the working document (as late as possible). Default: "envcheck"

• sdweb.prepare.allow.docid_as_parameter (boolean): Configuration options for overwriting
already existing document id via docid parameter. Default: true

• sdweb.prepare.allow.docid_parameter_overwrite_metadata (boolean): Configuration options
for overwriting already existing document id via docid parameter. Default: true

• sdweb.prepare.minimizefilesize (boolean): Tries to minimize the filesize to a minimum when
preparing a document. Default: true

• sdweb.prepare.open_readonly.flatten_threshold (integer): A document can be opened as 'read
only' if parameter openreadonly is defined (see also sdweb.plugins.dms.openreadonly). Each field
in the document must be set then to readonly.
If the document contains too many fields it needs some time to set all the fields manually to 'read
only'.
Therefore there is the possibility to define a threshold from where the document is flattened
(much faster), instead of setting each field flag (to readonly).
If sdweb.prepare.open_readonly.flatten_threshold is set to -1 every field is set to read only.
If the threshold is equal or greater than the number of fields in the document then the document
is flattened before it is displayed to the user. A flattened document means that the user can see
only the image of the document, no fields are available any more. No signatures are listed then in
the signature treeview of the document.
Default: -1

• sdweb.prepare.type.addtext (string): With this setting it is possible to change the name of the
parameter for inserting text in a document via command. Default: "addtext"

• sdweb.prepare.type.addtextrect (string): With this setting it is possible to change the name of
the parameter for inserting a text area in a document via command. Default: "addtextrect"

• sdweb.prepare.type.formfield (string): With this setting it is possible to change the name of the
parameter for inserting a form field in a document via command. Default: "formfield"

• sdweb.prepare.type.metadata (string): With this setting it is possible to change the name of the
parameter that is used to add metadata to a document via command. Default: "metadata"

• sdweb.prepare.type.removefield (string): With this setting it is possible to change the name of
the parameter that can be used to delete formfields via command. Default: "removefield"

• sdweb.prepare.type.signature (string): With this setting it is possible to change the name of the
parameter for inserting a signature field in a document via command. Default: "signature"

• sdweb.requester.regex.android (string): The User Agent string from any client is evaluated
by a 3rd party software (UADetector) Unfortunately it could happen, that any client is not (yet)
recognized correctly nevertheless. For this cases it is necessary to evaluate specific user agent

93

Kofax SignDoc Web Administrator's Guide

strings before the UADetector decides whether the requesting client is a mobile device or comes
from a desktop browser.
The configuration list with key sdweb.requester.regex.android contains all regular expressions
for user agent strings from android clients which are not recognized correctly (as android clients)
from UADetector.
Default: ".*(?:android)\b.*"

• sdweb.requester.regex.desktop_list (string list): The User Agent string from any client is
evaluated by a 3rd party software (UADetector) Unfortunately it could happen, that any client is
not (yet) recognized correctly nevertheless. For this cases it is necessary to evaluate specific user
agent strings before the UADetector decides whether the requesting client is a mobile device or
comes from a desktop browser.
The configuration list with key sdweb.requester.regex.desktop_list contains all regular
expressions for user agent strings from desktop clients which are not recognized correctly (as
desktop clients) from UADetector.
Default: ['^mozilla/.*\\(compatible; msie (\\d)\\.0; .*windows nt 6\\.(\\d).*wow64.*trident/7\\.0.*\
\).*$'] => IE11 under Windows 8.1 desktop

• sdweb.requester.regex.genericmobile (string): The User Agent string from any client is
evaluated by a 3rd party software (UADetector) Unfortunately it could happen, that any client is
not (yet) recognized correctly nevertheless. For this cases it is necessary to evaluate specific user
agent strings before the UADetector decides whether the requesting client is a mobile device or
comes from a desktop browser.
The configuration list with key sdweb.requester.regex.genericmobile contains all regular
expressions for user agent strings from generic mobile clients which are not recognized correctly
(as generic mobile clients) from UADetector.
Default: "VARIOUSDEVICES"

• sdweb.requester.regex.ipad (string): The User Agent string from any client is evaluated by a 3rd
party software (UADetector) Unfortunately it could happen, that any client is not (yet) recognized
correctly nevertheless. For this cases it is necessary to evaluate specific user agent strings before
the UADetector decides whether the requesting client is a mobile device or comes from a desktop
browser.
The configuration list with key sdweb.requester.regex.ipad contains all regular expressions for
user agent strings from ipad clients which are not recognized correctly (as ipad clients) from
UADetector.
Default: ".*\b(ipad)\b.*"

• sdweb.requester.regex.iphone (string): The User Agent string from any client is evaluated
by a 3rd party software (UADetector) Unfortunately it could happen, that any client is not (yet)
recognized correctly nevertheless. For this cases it is necessary to evaluate specific user agent
strings before the UADetector decides whether the requesting client is a mobile device or comes
from a desktop browser.
The configuration list with key sdweb.requester.regex.iphone contains all regular expressions for
user agent strings from iphone clients which are not recognized correctly (as iphone clients) from
UADetector.
Default: ".*\b(?:iphone)\b.*"

• sdweb.requester.regex.ipod (string): The User Agent string from any client is evaluated by a 3rd
party software (UADetector) Unfortunately it could happen, that any client is not (yet) recognized
correctly nevertheless. For this cases it is necessary to evaluate specific user agent strings before

94

Kofax SignDoc Web Administrator's Guide

the UADetector decides whether the requesting client is a mobile device or comes from a desktop
browser.
The configuration list with key sdweb.requester.regex.ipod contains all regular expressions for
user agent strings from ipod clients which are not recognized correctly (as ipod clients) from
UADetector.
Default: ".*\b(?:ipod)\b.*"

• sdweb.requester.regex.metro (string): The User Agent string from any client is evaluated by
a 3rd party software (UADetector) Unfortunately it could happen, that any client is not (yet)
recognized correctly nevertheless. For this cases it is necessary to evaluate specific user agent
strings before the UADetector decides whether the requesting client is a mobile device or comes
from a desktop browser.
The configuration list with key sdweb.requester.regex.metro contains all regular expressions for
user agent strings from metro clients which are not recognized correctly (as metro clients) from
UADetector.
Default: ".*\b(?:windows.nt.6\.[2-9](.*touch|.*webview/)|windows.nt.6\.[2-9].*arm)\b.*"

• sdweb.requester.uadetector.use (boolean): Use UADetector library for User Agent recognition.
Default: true

• sdweb.response_headerinfos (string list): Default response headers
SignDoc Web can put some default information in the http response headers.
The sdweb_config.groovy option with its default values is:
sdweb.response_headerinfos=["version", "license-mode", "license-product"]
The following header information is available in every response by default:
sdweb-license-product (currently SDWEB for SignDoc Web or SDS for SignDoc Service)
sdweb-version (the version number of the server)
sdweb-license-mode (licensed or demo)
Example
sdweb-license-product:SDS
sdweb-version:5.0.104_182
sdweb-license-mode:licensed
Default: ["version", "license-mode", "license-product"]

• sdweb.rest.allow.update.readonly.editfields (boolean): Allow or deny changes of values for
locked/readonly (editable) fields via REST interface. Default: true

• sdweb.rest.text.cut.maxlength (boolean): Text value which is updated via REST interface will be
cut off (or not) up to the max length of the text field. Default: true

• sdweb.ria.css.custom.dir (string): With this setting it is possible to change the directory of the
custom css files. Default: "css"

• sdweb.ria.image.custom.dir (string): With this setting it is possible to change the directory of
the custom image files. Default: "resources"

• sdweb.ria.image.custom.enabled (boolean): With this setting it is possible to allow SignDoc Web
to use custom images for buttons etc. Default: false

• sdweb.ria.signdoc.css_list (string list): The default CSS list for the Desktop GUIs. Default:
[SignDoc.css]

• sdweb.ria.signdoc.css_list_custom (string list): With this setting the user has the possiblity to
define a list of CSS files, that should be used for a customized Desktop GUI. Default: []

95

Kofax SignDoc Web Administrator's Guide

• sdweb.ria.signdoc_mobile.android.css_list (string list): The default CSS list for Android. Default:
[SignDocMobile_Android_1.css]

• sdweb.ria.signdoc_mobile.android.css_list_custom (string list): With this setting the user has
the possiblity to define a list of CSS files, that should be used for a customized Android Mobile
GUI. Default: [SignDocMobile_Android_1.css]

• sdweb.ria.signdoc_mobile.css_list (string list): The default CSS list for Mobile in general. Default:
[SignDocMobile_Desktop.css]

• sdweb.ria.signdoc_mobile.css_list_custom (string list): With this setting the user has the
possiblity to define a list of CSS files, that should be used for a customized General Mobile GUI.
Default: []

• sdweb.ria.signdoc_mobile.ios.css_list (string list): The default CSS list for iOS. Default:
[SignDocMobile_IPad_1.css]

• sdweb.ria.signdoc_mobile.ios.css_list_custom (string list): With this setting the user has the
possiblity to define a list of CSS files, that should be used for a customized iOS Mobile GUI.
Default: []

• sdweb.ria.signdoc_mobile.windows.css_list (string list): The default CSS list for Windows
Mobile. Default: [SignDocMobile_Windows.css]

• sdweb.ria.signdoc_mobile.windows.css_list_custom (string list): With this setting the user has
the possiblity to define a list of CSS files, that should be used for a customized Windows Mobile
GUI. Default: []

• sdweb.server.event.timeout.wait (integer): The maximum time the SignDocWeb server waits
for the entry of the signature on client side after clicking on a signature field. The value is the
time in milliseconds, e.g. 180000 means 180 seconds.
After this expiration the capture dialog is closed on client side and the capture process is aborted.
For this settings to become effective a server restart is required.
The settings only applies to capturing via browser plugin.
Default: 180000

• sdweb.server.logging.config.reload.enable (boolean): This setting allows to enable or disable
the automatic re-reading of the log settings. Default: true

• sdweb.server.logging.config.reload.interval (integer): This setting defines the time interval in
which the log file is re-read if sdweb.server.logging.config.reload.enable is set to true. Default:
5000

• sdweb.session.keepalive (boolean): When the GUI is open, the session will by default not expire
until either the document is archived or the browser is closed and the session times out. Default:
true

• sdweb.session.keepalive_session_timeout_percent (integer): The keepalive mechanism in
the browser page triggers a request for keeping session alive after xx percent of the configured
session timeout duration. Default: 90

• sdweb.session.keepalive_session_timeout_percent_android (integer): For Android devices: The
keepalive mechanism in the browser page triggers a request for keeping session alive after xx
percent of the configured session timeout duration. Default: 90

96

Kofax SignDoc Web Administrator's Guide

• sdweb.session.timeout.display_information (boolean):
If a session timeout URL is defined (see sdweb.session.timeout.page.url) this setting determines
whether parameters are appended to the URL to not.
Note: This is only useful for Android App usage which could have problems if the redirect URL
have appended query parameters.
Default: false

• sdweb.session.timeout.interval (integer): Session timeout in seconds. If this parameter is not
set then the value from web.xml <session-timeout>...</session-timeout> is used. Default: 60

• sdweb.session.timeout.interval_mobile (integer): DSession timeout for mobile devices in
seconds. If this parameter is not set then the value from sdweb.session.timeout.interval is taken.
Default: 3600

• sdweb.session.timeout.interval_mobile_android (integer): Android specific session timeout. If
this parameter is set to -1 then the value from sdweb.session.timeout.interval_mobile is inherited.
Default: -1

• sdweb.session.timeout.interval_mobile_genericmobile (integer): Session timeout
for all other identified mobile devices. If this parameter is set to -1 then the value from
sdweb.session.timeout.interval_mobile is inherited. Default: -1

• sdweb.session.timeout.interval_mobile_ipad (integer): iPad specific session timeout. If this
parameter is set to -1 then the value from sdweb.session.timeout.interval_mobile is inherited.
Default: -1

• sdweb.session.timeout.page.url (integer): With this setting it is possible to define which URL
should be accessed, when a session timeout occurs. Default: -1

• sdweb.signature.biometricdata.remove (boolean): The biometric signature data is not stored
if the parameter value is true. Without biometric signature only the appearance (image) of the
signature is then available in the document. Default: false

• sdweb.signature.color.blue (integer): With this settings it is possible to change the amount of
blue colour in the signature. Default: 0

• sdweb.signature.color.green (integer): With this settings it is possible to change the amount of
green colour in the signature. Default: 0

• sdweb.signature.color.red (integer): With this settings it is possible to change the amount of red
colour in the signature. Default: 0

• sdweb.signature.display.signer (boolean): If set to true, the signature field will show the signer
name. Default: false

• sdweb.signature.display.signtime (boolean): If set to true, the signature field will show the
signing time. Default: false

• sdweb.signature.exif.auto_rotate (boolean): Auto rotate images which are captured (for a
signature field) with rotated (non left top) orientation. Orientation is included in exif metadata of
an image (if available). The image orientation can be influenced by the orientation of the camera
while the user takes a picture (e.g. with a mobile device). Default: true

• sdweb.signature.watermark.enable (boolean): Specifies whether a watermark image is placed
behind a captured signature in the signature field. If set to true, SignDoc Web will try to add a
configured watermark behind the signature. The actual captured signature is not affected by this
setting only the appearance in the document. The setting can be overwritten by an individual and
signature field specific command parameter during document loading. Default: false

• sdweb.signature.watermark.frame.height (integer): Height of the watermark frame (if the
value is not negative). A negative value means that the watermark frame has the same height as

97

Kofax SignDoc Web Administrator's Guide

the signature field. The setting can be overwritten by an individual and signature field specific
command parameter during document loading. Default: -1

• sdweb.signature.watermark.frame.offset_x (integer): Horizontal offset (in pixels)
between top-left corner of the signature field and the top-left corner of the watermark
frame. Positive value means top-left corner of the watermark frame is on the right of
the top-left corner of the signature field. A negative value means that both offsets (x
and y) are not used for frame positioning within the signature field. In this case the
sdweb.signature.watermark.image.alignment setting is used. The watermark image alignment
is only applicable then if width and/or height of the frame is smaller than the signature field.
The setting can be overwritten by an individual and signature field specific command parameter
during document loading. Default: -1

• sdweb.signature.watermark.frame.offset_y (integer): Vertical offset (in pixels) between top-
left corner of the signature field and the top-left corner of the watermark frame . Positive value
means top-left corner of the watermark frame is below the top-left corner of the signature field.
A negative value means that both offsets (x and y) are not used for frame positioning within the
signature field. In this case the sdweb.signature.watermark.image.alignment setting is used.
The watermark image alignment is only applicable then if width and/or height of the frame is
smaller than the signature field. The setting can be overwritten by an individual and signature
field specific command parameter during document loading. Default: -1

• sdweb.signature.watermark.frame.width (integer): Width of the watermark frame (if the
value is not negative). A negative value means that the watermark frame has the same width as
the signature field. The setting can be overwritten by an individual and signature field specific
command parameter during document loading. Default: -1

• sdweb.signature.watermark.image.alignment (string): The watermark image alignment is only
applicable if width and/or height of the watermark image is smaller than the watermark frame
and the scale is set to "actual". If scale is set to "fit", it depends on whether the frame is longer
than the fitted image (horizontal alignment possible) or taller than the fitted image (vertical
alignment possible). Scale option "stretch" will not have any impact since it is stretched to fit the
frame. Possible alignment settings are "top-left", "top-center", "top-right", "middle-left", "middle-
center", "middle-right", "bottom-left", "bottom-center" and "bottom-right". The setting can be
overwritten by an individual and signature field specific command parameter during document
loading. Default: "middle-center"

• sdweb.signature.watermark.image.opacity (integer): Specifies the watermark image opacity
in percent. The value must be between 0 and 100. 100(%) means that the watermark image is
completely opaque. 0 would make the watermark invisible because it is completely transparent.
This setting can be useful to show the signature more prominent compared to the watermark
image which is behind the signature image. The setting can be overwritten by an individual and
signature field specific command parameter during document loading. Default: 100

• sdweb.signature.watermark.image.scale (string):
Specifies the scaling strategy of the watermark image within the watermark frame. The
watermark frame is the area where the watermark image is adjusted into. The watermark
frame itself is adjusted then into the signature field, either by frame offset coordinates

98

Kofax SignDoc Web Administrator's Guide

(sdweb.signature.watermark.frame.offset_x and sdweb.signature.watermark.frame.offset_y) or
alternatively according the alignment setting (sdweb.signature.watermark.image.alignment).
"actual" will use the actual size of the watermark image when it is positioned in the watermark
frame.
"fit" will scale the image proportionately to the size of the watermark frame.
"stretch" will stretch the image disproportionately to fit the entire frame.
The setting can be overwritten by an individual and signature field specific command parameter
during document loading. Default: "actual"

• sdweb.signature.watermark.image.template (string): The name of the watermark image
which should be placed as background image for a captured signature (for the document view).
Supported image formats are JPG, PNG, GIF and BMP. The setting can be overwritten by an
individual and signature field specific command parameter during document loading. Default:
"watermark.bmp"

• sdweb.signature.watermark.image.template_dir (string):
Specifies the directory from where a watermark template (defined by
sdweb.signature.watermark.image.template) is loaded. The directory specification must contain
the complete path information. Subdirectories are separated by forward slashes or with double
back slashes under Windows.
Example for Windows:
'd:/sdweb_home/wm' or 'd:\\sdweb_home\\wm'
Note: Don't forget the drive letter under Windows!
If you want to specify another subdirectory under SDWEB_HOME directory you can specify it in
the format "${sdweb.home}/sub_dir_name"
Example
"${sdweb.home}/watermark"
Default: "${sdweb.home}/watermark"

• sdweb.signature_c2s.display.signer (boolean): Defines if the signers name should be displayed
below Click-to-Sign capture fields. Default: false

• sdweb.signature_c2s.display.signtime (boolean): Defines if the date should be displayed below
Click-to-Sign capture fields Default: false

• sdweb.signature_image.display.signer (boolean): Defines if the signers name should be
displayed below image capture fields. Default: false

• sdweb.signature_image.display.signtime (boolean): Defines if the date should be displayed
below image capture fields. Default: false

• sdweb.signature_parameters.one_time_cert.keysize (integer): For signing a signature it is
necessary to have a certificate and a private key. If no private key and no certificate is provided
it is possible to create both on the fly by SignDoc SDK. A key pair for the self-signed certificate is
generated. The value is the number of bits (1024 through 4096, multiple of 8). Default: 1024

• sdweb.signerspecific.store.pkcs12.password (string): With this setting it is possible to define a
password for the signer specific certificate. Default: "secret"

99

Kofax SignDoc Web Administrator's Guide

• sdweb.signing.biometric_encryption (integer):
Defines the biometric encryption
0 - rsa (default, requires an public key)
1 - fixed (symmetric encryption), not save but the biometric data can be taken out without a
private key. Can be useful for document conversion in different format.
Default: 0

• sdweb.template.directory (string): With this setting it is possible to change the path and name
of the directory that contains the template documents. Default: "c:\sdweb_home/doctemplates"

• sdweb.template.monitor.enabled (boolean): If the parameter is set to true the
sdweb.template.directory will be monitored for new files located there which can be used via the
LoadByDMS method. Default: false

• sdweb.usage.enable.aboutpage (boolean): Enable or disable SDWeb "About"-page Default: true
• sdweb.usage.enable.loadpage (boolean):Enable or disable SDWeb "homepage". Default: true
• sdweb.usage.startpage.url (string): With this setting it is possible to change the SignDoc Web

startpage. Default: "load/form"
• sdweb.validate.before_archive_required_flag (boolean): By default the

required document fields are validated before archiving. When the parameter
sdweb.validate.before_archive_required_flag is set to false, the required fields from the document
are no longer validated before archiving. Default: true

• sdweb.validate.before_update.fieldtypes (string list):
List of field types which should be validated before update action is performed. The
validateFieldChange() method of Validator plugin (implementing IDocumentValidator) is called
if field type which should be updated is included in the list. Supported field types are, textfield,
checkbox, capture and radiobutton.
Example
If text fields and check boxes should be validated before update the setting must be
sdweb.validate.before_update.fieldtypes=['textfield', 'checkbox']
Default: []

• sdweb.web_page_options.document_domain (string):
Sets the allowed script origins to interact with the SignDoc Web UI. This is especially useful when
using the Remote Interface. The effect is that the JavaScript DOM property document.domain is
initialized with the specified value. Specify the setting in the format "[sub.domain.tld]"
Note: A value of "" (empty string) will disable the setting
Default: ""

• sdweb.ws.fault.disable_stacktrace (boolean): By default a web service (JAX-WS) marshals the
complete StackTrace of an exception, this is usually not wanted. Therefore it is set to true. Set to
false if the propagation of the StackTrace is needed on client side. Default: true

• sdwebplugins.de.softpro.sdweb.plugins.impl.BasicAuthenticator.keyfile
(boolean): If set to true a BasicAuthentication will be performed upon
accessing SignDoc Web. Parameter has to be used in conjunction with
sdweb.authenticate.pluginid="de.softpro.sdweb.plugins.impl.BasicAuthenticator". For more
information check the SignDoc Web Administrator's Guide, chapter "Standard plugins", section
"BasicAuthenticator plugin". Default: false

• sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.createRDYFile (string): With this setting
it is possible to decide, whether a RDY file should be created after finalizing a document or not.

100

Kofax SignDoc Web Administrator's Guide

The RDY (Ready) file is created as the last file of the whole finalize process and can be used as a
trigger for a follow-on process. Default: "true"

• sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.createSignatureImageDPI (string):
With this setting the resolution in DPI of the signature image which is save upon finalize of the
document can be set. This is only applicable to image formats that contain DPI information e.g.
TIFF, PNG, ...The default resolution for HTML5 signatures is 96DPI and is reduced in relation to the
default of 300. For example if the DPI is set to 100 the HTML5 signature resolution is also reduced
to one third i.e. 32DPI. Default: "300"

• sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.createSignatureImageFile(string):
With this setting it is possible to decide, whether an image of the signature should be created
after finalizing a document or not. Default: "false"

• sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.createSignatureImageFormat (string):
With this setting it is possible to define the format of the signature image which will be saved if
sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.createSignatureImageFile is set to true.
Possible formats are "png", "gif", "bmp", "jpg", "tiff" (only supported for handwritten signatures
and not for photos or Click-to-Sign signatures). Default: "png"

• sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.createTIFFCopy (string): With this
setting it is possible to decide, whether a TIFF copy of the signed document should be created.
Default: "false"

• sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.createXMLFile (string): With this
setting it is possible to decide, whether an XML file should be created after finalizing a document.
Default: "false"

• sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.dmsFolder (string): With this setting
it is possible to change the path and the name of the folder where the finalized documents are
stored. Default: "c:\sdweb_home/dms/de.softpro.sdweb.plugins.impl.FileDms"

• sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.fileDecoration (string): The value of
this setting is placed in all generated filenames after the docid (also after the optional timestamp)
and before the optional filepostfix. A fileDecoration value could be useful for example if several
SignDoc Web servers write their files to one common (shared) directory. Default: ""

• sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.filenamePostfix (string): With this
setting it is possible to define a prefix for all the files related to the document. Default: ""

• sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.filenamePrefix (string): With this
setting it is possible to define a prefix for all the files related to the document. Default: ""

• sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.storeBiometricDataInXML
(string): With this setting it is possible to define whether the biometric
signature data should be stored in the XML file or not. Only applicable if
sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.createXMLFile="true". Default: "true"

• sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.storeStrategy (string): With this setting
it is possible to decide, if the documents in the DMS should be stored in folders or not. If the
storage strategy should be just files the value has to be set to "flat". Default: "folder"

• sdwebplugins.de.softpro.sdweb.plugins.impl.ServletDms.createSignatureImageDPI (string):
With this setting the resolution in DPI of the signature image which is save upon finalize of the
document can be set. This is only applicable to image formats that contain DPI information e.g.
TIFF, PNG,... The default resolution for HTML5 signatures is 96DPI and is reduced in relation to the
default of 300. For example if the DPI is set to 100 the HTML5 signature resolution is also reduced
to one third i.e. 32DPI. Default: "300"

101

Kofax SignDoc Web Administrator's Guide

• sdwebplugins.de.softpro.sdweb.plugins.impl.ServletDms.createSignatureImageFile (string):
With this setting it is possible to decide, whether an image of the signature should be created
after finalizing a document or not. Default: "false"

• sdwebplugins.de.softpro.sdweb.plugins.impl.ServletDms.createSignatureImageFormat
(string): With this setting it is possible to define the format of the signature image which will be
saved if sdwebplugins.de.softpro.sdweb.plugins.impl.ServletDms.createSignatureImageFile is
set to true. Possible formats are "png", "gif", "bmp", "jpg", "tiff" (only supported for handwritten
signatures and not for photos or Click-to-Sign signatures). Default: "png"

• sdwebplugins.de.softpro.sdweb.plugins.impl.ServletDms.createXMLFile (string): With this
setting it is possible to decide, whether an XML file should be created after finalizing a document.
Default: "true"

• sdwebplugins.de.softpro.sdweb.plugins.impl.ServletDms.storeBiometricDataInXML
(string): With this setting it is possible to define whether the biometric
signature data should be stored in the XML file or not. Only applicable if
sdwebplugins.de.softpro.sdweb.plugins.impl.ServletDms.createXMLFile="true" Default: "true"

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.createRDYFile (string): With this setting
it is possible to decide, whether a RDY file should be created after finalizing a document or not.
The RDY (Ready) file is created as the last file of the whole finalize process and can be used as a
trigger for a follow-on process. Default: "true"

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.createSignatureImageDPI (string):
With this setting the resolution in DPI of the signature image which is save upon finalize of the
document can be set. This is only applicable to image formats that contain DPI information e.g.
TIFF, PNG,... The default resolution for HTML5 signatures is 96DPI and is reduced in relation to the
default of 300. For example if the DPI is set to 100 the HTML5 signature resolution is also reduced
to one third i.e. 32DPI. Default: "300"

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.createSignatureImageFile (string):
With this setting it is possible to decide, whether an image of the signature should be created
after finalizing a document or not. Default: "false"

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.createSignatureImageFormat (string):
With this setting it is possible to define the format of the signature image which will be saved if
sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.createSignatureImageFile is set to true.
Possible formats are "png", "gif", "bmp", "jpg", "tiff" (only supported for handwritten signatures
and not for photos or Click-to-Sign signatures).Default: "png"

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.createTIFFCopy (string): With this
setting it is possible to decide, whether a TIFF copy of the signed document should be created.
Default: "false"

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.createXMLFile (string): With this
setting it is possible to decide, whether an XML file should be created after finalizing a document.
Default: "false"

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.dmsFolder (string): With this setting
it is possible to change the path and the name of the folder where the finalized documents are
stored on the SFTP Server. Default: "dms/de.softpro.sdweb.plugins.impl.SftpDms

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.fileDecoration (string): The value of
this setting is placed in all generated filenames after the docid (also after the optional timestamp)
and before the optional filepostfix. A fileDecoration value could be useful for example if several
SignDoc Web servers write their files to one common (shared) directory. Default: ""

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.filenamePostfix (string): With this
setting it is possible to define a postfix for all the files related to the document. Default: ""

102

Kofax SignDoc Web Administrator's Guide

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.filenamePrefix (string): With this
setting it is possible to define a prefix for all the files related to the document. Default: ""

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.password (string): This is the password
for the SFTP server used with the plugin. Default: ""

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.serverAddress (string): This is the
address for the SFTP server used with the plugin.Default: "localhost"

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.serverPort (integer): This is the port for
the SFTP server used with the plugin. Default: 22

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.storeBiometricDataInXML
(string): With this setting it is possible to define whether the biometric
signature data should be stored in the XML file or not. Only applicable if
sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.createXMLFile="true". Default: "true"

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.storeStrategy (string): With this
setting it is possible to decide, if the documents in the DMS should be stored in folders or not. If
the storage strategy should be just files the value has to be set to "flat". Default: "folder"

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.user (string): This is the user name for
the SFTP server used with the plugin. Default: ""

• supportedApps.blackList (string list): With this parameter a blacklist can be defined, to block
specific apps or devices. Default: []

• supportedApps.whiteList (string list): With this parameter a whitelist can be defined, to only
allow specific apps or devices. Default: []

103

Chapter 7

Frequently asked questions

There are two cases, in which due to wrong configuration of the SignDoc Web server or the
environment, the software does not work as expected. Both cases have one thing in common: The
logfile is full of unusable stacktraces, since the problem is caused by misconfiguration and not by a
server bug.

The messages have the goal, to put the administrator or user in the role to fix the problem on his
own. The messages are displayed in the users language setting and in English.

Case 1 - session cookie gets lost

Usual suspect: Application server administrator / IT policies

Displayed message: The current cookie settings of the server (or in the browser) are possibly not
correct. Cookies must be allowed for the web-context: /sdweb (http://localhost:8080/sdweb/).
Another possible problem could be a load-balancer setup that is not configured for session affinity.
Usually JSESSIONID is the session cookie that must be evaluated by a load-balancer.

Case 2 - esu parameter is used in a wrong way

Usual suspect: Website integrator / SignDoc Web administrator

Displayed message: The esu parameter was used in a wrong way! The URL of the HTTP request
must match the selected URL that is defined by the esu parameter. Desired context defined by esu
parameter: http://littlejoe:8080/sdweb/ - real request context : scheme=http serveNname=localhost
serverPort=8080, contextPah=/sdweb

104

Kofax SignDoc Web Administrator's Guide

Other issues
• Error message: Cannot load SPFreeImage_1.dll, LoadLibrary failed, error 14001

Probably the required MS VC++ runtime is not installed. One of the following runtimes is
required.
Microsoft Visual C++ Redistributable Runtime 32-bit:
http://www.microsoft.com/en-us/download/details.aspx?id=5582

Microsoft Visual C++ Redistributable Runtime 64-bit:
http://www.microsoft.com/en-us/download/details.aspx?id=2092

In doubt, install both C++ runtimes.

• Some (probably broken) fonts can crash the Sun/Oracle JVM (fontmanager.dll)
This issue happens only on some systems if a broken font is used and the signature dialog is
displayed.
The effect is, that the fontmanager.dll of the Java Runtime crashes and terminates the server
process.
The issue occurs only on some CPU types, only with a i7 CPU and a JRE 1.6.
This problem was so far not seen with a JRE 1.7.

"Keep Session Alive" mechanism

To keep a session on the server side alive, periodic HTTP GET requests can be executed on this URL:

<sdweb.external_server_url>/keepalive

Example

http://localhost:8080/sdweb/keepalive

Doing this will result in a HTTP status code as defined by setting
sdweb.servlet.ignorelist.response_code (Default: 200 i.e. OK) and keep the session, referenced by
the JSESSIONID header attribute, alive.

105

	Table of Contents
	Preface
	Related documentation
	Offline documentation

	Training
	Getting help with Kofax products
	SignDoc Web features

	Functional structure of SignDoc Web
	Architecture
	Important files and directories
	Communication with SignDoc Web server

	SignDoc Web installation as a Windows service
	Definitions
	General prerequisites
	Quickstart
	Content of the SignDoc Web ZIP archive
	Production setup
	Advanced configuration
	Advanced information
	Logging configuration
	Installation on Tomcat without using the provided service installer
	Installation on other JEE compliant application servers
	License installation
	General
	License installation on Windows
	License installation on Linux

	Context security Policy (CSP)
	Upgrade SignDoc Web
	Upgrade from SignDoc Web 3.0.0 to 3.1.0
	Upgrade from SignDoc Web 2.2.1 to 3.0.0
	Upgrade from SignDoc Web 2.2.0 to 2.2.1
	Upgrade from SignDoc Web 2.1 to 2.2.0
	Upgrade from SignDoc Web 5.2.1 (or earlier) to SignDoc Web 2.1.0

	Deployment on Linux
	Administration and configuration
	Alternative signature capturing via JavaScript - HTML5 data capture
	Audit trail
	Caching custom images
	Click to sign
	Cluster environment
	Configuration of toolbar and GUI
	Configure server
	Custom CSS configuration
	Digital signature certificate
	Dynamic tablet screens
	Encrypt sensitive data in sdweb_config.groovy configuration file
	External help
	Font mapping configuration
	Gestures on mobile devices
	Logging
	Managing key pairs for encryption of biometric data
	Multi-instance configuration
	Page pre-fetching in WebView
	Reduce network data
	Signer-specific certificates
	Kofax print plugin integration
	TSA functionality
	Additional notes

	Standard plugins
	File DMS plugin
	SFTP DMS plugin
	Servlet DMS plugin
	BasicAuthenticator plugin
	Preload plugins

	Configuration file sdweb_config.groovy
	Frequently asked questions

