
Kofax SignDoc Web
Developer's Guide
Version: 3.1.0

Date: 2022-02-21

© 2021 Kofax. All rights reserved.

Kofax is a trademark of Kofax, Inc., registered in the U.S. and/or other countries. All other
trademarks are the property of their respective owners. No part of this publication may be
reproduced, stored, or transmitted in any form without the prior written permission of Kofax.

Table of Contents
Preface... 6

Related documentation.. 6
Training... 7
Getting help with Kofax products...7
SignDoc Web features.. 8

Chapter 1: Functional structure of SignDoc Web.. 11
Architecture..11
Important files and directories... 12
Communication with SignDoc Web server..16

Chapter 2: Integration...17
Preload and prepare web service...17

Example UploadAndPrepareDocument.. 19
Integration in existing web applications... 20

Start SignDoc Web from external web application...20
Request types... 23
Request parameters.. 23
Create or update a field in the document... 25
Add text to a document... 25
Insert a form field by coordinates.. 27
Insert a form field with position located by text phrase..28
Insert a general capture field.. 29
Update the value and attribute of an existing form field or signature field....................30
Convert an existing form field to a signature field...31
Set metadata.. 32
Signature archive interaction... 33
Field validation before update...33
Field change during validation.. 34
Signature watermark...36
Remove an existing form field or signature field... 39
SignDoc Web field locking..40
URI syntax... 41
Document metadata..43
Signature and form fields...44
Radio buttons... 45

3

Kofax SignDoc Web Developer's Guide

Example of document load page... 46
Dynamic tablet screens..49

Chapter 3: Remote interface.. 53
Same-origin policy...53
Execute actions in mobile-gui... 54
Notification about action events.. 62
mobile-app document sequence example..64
Hints and examples..65
Version history...69
Dictionary... 72

Chapter 4: REST interface... 74
REST URL.. 77
REST error response... 77
REST API reference v5.. 78

Preload PDF document with commands and prepare options... 79
Activate preloaded PDF document for processing..81
Append PDF document to previously loaded document... 83
Attach PDF document to previously loaded document..84
Remove attachment from previously loaded document..85
Get document information...86
Get document page image.. 92
Get document...94
Get audit logs of document... 95
Add signature... 96
Insert signature field...102
Update signature field.. 106
Clear signature field.. 109
Insert text field...110
Update text field.. 113
Insert checkbox field...116
Update checkbox field.. 119
Delete document field.. 123
Archive document..124
Remove document...125
Document coordinate system..126

Chapter 5: Plugin interface.. 127
SignDoc Web plugins general information... 127
Available plugin interfaces.. 131

4

Kofax SignDoc Web Developer's Guide

General SignDoc Web plugin interface..133
Trusted service provider.. 136

Chapter 6: Script plugins.. 141
Chapter 7: Online signature verification enhancements... 143
Chapter 8: Configuration file sdweb_config.groovy.. 147

5

Preface

SignDoc Web is a strategic enterprise e-signature platform. In general, SignDoc Web is a simple
and straightforward to integrate PDF signing solution which can be used easily to replace existing
paper-based processes. The product SignDoc Web offers web-based signing using handwritten
signature, click-to-sign, or image/photo capture.

A prepared and prefilled PDF document is loaded into the browser and can be enriched with
additional data. The handwritten signature which is added to the document will be captured on one
of the available signature capture devices (e.g. SignPad, TabletPC, Mobile Device). Signature capture
devices can be either connected to the PC directly or in the case of a smartphone for example
accessing SignDoc Web directly. SignDoc Web supports also using the browser build-in HTML5
capture feature.
• During the signing ceremony, the biometric characteristics of the signer's signature are collected.

With each captured signature time and date when the signature was captured will be stored
together with it.

• As an alternative or in addition to the handwritten signature it is also possible to capture photos
through a web or integrated camera and add them to the document.

• A third option is a click-to-sign signature which is simply the entering of the signers name in a
text field showing a legal consent.

Upon saving or downloading the document the integrity value (hash) of the document will be
calculated and stored in the signature field together with the biometric characteristics of the
captured signature. The biometric data of the signature (e.g. coordinates, pressure, acceleration)
is encrypted via the customer's public key. The biometric signature information can easily be
decrypted with the customer's private key and displayed in a user friendly way via SignAlyze. All
the changes and operations on a document are captured via an Audit Trail feature which is saved
together with the document as metadata.

SignDoc Web also offers additional capabilities such as sending documents to an archive system
and the possibility to be extended via a flexible plugin interface. The SignDoc Web application helps
to minimize the footprint on the client side, since most of the software components are installed
centrally on the server. The clients only need to have the signature capture device attached and the
SignDoc Web Device Support installed.

Related documentation
The full documentation set for Kofax SignDoc Web is available at the following location:

https://docshield.kofax.com/Portal/Products/3.1.0-tp2w5bx8yi/SD.htm

In addition to this guide, the documentation set includes the following items:

6

https://knowledge.kofax.com/E-signature/Overview-Downloads/SignDoc_Product_Release_Information
https://docshield.kofax.com/Portal/Products/SD/3.1.0-tp2w5bx8yi/SD.htm

Kofax SignDoc Web Developer's Guide

Release notes
• Kofax SignDoc Release Notes

Technical specifications
• Kofax SignDoc Technical Specifications

Guides
• Kofax SignDoc Web Administrator's Guide

Help
• Kofax SignDoc Web Help

Software development kit
• Kofax SignDoc SDK API Documentation (C)
• Kofax SignDoc SDK API Documentation (C++)
• Kofax SignDoc SDK API Documentation (.NET with exceptions)
• Kofax SignDoc SDK API Documentation (.NET without exceptions)
• Kofax SignDoc SDK API Documentation (Java)

Training
Kofax offers both classroom and online training to help you make the most of your product. To
learn more about training courses and schedules, visit the Kofax Education Portal on the Kofax
website.

Getting help with Kofax products
The Kofax Knowledge Base repository contains articles that are updated on a regular basis to
keep you informed about Kofax products. We encourage you to use the Knowledge Base to obtain
answers to your product questions.

To access the Kofax Knowledge Base:

1. Go to the Kofax website home page and select Support.

2. When the Support page appears, select Customer Support > Knowledge Base.

 The Kofax Knowledge Base is optimized for use with Google Chrome, Mozilla Firefox or
Microsoft Edge.

The Kofax Knowledge Base provides:
• Powerful search capabilities to help you quickly locate the information you need.

Type your search terms or phrase into the Search box, and then click the search icon.

7

https://learn.kofax.com/
https://knowledge.kofax.com/
https://www.kofax.com/

Kofax SignDoc Web Developer's Guide

• Product information, configuration details and documentation, including release news.
Scroll through the Kofax Knowledge Base home page to locate a product family. Then click a
product family name to view a list of related articles. Please note that some product families
require a valid Kofax Portal login to view related articles.

From the Knowledge Base home page, you can:
• Access the Kofax Community (for all customers).

Click the Community link at the top of the page.
• Access the Kofax Customer Portal (for eligible customers).

Click the Support link at the top of the page. When the Customer & Partner Portals Overview
appears, click Log in to the Customer Portal.

• Access the Kofax Partner Portal (for eligible partners).
Click the Support link at the top of the page. When the Customer & Partner Portals Overview
appears, click Log in to the Partner Portal.

• Access Kofax support commitments, lifecycle policies, electronic fulfillment details, and self-
service tools.
Go to the General Support section, click Support Details, and then select the appropriate tab.

SignDoc Web features
• Browser-independent

Simple web-based user interface. Support for most common browsers on PCs (Mozilla Firefox,
Google Chrome, Microsoft Edge).

• Content protection
Protect the integrity of documents by sealing them with a digital signature. Supports any x509v3
certificate provided through the key store (e.g. Windows certificate store) or through plugin
interface to digitally sign documents by using an external method (e.g. for usage of a Hardware
Security Module - HSM).

• Customer-specific data
Set customer metadata for workflow process.

• Customer-specific document processing
Use the plugin interface to write your own plugins for document processing.

• Customer-specific labels
Customize labels of signature fields depending on the document workflow.

• Customization
Enterprises can utilize SignDoc Web and launch their own e-signing solution, as well as integrate
the functionality of SignDoc Web into their own apps (SDK available). Using your enterprise .css
style is also supported.
Additionally, for user attendance to most important document content signature device (e.g. sign
pad devices) background can be dynamically updated with document specific information.

• Device-independent
Supports many different signature pads, interactive pen displays, tablet/slate PCs, iPad, Android
and Windows tablets and iOS, Android and Windows smartphones.

8

Kofax SignDoc Web Developer's Guide

• Document binding
When a signature is captured it is safely embedded using an asynchronous public key encryption
into and uniquely bound to the target document. Copy/paste attacks can thus be easily detected.
SignDoc Web combines handwritten signatures with Public Key Infrastructure.

• Enter signature fields
Enter signature fields anywhere on a document. It is useful for signing non-fillable documents.

• Fill out and sign PDF forms
Complete and sign opened PDF forms or pre-populate the fields automatically.

• Flatten PDF
Content in form fields is locked so it can be assured that information may no longer be changed.
Flatten a PDF removes any layers (e.g. annotations, digital signatures) and consolidates them into
one layer, which is supported by all PDF viewers.

• Guidance in the signing process
Define and position data or signature fields and specify their completion/signing order.
Additionally, highlight mandatory signature fields, define the order in which forms have to be
signed, enforce the signing method, and much more. It is possible to disable certain functionality
for a particular document, such as deleting a predefined signature field.

• Handwritten signature capturing
A handwritten signature captured with SignDoc Web is much more than just an electronic image
of a digitized signature embedded in a PDF or TIFF document.
SignDoc Web records - forensically identifiably - the handwritten signature of a person using all
available parameters, such as writing movement, time, velocity, and acceleration.

• Identity/signature verification
SignDoc Web captures the signature of a person using all available parameters of writing
movement. If there is a doubt about the signature, an expert tool is available to forensically
analyze the biometric characteristics of the captured signature. This capability can be taken one
step further, with real-time verification of an acquired signature against a signature reference
stored in a database to ensure that only authorized people can actually sign a document.
Signature validation can be triggered for specific signature fields.

• Integration
Integration with ERP, CRM, DMS, workflow management, etc via web services (SOAP, REST), Citrix
and Terminal Server support.
For example: No need to transfer a PDF document. Users can receive a link to access the PDF
on the server and only image previews are transferred to the app. Thus, the signed original
document is securely server-based and not automatically copied (i. e. duplicated) to the mobile
device. All manipulations of the PDF are always performed in the safe data center environment.

• Offline
Take documents offline.

• On-premises or cloud-based
SignDoc Web is available as an on-premises installation or can be installed as a cloud-based
solution.

• PKI-based certificates
Verify an electronic document before it will be signed to know if it is valid.

• Print
Print a document before or after saving or signing.

9

Kofax SignDoc Web Developer's Guide

• Signature capturing
Sign electronic documents (PDF, TIFF) using handwritten signatures, photos or click-to-sign
signatures.

• Use PDF templates
Pre-populate, complete and sign PDF forms created from a template.

• Watermark
Add watermarks like 'Confidential' or 'Draft' to your documents.

10

Chapter 1

Functional structure of SignDoc Web

This chapter provides insights into the functional structure including the various SignDoc Web
components and configurations.

Architecture
Desktop clients

A variety of browsers are supported as desktop clients on Windows via the Kofax SignDoc Device
Support.

The SignDoc Web Remote Interface can be used to have full flexibility in embedding SignDoc Web
into a customer´s web application i.e. by using an iFrame.

Mobile clients

SignDoc Web can be accessed via an iPad or Android tablet by using the SignDoc Mobile app from
the respective app store. The SignDoc Mobile app allows the displaying and editing of documents to
a certain extent as well as the capturing of the signature.

If the capturing of the signature should be performed via a pure browser-based environment on the
mobile clients, it is also possible to enable HTML5-based signature capturing.

As with the desktop clients the Remote Interface is also available with the mobile clients to embed
the SignDoc Web document frame into a customer´s web application.

 No matter if the Remote Interface is used or not, when SignDoc Web is embedded into a
customer’s web application by iFrame, both web applications must be in compliance with the
same-origin policy. How this can be achieved and how the same-origin policy can be relaxed is
described in chapter Same-origin policy.

SignDoc Web server
• Layer 1 - Operating systems

SignDoc Web can be installed on Windows and Linux operating systems with a 32 or 64bit
architecture

• Layer 2 - SignDoc Web application
The application consists of a WAR (Web Application Archive) which is deployed into a Web
Application Server. The WAR file contains Native Libraries which are used for licensing and
PDF handling. All the configuration files are stored outside of the WAR file in a folder called
SDWEB_HOME. SignDoc Web also offers a plugin interface for possible means of extension.

11

https://knowledge.kofax.com/E-signature/Overview-Downloads/SignDoc_Product_Release_Information
https://knowledge.kofax.com/E-signature/Overview-Downloads/SignDoc_Product_Release_Information

Kofax SignDoc Web Developer's Guide

• Layer 3 - SOAP & REST interfaces
Documents can be uploaded via a web service and then accessed by using a Reference URL. It is
also possible to upload and perform operations on documents via a REST interface.

• Layer 4 - Web application server
SignDoc Web runs on the standard Web Application Server Apache Tomcat, for which Kofax
SignDoc Installation Guide offers support. Installation on other JEE compliant servers is not
supported. For prerequisites, see Kofax SignDoc Technical Specifications document.

• Layer 5 - Reverse proxy (optional)
The usage of a Reverse Proxy (e.g. Apache HTTP or Microsoft IIS) is possible with SignDoc Web.

Important files and directories
SignDoc Web consists of two parts:

1. A WAR (Web application ARchive) file which needs to be deployed into a Web Application Server

2. The so called SDWEB_HOME directory which holds configuration and work data

Directory SDWEB_HOME

In this section you can find an overview of the files and directories which are provided as part of the
SDWEB_HOME directory.
• c2s

Click-to-Sign templates

12

Kofax SignDoc Web Developer's Guide

• conf
Configuration files

• dms
File-based DMS directory (created upon first use)

• dms/de.softpro.sdweb.plugins.impl.FileDms
SOFTPRO file DMS directory

• doctemplates
Document templates

• fonts
Font configuration

• i18n
Global translation files (Internationalization)

• interfaces
Plugin interfaces, examples and documentation

• logs
Log files (Audit, Error, Performance)

• plugins
Non-Kofax plugins

• preloaded_docs
Preloaded documents

• resources
Resource directory for public key to encrypt biometric data of signatures and other configurable
elements like icons.

• tablet_screens
Tablet Screens (Backgrounds)

• tools
TabletScreenImageCreator and PasswordEncryptionHelper

Directory conf

The conf directory contains the configuration files of SignDoc Web. Find below some information
on the various files that are part of this directory.

 If there is a need to run multiple SignDoc Web servers on one machine and configure them
separately, have a look at the section "Instance-based configuration".

• cert_store.p12
A custom PKCS#12 file containing a certificate that is used for the digital signing of the PDF
document.

• cert_store_readme.txt
Readme file explaining the usage of certificates.

• configuration.xml
This is a bootstrap configuration file of the rich client which shouldn't be changed by a customer.

13

Kofax SignDoc Web Developer's Guide

• language.properties
This is the default language properties file used by the rich client if no language file is available
for the locale.

• language_xx.properties
These files contain all labels and messages which are visible in the rich client. The actual language
file is chosen by the Java locale mechanism.

• mobile_configuration.xml
In this rich client configuration file the functionality and features of the mobile GUI can be
configured.

• sample_ssl_cert.pfx
SSL certificate file.

• sdcustom.properties
In this rich client configuration file the client logging and the supported locales can be
configured.

• sdweb_config.groovy
This file is the main configuration file for the server. It is written in a compact and structured
syntax. It can be used in an instance-based configuration scenario to have a different server
configuration for each instance.

• server_configuration.xml
This is a bootstrap configuration file of the rich client which shouldn't be changed by a customer.

• signdoc_configuration.xml
In this rich client configuration file the functionality and features of the desktop GUI can be
configured.

• signdoc-logger.properties
A standard configuration file that can be changed for customized logging output.

• tomcat-logging.properties
A properties file that contains the Tomcat logging configuration.

Directory doctemplates

The doctemplates directory contains various document templates which can be loaded in SignDoc
Web. Find below some information on the various files that are part of this directory.

 If new files are placed in the doctemplates directory a SignDoc Web server restart will be
required for them to become available.

• Sample PDF documents with generic capture and/or image capture fields.
lorem_ipsum_4_pages.pdf

TrapezaOpenJointAccounts.pdf

Directory interfaces

The interfaces directory contains various SignDoc Web sample plugins and their documentation.
Find below a brief overview of the sample plugins available.

14

Kofax SignDoc Web Developer's Guide

 More information on the sample plugins can be found in the Kofax SignDoc Web Developer's
Guide.

• NBC2SSignatureRendererSample
An example of an alternative Click-to-Sign image renderer.

• PreparePlugin
A simple SignDoc Web Prepare plugin. The plugin automatically inserts a signature field in the
bottom left corner of the first page. Additionally to this, it will populate each text field with the
current date and check each checkbox form element.

• ReadOnlyDmsPlugin
Simple DMS plugin demonstrating, how to make interactive fields readonly before storing the
document in the DMS.

• SetDocIdPlugin
This DMS plugin demonstrates, how a DMS plugin can set the document id.

• SignatureArchivePlugin
A simple Signature Archive plugin, that stores all captured biometric signatures in the file system
using the user id as index.

• SignatureVerifcationPlugin
A plugin demonstrating the possibility to capture a signature reference and afterward's validating
against it.

• SignPKCS7Demo
A plugin demonstrating the possibility to sign documents using an external method.

• VSVTestPlugin
Combined Prepare and Signature Verification plugin, that will display a dialog with the captured
signature and the signature of Albert Einstein as reference signature.

• ZDms
A simple DMS plugin saving documents to a directory.

• ZPrepare
A prepare plugin which inserts signature fields based on location, textphrase and parts of the
document id.

Directory logs

The logs directory contains the SignDoc Web log files and subdirectories.

Directory tablet_screens

15

Kofax SignDoc Web Developer's Guide

The tablet_screens directory contains the tablet background screens that can be used by
SignDoc Web. Find below a brief overview of the files in this directory.
• Sample Tablet Screens available with SignDoc Web.
default.xml

dynamic_content_example.xml

next_screen.xml

ok_screen.xml

piggybank_example.xml

WacomSTUSeries.xml

• Test pages to test Dynamic Content displayed on the SignPad.
dynamic_content_example.html

piggybank_example.html

Piggybank_200.png

• XML Schema of Tablet Screens
TabletScreenLayout.xsd

Communication with SignDoc Web server
There are various ways of communicating with the SignDoc Web Server:
• Desktop client: The communication with the SignDoc Web Server takes place via the browser

directly
• Mobile client: The communication with the SignDoc Web Server takes place via the iOS or Android

app or the browser directly (HTML5 capturing)
• Web service: The communication with the SignDoc Web Server takes place via the SOAP protocol
• REST: The communication with the SignDoc Web Server takes place via HTTP calls

16

Chapter 2

Integration

Preload and prepare web service
Description

The preload web service (SOAP) allows a user of SignDoc Web to upload and prepare a document
before the document is actually opened in the GUI. It is possible to specify preparation commands
for the document when uploading, so that the document is completely prepared for immediate
usage. This removes the need to prepare the document via the load/doc servlet. The web service
returns a reference ID ref_id, action URL action_url and load URL redir_url back to the caller. The
latter URL can be used in any link to open the document via a simple GET request.

The default implementation of the SignDoc Web PreloadPlugin is:

de.softpro.sdweb.plugins.impl.SimpleFilePreloader

 After the document was displayed in SignDoc Web using the ref_id the ref_id is invalid. This
means that ref_id can only be used once to load a document.

Useful tools

Free tools:
• SOAP Test Tool

• soapUI www.soapui.org/ (take the free version)
• Java

• Eclipse www.eclipse.org/
• Netbeans netbeans.org/

• C/C++/.Net
• Visual Studio msdn.microsoft.com/vstudio (take the Express version)

WSDL

The WSDL can be accessed via the URL (also attached as preload.wsdl)

http(s)://<server>:<port>/sdweb/services/preload?wsdl

Example

localhost:6610/sdweb/services/preload?wsdl

17

Kofax SignDoc Web Developer's Guide

The web service offers multiple operations of which only the operation
UploadAndPrepareDocument is relevant, since it is a superset of the other operations. Only
the relevant operation (UploadAndPrepareDocument) is described in this document. The other
operations (UploadDocument and UploadDocumentEx) are obsolete.

UploadAndPrepareDocument
• Request: UploadAndPrepareDocumentRequest
• Response: UploadAndPrepareDocumentResponse

UploadAndPrepareDocumentRequest

This request allows to upload and prepare a document in the server. The actual document handling
on server side is done with an IPreload plugin.

Parameters

Name XML Type Required Description

docdata64 xs:string yes Contains the binary document in BASE64 encoded format

cmd sequence of
xs:string

no Contains commands to prepare the document.
Examples
Insert missing Signature fields, prefill form data, set metadata

option sequence of
tns:keyValuePair

no Contains additional document attributes that should be set
by the server. The attributes have the same semantic as the
corresponding servlet attributes.
Examples
dmsid (DMS plugin), docid (Document ID), resulturl (Result
URL)

UploadAndPrepareDocumentResponse

This is the response to the UploadAndPrepareDocumentRequest. In Error case a wsdl:fault message
of type tns:ServiceException is thrown. The error case is available in the fault message. In success
case a preloadResult is returned.

preloadResult contents

Name XML Type Description

ref_id xs:string Contains the unique id of the preloaded document.

 This is not the document ID.

action_url xs:string The URL to the default load servlet of the SignDoc Web Server.

redir_url xs:string The complete URL to open the document via simple GET request. By using
this URL, the preloaded document will be opened and displayed by the
SignDoc Web Server.

Examples

SOAP request

18

Kofax SignDoc Web Developer's Guide

See UploadAndPrepareDocument for a full example request.

Example request description:
• docdata64 is a simple PDF document (1 page) without any signature fields
• A signature field is inserted in the lower left corner of the PDF document
• The dimension and position is defined using document coordinates
• The name of the field is SignatureFixed
• multiple signature fields are inserted where the position is determined by the location of a text

phrase
• The search text is: "rhoncus." (without the quotes)
• The dimension is defined using document coordinates
• The exact position is defined by offsets to the individual found positions.
• The name of the inserted field starts with "SignatureAuto" and is suffixed by a number

(SignatureAuto_1, SignatureAuto_2 ,...)
• The document ID (docid) is set to 12345
• The DMS plugin (dmsid) to be used with this document is set to:

de.softpro.sdweb.plugins.impl.FileDms

SOAP response

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns2:UploadAndPrepareDocumentResponse xmlns:ns2="http://sdweb/">
 <preload_result>
 <ref_id>1333011980416_5adc6e02-1d70-48fc-8fdf-e6333b0157d7</ref_id>
 <action_url>http://localhost:6610/sdweb/load/doc</action_url>
 <redir_url>http://localhost:6610/sdweb/load/doc?
ref_id=1333011980416_5adc6e02-1d70-48fc-8fdf-e6333b0157d7</redir_url>
 </preload_result>
 </ns2:UploadAndPrepareDocumentResponse>
 </soap:Body>
</soap:Envelope>

Example UploadAndPrepareDocument
<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:sdw="http://sdweb/" xmlns:soapenv="http://schemas.xmlsoap.org/
soap/envelope/">
<soapenv:Header/>
 <soapenv:Body><sdw:UploadAndPrepareDocument>
 <!--The PDF document in base64 encoding-->
 <docdata64>
 JVBERi0xL
 ...
 KJSVFT0YK
 </docdata64>
.. .
 <!-- commands to prepare the document (optional) -->
 <cmd>name=SignatureFixed|page=1|bottom=10|left=10|width=100|height=50|
type=formfield|subtype=signature</cmd>
 <cmd>name=SignatureAuto|searchtext=rhoncus.|width=140|height=50|offsetx=-45|
offsety=30|type=formfield|subtype=signature</cmd>
 <cmd>name=Test|value=testmetadata|type=metadata</cmd>
 <!-- document options (optional) -->
 <option>

19

Kofax SignDoc Web Developer's Guide

 <key>docid</key>
 <value>12345</value>
 </option>
 <option>
 <key>dmsid</key>
 <value>de.softpro.sdweb.plugins.impl.FileDms</value>
 </option>
 </sdw:UploadAndPrepareDocument>
 </soapenv:Body>
</soapenv:Envelope>

Integration in existing web applications

Start SignDoc Web from external web application
SignDoc Web can open PDF documents using different methods and sources.

Servlets for opening or loading a document
• Upload a document to the server
• The server downloads a document by URL
• Use a predefined template
• Use DMS

Upload a document to the server

Servlet name: load/byupload

Supported
request types:

multipart/form-data

Load parameter: docdata
Contains the binary data of the document. This parameter must be part of a multipart/
form-data servlet request.
cmd
Optional. [0..n] parameters of this type.
For more details see Create or update a field in a document.

Example

<form action="http://localhost:6610/sdweb/load/byupload" target="_blank"
 enctype="multipart/form-data" method="post">
 <input type="file" name="docdata" maxlength="255" size="50"/>

 <input type="submit" name="opendoc" value="open document"/>
 <!-- optional parameters -->
 <!-- defines a unique document id -->
 <input type="hidden" name="docid" value="a_doc_id" id="docid" />
</form>

The server downloads a document by URL

Servlet name: load/byurl

20

Kofax SignDoc Web Developer's Guide

Supported
request types:

HTTP POST/GET, URL

Load parameter: docurl
A valid URL pointing to a document to download.
The URL should be in URL Encoded format URLEncoded, URL Encode Page. SignDoc Web
supports HTTP and HTTPS downloads.
cmd
Optional. [0..n] parameters of this type.
For more details see Create or update a field in a document.

Example

The server downloads a document.

Manual form request - opens in new window:

<form action="http://localhost:6610/sdweb/load/byurl" target="_blank" method="post">
 <input type="text" name="docurl" maxlength="255" size="50" value=""/>

 <input type="submit" name="opendoc" value="open document"/>
 <!-- optional parameters -->
 <!-- defines a unique document id -->
 <input type="hidden" name="docid" value="a_doc_id" id="docid" />
</form>

Prefilled request - opens the PDF Reference Specification (caution 10 MByte, >1200 pages) in new
window:

<form action="http://localhost:6610/sdweb/load/byurl" target="_blank" method="post">
 <input type="hidden" name="docurl" maxlength="255" size="50" value="http://
partners.adobe.com/public/developer/en/pdf/PDFReference16.pdf" />
 <input type="submit" name="opendoc" value="open document"/>
 <!-- optional parameters -->
 <!-- defines a unique document id -->
 <input type="hidden" name="docid" value="a_doc_id" id="docid" />
</form>

The same as link:

<a href="http://localhost:6610/sdweb/load/byurl?docurl=http%3A%2F%2Fpartners.adobe.com
%2Fpublic%2Fdeveloper%2Fen%2Fpdf%2FPDFReference16.pdf">open document

Use a predefined template

Servlet name: load/bytemplate

Supported
request types:

HTTP POST/GET, URL

21

Kofax SignDoc Web Developer's Guide

Load parameter: template
A template available in the SignDoc Web server.
Templates are PDF documents, usually having form elements in the document, that can be
automatically or interactively prefilled/edited.
By default document templates are located in the directory:
%SDWEB_HOME%/doctemplates

cmd
Optional. [0..n] parameters of this type.
For more details see Create or update a field in a document.

Example

Manual template selection from a dropdown box - opens in new window:

<form action="http://localhost:6610/sdweb/load/bytemplate" target="_blank"
 method="post" name="templatechooser" id="templatechooser" >
 <select name="template">
 <option value="">Please choose...</option>
 <option value="Invoice.pdf" >Invoice.pdf</option>
 </select>
 <input type="submit" name="opendoc" value="open document"/>
 <!-- optional parameters -->
 <!-- defines a unique document id -->
 <input type="hidden" name="docid" value="a_doc_id" id="docid" />
</form>

Prefilled request - opens the template Invoice.pdf in new window:

<form action="http://localhost:6610/sdweb/load/bytemplate" target="_blank"
 method="post">
 <input type="hidden" name="template" value="Invoice.pdf" />
 <input type="submit" name="opendoc" value="open document"/>
 <!-- optional parameters -->
 <!-- defines a unique document id -->
 <input type="hidden" name="docid" value="a_doc_id" id="docid" />
</form>

The same as link:

<a href="http://localhost:6610/sdweb/load/bytemplate?
template=Invoice.pdf">open document

Use DMS

Servlet name: load/bydms

Supported
request types:

HTTP POST/GET, URL

Load parameter: docid
A unique ID for the document to be loaded.
cmd
Other optional parameters like the cmd statements can be used, [0..n] parameters of this
type.
For more details see Create or update a field in a document.

22

Kofax SignDoc Web Developer's Guide

Example

http://localhost:6610/sdweb/load/bydms?docid=01234356789

Request types
SignDoc Web supports different request types to load a document:
• HTTP form request
• URL request

HTTP form request

General syntax:

<form action="http[s]://<server_name>[:server_port]/sdweb/<load_servlet>"
 method="[post|get]">
 <!-- add additional parameters to the request -->
 <input type="hidden" name="<parameter_name>" value="<parameter_value>" />
</form>

URL request

General syntax:

The query string of the URL needs to be URLEncoded, URL Encode Page.

<a href="http[s]://<server_name>[:server_port]/sdweb/<load_servlet>?
<parameter_name>=<parameter_value>[&<parameter_name>=<parameter_value>]">

Request parameters
The loading process can be controlled by different request parameters.
• Define the document ID
• Compose a unique document ID
• Define the DMS plugin
• Define the Signature Archive plugin
• Define the result URL

Define the document ID

Parameter: docid (optional)

Defines a unique ID for the document to be loaded. The docid id part of the URL when the
document is shown in the browser (last part of the URL).

Example

http://localhost:6610/sdweb/signdoc/showgui/1239183368386

Optional parameter: If not specified, the server will use the current timestamp (e.g.
2014-10-23_10-00-08-891) as ID.

23

http://en.wikipedia.org/wiki/Percent-encoding
http://www.albionresearch.com/misc/urlencode.php

Kofax SignDoc Web Developer's Guide

Syntax of parameter value: A simple string value without spaces and special characters. It has to
match the following regular expression [\w-\.]* which means that it can consist of the characters:
0-9, a-Z, -, _, .

Valid Examples: docid=a_document_id, docid=0123456789, docid=docname_1234.

Compose a unique document ID

Parameter: docidsalt (optional)

Additional information for composing a unique document ID in the IDms plugin.

Optional parameter: If not specified, the server will pass a timestamp to the IDms plugin.

Syntax of parameter value: A simple string value without spaces and special characters. It has to
match the following regular expression [\w-\.]* which means that it can consist of the characters:
0-9, a-Z, -, _, .

Valid Examples: 123454, customer_contract, …

Define the DMS plugin

Parameter: dmsid (optional)

Defines the DMS plugin to be used to handle the document. The dmsid corresponds to a loaded
IDms plugin in SignDoc Web (e.g. de.softpro.sdweb.plugins.impl.FileDms).

Optional parameter: If not specified, the server will not use an DMS plugin. The document cannot
be stored on backend side in this case.

Syntax of parameter value: A simple string value without spaces and special characters. It has to
match the following regular expression [\w-\.]* which means that it can consist of the characters:
0-9, a-Z, -, _, .

Valid Examples: de.softpro.sdweb.plugins.impl.FileDms

Define the Signature Archive plugin

Parameter: signaturearchiveid (optional)

Defines the Signature Archive plugin to be used to handle the document signatures. The
signaturearchiveid corresponds to a loaded ISignatureArchive plugin in SignDoc Web (e.g.
de.softpro.sdweb.plugins.impl.SignArchive).

 This parameter has to be set if validation or storage for signatures should be used!

Optional parameter: If not specified, the server will not use a Signature Archive plugin. The
signatures cannot be stored or validated on backend side in this case.

Syntax of parameter value: A simple string value without spaces and special characters. It has to
match the following regular expression [\w-\.]* which means that it can consist of the characters:
0-9, a-Z, -, _, .

Valid Examples: de.softpro.sdweb.plugins.impl.SignArchive

24

Kofax SignDoc Web Developer's Guide

Define the result URL

Parameter: resulturl (optional)

The URL to redirect the browser window to after finishing the signing process. A valid Fully qualified
URL. When passes as Get parameter, the URL has to be in URL Encoded format URL Encoded, URL
Encode Page.

Optional parameter: If not specified, the browser will show an internal result page.

SignDoc Web attaches the following parameters:

Parameter
Name

Parameter Value Description

sdweb_docid document The document ID of the processed document.

sdweb_result success Set when the process completed successfully.

sdweb_result cancel Set when the process was cancelled by the user.

sdweb_result error Set when there was an error.

Example

Defining Result URL

http://www.softpro.de

will redirect to

http://www.softpro.de?sdweb_docid=1243946562111&sdweb_result=success

Create or update a field in the document
Parameter: cmd

Syntax of request parameter cmd:

name="cmd[_<uniqueid e.g. number>]"

Examples

name="cmd_1", name="cmd_someid"

This request parameter is used for setting metadata and inserting or updating form elements or
signature fields. When multiple fields should be updated in one step, the request parameter must
to be extended with "_<unique_id>" (1 based and ascending number is recommended), so that the
parameter names are unique.

Add text to a document
It's possible to add text to a document page.

25

http://en.wikipedia.org/wiki/Percent-encoding
http://www.albionresearch.com/misc/urlencode.php
http://www.albionresearch.com/misc/urlencode.php

Kofax SignDoc Web Developer's Guide

 Text can be added only to PDF documents.

value="text=<the_text>|page=<page_number>|searchtext=<text_to_search>|
left=<left_coordinate>|bottom=<bottom_coordinate>|fontname=<fontname>|
fontsize=<font_size_in_pt>|textcolor=<text_color>|opacity=<opacitiy>|
offsetx=<offsetx>|offsety=<offsety>"

Examples

Add the semitransparent text "Lorem ipsum" on page 1 with the coordinates (10/10) and the
fontsize 100pt using the standard Font Helvetica.

value="type=addtext|text=Lorem ipsum|pages=1|left=10|bottom=10|fontsize=100|
fontname=Helvetica|textcolor=#FF0000|opacity=0.5"

Add the semitransparent text "Lorem ipsum" on all pages (-1) with the coordinates (10/10) and the
fontsize 100pt using the standard Font Helvetica.

value="type=addtext|text=Lorem ipsum|pages=-1|left=10|bottom=10|fontsize=100|
fontname=Helvetica|textcolor=#FF0000|opacity=0.5"

Add the semitransparent text "Lorem ipsum" on page 1,2 and 4 with the coordinates (10/10) and the
fontsize 100pt using the standard Font Helvetica.

value="type=addtext|text=Lorem ipsum|pages=1,2,4|left=10|bottom=10|
fontsize=100|fontname=Helvetica|textcolor=#FF0000|opacity=0.5"

Parameters

Inline Parameter Value/Syntax/Description Remarks

text The text to add. mandatory

type addtext mandatory

pages The pages where to add the text.
Examples: "1" (page 1);
"1,2,4" (pages 1,2 and 4); "-1" (all
pages)

mandatory, if coordinates "left"
and "bottom" are undefined

searchtext The found positions determine the
coordinates where to add the text.

mandatory, if coordinates "left"
and "bottom" are undefined

offsetx Offset in horizontal direction.
Positive values means "right".

optional

left
(or x)

Offset in vertical direction. Positive
values means "up".

optional

bottom
(or y)

Bottom coordinate where to add
the text (origin is lower left corner).

mandatory, if "searchtext"
undefined

26

Kofax SignDoc Web Developer's Guide

Inline Parameter Value/Syntax/Description Remarks

fontname The fontname.
PDF Standard Fonts (e.g. Helvetica)
can be used without extra
configuration.
Using TTF Fonts requires a font
mapping configuration. For more
information see SignDoc Web
Administrator's Guide, chapter "Font
mapping configuration".

optional (default: Helvetica)

fontsize The fontsize in pt. optional (default: 12)

textcolor The color of the text in HTML RGB
syntax.

optional (default: #000000)

opacity The opacity of the text. Range: 0.0
(transparent) - 1.0 (opaque).

optional (default: 1.0)

Insert a form field by coordinates
A form field is inserted by defining exact document coordinates.

value="name=<field_name>|page=<page_number>|bottom=<bottom_coordinate>|
left=<left_coordinate>|width=<width>|height=<height>|type=formfield|
subtype=<subtype>|required=<true|false>|readonly=<true|false>|label=<label>"

Example

Creating a signature field sig1 on Page 1 with the coordinates (10/10/150/50).

value="name=sig1|page=1|type=formfield|subtype=signature|bottom=10|left=10|
width=150|height=50"

Inline Parameter Value/Syntax/Description Remarks

name The name of the field. mandatory

page The page number,
0<value<pagecount.

mandatory

bottom,left,width,height Document coordinates (origin in
the lower-left corner).

mandatory

type formfield mandatory

subtype capture | signature | c2s |
image_capture | checkbox |
textfield

mandatory

required true or false, sets the "required"
attribute.

optional

readonly true or false, read only/locked field
(not useful with signature fields).

optional

27

Kofax SignDoc Web Developer's Guide

Inline Parameter Value/Syntax/Description Remarks

label Sets a friendly name (label) for the
field.

optional

Insert a form field with position located by text phrase
A form field is inserted by locating a text phrase in the document as anchor and placing the
signature field with a relative offset.

Note Depending on the format of the PDF, it might be not possible to find all/any text-strings, e.g.
the page content is an embedded image.

To use unique text phrases, it is possible to have this phrase in the document as white text on white
background, so it is not visible when printing.

value="name=<field_name>|page=<page_number>|width=<width>|
height=<height>|type=formfield|subtype=signature|searchtext=<search_text>|
searchpages=<page_list>|offsetx=<offsetx>|offsety=<offsety>|required=<true|
false>|readonly=<true|false>|label=<label>"

Example

Insert a new signature field in all places where the text "Customer_Signature" is found in the
document. The signature field is placed with a relative (x/y) offset of (-45/30) and has the dimension
of 140/50 (all in document coordinates). The signature field is marked as required and has to be
signed.

value="name=SignatureAuto|searchtext=Customer_Signature|width=140|height=50|
offsetx=-45|offsety=30|type=formfield|subtype=signature|required=true"

Parameter Value/Syntax/Description Remarks

name The field name. mandatory

page The page number,
0<value<pagecount.

optional

width,height Document coordinates (origin in
the lower-left corner).

mandatory

type formfield mandatory

subtype capture | signature | c2s |
image_capture | checkbox |
textfield

mandatory

searchtext A text phrase to search in the
document.

mandatory

searchpages A comma separated list of pages to
look for the searchtext.

optional, if not specified, search all
pages

offsetx Offset in horizontal direction
positive values means right.

optional

offsety Offset in vertical direction positive
values means up.

optional

28

Kofax SignDoc Web Developer's Guide

Parameter Value/Syntax/Description Remarks

required true or false, sets the "required"
attribute

optional

readonly true or false, read only/locked field
(not useful with signature fields)

optional

label Sets a friendly name (label) for the
field.

optional

Insert a general capture field
Instead of inserting a specific capture field, like a signature or an image_capture field, it is also
possible to insert a general capture field without appointing to a constant capture method. With
a general capture field the user can decide by what means he captures a document attribute.
Via command interface it is possible to insert a form field with subtype 'capture' and a choice list
(parameter capturechoice) with the capture methods which should be available later for the user.

value="name=<field_name>|page=<page_number>|<location parameters>|
type=formfield|subtype=capture|required=<true|false>|readonly=<true|false>|
label=<label>|capturechoice=<signature|c2s|image_capture>"

Example

Creating a capture field capture1 on Page 1 with some coordinates and a choice list for capturing
either an image from a connected camera or Click-to-Sign signature.

value="name=capture1|page=1|type=formfield|subtype=capture|bottom=100|
left=100|width=150|height=50|capturechoice=image_capture,c2s"

Inline Parameter Value/Syntax/Description Remarks

name The field name. mandatory

page The page number,
0<value<pagecount.

optional

<location parameters> See Insert a form field by
coordinates or by text-phrase

mandatory

type formfield mandatory

subtype capture mandatory

capturechoice signature | c2s | image_capture optional

<common attributes> like 'required', 'readonly' or
'label'. See Insert a form field by
coordinates or by text-phrase

optional

 Note If 'capturechoice' is empty or omitted a default choice ['signature', 'image_capture', 'c2s'] is
offered to the user.

The default choice can be overwritten in sdweb_config.groovy with entry

29

Kofax SignDoc Web Developer's Guide

sdweb.capture.subtype.choice=[...]

See also options in server configuration file sdweb_config.groovy Configuration file
sdweb_config.groovy.

Update the value and attribute of an existing form field or signature field
Several attributes and the value of an existing form field can be updated.

value="name=<field_name>|page=<page_number>|bottom=<bottom_coordinate>|
left=<left_coordinate>|width=<width>|height=<height>|type=formfield|
subtype=<textfield|signature|checkbox>|required=<true|false>|readonly=<true|
false>|label=<label>|value=<fieldvalue>"

Example

Prefilling an existing text field with the name Texteingabe7 with the Text "Test".

value="name=Texteingabe7|type=formfield|value=Test|subtype=textfield"

Checking a check box with the name "Check Box3".

value="name=Check Box3|type=formfield|value=true|subtype=checkbox"

 The subtype of form field can only be changed, if the target subtype is either signature,
image_capture, c2s or capture.

Inline Parameter Value/Syntax/Description Remarks

name The existing field name. mandatory

page The page number,
0<value<pagecount.

mandatory, updatable

bottom,left,width,height Document coordinates (origin in
the lower-left corner).

optional, updatable

type formfield mandatory

subtype textfield or signature or checkbox mandatory, updatable

required true or false, sets the “required”
attribute

optional, updatable

readonly true or false, read only/locked field
(not useful with signature fields)

optional, updatable

maxlength (type==formfield
subtype=textfield)

Maximum characters for a
textfield's content, a number > 0

optional, updatable

label Sets a friendly name (label) for the
field.

optional, updatable

value (type==formfield
subtype=textfield)

A string value of the textfield to
set.

mandatory for subtype=textfield

value (type==formfield
subtype=checkbox

true or false mandatory for subtype=checkbox

30

Kofax SignDoc Web Developer's Guide

Inline Parameter Value/Syntax/Description Remarks

value (type==formfield
subtype=signature

not applicable optional, ignored

validpattern (type==formfield
subtype=textfield)

Validation pattern (regular
expression) for text field value
verification. The value of the
entered text must match this
pattern otherwise it will be
rejected.
Note The regular expression
pattern must be URL-encoded!
Example
The email pattern
^[a-zA-Z0-9._-]+@[a-zA-Z0-9.-]+\.[a-
zA-Z]{2,6}$
must be encoded as
%5E%5Ba-zA-Z0-9._-%5D%2B
%40%5Ba-zA-Z0-9.-%5D%2B%5C.
%5Ba-zA-Z%5D%7B2%2C6%7D%24

Optional parameter.
Info to URL encoding can be found
under:
http://www.w3schools.com/TAGs/
ref_urlencode.asp

validmessage (type==formfield
subtype=textfield)

Validation message will be
displayed by SignDoc Web client if
entered text does not match the
validation pattern.
Example
An email address such as
John.Smith@example.com is made
up of a local part, an @ symbol,
then a domain part.

optional parameter.

Convert an existing form field to a signature field
Convert an existing text field to a signature field with the same position and the same dimensions:

value="name=<field_name>|type=formfield|subtype=signature|required=<true|
false>|label=<label>"

Example

Converting the form field Texteingabe7 to a required signature field:

value="name=Texteingabe7|type=formfield|subtype=signature|required=true"

Inline Parameter Value/Syntax/Description Remarks

name The existing field name. mandatory

type formfield mandatory

subtype signature mandatory, updatable

required true or false, sets the "required"
attribute

optional, updatable

31

http://www.w3schools.com/TAGs/ref_urlencode.asp
http://www.w3schools.com/TAGs/ref_urlencode.asp

Kofax SignDoc Web Developer's Guide

Inline Parameter Value/Syntax/Description Remarks

label Sets a friendly name (label) for the
field.

optional, updatable

Set metadata
Metadata can be stored in the documents, that is available for the different plugins, e.g. DMS
plugin. It can be used to store additional customer specific data as key/value pairs inside the
document.

For PDF document, XMP is used for storing the metadata.

If metadata should be displayable with any tools you have to store it as 'public'.

By default metadata is stored in 'private' properties which are not readable by any standard tools.

Syntax 1

Setting metadata in 'private' area of the document with

sdweb://command/metadata/add/<field_name>?<field_value>

Setting metadata as 'public' property in the document with

sdweb://command/metadata/add_public/<field_name>?<field_value>

Example

Setting metadata customer_id to CID123456789 in 'private' properties:

value="sdweb://command/metadata/add/customer_id?CID123456789"

Setting metadata classification to URGENT in 'public' properties:

value="sdweb://command/metadata/add_public/classfication?URGENT"

Inline Parameter Value/Syntax/Description Remarks

metadata_name The metadata name. mandatory

metadata_value The metadata value as string. mandatory

Syntax 2

value="name=<metadata_name>|type=metadata|value=<metadata_value>[|
decode=base64][|visibility=<visibility_value>]"

Example

Setting metadata customer_id to CID123456789 in 'private' properties:

value="name=customer_id|type=metadata|value=CID123456789|visibility=private"

Setting metadata classification to URGENT in 'public' properties:

32

Kofax SignDoc Web Developer's Guide

value="name=cla ssification|type=metadata|value=URGENT|visibility=public"

Inline Parameter Value/Syntax/Description Remarks

metadata_name The metadata name. mandatory

type metadata mandatory

metadata_value The metadata value as string. mandatory

decode Possible values: base64.
If specified, the data will be
decoded.

optional
(default:plain)

visibility_value Possible values: private or public optional
(default: private)

Signature archive interaction
A signature can be forced to validate (match) against a reference signature (e.g. of FraudOne),
before it is accepted as signature. A signature can be stored after capturing a signature database
(e.g. in FraudOne).

 SignDoc Web must have a SignatureArchive plugin installed and loaded to provide this
functionality:

value="name=<field_name>|type=signaturearchive|subtype=<validate|store>|
value=<signerid>"

Example

Setting the signature field signature1 to be validated before signing:

value="name=signature1|type=signaturearchive|subtype=validate|value=chi"

Setting the signature field signature1 to be stored after signing:

value="name=signature1|type=signaturearchive|subtype=store|value=chi"

Inline Parameter Value/Syntax/Description Remarks

name The field name. mandatory

type signaturearchive mandatory

subtype validate or store mandatory

value The signerid to use (format is
plugin-specific).

mandatory

Field validation before update
If any field is updated in Signdoc Web it is possible to validate this before with the help of a
customer-specific validation plugin which implements the IDocumentValidator interface.

33

Kofax SignDoc Web Developer's Guide

The validateFieldChange() method of this plugin is called directly before the update action is
performed on the server (see SignDoc Web plugins general information for general plugin handling
in SignDoc Web).

Method declaration:

Map<IDocumentField, String> validateFieldChange(IDocumentData documentData,
IDocumentField documentField, Locale locale) throws PluginException;

The main task of the validateFieldChange() method is to decide whether the field update should be
performed on the server or not.

The method returns a map (Map<IDocumentField, String>) with one or more IDocumentField
entries (key) each with an appropriate explanation (value) if the change is not acceptable.

These explanations are returned together with the respective field name to the client for display.

In this case the field update is not performed!

Field change during validation
In the validateFieldChange() method it is also possible to change some specific parts of one or more
fields which are reflected in the client. The parameters of this method contains the implemented
objects of IDocumentData and IDocumentField. The IDocumentField contains information about the
current field which should be updated.

The current field can be changed by using the setter methods of the IDocumentField object.

The IDocumentData object allows amongst others access to all fields (getFields method returns
map with IDocumentFields objects) and to the MetaData (getMetaData method returns map with
IMetadataEntry objects) in the document. These fields can then be changed in the same matter via
setter methods of the IDocumentField object.

Since the IDocumentField objects could represent different field types the according values (get/
setValue()) have also different meanings. The value is a Java object which could be from type string
or boolean.

Field Type Description

Text field The string value of the text field. It can be changed in the validateFieldChange() method.

Check Box The boolean value as string ("true" or "false") indicates whether the checkbox is checked or
not. A Check Box state can be changed by setting the value to (String) "true" or "false".

Signature The boolean value indicates whether a signature is captured in the signature field or not.

 A change of this value is not considered!

Image The boolean value indicates whether the Image is captured or not.

 A change of this value is not considered!

34

Kofax SignDoc Web Developer's Guide

Field Type Description

C2S The boolean value indicates whether the Click-to-Sign signature is captured or not.

 A change of this value is not considered!

Radio Button
Group

The string value contains the currently selected Radio Button value (or 'off' if nothing is
selected).
A Radio Button selection can be changed by setting the value of the Radio Button Group to
another (existing) Radio Button value.

 Individual Radio Buttons (widgets) are not included in the list of IDocumentFields
within IDocumentData.

A Metadata value also can be changed with the setStringValue() method of the IMetadataEntry.

It is also possible to create a new IMetadataEntry object which can be added to the map that is
returned by the getMetaData() method of IDocumentData. A changed or added MetaData entry
is not passed to the client directly after the update but it will be stored in the document if it is
archived.

 Any changes will be only considered if the returned map (with rejected IDocumentField objects)
is empty or null.

In order to avoid that the validateFieldChange() method is called for each field update it is possible
to configure in sdweb_config.groovy (setting: sdweb.validate.before_update.fieldtypes) for which
kind of form field type the validation is necessary (detailed information under Configuration file
sdweb_config.groovy).

By default the plugin method is not called before an update is requested.

If only one or only some specific fields must be validated it is advisable to mark a field via command
interface that it must be validated before updated.

Inline
Parameter

Values, Syntax, Description Values, Syntax, Description

validate_update Value type: Boolean (default: false).
Specifies whether the validateFieldChange() method
of the IDocumentValidator interface implementation
will be called before updating the field on SignDoc
Web server.

Optional

Example

<input name="cmd_1" value="name=Customer_Name|page=1|type=formfield|
subtype=textfield|validate_update=true"/>

See also Create or update a field in the document. An additional performance log entry is generated
for the "Validation before field update" action within the interactive phase '45-01'='IP-FIELD-
VALIDATE-UPDATE'. See also SignDoc Web Administrator's Guide, chapter "Logging".

35

Kofax SignDoc Web Developer's Guide

Signature watermark
By default a captured signature is rendered in a signature field on a white background, but it is
also possible to define a customer specific background image, a so-called signature watermark. If a
signature watermark is enabled the appearance of the signature in the document view is changed
but not the captured signature itself.

Example

In general you can set watermark options either generally in sdweb_config.groovy or individually
per signature field in a command during loading of the document.

The individual settings have more priority than the global configured settings for the watermark.

The description of the global settings can be found under Configuration file sdweb_config.groovy.

The individual watermark options can be appended to any other signature field commands.

The default values in the parameter value description are only valid if nothing else is specified in
sdweb_config.groovy.

The watermark display is limited by an invisible area, the watermark frame.

For the watermark view within the frame you can define a scale option.

The watermark can be inserted into the frame as it is (unchanged size) with scale option 'actual'.

The image can be scaled to the frame size with scale option 'fit' or 'stretch'.

If the watermark image does not fill the frame completely (possible wit scale option 'actual' and 'fit')
it can be adjusted within the frame with an alignment configuration, e.g. 'middle-center'.

If the watermark image is bigger than the frame (possible with scale option 'actual') it will be
cropped in order to fit into the frame.

The watermark frame (with the watermark image) itself is positioned into the signature field
according the configurable frame offsets. If no frame offsets are defined the frame is placed also in
to the signature field according the defined alignment.

36

Kofax SignDoc Web Developer's Guide

Inline Parameter Values, Syntax, Description Remarks

watermark_enable Value type: boolean (default: false).
Specifies whether a watermark image is placed
behind a captured signature in the signature field. If
set to true, SignDoc Web will try to add a configured
watermark behind the signature.

optional

watermark_image_template Value type: string (default: watermark.bmp).
The name of the watermark image which should be
placed as background image for a captured signature
(for the document view).

optional

watermark_image_scale Value type: string (default: actual).
Specifies the scaling strategy of the watermark image
within the watermark frame. The watermark frame
is the area where the watermark image is adjusted
into. The watermark frame itself is adjusted then into
the signature field, either by frame offset coordinates
(sdweb.signature.watermark.frame.offset_x and
sdweb.signature.watermark.frame.offset_y) or
alternatively according the alignment setting
(sdweb.signature.watermark.image.alignment).
• "actual" will use the actual size of the watermark

image when it is positioned in the watermark
frame.

• "fit" will scale the image proportionately to the size
of the watermark frame.

• "stretch" will stretch the image disproportionately
to fit the entire frame.

optional

37

Kofax SignDoc Web Developer's Guide

Inline Parameter Values, Syntax, Description Remarks

watermark_image_alignment Value type: string, "middle-center"
The watermark image alignment is only applicable
if width and/or height of the watermark image is
smaller than the watermark frame and the scale is
set to "actual". If scale is set to "fit", it depends on
whether the frame is longer than the fitted image
(horizontal alignment possible) or taller than the
fitted image (vertical alignment possible). Scale option
"stretch" will not have any impact since it is stretched
to fit the frame.
Possible alignment settings are "top-left", "top-
center", "top-right", "middle-left", "middle-center",
"middle-right", "bottom-left", "bottom-center" and
"bottom-right".

optional

watermark_frame_offset_x Value type: Integer, -1
Horizontal offset (in pixels) between top-left
corner of the signature field and the top-left
corner of the watermark frame . Positive value
means top-left corner of the watermark frame
is on the right of the top-left corner of the
signature field. A negative value means that
both offsets (x and y) are not used for frame
positioning within the signature field. In this case the
sdweb.signature.watermark.image.alignment setting
is used.
The watermark image alignment is only applicable
then if width and/or height of the frame is smaller
than the signature field.

optional

watermark_frame_offset_y Value type: Integer, -1
Vertical offset (in pixels) between top-left corner
of the signature field and the top-left corner of the
watermark frame. Positive value means top-left
corner of the watermark frame is below the top-left
corner of the signature field. A negative value means
that both offsets (x and y) are not used for frame
positioning within the signature field. In this case the
sdweb.signature.watermark.image.alignment setting
is used.
The watermark image alignment is only applicable
then if width and/or height of the frame is smaller
than the signature field.

optional

watermark_frame_width Value type: Integer, -1
Width of the watermark frame (if the value is not
negative). A negative value means that the watermark
frame has the same width as the signature field.

optional

watermark_frame_height Value type: Integer, -1
Height of the watermark frame (if the value is not
negative). A negative value means that the watermark
frame has the same height as the signature field.

optional

38

Kofax SignDoc Web Developer's Guide

Inline Parameter Values, Syntax, Description Remarks

watermark_image_opacity Value type: Integer, 100
Specifies the watermark image opacity in percent.
The value must be between 0 and 100. 100(%) means
that the watermark image is completely opaque. 0
would make the watermark invisible because it is
completely transparent. This setting can be useful
to show the signature more prominent compared to
the watermark image which is behind the signature
image.

optional

Insert a new signature field on Page 1 with the coordinates x=100, Y=100 (with origin lower left
corner) with width=350 and height=100.

The watermark image watermark.bmp should be placed into a watermark frame with 330 pixel
width and 90 pixel height without scaling (scale=actual) and aligned to the bottom right corner (be it
that the watermark image is smaller than the frame) of the frame.

The watermark frame itself is positioned in the left upper corner of the signature field with an offset
of x=10 and y=10.

value="name=Signature1|page=1|type=formfield|subtype=signature|bottom=100|left=100|
width=350|height=100|
watermark_enable=true|watermark_image_template=watermark.bmp|
watermark_image_scale=actual|watermark_image_alignment=bottom-right|
watermark_frame_offset_x=10|watermark_frame_offset_y=10|watermark_frame_width=330|
watermark_frame_height=90|watermark_image_opacity=50"

Remove an existing form field or signature field
A field is referenced by name. Also logical names are supported.

A logical name identifies a field which could occur several times on different pages.

A list of pages can be defined, in order to determine on which page(s) the field (referenced by the
logical name) should be deleted.

value="name=<field_name>|pages=<page_numbers>"

Example 1

Remove (signature) field with name SPFID_CUST_SIGNATURE_SPFID_2 in the requested document:

<input type="hidden" name="cmd1" value="type=removefield|
name=SPFID_CUST_SIGNATURE_SPFID_2"/>

Example 2

Remove field with name Customer_Number in the pages 1,2 and 4:

<input type="hidden" name="cmd1" value="type=removefield|name=Customer_Number|
pages=1,2,4"/>

39

Kofax SignDoc Web Developer's Guide

Inline Parameter Value/Syntax/Description

name The existing field name

pages Examples
"1" (page 1); "1,2,4" (pages 1,2 and 4); "-1" (all pages)

 The remove action fails if the field is set to readonly. Read only fields can be removed if
sdweb.cmd.allow.update.readonly.editfields=true is set in sdweb_config.groovy.

SignDoc Web field locking
Locked fields in SignDoc Web are PDF fields with read only attribute.

The read only flag can be set directly via servlet command for creating or updating a field in the
document starting with 'cmd' (or old syntax 'createorupdate').

Example for opening a (template) document and adding a new signature field:

<form id="the_form" action="http://localhost:6610/sdweb/load/bytemplate"
 target="_blank" method="post">
<input type="submit" name="opendoc" value="open document"/>
<input type="hidden" name="template" value="softpro_banking_trapeza_en.pdf" size="80"/>
<input type="hidden" name="docid" value="TestSignature" />
<input type="hidden" name="cmd_1" value="name=Approver|page=1|type=formfield|
subtype=signature|bottom=100|left=10|width=150|height=50|lock_after_sign=self" />
</form>

Deferred locking of fields (setting of read only attributes) can be requested for signed signature
fields with 3 different signature field attributes.

lock_after_sign={self | all | all_editfields | all_editfields_not_self |
fieldname[,fieldname...] }

lock_after_sign_exclude=fieldname[,fieldname...]

archive_action=lock_all_if_signed

lock_after_sign

The attribute value 'self' means, that the signature field itself is locked after it is signed.

All changeable fields (including signature fields) are locked after signing the signature field if value
is set to 'all'.

With value 'all_editfields' only the edit fields (text input fields, check boxes and radio buttons) and
the signed signature field itself are locked if the appropriate signature is signed.

The lock attribute can be appended to the other signature field attributes in the command, e.g.

<input type="hidden" name="cmd_1" value="name=Approver|page=1|type=formfield|
subtype=signature|bottom=100|left=10|width=150|height=50|lock_after_sign=self" />

The flag 'all_editfields_not_self' locks also only the edit fields but without locking the signed
signature field itself.

40

Kofax SignDoc Web Developer's Guide

If you want to define only specific fields which should be locked after signing the signature field you
can append the (real PDF) field names as value for the attribute lock_after_sign, e.g.

<input type="hidden" name="cmd_1" value="name=Approver|page=1|
type=formfield|subtype=signature|bottom=100|left=10|width=150|height=50|
lock_after_sign=field1,field2,field3"/>

The field names that has to be locked after signing a specific signature field must be separated with
a comma (in case of several field names).

The field names must not match with the reserved words (self, all, all_editfields and
all_editfields_not_self).´

 The field list separator can be changed in sdweb_config.groovy with entry
sdweb.lockfields.list_separator="separator character", whereas "," is the default.

lock_after_sign_exclude

The lock_after_sign_exclude attribute is followed by a field name or a list of field names (separator,
see lock_after_sign) which should be excluded from locking.

All changeable fields except the specified fields are set to read only if the signature is signed, e.g.

<input type="hidden" name="cmd_1" value="name=Approver|page=1|
type=formfield|subtype=signature|bottom=100|left=10|width=150|height=50|
lock_after_sign_exclude=field1,field2,field3" />

archive_action

The archive_action attribute has only one valid value lock_all_if_signed.

This attribute setting locks all fields after signing not till the document is archived. That means
you can make any changes in the document also after signing the signature field but only until
archiving.

This makes sense if you want to prevent any changes after signing but independent from the
sequence of the changes in the document (including signing), at least until archiving.

 archive_action=lock_all_if_signed can be combined with one of the other lock attributes.

<input type="hidden" name="cmd_1" value="name=Approver|page=1|type=formfield|
subtype=signature|bottom=100|left=10|width=150|height=50|lock_after_sign=self|
archive_action=lock_all_if_signed"/>

URI syntax
Another URI-based syntax is possible in the commands in order to lock fields for a signed signature
field.

It can only be used for setting lock attributes for a signature field but not for any other settings as
with the other already described syntax.

41

Kofax SignDoc Web Developer's Guide

Syntax

sdweb://command/lockfields/signature/{include|exclude|all|none}/signature
field name?[fieldname[|fieldname...]]

The lock commands followed by the prefix:

sdweb://command/lockfields/signature/

cause lock actions for the specified signature field name.

Command Description

all All fields are locked if a signature is captured for the named signature field.
Example
Result
All changeable fields in the document are locked after signing signature field
sig3.

none No field is locked if a signature is captured for the named signature field.
Example
sdweb://command/lockfields/signature/none/sig4?

Result
This can be used for reset any previously defined lock specific settings for a
signature field.

include All appended fields are locked if the signature is captured for the named
signature field
Example
sdweb://command/lockfields/signature/include/sig1?field1|
field2|field3

Result
field1, field2 and field3 are locked after signature field sig1 is signed

exclude All fields are locked if a signature is captured for the named signature field except
the fields in the subsequent field names list.
Example
sdweb://command/lockfields/signature/exclude/sig2?field2|
field5|field6

Result
Only field2, field5 and field6 are not locked after signing signature field sig2.

 The field separator for the URI syntax can be changed via configuration entry:

sdweb.lockfields.list_separator_uri=... (default value: "\\|" for |)

Locked fields are set to read only. Fields with flag read only should not be updatable by the user
with the GUI.

But editable fields (checkbox or text) can be also changed via described servlet interface.

42

Kofax SignDoc Web Developer's Guide

With this "command" interface it could be wanted that a field can be updated by a program
although it is marked as read only, e.g. for preallocation of (actually) readonly fields like the
customer or account name.

Since it is not always clear how to handle read only fields, the configuration setting
sdweb.cmd.allow.update.readonly.editfields (in sdweb_config.groovy) determines whether update
of read only fields is allowed via "command" servlet interface or not.

By default, it is allowed (as it was before implementing the setting) to update read only fields.

With

sdweb.cmd.allow.update.readonly.editfields=false

in sdweb_config.groovy this setting can be overwritten.

If anybody (or better any program) tries then to change the value of a read only field the update will
not be performed.

Only a log entry (log level info) will be written with the note, that the field is read only and cannot be
changed

(e.g. "field READONLY_FIELD is read only (locked) and cannot be changed").

Flatten locked fields

Locked fields are set to read only by default.

With sdweb.config.groovy configuration entry

sdweb.locking.flatten=true

all read only fields are flattened.

Flattening of fields means that they will be removed and cannot be accessed any more. The
appearance of the field is kept which means that all signatures, all text input and all other settings
are still visible but cannot be changed.

The default is

sdweb.locking.flatten=false

Document metadata
Metadata Description

SIGNDOCWEB_SIMPLE_SIGNING_WORKFLOW_LIST A comma separated list of signature-field-
names (realid) that will be used, if the setting
SigningWorkflow is enabled.
For details how to use the SignignWorkflow consult
signdoc_configuration.xml or
mobile_configuration.xml.
See SignDoc Web Administrator's Guide, chapter
"Configurable toolbar".

43

Kofax SignDoc Web Developer's Guide

Signature and form fields
Define an existing signature field as a required/mandatory field

When opening the document, add a createorupdate statement, that contains required=true as
inline parameter.

Example form request:

<form action="http://localhost:6610/sdweb/load/bytemplate" name="bytemplate"
 target="_blank" enctype="multipart/form-data" method="post">
 <input type="hidden" name="dmsid" value="de.softpro.sdweb.plugins.impl.FileDms"/>
 <input type="hidden" name="template" value="trapeza_bank_apac_account_opening.pdf"/>
 <input type="hidden" name="createorupdate_1001"
 value="name=topmostSubform[0].Page1[0].Signature1_001[0]|type=formfield|
subtype=signature|required=true|tooltip=Customer Signature 1...|friendlyname=Customer
 Signature 1" />
 <input type="hidden" name="createorupdate_1002"
 value="name=topmostSubform[0].Page1[0].Signature2_001[0]|type=formfield|
subtype=signature|required=true|tooltip=Customer Signature 2...|friendlyname=Customer
 Signature 2" />
 <input type="submit" name="opendoc" value="open"/>
</form>

The same example using the URL query string:

<a href="http://localhost:6610/sdweb/load/bytemplate?
dmsid=de.softpro.sdweb.plugins.impl.FileDms&template=
 trapeza_bank_apac_account_opening.pdf&createorupdate_1001=
 name=topmostSubform[0].Page1[0].Signature1_001[0]|type=formfield|subtype=signature|
required=true|tooltip=Customer Signature 1...|friendlyname=Customer Signature
 1&createorupdate_1002=name=topmostSubform[0].Page1[0].Signature2_001[0]|
type=formfield|subtype=signature|required=true|tooltip=Customer Signature 2...|
friendlyname=Customer Signature 2"
>Open the document

Add a label and/or tooltip to a form or signature field

When opening the document, add a 'createorupdate' statement, that contains friendlyname=<a
label> and/or tooltip=<the tooltip> as inline parameter.

Example form request:

<form action="http://localhost:6610/sdweb/load/bytemplate" name="bytemplate"
 target="_blank" enctype="multipart/form-data" method="post">
 <input type="hidden" name="dmsid" value="de.softpro.sdweb.plugins.impl.FileDms"/>
 <input type="hidden" name="template" value="trapeza_bank_apac_account_opening.pdf"/>
 <input type="hidden" name="createorupdate_1001"
 value="name=topmostSubform[0].Page1[0].Signature1_001[0]|type=formfield|
subtype=signature|required=true|tooltip=Customer Signature 1...|friendlyname=Customer
 Signature 1" />
 <input type="hidden" name="createorupdate_1002"
 value="name=topmostSubform[0].Page1[0].Signature2_001[0]|type=formfield|
subtype=signature|required=true|tooltip=Customer Signature 2...|friendlyname=Customer
 Signature 2" />
 <input type="submit" name="opendoc" value="open"/>
</form>

44

Kofax SignDoc Web Developer's Guide

The same example using the URL query string:

<a href="http://localhost:6610/sdweb/load/bytemplate?
dmsid=de.softpro.sdweb.plugins.impl.FileDms&template=
 trapeza_bank_apac_account_opening.pdf&createorupdate_1001=
 name=topmostSubform[0].Page1[0].Signature1_001[0]|type=formfield|subtype=signature|
required=true|tooltip=Customer Signature 1...|friendlyname=Customer Signature
 1&createorupdate_1002=name=topmostSubform[0].Page1[0].Signature2_001[0]|
type=formfield|subtype=signature|required=true|tooltip=Customer Signature 2...|
friendlyname=Customer Signature 2"
>Open the document

Radio buttons
Description

In this section radio button support in PDF documents is described. Radio buttons can be selected
by SignDoc Web browser clients as well as by supported Mobile Clients. Radio buttons can be
created or changed in SignDoc Web Server for a PDF document via command interface.

Radio buttons are arranged in groups of two or more and displayed on screen. A radio button group
can have several radio buttons, but a single radio button is assigned to exactly one group. When
the user selects a radio button, any previously selected radio button in the same group becomes
deselected. Selecting a radio button is done by clicking the mouse on the button. It is possible that
initially none of the radio buttons in a group is selected. This state cannot be restored by interacting
with the radio button widget (but it is possible through SignDoc Web command interface).

A field can be created or updated in the document via cmd request parameter. Find a description of
the command interface to SignDoc Web under Integration in existing web applications.

Usage

name=<field_name>|type=formfield|subtype=radiobutton|buttonid=<buttonid>|value=<true|
false>|page=<page_number>|bottom=<bottom_coordinate>|left=<left_coordinate>|
width=<width>|height=<height>|required=<true|false>|readonly=<true|false>|label=<label>

Inserting radio buttons by coordinates

A radio button is inserted by defining exact document coordinates.

Example

Create two radio buttons on page 1.

The radio button group name "gender" is defined for both radio buttons with the name attribute
name=gender.

The first radio button with buttonid=female is selected (value=true) and placed at the coordinates
bottom=50, left=200, width=10, height=10 (origin lower left corner).

The second radio button with buttonid=male is not selected (value=false) and placed at the
coordinates bottom=30, left=200, width=10, height=10.

name=gender|type=formfield|subtype=radiobutton|page=1|bottom=50|left=200|width=10|
height=10|value=true|buttonid=female|label=female
name=gender|type=formfield|subtype=radiobutton|page=1|bottom=30|left=200|width=10|
height=10|value=false|buttonid=male|label=male

45

Kofax SignDoc Web Developer's Guide

Parameters

Inline parameter Value/syntax/description Remarks

name The name of the assigned radio
button group.

mandatory

type formfield mandatory

subtype radiobutton mandatory

buttonid Unique radio button name. mandatory

page The page number. mandatory

bottom, left, width, height Document coordinates (origin in
the lower-left corner), height and
width determine the size of the
radio button.

mandatory

value true or false
Criterion for selected or not
(default is false if omitted).

optional

required true or false
Sets the "required" attribute for the
complete radio button group.

optional

readonly true or false
Read only/locked radio button.

optional

tooltip Sets the tooltip for the radio
button.

optional

label Sets a friendly name (label) for the
radio button (is used as tooltip if
"tooltip" is not defined).

optional

If the specified radio button group does not exist a new radio button group field will be created
in the document. If the buttonid does not exist for the specified radio button group a new radio
button (widget) will be added with this value to the group.

The appearance of the radio button cannot be changed via command interface. Only the size of a
radio button can be manipulated via width and height parameter.

The commands are processed in the order of the cmd (key) value (in alphabetic order). E.g. cmd_1
will be processed prior to cmd_2, but cmd_10 will be also handled previous to cmd_2 (alphabetic
order!). If you select more than one radio button with value=true then the last processed entry is
determinative which means that only the last radio button entry (with value=true) will be selected in
the document.

Example of document load page
Example HTML page

<html>
 <head>

46

Kofax SignDoc Web Developer's Guide

 <title>Simple Document Load Page</title>
 </head>
 <body>
 <p style="border:1px solid gray;background-color:#FFBBBB;">
 REMARK: This page assumes, that the domain www.signdocweb.com is
 accessible...

 http://www.signdocweb.com

 If this is not the case, please edit the source code of this HTML file.
 </p>

 <p style="border:1px solid gray;background-color:lightyellow;">
 Simple Example

 Simply open a document by downloading the file and assigning it a DocumentID
 (docid).

 IMPORTANT: It is required, that the document already contains digital signature
 fields to be signed.

 Downloaded file...

 http://
download.srv.softpro.de/testdocs/001.pdf

 - The document id is set to example_contractid

 <form action="http://www.signdocweb.com/sdweb/load/byurl" target="_blank"
 method="post">
 <input type="hidden" name="docid" value="example_contractid"/>
 <input type="hidden" name="docurl" value="http://download.srv.softpro.de/
testdocs/001.pdf"/>
 <input type="submit" name="opendoc" value="open document"/>
 </form>
 </p>

 <p style="border:1px solid gray;background-color:lightyellow;">
 Example 1

 Opens a document by downloading the file

 http://
download.srv.softpro.de/testdocs/001.pdf

 - The document id is set to example_1

 - A required signature field named "my_signature" is inserted at the lower left
 corner of page 1

 - The Field A_Personal_ID is filled with the value "123456"

 - The Field Co_Applicant_Signature is marked as required signature (turns
 red)

 <form action="http://www.signdocweb.com/sdweb/load/byurl" target="_blank"
 method="post">
 <input type="hidden" name="docid" value="example_1"/>
 <input type="hidden" name="docurl" value="http://download.srv.softpro.de/
testdocs/001.pdf"/>
 <input type="hidden" name="cmd_1" value="name=my_inserted_signature|page=1|
type=formfield|subtype=signature|bottom=10|left=10|width=150|height=50|required=true"/>
 <input type="hidden" name="cmd_2" value="name=A_Personal_ID|value=123456|
type=formfield|subtype=textfield"/>
 <input type="hidden" name="cmd_3" value="name=Co_Applicant_Signature|
value=123456|type=formfield|subtype=signature|required=true"/>
 <input type="submit" name="opendoc" value="open document"/>
 </form>
 </p>

 <p style="border:1px solid gray;background-color:lightblue;">
 Example 2

 Opens a document by downloading the file

 http://
download.srv.softpro.de/testdocs/001.pdf

 - The document id (docid) is set to "example_2"

 - The DMS Plugin (dmsid) to use is set to
 "de.softpro.sdweb.plugins.impl.FileDms"

47

Kofax SignDoc Web Developer's Guide

 - A signature field named "my_signature" is inserted at the position of text
 "Signature of Applicant" with an x/y offset of 10/-10

 - The Text Field A_Personal_ID is filled with the value "123456"

 - The Text Field A_First_Name is filled with the value "John"

 - The Text Field A_Last_Name is filled with the value "Doe"

 - The Checkbox Field A_Mandate_UpTo5000 is checked

 - The Metadata Property haircolor is set to the value black

 <form action="http://www.signdocweb.com/sdweb/load/byurl" target="_blank"
 method="post">
 <input type="hidden" name="docid" value="example_2"/>
 <input type="hidden" name="dmsid" value="de.softpro.sdweb.plugins.impl.FileDms"/>
 <input type="hidden" name="docurl" value="http://download.srv.softpro.de/
testdocs/001.pdf"/>
 <input type="hidden" name="cmd_1" value="name=my_inserted_signature|
type=formfield|subtype=signature|searchtext=Signature of Applicant|width=150|height=50|
offsetx=10|offsety=-10|required=true"/>
 <input type="hidden" name="cmd_2" value="name=A_Personal_ID|value=123456|
type=formfield|subtype=textfield"/>
 <input type="hidden" name="cmd_3" value="name=A_First_Name|value=John|
type=formfield|subtype=textfield"/>
 <input type="hidden" name="cmd_4" value="name=A_Last_Name|value=Doe|
type=formfield|subtype=textfield"/>
 <input type="hidden" name="cmd_5" value="name=A_Mandate_UpTo5000|value=true|
type=formfield|subtype=checkbox"/>
 <input type="hidden" name="cmd_6" value="name=haircolor|value=black|
type=metadata"/>
 <input type="submit" name="opendoc" value="open document"/>
 </form>
 </p>

 <p style="border:1px solid gray;background-color:lightyellow;">
 Example 3

 Opens a document by downloading the file

 http://
download.srv.softpro.de/testdocs/001.pdf

 - The document id is set to example_3

 - The DMS Plugin (dmsid) to use is set to
 "de.softpro.sdweb.plugins.impl.FileDms"

 - The Text Field A_Personal_ID is filled with the value "123456"

 - The Text Field A_First_Name is filled with the value "John"

 - The Text Field A_Last_Name is filled with the value "Doe"

 - The Checkbox Field A_Mandate_UpTo5000 is checked

 - The Text Field C_First_Name is filled with the value "Jane"

 - The Text Field C_Last_Name is filled with the value "Doe"

 - The Text Field C_Personal_ID is set to required and maxlength=8

 - The Checkbox Field C_Mandate_UpTo10000 is checked

 - The Field Co_Applicant_Signature is set to "Co Applicant's Signature"

 - The Field Applicant_Signature is set to "Applicant's Signature" and marked as
 required (turns red)

 - The Metadata Property haircolor is set to the value red

 <form action="http://www.signdocweb.com/sdweb/load/byurl" target="_blank"
 method="post">
 <input type="hidden" name="docid" value="example_3"/>
 <input type="hidden" name="dmsid" value="de.softpro.sdweb.plugins.impl.FileDms"/>
 <input type="hidden" name="docurl" value="http://download.srv.softpro.de/
testdocs/001.pdf"/>
 <input type="hidden" name="cmd_2" value="name=A_Personal_ID|value=123456|
type=formfield|subtype=textfield"/>
 <input type="hidden" name="cmd_3" value="name=A_First_Name|value=John|
type=formfield|subtype=textfield"/>
 <input type="hidden" name="cmd_4" value="name=A_Last_Name|value=Doe|
type=formfield|subtype=textfield"/>
 <input type="hidden" name="cmd_5" value="name=A_Mandate_UpTo5000|value=true|
type=formfield|subtype=checkbox"/>

48

Kofax SignDoc Web Developer's Guide

 <input type="hidden" name="cmd_6" value="name=haircolor|value=red|type=metadata"/
>
 <input type="hidden" name="cmd_7" value="name=Co_Applicant_Signature|
type=formfield|subtype=signature|friendlyname=Co Applicant's Signature"/>
 <input type="hidden" name="cmd_8" value="name=D_Applicant_Signature|
type=formfield|subtype=signature|required=true|label=Applicant's Signature"/>
 <input type="hidden" name="cmd_9" value="name=C_First_Name|value=Jane|
type=formfield|subtype=textfield"/>
 <input type="hidden" name="cmd_10" value="name=C_Last_Name|value=Doe|
type=formfield|subtype=textfield"/>
 <input type="hidden" name="cmd_11" value="name=C_Mandate_UpTo10000|value=true|
type=formfield|subtype=checkbox"/>
 <input type="hidden" name="cmd_12" value="name=C_Personal_ID|type=formfield|
subtype=textfield|maxlength=8|required=true"/>
 <input type="submit" name="opendoc" value="open document"/>
 </form>
 </p>

 </body>
</html>

Dynamic tablet screens
Description

Creating and displaying dynamic tablet layouts for signpads depending on the document content
and the language.

What can be displayed/hidden?
• Company logo/name
• Date
• Declaration of agreement
• Disclaimer
• Name of the signer
• Account number, amount (e.g. cash withdrawal)

The files WacomSTUSeries.xml and TabletScreenLayout.xsd are defining the graphical display of
tablet layouts and are stored in the installation directory:

SDWEB_HOME/tablet_screens/

The WacomSTUSeries.xml file contains the default definition of the SOFTPRO dynamic layouts for
STU-300, STU-500, STU-430, STU-520, STU-530, DTU-1031, DTU-1631 and Tablet PCs.

The TabletScreenLayout.xsd file describes an XML scheme including documentation. It defines the
rules for creating the dynamic layout.

49

Kofax SignDoc Web Developer's Guide

 The default coordinate system uses relative coordinates. The dimension of each tablet layout
has 1000 units in width and height.

The default coordinate system uses relative coordinates. The dimension of each tablet layout has
1000 units in width and height.

Usage

To be able to use custom dynamic signature screens, 2 basic options exist.
• Default layout

The XML document having an XML element <tns:LayoutId> set to the value default will be used
for all signing ceremonies unless a different tablet screen is defined for a specific signature field.
See SDWEB_HOME/tablet_screens/WacomSTUSeries.-xml

• Custom layout for inserted signature fields
Add the attribute
screenlayout=<LayoutID>

to the cmd statement inserting a new signature field. When signing this signature field, the
specified layout will be used.
Example
name=sig1|page=1|type=formfield|subtype=signature|bottom=10|left=10|
width=150|height=50|screenlayout=piggybank_example

See SDWEB_HOME/tablet_screens/piggybank_example.xml

Description of XML elements

SDWEB_Home/tablet_screens/WacomSTUSeries.xml

Element Description

ActionButton The element is used to submit user actions. The action is defined by content of the
sub element <ActionId>. The background-color of action buttons is set to transparent
for STU-500 and STU-300 devices.

DefaultFont The element defines the default font of the particular canvas.

Image An image can be defined inline base64 encoded or via external URL reference.

TextBox The element consists of text, which is displayed as continuous text. The text will be
automatically wrapped, when the text line exceeds the defined width of the element.

TextLine The element consists of text, which is displayed in one line. The text will not be
automatically wrapped.
A suitable font size is automatically chosen, so that the text is adapted to the defined
rectangle. The default font size can be overridden by a user-defined font size.

Rectangle The element is a rectangle. As an example for the rectangle of a height=0 is a line
below the signature.

 The language of the button’s label can be changed in the TextTranslationTable.xml that is
located in the directory sdweb_home/i18n by adding a new value to the translation_entry element.

50

Kofax SignDoc Web Developer's Guide

Example

Adding translation to the label of action button Back

Description of the attributes

Attribute
Description

ActionButton DefaultFont Image TextBox TextLine Rectangle

background-color
Defines the color of the
rectangle’s enclosing area.

x x x x x

blackAndWhiteDithering
Defines dithering type for the
image when reducing the colors
to black and white

x

border-color
Defines the color of the
rectangle’s border line

x x x x x

border-width
Line width of the border in pixel.

x x x x x

default-z-order
The default z-order of the
element. 0 means background.

x x x x x

font-size
Defines dithering type for the
image when reducing the colors
to black and white

font-weight
either REGULAR or BOLD

51

Kofax SignDoc Web Developer's Guide

Attribute
Description

ActionButton DefaultFont Image TextBox TextLine Rectangle

element_id
The element id of a layout
element. This id can be used to
reference the element within
a SPDynamicContentMap
element.

x x x x x

having_round_corners
Defines, if the corners of a
rectangle are rounded.

x x x x x

height
The height of an element

x x x x x

left
The left coordinate of an
element.

x x x x x

origin
The origin of the elements
coordinate system.

x x x x x

text-color
Color of the text.

x x x

text-halign
Horizontal alignment of the text.

x x x

text-valign
Vertical alignment of the text.

x x

top
The top coordinate of an
element.

x x x x x

unit
Defines the format of
coordinates.

x x x x x

user-z-order
The user-defined z-order of the
element.
0 means background. The
default-order is defined by
attribute default-z-order (fixed
value) and is used if 2 elements
have the same z-order.

x x x x x

width
The width of an element.

x x x x x

word-wrapping
Defines if word-wrapping should
be done.

x

52

Chapter 3

Remote interface

SignDoc Web RemoteInterface V1.40

The SignDoc Web RemoteInterface allows the communication between the mobile-gui and the
hosting application via JavaScript methods/calls.

The hosting application can either be SignDoc Mobile (mobile-app) or a web application that hosts
the mobile-gui in an iFrame (web-app).

Same-origin policy
 Because of the 'Same-origin policy' (SOP) in JavaScript the web-app and the mobile-gui (SDWeb)
both have to be the same origin to interact which each other.

1. Scenarios in compliance with SOP:
• web-app and SDWeb are deployed on the same webserver using the same port
• web-app and SDWeb are deployed on different webservers but are accessed via the same

proxy

2. Scenarios in compliance with SOP by reducing the check only to the domain (*):
• web-app and SDWeb are deployed on different webservers and/or ports in the same domain

3. Scenarios not in compliance with SOP
• web-app and SDWeb are deployed on webservers in different domains

The check for the SOP compliance can be reduced to the domain by setting the DOM attribute
document.domain in the mobile-gui AND the hosting web-app HTML page.

Example

SDWeb and web-app are deployed like this:

http://host1.example.com:8080/sdweb

http://host2.example.com:8081/web-app

In SDWeb the document.domain of the mobile-gui can be configured via sdweb_config.groovy entry
sdweb.web_page_options.document_domain="example.com".

The web-app html page which hosts the mobile-gui inside an iFrame have to set the DOM attribute
document.domain='example.com'.

53

Kofax SignDoc Web Developer's Guide

Execute actions in mobile-gui
The hosting application can execute actions in the mobile-gui.

Available JavaScript methods are:

_spRemote_execute(int actionId, String[] parameters)

(*) _spRemote_execute2(String parameters)

_spRemote_executeBinary(int actionId, String[] parameters, byte[] binaryData)

 For the method marked with (*) all parameters have to be url encoded and delimited by |.

Always call these methods inside a try/catch block because the remote interface will throw an
exception if there is something wrong with the parameters! .

Before executing actions always check if the action is enabled. Because the action can be temporary
disabled when the user interacts with the view you can use the JavaScript setInterval mechanism to
wait for execution until the action is enabled again.

Here is an example how to call method.

_spRemote_execute(int actionId, String[] parameters)

if the mobile-gui is hosted inside an iFrame:

 function call_spRemote_execute(actionId, params){
var iframe = document.getElementById('sdweb_frame');
try{
 iframe.contentWindow._spRemote_execute(actionId, params);
 }
catch(err){
 window.alert(err);
 }
}

In the following table the actions with the ids 29, 30, 34, 35, 36, 37, 43, 48, 50, 55, 56, 59, 63, 64
can't be accessed via _spRemote_execute method. They are only used for notifications via method
_spRemote_inform(actionId, event, parameters.

Action Id Action Name Parameters/Description

1 Open AboutInfo Action is currently not available

2 Cancel document Action is deprecated

3 Clear captured field [0] - (optional) field id of the capture field which should be cleared.
If no parameter is provided the currently selected capture field will be
cleared.

5 Finalize document Action is deprecated

6 Show first page

54

Kofax SignDoc Web Developer's Guide

Action Id Action Name Parameters/Description

7 Highlight fields [0] - 'true' or 'false'

8 Show last page

9 Show next page

12 Show page Action is currently not available
[0] - the page number to show

13 Show previous page

14 Print document

15 Scan image Action is currently not available

17 Zoom in

18 Zoom by zoomfactor [0] - zoomfactor
A zoomfactor can be an integer value like 25, 50, 75, 100, 125,
150, 175, 200, 225 or one of the string values FIT_TO_WIDTH,
FIT_TO_HEIGHT or FIT_TO_SIZE.
Note that the corresponding zoomfactor has to be configured in the
client configuration: mobile_configuration.xml

19 Zoom out

20 Open signature fields
dialog

28 Register hosting
application

[0] - mobile-app: the mobile device id or
web-app: the browsers user agent
[1] - use acknowledge mode ('true' or 'false')
Some notifications have to be acknowledged in any case.
[2] - version string (in the notation 'V1.8', 'V1.9', ...etc) of the remote
interface used in the hosting application.
The mobile-gui checks if this parameter convenes to the minimal
required version.
[3] - mobile-app: the mobile-app environment as JSON string (see
Hints and examples, section "mobile-app)" or
web-app: the web-app environment as JSON string (see Hints and
examples, section "web-app")

29 mobile-gui loaded [0] - version string (in the notation 'V1.8', 'V1.9', ...etc) of the remote
interface used in the mobile-gui.
[1] - max upload size in bytes (configured in the SignDoc Web server
configuration)
[2] - cache mobile-gui ('true' or 'false')
[3] - capabilities as JSON string (see Hints and examples Capabilities
parameter)
This notification has to be acknowledged!

55

Kofax SignDoc Web Developer's Guide

Action Id Action Name Parameters/Description

30 Capture field clicked [0] - FIELD_TYPE (0=signature, 1=image, 2=c2s)
[1] - FIELD_ID (the internal id of the capture field)
If capture field is of type image these additional parameters are
available:
[2] - IMG_WIDTH (the width of the image in pixel)
[3] - IMG_HEIGHT (the height of the image in pixel)
[4] - IMG_FORMAT (the image format: 'jpeg', 'png' or 'tiff')

31 Use mobile-gui toolbar [0] - 'true' or 'false'
(true: use toolbar of mobile-gui;
false: hosting application provides a toolbar (native-toolbar)

31 Update capture field 1. For this action the method
_spRemote_executeBinary(int actionId, String[] parameters, byte[]
binaryData)
has to be used.
Parameters:
[0] - FIELD_ID (the internal id of the field)
[1] - CAPTURE_ACTION (0=Update or 1=Cancel)
If CAPTURE_ACTION = 0:
[2] - FORMAT ('a'(simple) or 'B'(extended - header and timestamps) for
a signature or 'image' for an image)
binaryData: The binary data of the signature/image
2. For backward compatibility and Windows 8 support the methods
_spRemote_execute(int actionId, String[] parameters)
and
_spRemote_execute2(String parameters)
are also available.
But the maximal supported length of base64 encoded signature/
image data is 65536 bytes (depending on the browser)!
[0] - FIELD_ID (the internal id of the field)
[1] - CAPTURE_ACTION (0=Update or 1=Cancel)
[2] - FORMAT (optional) ('a'(simple) or 'B'(extended - header and
timestamps) for a signature or 'image' for an image. When using
signature format 'a' this parameter can be omitted)
[3] - DATA (Base64 encoded signature/image data or an empty string
for Cancel action.
Encoded signature data must begin with the prefix character 'a' or 'B'
to identify the signature format.)
Note This action can only be called after the event 30 (Capture field
clicked) is send.

56

Kofax SignDoc Web Developer's Guide

Action Id Action Name Parameters/Description

33 Display dialog in
mobile-gui

[0] - ID (id of the dialog, can be used for identification when action 34
sends notification)
[1] - TYPE (0=Info, 1=Warning, 2=Error or 3=Custom -> types 0, 1 and 2
are simple message dialogs with a OK button)
[2] - MESSAGE (the message to be displayed)
[3] - CUSTOM_BUTTONS (if TYPE = 3: comma separated list of buttons:
0=Yes, 1=No, 2=OK, 3=Cancel, 4=Close, 5=Accept, 6=Reject or an
empty string)
[4] - CUSTOM_TITLE (if TYPE = 3: custom title string or an empty string)

34 Dialog button clicked [0] - ID (id of the corresponding dialog - see action 33)
[1] - BUTTON (id of the clicked button - 0=Yes, 1=No, 2=OK, 3=Cancel,
4=Close, 5=Accept, 6=Reject)
Notes:
Notification for button clicks of dialogs triggered via action 33.
If hosting application is a web-app this notification is also send for
button clicks in capture dialogs:
dialogId: SignatureCapture
Buttons:
2 = OK (Capture dialog was closed by clicking OK button)
3 = Cancel (Capture dialog was closed by clicking CANCEL button)
dialogId: ImageCapture
Buttons:
2 = OK (Capture dialog was closed by clicking OK button)
3 = Cancel (Capture dialog was closed by clicking CANCEL button)
dialogId: QuestionableMatch (QuestionableMatch dialog is only
displayed when a custom SignatureArchivePlugin is used that returns
a corresponding return code)
Buttons:
5 = Accept (Dialog was closed by clicking Accept button)
6 = Reject (Dialog was closed by clicking Reject button)
Important: If a SignatureArchivePlugin is used the notification of
button 2=OK from dialog SignatureCapture is no guarantee that the
signature field is signed!

35 Localized data loaded [0] - LOCALE
Each of the following localized data is embedded in '' characters.
[1] - CONFIRM_CANCEL_DOCUMENT_MSG
[2] - CONFIRM_CANCEL_DOCUMENT_TITLE
[3] - CONFIRM_FINALIZE_DOCUMENT_MSG
[4] - CONFIRM_FINALIZE_DOCUMENT_TITLE
[5] - CONFIRM_CLEAR_SIGNATURE_MSG
[6] - CONFIRM_CLEAR_SIGNATURE_TITLE
[7] - CONFIRM_CLEAR_IMAGE_MSG
[8] - CONFIRM_CLEAR_IMAGE_TITLE
[...] - can be extended in the future

57

Kofax SignDoc Web Developer's Guide

Action Id Action Name Parameters/Description

36 Document loaded [0] - number of document pages
[1] - document id
[2] - context url
[3] - session id
[4] - download url

37 Page changed [0] - the current page number

38 Add capture field Currently only supported for mobile-app

39 Download document Action has to be implemented by the hosting application

40 Open document Action has to be implemented by the hosting application

41 E-Mail Action has to be implemented by the hosting application

42 Show help

43 Enable native-toolbar This action is only used for sending enabled state notifications in
order to inform the hosting application if the native-toolbar has to be
enabled or disabled.

44 Show SoftKeyboard [0] - visibility of SoftKeyboard ('true': visible; 'false': hidden)
[1] - the initiator of the action call ('mobilegui' or 'nativeapp')
This action is used by both the mobile-gui (to force the SoftKeyboard
to popup) and the mobile-app (to inform the mobile-gui when the
SoftKeyboard visibility state changed).

45 Screen orientation
changed

Action is deprecated
[0] - the new screen orientation ('portrait' or 'landscape')
[1] - the new visible width (in pixel) of the web view
[2] - the new visible height (in pixel) of the web view

47 Update image external This action can be used to set an image to an unsigned image field
or to clear the image of a signed image field via the remote interface
(without user action in the mobile-gui).
For this action the method
_spRemote_executeBinary(int actionId, String[] parameters, byte[]
binaryData)
has to be used.
[0] - FIELD_ID (the internal id of the field)
[1] - CAPTURE_ACTION (0=Insert or 1=Clear)
If CAPTURE_ACTION = 0:
binaryData: The binary data of the image
Note It is recommended to use this action after the event 36
(Document loaded) is received.

48 Refresh WebView This action is used to inform the mobile-app to refresh the WebView
component (this is needed on android devices to get rid of additional
content space when an image is zoomed out).

58

Kofax SignDoc Web Developer's Guide

Action Id Action Name Parameters/Description

49 Request document
snapshot

Request a snapshot of the current document which can be accessed
via sdweb webservice after action 50 is received.
[0] - the snapshot action (0=download, 1=email, 2=print)
[1] - options (optional) as JSON string (for example to get a specific
version of the document)
Note This action can only be used if the current document is available
in the mobile-gui (the event 36 (Document loaded) is received).

50 Document snapshot
available

Notification for the mobile-app that the requested snapshot is
available on the sdweb server.
[0] - the reference id of the snapshot (used for the webservice call)

51 Page info Action is currently not available

52 Update capture field
(EXT)

1. For this action the method
_spRemote_executeBinary(int actionId, String[] parameters, byte[]
binaryData)
has to be used.
Parameters:
[0] - FIELD_ID (the internal id of the field)
[1] - CAPTURE_ACTION (0=Update or 1=Cancel)
If CAPTURE_ACTION = 0:
[2] - FORMAT 'a'(simple) or 'B'(extended - header and timestamps) for
a signature, 'image' for an image or 'c2s' for a c2s signature
[3] - OPTIONS options as JSON string - see Hints and examples section
"Options parameter")
binaryData: The binary data of the signature/image (can be empty for
a c2s signature)
2. For backward compatibility and Windows 8 support the methods
_spRemote_execute(int actionId, String[] parameters)
and
_spRemote_execute2(String parameters)
are also available.
But the maximal supported length of base64 encoded signature/
image data is 65536 bytes (depending on the browser)!
[0] - FIELD_ID (the internal id of the field)
[1] - CAPTURE_ACTION (0=Update or 1=Cancel)
[2] - FORMAT 'a'(simple) or 'B'(extended - header and timestamps) for
a signature, 'image' for an image or 'c2s' for a c2s signature.
[3] - DATA Base64 encoded signature/image data or an empty string
for Cancel action.
Encoded signature data must begin with the prefix character 'a' or 'B'
to identify the signature format (can be empty for a c2s signature).
[4] - OPTIONS (options as JSON string - see Hints and examples,
section "Options parameter")
Note: This action can only be called after the event 30 (Capture field
clicked) is send.
Action is available since V1.22.

59

Kofax SignDoc Web Developer's Guide

Action Id Action Name Parameters/Description

53 Zoom to width Action is available since V1.23.

54 Validate and finalize [0] - options (optional) as JSON String in the format
{"ShowConfirmation":"True"}
ShowConfirmation - specify if the mobile-gui should display a
confirmation dialog before the document is finalized.
Possible values are True or False. Note that there is a configuration
entry for displaying the finalize confirmation dialog which will affect
the display of the dialog additionally.
Note This action replaces action 5 (Finalize document). Before the
document is finalized it is validated.
Action is available since V1.24.

55 InputField displayed Notification for the hosting application that a text field is displayed in
'Popup' mode for entering text.
If the text field is displayed in 'Dialog' mode this notification is not
send!
Currently this notification is only used by the Windows mobile-app
to avoid that the popup is hidden by the soft-keyboard of the mobile
device.
[0] - Parameters as JSON string in the format {"Id":"XYZ", "Type":"Text",
"Width":200, "Height":80, "Left":40, "Top":550}
Id - the field id
Type - the field type (currently only 'Text' is supported)
Width - the width of the field in pixel
Height - the height of the field in pixel
Left - the left position of the field
Top - the top position of the field
Action is available since V1.26

56 Application exits Notification for the hosting application that the mobile-gui exits by
calling another url in the web view.
[0] - the exit url which is called by the mobile-gui
Action is available since V1.27
Note This notification has to be acknowledged!

57 Cancel document [0] - options (optional) as JSON String in the format
{"ShowConfirmation":"True"}
ShowConfirmation -specify if the mobile-gui should display a
confirmation dialog before the document is canceled.
Possible values are True or False.
Note This action replaces action 2 (Cancel document).
Action is available since V1.28

60

Kofax SignDoc Web Developer's Guide

Action Id Action Name Parameters/Description

58 Process capture field This action allows the interaction with a capture field in the document.
Depending on the corresponding state of the capture field and the
specified FieldAction different field actions can be triggered.
See more information below.
[0] - options as JSON String in the format {"FieldId":"xyz",
"FieldAction":"Capture", "ShowClearConfirmation":"True"}
FieldId - the field id of the capture field
FieldAction - the action which should be executed on the capture field.
Possible values are:
Capture: starts capture process if field is not signed
Clear: clears capture field if it is signed
Clear-Capture: clears capture field if it is signed and/or starts capture
process
ShowClearConfirmation - specify if the mobile-gui should display a
confirmation dialog before the capture field is cleared.
Possible values are True or False.
Action is available since V1.28.

59 Initial UI ready Notification for the hosting application that the initial UI processing
has finished and the first page/image of the document is displayed.
Action is available since V1.29.

60 Cancel capturing Action that cancels the current capture process.
Action is available since V1.30.

61 Scroll document view Scrolls the document view by specified amount of pixel in specified
orientation.
[0] - scroll options as JSON String in the format
{"Orientation":"Vertical", "Pixel":100}
Orientation - Vertical or Horizontal
Pixel - Numeric amount of pixel (use negative amount for scrolling up
or scrolling left)
Note In IE7 and IE8 dialogs which overlay the document view are also
scrolled.
Action is available since V1.31.

62 Show audit trail Displays the audit trail in a new browser window/tab.

61

Kofax SignDoc Web Developer's Guide

Action Id Action Name Parameters/Description

63 Field updated Notification for the hosting application that the user has updated a
field.
[0] - field information as json string in the format
{"FieldId":"xyz", "FieldType":"Signature", "FieldAction":"Captured"}
FieldId - the field id of the updated field
(in case of a radiobutton the field id is the name of the radiobutton
group followed by the index of the radiobutton in brackets, for
example Group[1]).
FieldType - the type of the updated field.
Possible values are:
Signature: a signature field
Image: an image field
C2S: a Click-to-Sign field
Text: a text field
Checkbox: a checkox field
Radiobutton: a radiobutton field
FieldAction - the update action of the field.
Possible values are:
Captured: the field was captured (signature, image and c2s)
Cleared: the field was cleared (signature, image and c2s)
Updated: the text field was updated (text)
Selected: the field was selected (checkbox and radiobutton)
Unselected: the field was unselected (checkbox)
FieldValue - the value of the field (currently only set for FieldType Text)
Action is available since V1.36.

64 General notification Notification for the hosting application that something happened.
[0] - notification information as json string in the format
{"NotificationID":"xyz", "Parameters":{...}}
See Hints and examples, section "Options parameter" for a list of all
notifications and their parameters.

65 Select field Selects corresponding field and scrolls it into view
[0] - the field id

Notification about action events
The hosting application is informed about events by the mobile-gui.

For sending notifications there are different approaches available for web-app and mobile-app.

62

Kofax SignDoc Web Developer's Guide

mobile-app
• 'Windows 8' mobile-app:

The notification is sent by calling the 'Windows 8' specific JavaScript method
'window.external.notify(urlString)'.
The structure of the urlString parameter is:
sdweb://localhost/action?actionid=xx&event=yy¶ms=zzz;aaa;...etc

• All other mobile-apps:
The notification is sent via an URL change.
The structure of an URL is:
sdweb://localhost/action?actionid=xx&event=yy¶ms=zzz;aaa;...etc

 All URL calls using protocol sdweb have to be blocked by the mobile-app, no matter if the
event is consumed or not!

web-app

The notification is sent by calling the JavaScript method

_spRemote_notification(int actionId, int eventId, String[] parameters)

which has to be provided globally in the HTML <Head> section by the hosting html page of the web-
app.

Possible events and their parameters

Event Id Event Name Parameters/Description

1 EXECUTED Parameters are depending on the action. See
explanation below the table

2 ENABLED_STATE_CHANGED [0] - 'true' or 'false' (means: enabled=true or
enabled=false)

3 VISIBLE_STATE_CHANGED [0] - 'true' or 'false' (means: visible=true or
visible=false)

4 LABEL_CHANGED [0] - the label
currently not available

5 TOOLTIP_CHANGED [0] - the tooltip
currently not available

6 TOGGLE_STATE_CHANGED [0] - 'true' or 'false' (means: active=true or
active=false)
currently not available

Currently the event with id 1 (see table above) will only be sent by following actions:

29 - mobile-gui loaded

30 - Capture field clicked

34 - Dialog button clicked (notification only for dialogs requested via action 33)

63

Kofax SignDoc Web Developer's Guide

35 - Localized data loaded

36 - Document loaded

37 - Page changed

44 - Show SoftKeyboard

48 - Refresh WebView

50 - Document snapshot available

55 - InputField clicked

56 - Application exits

59 - Initial UI ready

63 - Field updated

64 - General notification

Acknowledge notifications

Because the url change listener from the mobile-app may not receive events if they are sent in very
short intervals an acknowledge mechanism is implemented.

If acknowledge mode is enabled each event/notification sent from the mobile-gui has to be
acknowledged first by the hosting application before the next event will be sent. The acknowledge
mode can be enabled by setting the corresponding parameter in action 28.

 The notification with actionId 29 (mobile-gui loaded) and actionId 56 (Application exits) have to
be acknowledged by the hosting application in any case.

In order not to block the mobile-gui completely when an event is not acknowledged by the hosting
application, a timeout mechanism is implemented after which the next event is sent automatically.

If an event is not acknowledged inside the corresponding timeframe (1500ms) it will be re-send up
to a configurable max number of retries. Per default it is configured to be re-sent once.

The acknowledge is done by calling one of the following JavaScript methods:

_spRemote_acknowledge(int actionId, int event)
_spRemote_acknowledge2(String parameter)

 For the method containing the parameters 'actionId' and 'event' these have to be delimited by |
(i.e. 29|1).

mobile-app document sequence example
1. SDWeb is called from post request (WebPortal in mobile-app).

2. Mobile-gui is loaded in WebView of mobile-app.

64

Kofax SignDoc Web Developer's Guide

3. Notification from mobile-gui:
sdweb://localhost/action?actionid=29&event=1¶ms=...

4. Mobile-app registers itself by calling
_spRemote_execute(28, [DEVICE_ID, ACKNOWLEDGE_MODE, VERSION])

5. If mobile-app provides its own toolbar the toolbar of the mobile-gui can be disabled by calling
_spRemote_execute(31, [false])

6. The user wants to capture a signature (he clicks in a signature field).

7. Notification from mobile-gui:
sdweb://localhost/action?actionid=30&event=1¶ms=0;FIELD_ID

8. After capturing a signature mobile-app calls
_spRemote_execute(32, [FIELD_ID, '0', 'a', SIGNATURE_DATA])

or when the capturing is canceled SignDocMobile calls
_spRemote_execute(32, [FIELD_ID, '1', ''])

Hints and examples
JavaScript example of executing action 28 - Register hosting application

var params=[];
params[0]='deviceid123';
params[1]='true';
params[2]='V1.28';
params[3]= ...app environment...
try{
 _spRemote_execute(28,params);
}
catch(err){
 window.alert(err);
}

JavaScript example of executing action 33 - Display dialog in mobile-gui

// 1. display info message
var params=[];
params[0]='dialogId-123';
params[1]='0';
params[2]='Test info message';
params[3]='';
params[4]='';
try{
 $wnd._spRemote_execute(33, params);
}
catch(err){
 window.alert(err);
}

// 2. display cancel dialog
// cancelMsg and cancelTitle needs to be read when mobile-gui sends LocalizedDataLoaded
 notification:
// sdweb://localhost/action?actionid=35&event=1¶ms=en,'the cancel message','the
 cancel title',... etc
var cancelMsg;

65

Kofax SignDoc Web Developer's Guide

var cancelTitle;

var params=[];
params[0]='dialogId-456';
params[1]='3';
params[2]=cancelMsg;
params[3]='0,1';
params[4]=cancelTitle;
try{
 $wnd._spRemote_execute(33, params);
}
catch(err){
 window.alert(err);
}
// 2.1 receive Dialog button clicked notification from Cancel dialog

// User clicked Yes button:
// sdweb://localhost/action?actionid=34&event=1¶ms=dialogId-456,0

// execute action 2 - 'Cancel document'
try{
 var params=[];
 $wnd._spRemote_execute(2, params);
}
catch(err){
 window.alert(err);
}

// User clicked No button:
// sdweb://localhost/action?actionid=34&event=1¶ms=dialogId-456,1

// do nothing

App environment
• mobile-app

Example of a valid JSON string format:
{"AppVersion":"1.2.0", "ScreenSize":"1024x768@2", "OS":"iPhone OS",
 "AppID":"de.softpro.SignDocMobile", "DeviceModel":"iPhone4,1",
 "CPUModel":"12.6", "CPUClock":"530000000", "DeviceVendor":"Apple", "CaptureType":
["SPen", "CPen", "Mouse"], "ConfigLinkID":"000"}

• web-app
Example of a valid JSON string format:
{"WebApp":{"SignatureCaptureDevice":"Plugin",
 "SignatureCaptureConfig":"SD_SignatureCaptureDialog",
 "ImageCaptureDevice":"Plugin", "ImageCaptureConfig":"SD_ImageCaptureDialog"}}

Available parameters and their values:

Parameter Value

SignatureCaptureDevice Mandatory parameter
Plugin | External | HTML5 | Auto

SignatureCaptureConfig Name of the corresponding configuration element in
mobile_configuration.xml that is used by the signature capture dialog
Default for Plugin: SD_SignatureCaptureDialog for Plugin
Default for HTML5: SD_SignatureCaptureDialogHtml5 for HTML5

66

Kofax SignDoc Web Developer's Guide

Parameter Value

ImageCaptureDevice Mandatory parameter
Plugin | External | HTML5 | Auto

ImageCaptureConfig Name of the corresponding configuration element in
mobile_configuration.xml that is used by the image capture dialog
Default for Plugin: SD_ImageCaptureDialog)
For HTML5 there is no custom configuration possible.

C2SCaptureDevice Plugin | External
Default: Plugin

ResultUrl True | False
Default: True

Description of parameters and values:

Parameter Description

Plugin Data is captured with Kofax SignDoc Device Support. If it is not available capturing is not
possible and an error is shown.

External Data is captured/provided by the web-app

HTML5 Signature or image is captured via HTML5 canvas

Auto Signature or image is captured with Kofax SignDoc Device Support, if it is not available
signature or image is captured with HTML5.
Note that once the capturing falls back to HTML5 no check for available capture
mechanism is done anymore until the page is reloaded.

ResultUrl Triggers if the result-url should be displayed after exiting the application via Finalize,
Cancel, Session Timeout, etc

Options parameter for action 52 (Update capture field)

Example of a valid JSON string format:

{"Signer":"Hugo Habicht", "SignTime":"24.12.2012 10:30:23"}

Available parameters and their values:

Parameter Value

Signer The signer name (only available for mobile-app)

SignTime The signing time (only available for mobile-app)

Payload Additional signing information for later use (i.e. in a custom plugin)

Capabilities parameter for action 29 (mobile-gui Loaded)

Example

{"capabilities":{"actions":
[28,29,1,2,3,5,6,7,8,9,13,17,18,19,20,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,
 47,48,49,50,51,52,53,54]}}

67

https://knowledge.kofax.com/E-signature/Overview-Downloads/SignDoc_Product_Release_Information
https://knowledge.kofax.com/E-signature/Overview-Downloads/SignDoc_Product_Release_Information

Kofax SignDoc Web Developer's Guide

actions: all action ids supported in the current RemoteInterface version of the mobile-
gui

All notifications and their parameters for action 64

Document validation

Document is validated. This is currently done before document is sent to archive/DMS. If the
validation fails the document is not sent to the archive/DMS.

NotificationId:

DocumentValidation

Parameters:

"State":"Success" or "Failure"

"Message":"..." // the failure message or empty if success

Document archiving/DMS status

Document is sent to archive/DMS.

NotificationId:

DocumentArchiving

Parameters:

"State":"Success" or "Failure"

Message":"..." // the failure message or empty if success

Field selected

An interactive field is selected.

NotificationId:

FieldSelected

Parameters:

"State":"True" or "False" // field selected or unselected

"FieldId":"..." // the selected or unselected field id/name

"HtmlId":"..." // the html id of the selected field/div

Field clicked

An interactive field is clicked by the user.

NotificationId:

FieldClicked

68

Kofax SignDoc Web Developer's Guide

Parameters:

"FieldId":"…" // the clicked field id/name

"HtmlId":"..." // the html id of the clicked field/div

Field canceled

The editing of an interactive field is canceled by the user.

NotificationId:

FieldCanceled

Parameters:

:"FieldId":"…" // the canceled field id/name

:"HtmlId":"..." // the html id of the canceled field/div

Session expired

The current session has expired and the application will either exit immediately or (if configured)
after user clicks OK button in the session expired info dialog.

NotificationId: SessionExpired

Server down

The server can't be connected anymore (server down or connection/network issue) and the
application will exit immediately.

NotificationId: ServerDown

Version history

Version Description

V1.0 Initial version

V1.1 Added chapter "Hints and examples"
Added try/catch hint
New remote actions available for SignDocMobile: 'Download document' and 'Zoom by
zoomfactor'

V1.2 Added new action 32 (Update capture field)
Added new parameters to action 30 (Capture field clicked) for future use

69

Kofax SignDoc Web Developer's Guide

Version Description

V1.3 Added new action 33 (DisplayGWTDialog)
Added new action 34 (DialogButtonClicked)
Added new action 35 (LocalizedDataLoaded)
Added new Hints in chapter "Hints and examples"
Added info that signature data has to begin with character 'a'

V1.4 Added new method _spRemote_executeBinary(int actionId, String[] parameters, byte[]
binaryData)

V1.5 Refactored action 32 (Update capture field)

V1.6 Added new action 36 (DocumentLoaded)
Added new action 37 (PageChanged)

V1.7 Added acknowledge mode parameter to action 28 RegisterSignDocMobile
Added part "Acknowledge notifications"

V1.8 Added version string parameter to action 28 RegisterSignDocMobile

V1.9 Action 7 (Highlight fields) is available now
New params for action 36 (DocumentLoaded)
Changed state of action 31 (Use GWT-Client toolbar) to not supported because of
unresolved issues regarding the native toolbar.

V1.10 Updated acknowledge mechanism:
If an event is not acknowledged inside the corresponding timeframe (1500ms) it will be
resend up to a configurable max number of retries. Per default it is configured to be
resend once.

V1.11 Added new action 38 (AddCaptureField)
Added new action 39 (DownloadDocument)
Added new action 40 (OpenDocument)
Added new action 41 (E-Mail)
Updated action 29 (GWT-Client loaded) parameter
Removed actions from list which are not accessible by SignDoc Mobile

V1.12 Added new action 42 (ShowHelp)

V1.13 Added new action 43 (NativeToolbar)
Added new action 44 (SoftKeyboard)
Added new action 45 (ScreenOrientationChanged)

V1.15 SDWeb server supports extended signature 'B' format
Updated comments for action 32

V1.16 Added new action 47 (UpdateImageFieldExternal)
Added note in comments for action 32

V1.17 Action 45 (ScreenOrientationChanged) is deprecated and will not be used anymore by the
GWT-Client.
The GWT-Client recognizes a screen orientation change by itself now.
Extended parameter of action 18 (Zoom by zoomfactor)

70

Kofax SignDoc Web Developer's Guide

Version Description

V1.18 Added support for Windows 8 Apps:
_spRemote_execute2(String parameters), _spRemote_acknowledge2(String parameter)

V1.19 New param for action 32 (2. backward compatibility)

V1.20 Added new action 48 (RefreshWebView)
New param for 28 (RegisterSignDocMobile) containing the app environment
New chapter "App environment (JSON string format)"

V1.21 Added new action 49 (RequestDocumentSnapshot)
Added new action 50 (DocumentSnapshotAvailable

V1.22 Added new action 52 (update capture field (EXT))

V1.23 Deprecated action 5 (Finalize document)
Added new action 54 (Validate and finalize) which has to be used instead of action 5 when
RemoteInterface version >= V1.24

V1.24 Deprecated action 5 (Finalize document)
Added new action 54 (Validate and finalize) which has to be used instead of action 5 when
RemoteInterface version >= V1.24

V1.25 Added new parameter for action 29 ((GWT-Client(Module) loaded))

V1.26 Added new action 55 (InputField clicked)

V1.27 Added new action 56 (Application exits)

V1.28 Desktop browser support (introduced module names: hosting application, web-app,
mobile-app, native-toolbar and mobile-gui)
Added new chapter "Dictionary"
Deprecated action 2 (Cancel document)
Added new action 57 (Cancel document) which has to be used instead of action 2 when
RemoteInterface version >= V1.28
Added new action 58 (Process capture field)
Updated parameter of action 3 (Clear captured field)

V1.29 Added new action 59 (Initial UI ready)
Updated hints in chapter "Execute actions in mobile-gui"

V1.30 Added new action 60 (Cancel capturing)
Updated notes for action 34 (Dialog button clicked)

V1.31 Added new action 61 (Scroll document view)

V1.32 Added new parameter for action 28 (RegisterSignDocMobile)

V1.33 Added HTML5 as possible value for SignatureCaptureDevice parameter of action 28
(RegisterSignDocMobile)

71

Kofax SignDoc Web Developer's Guide

Version Description

V1.34 New field type 2=c2s-field in action 30 (Capture field clicked)
Added payload option for action 52 (update capture field) - see Hints and examples
section "Options parameter")
New format 'c2s' option in action 52 (update capture field (EXT))
Added new parameter C2SCaptureDevice in Hints and examples, section "web-app"
Changed parameter name NATIVE to EXTERNAL in chapter "Hints and examples", web-app
Added new parameter C2SCaptureDevice in Hints and examples, section "web-app"

V1.35 Added new action 62 (Show audit trail)

V1.36 Added new action 63 (Field updated)

V1.37 Added new parameter value 'Auto' in chapter "Hints and examples", web-app
Added new parameter C2SCaptureDevice in Hints and examples, section "web-app"
Added new parameter C2SCaptureDevice in Hints and examples, section "web-app"
Added new parameter 'ResultUrl' in chapter "Hints and examples", web-app
Added new parameter C2SCaptureDevice in Hints and examples, section "web-app"
Action 14 (print document) is available now
Updated comment for action 55 (InputField displayed)

V1.38 Added infos about the 'Same Origin Policy'.
New action 64 (General notification).
Added options parameter for action 64.
New action 65 (Select field).
New json parameter FieldValue for action 63.

V1.39 Updated infos about the ‘Same Origin Policy’.
Added options parameter FieldCanceled for action 64.

V1.40 Added options parameter 'SessionExpired' and 'ServerDown' for action 64.
Added new parameter values 'Auto' and ‘HTML5’ for image capturing in chapter "Hints
and examples", web-app
Added new parameter C2SCaptureDevice in Hints and examples, section "web-app"

Dictionary
mobile-gui

The web client user interface of SignDoc Web which provides the RemoteInterface and is specially
designed for the need of mobile devices.

mobile-app

The native app on a mobile device which hosts the mobile-gui in a WebView component. It is also
called SignDoc Mobile.

web-app

The web application which hosts the mobile-gui in an iFrame.

72

Kofax SignDoc Web Developer's Guide

hosting application

The application which hosts the mobile-gui. This can be either a mobile-app or a web-app.

web-toolbar

The toolbar of the mobile-gui.

native-toolbar

The toolbar of the hosting application which replaces the web-toolbar of the mobile-gui.

73

Chapter 4

REST interface

The SignDoc Web REST Interface provides a simplified possibility to work with PDF and (restricted
for) TIFF documents from different clients via HTTP protocol.

According to the REST architecture, a RESTful web service should not keep a client state on the
server. This restriction is called Statelessness. This has the advantage, that web services can
treat each method request independently and there is no need to maintain the client’s previous
interactions.

Sometimes it makes sense to break this restriction. SignDoc Web provides a service which allows
to upload one or more documents for further processing. The uploaded documents are not stored
permanently in SignDoc Web usually, but rather only temporarily for processing by the client. This
is the reason why it is not very helpful to handle documents stateless in the SignDoc Web REST
service.

Usually a document is uploaded and maybe prepared in the first call. The uploaded document is
stored in a server session. The next document related calls are processed with the document which
is stored in the client specific session workspace. After processing the document is removed from
the session workspace again.

The client must pass its context to the REST interface. In this case the context is the document
id and the session identifier. The document id is either predefined or created by the server and
returned in the response of the document upload request. The session id is returned in the
JSESSIONID cookie of the response.

Example

1. The document is uploaded to SignDoc Web for processing:
POST http://localhost:6610/sdweb/rest/v5/documents?init=true

(body contains the document, content type has multipart/form-data)
The response contains the document id:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?><restLoadId
xmlns="http://www.kofax.com/ksd/sdweb/rest/v5"><type>DOCID</
type><value>83501</value></restLoadId>

The response header contains the session id:
Set-Cookie=[JSESSIONID=5B29777C5A65E50BE24B3EA715454135;path=/
sdweb;HttpOnly]

74

Kofax SignDoc Web Developer's Guide

2. The document is updated.
Update the value of a text field:
PUT http://localhost:6610/sdweb/rest/v5/documents/83501/textfields/text-1

The body contains the value to be changed:
{"restTextFieldInput":{"value":"abc123"}}

The request header contains the session id:
Cookie: JSESSIONID=5B29777C5A65E50BE24B3EA715454135

3. The document is removed from the session:
DELETE http://localhost:6610/sdweb/rest/v5/documents/83501

The request header contains the session id:
Cookie: JSESSIONID=5B29777C5A65E50BE24B3EA715454135

A document can be loaded into workspace from different sources. The document can be uploaded
directly to the server (e.g. via REST API) or can be loaded from a specific URL. In addition it is
possible to load a raw PDF document which was deposited in SignDoc Web before as a so-called
document template.

A preloaded document can be edited directly after upload or it can be handled delayed without
having the uploaded document in the session workspace of the requesting client. For delayed
processing the uploaded document is only available then in a temporary storage.

In order to make it available for editing in the session workspace for a specific client he must
activate the document (load into session workspace) by an additional initialization call via reference
id which was (optionally) returned by the preload call (init=false). The client can request any
document information or he can modify the document. The document can be edited by a client until
he removes the document explicitly from the session workspace or until session timeout occurs.

The information exchanged between client and application server is typically in JSON format, but
could be also XML.

SignDoc Web Server RESTful web services are realized with the JAX-RS Reference Implementation
"Jersey" from Oracle. Jersey allows to use various JSON notations. Each of these notations serializes
JSON in a different way. SignDoc Web accepts and produces the MAPPED JSON notation (see JSON
Notations) with two additional characteristics.

1. The root element (normally declared with @XmlRootElement) is included in the JSON string.

2. Single list or array elements are also surrounded with square brackets ‘[‘ and ‘]’

The notation will be described using a simple example. Following are JAXB beans, which will be
used.

Simple address bean

@XmlRootElement
public class Address {
 public String street;
 public String town;
 public Address(){}
 public Address(String street, String town) {
 this.street = street;
 this.town = town;
 }

75

https://jersey.java.net/documentation/1.6/json.html#d4e948
https://jersey.java.net/documentation/1.6/json.html#d4e948

Kofax SignDoc Web Developer's Guide

}

Contact bean

@XmlRootElement
public class Contact {
 public int id;
 public String name;
 public List<Address> addresses;
 public Contact() {};
 public Contact(int id, String name, List<Address> addresses) {
 this.name = name;
 this.id = id;
 this.addresses = (addresses != null) ? new LinkedList<Address>(addresses) :
 null;
 }
 }

The following text will be mainly working with a contact bean initialized with:

Initialization

I.e. contact bean with

id=2, name="Bob"

containing a single address

(street="Long Street 1",town="Short Village")

JSON expression produced using mapped notation

{"contact": {"id":"2",
"name":"Bob",
"addresses":[{"street":"Long Street 1",
 "town":"Short Village"}]}}

 “contact” as root element is included as well as the square brackets […] around the addresses
element.

The client access to addresses elements is then equivalent if another address was added. With

contact.addresses.add(new Address("Short Street 1000", "Long Village"));

you would get

{"contact": {"id":"2",
"name":"Bob",
"addresses":[{"street":"Long Street 1","town":"Short Village"},
 {"street":"Short Street 1000","town":"Long Village"}]}}

If you access

"Short Village"

value e.g. from a JavaScript client, you will write

addresses[0].town

76

Kofax SignDoc Web Developer's Guide

Empty lists or arrays are not written to result.



{
 "contact": {
 "id": "2",
 "description": "Lorem ipsum dolor sit amet, \n consectetur adipiscing elit..."
 }
}

{
 "contact": {
 "id": "2",
 "description": "Lorem ipsum dolor sit amet, \n consectetur adipiscing elit..."
 }
}

If text with the line breaks is needed to be inserted in HTML, it should be prepared properly.

REST URL

RESTful web services can be accessed via a REST path which is appended to the SignDoc Web
context. It is followed by the SignDoc Web REST version number and the requested resource with
any necessary parameters.

The URL to the SignDoc Web API has the following syntax:

scheme://domain:port/path?query_string

whereas path is divided in the parts

context/rest/version-number/resource

Part Description

context The context is sdweb by default.

rest The rest part is fixed.

version-number The version-number is v5.

resource The resource part identifies the requested resource, for example
documents.

Example

http://localhost:6610/sdweb/rest/v5/documents

REST error response
HTTP is based on the exchange of representations, and that applies to errors as well.

77

Kofax SignDoc Web Developer's Guide

When a server encounters an error, either because of problems with the request that a client
submitted or because of problems within the server, always return a representation that reflects the
state of the error condition. This includes the response status code, response headers, and a body
containing the description of the error.

For errors due to client inputs, return a representation with a 4xx status code. For errors due to
server implementation or its current state, return a representation with a 5xx status code.

In both cases, a Date header with a value indicating the date-time is included at which the error
occurred. The date is returned in RFC 1123 format (see Date/Time formats).

In case of an error the response body contains a RestMessages element.

In case of an error the response body contains a RestMessage element.

RestMessageList
• list (RestMessage, optional): List of RestMessage elements

RestMessage
• code (number): SignDoc Rest message code
• message (string): Message description
• type (RestMessage.TYPE): Message type. Possible values: ERROR, WARNING, INFO

Example response body (JSON)

{
 "restMessageList" : {
 "list" : [{
 "code" : 105,
 "message" : "Requested page number range string '1-5' does not contain valid
 numbers",
 "type" : "ERROR"
 }]
 }

Example response body (XML)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<restMessageList>
 <list>
 <code>105</code>
 <message>Requested page number range string '1-5' does not contain valid
 numbers</message>
 <type>ERROR</type>
 </list>
</restMessageList>

REST API reference v5

78

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.3.1

Kofax SignDoc Web Developer's Guide

Preload PDF document with commands and prepare options
This request uploads PDF document and returns a reference id for following delayed loading. The
uploaded document is only available then in a temporary storage. In order to make it available for
editing in the session workspace for a specific client he must load the uploaded document explicitly
in another call (see Activate preloaded PDF document for processing) with the reference id which
was returned by the upload call.

If the clients wants to work directly with the document after uploading he can define the parameter
init=true. With this parameter the uploaded document is loaded immediately in the session
workspace of the requesting client for direct usage. In this case the preload call returns the
document id (instead of the reference id).

In addition to the PDF document it is possible to define also commands and options for the prepare
phase.

URL

http://host_server:port_number/sdweb/rest/v5/documents/

 host_server is the host domain name or IP address, and port_number is the host port number (if
applicable).

Produces

JSON, XML

Header

Accept: application/json, application/xml

Content-Type: multipart/form-data

Method

POST

Example request

POST http://localhost:6610/sdweb/rest/v5/documents

Example request URL

POST http://localhost:6610/sdweb/rest/v5/documents

The following example shows a preload result with init=false and an included reference id within the
response body.

Response body (JSON)

Example preload result (init=false) with an included reference id in the response body:

"restLoadId" : {

79

Kofax SignDoc Web Developer's Guide

 "type" : "REFID",
 "value" : "1393231005996_1dea12f6-e263-4f43-a144-594b1bb78112"
}

Response Body (XML)

Example preload result (init=true) with an included document id in the response body:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <restLoadId xmlns="http://www.kofax.com/ksd/sdweb/rest/v5" >
 <type>DOCID</type>
 <value>123</value>
</restLoadId>

Query parameters
• init (boolean, optional): Causes the uploaded document to be available in the session workspace

for the client on the server.
Other parameters (commands and options) can be sent in the BodyPart in the Multipart Message
(see http://www.w3.org/Protocols/rfc1341/7_2_Multipart.html). Default value: false

The PDF document (part) can be sent either binary (as is) or as base64 encoded text.

The following document data body parts are supported:

• docdata (byte[] or string, required): The PDF document, either binary with media type
application/octet-stream (of body part) or base64 encoded (with media type: text/plain)

Options and Commands (see also chapter Integration in existing web applications).

The following Options are supported:

• docid (string, optional): Id of document
• format (string, optional): Possible values are “PDF”, “MS_WORD”, “JPG”, “JPEG”, “PNG”, “BMP” and

“TIFF”.
Default value: PDF. This means that PDF is the default document format.

• clearsignatures (string, optional): If the value is set to “true” then all signatures of the document
are cleared.

• originaltagid (string, optional): If the value is set to "false" then the curly braces from the
signature line tag will be removed when using it as signature name in the PDF document.
Signature lines can be used to insert signature fields if the input document has format
‘MS_WORD’.

• dmsid (string, optional): Id of DMS plugin
• preparepluginid (string, optional): Id of Prepare plugin
• signaturearchiveid (string, optional): Id of SignatureArchive plugin
• validatepluginid (string, optional): Id of Validate plugin
• resultparamspluginid (string, optional): Id of ResultParams plugin
• docidsalt (string, optional): Salt value for document id generation, will be passed to

getNewDocumentId(docidsalt) of DMS plugin (but only if docid parameter is not set and the
document id was not already defined before)

• cmd[_<uniqueid e.g. number>] (string, optional): Command (see also chapter Integration in
existing web applications)

80

Kofax SignDoc Web Developer's Guide

Commands

Example command with key and value for inserting text:

Key

cmd_1

Value

type=addtext|text=Lorem ipsum|pages=1|left=10|bottom=10|fontsize=100|
fontname=Helvetica|textcolor=#FF0000|opacity=0.5

Example command with key and value for inserting a signature field.

Key

cmd_2

Value

name=sig1|page=1|type=formfield|subtype=signature|bottom=10|left=10|width=150|
height=50

Response

Status 201 (CREATED): The document could be preloaded. Otherwise a SignDoc Web status code is
returned together with the explaining messages. If parameter init is set (true) then the response
body returns the documentid of the preloaded document otherwise the reference id which must be
used for delayed loading of the document in session workspace.

• restLoadId (RestLoadId, required): Information which can be used for following document
access. Load id can be either document id or reference id.

RestLoadId

• type (RestLoadId.TYPE, optional):
Can be DOCID (if init parameter equals true) or REFID (if init=false for deferred loading)

• value (string, optional): Id value

Activate preloaded PDF document for processing
This request returns a snapshot of a previously loaded document which must be available in
the same session (see Preload PDF document with commands and prepare options and Activate
preloaded PDF document for processing).

URL

http://host_server:port_number/sdweb/rest/v5/documents/refid/{refid}

 host_server is the host domain name or IP address, and port_number is the host port number (if
applicable).

81

Kofax SignDoc Web Developer's Guide

Produces

JSON, XML

Header

Accept: application/json, application/xml

Method

GET

Example request

GET http://localhost:6610/sdweb/rest/v5/documents/
refid/1393321111767_4acca35c-0974-440a-b632-9f5a7970f856

Example response body (JSON)

"restLoadId" : {
 "type" : " DOCID ",
 "value" : "123"
 }

Example response body (XML)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <restLoadId xmlns="http://www.kofax.com/ksd/sdweb/rest/v5" >
 <type>DOCID</type>
 <value>123</value>
 </restLoadId>

Path parameters
• refid (string, required): Reference Id which was returned from a document preload request with

init=false

Response status

Status 200 (OK): The requested document could be retrieved for download. Otherwise 404 (NOT
FOUND), if ID not found or invalid. A SignDoc Web status code is returned together with an
explaining message if the request was not successful. The response body returns the binary
document, either in PDF format or as TIFF document.

Response status 200 (OK): The document could be activated for processing. Otherwise a SignDoc
Web status code is returned together with the explaining messages.

The response body returns the document id which must be used for later access to the document.
The document id was either explicitly specified in the preload call or was implicit generated by the
server.

• restLoadId (RestLoadId, required): Information which can be used for following document
access. Load id contains the document id (in this case).

82

Kofax SignDoc Web Developer's Guide

RestLoadId

• type (RestLoadId.TYPE, optional):
Document ID. Default value: DOCID

• value (string, optional): Id value

Append PDF document to previously loaded document
The previously (up-) loaded target PDF document must be available in the same session (see
Preload PDF document with commands and prepare options and Activate preloaded PDF document
for processing).

URL

http://host_server:port_number/sdweb/rest/v5/documents/{did}/addon

 host_server is the host domain name or IP address, and port_number is the host port number (if
applicable).

Produces

JSON, XML

Header

Accept: application/json, application/xml

Content-Type: text/plain

Cookie: JSESSIONID=…

Method

POST

Example request

POST http://localhost:6610/sdweb/rest/v5/documents/4711/addon

Path parameters
• did (string, required): Document id of the already loaded target document to which the passed on

PDF document should be appended.

The PDF document must be sent as base64 encoded text in the request body.
• (string, required): The PDF document to be appended (base64 encoded with media type: text/

plain)

Response status

Status 201 (CREATED): The document could be appended to the target document which is
referenced by document id. Otherwise a SignDoc Web status code is returned together with the
explaining messages.

83

Kofax SignDoc Web Developer's Guide

Attach PDF document to previously loaded document
The previously (up-) loaded target PDF document must be available in the same session (see
Preload PDF document with commands and prepare options and Activate preloaded PDF document
for processing).

URL

http://host_server:port_number/sdweb/rest/v5/documents/{did}/attachment/{name}

 host_server is the host domain name or IP address, and port_number is the host port number (if
applicable).

Produces

JSON, XML

Header

Accept: application/json, application/xml

Content-Type: text/plain

Cookie: JSESSIONID=…

Method

POST

Example request

POST http://localhost:6610/sdweb/rest/v5/documents/4711/attachment/
AuditTrail.pdf

Path parameters
• did (string, required): Document id of the already loaded target document to which the passed on

document should be attached.
• name (string, required): The name is used as filename of the attachment and must not contain

slashes, backslashes, and colons. An attached pdf document must be named with the extension
"pdf" otherwise Adobe Reader is not able to open or to export the extension. Example for a valid
name is "AuditTrail.pdf

Query parameters
• description (string, optional): Description text of the attachment (can be displayed in Adobe

Reader
• lastmodification (string, optional): The time and date of the last modification of the file being

attached to the document (can be displayed in Adobe Reader). Must be in ISO 8601 extended
calendar date format with optional timezone, e.g. 2009-06-30T18:30:00+02:00.

The PDF document must be sent as base64 encoded text in the request body.
• (string, required): The document to be appended (base64 encoded with media type: text/plain)

84

Kofax SignDoc Web Developer's Guide

Response status

Status 201 (CREATED): The document could be attached to the target document which is referenced
by document id. Otherwise a SignDoc Web status code is returned together with the explaining
messages.

Remove attachment from previously loaded document
The previously (up-) loaded target PDF document must be available in the same session (see
Preload PDF document with commands and prepare options and Activate preloaded PDF document
for processing).

URL

http://host_server:port_number/sdweb/rest/v5/documents/{did}/attachment/{name}

 host_server is the host domain name or IP address, and port_number is the host port number (if
applicable).

Produces

JSON, XML

Header

Accept: application/json, application/xml

Cookie: JSESSIONID

Method

DELETE

Example request

DELETE http://localhost:6610/sdweb/rest/v5/documents/4711/attachment/
AuditTrail.pdf

Path parameters
• did (string, required): Document id of the already loaded target document from where the

attachment should be removed.
• name (string, required): The name of the attached document that should be removed. It is also

used as filename of the attachment and must not contain slashes, backslashes, and colons.

Response status

Status 200 (OK): The attachment could be removed from the document which is referenced by
document id. Otherwise a SignDoc Web status code is returned together with the explaining
messages.

85

Kofax SignDoc Web Developer's Guide

Get document information
This request returns information about a previously loaded document, which must be available in
the same session as the requested sessionid.

URL

http://host_server:port_number/sdweb/rest/v5/documents/{docId}/info

 host_server is the host domain name or IP address, and port_number is the host port number (if
applicable).

Produces

XML, JSON

Header

Accept: application/xml, application/json

Method

GET

Example request

GET http://localhost/sdweb/rest/v5/documents/123/info?
fields=text,capture&pages=1-3&metadata=true

Headers

Accept: Application/xml

Content-Type text/plain

Path parameters
• docId (string, required): Document Id (which was returned from a document preload request with

init=true)

Query parameters
• fields (string, optional): Specifies fields for which field information should be returned. “all” is the

default value and means all fields (of supported field types) are included within corresponding
pages. You can define also subset of specific field types, separated by comma. Possible values are
“capture” (includes captured signatures, but also images from a camera and Click2Sign fields),”
text”, “checkbox”, “radiobutton”. You could also provide the value ”none” (as single value) if no
field information is required. Default value: all

• pages (string, optional): Specifies the pages information that should be included. “all” is the
default value and means all pages of the document. You can define a single page number, a list
of page numbers (separated by commas) or a range of page numbers (separated by a minus sign
‘-‘) or “0” if no page info is required. Examples are ‘1, 2,4’ or ‘2-5’ or also ‘1-3,5’ (without quotes).
Default value: all

86

Kofax SignDoc Web Developer's Guide

• metadata (boolean, optional): Specifies whether SignDoc Web specific metadata should be
included in the response. SignDoc Web metadata is stored in the ‘encrypted’ collection of the
SignDoc document properties. Default value: true

Response status

Status 200 (OK): The document information could be retrieved. Otherwise a SignDoc Web status
code is returned together with the explaining messages.

The response body returns a RestDocumentOutput structure.

RestDocumentOutput

• signatureFields (List<RestSignatureFieldOutput>, optional): List of signature field information
elements. One entry with information is included in the list for each signature field within the
document. Precondition for this list is that signature fields are requested, either by setting the
fields parameter to ‘all’ (or by omitting the fields parameter, which is the same as setting ‘all’) or
by setting the fields parameter to signature (as one of the allowed parameter values, separated
by comma).

• textFields (List<RestTextFieldOutput, optional): List of text field information elements. One entry
with information is included in the list for each text field within the document. Precondition
for this list is that text fields are requested, either by setting the fields parameter to ‘all’ (or by
omitting the fields parameter, which is the same as setting ‘all’) or by setting the fields parameter
to ‘text’ (as one of the allowed parameter

• checkboxFields (List<RestCheckboxFieldOutput, optional): List of checkbox field information
elements. One entry with information is included in the list for each checkbox field within the
document. Precondition for this list is that text fields are requested, either by setting the fields
parameter to ‘all’ (or by omitting the fields parameter, which is the same as setting ‘all’) or by
setting the fields parameter to ‘checkbox’ (as one of the allowed parameter values, separated by
comma

• radioButtonFields (List<RestRadioButtonFieldOutput>, optional): List of radio button (group)
field information elements. One entry with information is included in the list for each radio
button (group) field within the document. Precondition for this list is that text fields are
requested, either by setting the fields parameter to ‘all’ (or by omitting the fields parameter,
which is the same as setting ‘all’) or by setting the fields parameter to ‘radiobutton’ (as one of the
allowed parameter values, separated by comma).

• id (string, optional): The document id (must be unique within the session)
• description (string, optional): The document id (at present)
• totalPageNumber (integer, optional): The total number of pages in the document
• pages (List<RestPageInfo, optional): A list of page information elements, one entry for each

included page. The pages parameter determines whether which page information is included in
the list.

• metaDataList (RestMetaDataList, optional): A list of key/value elements with ‘metadata’
information of the document.

RestPageInfo

• description (string, optional): Includes currently only page number information
• number (string, optional): Page number within the document (1-n)
• width (number, optional): Width of the page

87

Kofax SignDoc Web Developer's Guide

• height (number, optional): Height of the page
• tooltip (string, optional): Includes currently only page number information
• url (string, optional): The URL for requesting the page image
• conversionFactorX (double, optional): Get the horizontal conversion factor for a page. Different

pages of the document may have different conversion factors. Divide horizontal coordinates by
the returned number to convert document coordinates to inches. The return value will be 0.0 if
the factor is not available

• conversionFactorY (double, optional): Get the vertical conversion factor for a page. Different
pages of the document may have different conversion factors. Divide horizontal coordinates by
the returned number to convert document coordinates to inches. The return value will be 0.0 if
the factor is not available

RestMetaDataList

• list (List<RestMetaData>, optional): List of metadata elements

RestMetaData

• key (string, optional): The key of the metadata entry
• value (string, optional): The value of the metadata entry

RestSignatureFieldOutput

• captureFieldSubtypeChoice (List<ERestCaptureFieldSubtype, optional): A list of selectable
signature subtypes. The capture field subtype choice can contain one or one capture subtype
definitions:
CFST_SIGNATURE if the signer can sign with a pad device or via mouse or pen.
CFST_C2SSIGNATURE if the field can be signed by entering a text as “Click-to-Sign” signature.
CFST_IMAGECAPTURE if the signer can sign via captured photo from a camera.

• captureFieldSubtype (ERestCaptureFieldSubtype, optional): The capture field subtype. This can
be CFST_SIGNATURE if the field contains a signature. It is CFST_C2SSIGNATURE if the field was
signed with a “Click-to-Sign” signature. It contains CFST_IMAGECAPTURE if the signature is based
on a captured image (via camera). If the field is not (yet) signed, the captureFieldSubtype returns
CFST_UNKNOWN

• signed (boolean, optional): This flag informs whether the signature field is signed or not.
• usesLock (boolean, optional): Returns true if the signature field causes any field locks after

signing.
• imageWidth (integer, optional): The calculated or defined image width if

captureFieldSubtypeChoice contains CFST_IMAGECAPTURE. Default value: 240
• imageHeight (integer, optional): The calculated or defined image height if

captureFieldSubtypeChoice contains CFST_IMAGECAPTURE. Default value: 320
• imageUrl (string, optional): The URL for retrieving the image snippet of the field.

Additionally see table "The base definitions of all fields".

RestTextFieldOutput

• value (string, optional): The value of the text field
• multiLine (boolean, optional): Indicates whether the field is a single line or a multiline text field.

88

Kofax SignDoc Web Developer's Guide

• maxLength (integer, optional): The maximum length of the text field value. If the maxLength
element is not included, the text field does not have a maximum length.

Additionally see table "The base definitions of all fields".

RestCheckboxFieldOutput

See table "The base definitions of all fields" and especially the field attributes for checkboxes and
radio button (group) fields in the RestWidget structure, first of all the attribute 'selected'.

The base definitions of all fields

• name (string, optional): The field name.
• required (boolean, optional): The flag indicates whether the field is mandatory (required=true) or

optional.
• readOnly (boolean, optional): The flag indicates whether the field can be changed

(readOnly=false) or not.
• alternateName (string, optional): An alternate name for the field can be set, e.g. as more

readable name or as label in the client. If no alternate name is set for the field, this element could
also contain the ‘friendly’ name of the field (value of metadata SIGNDOCWEB_FRIENDLYNAME_ +
fieldname).

• tooltip (string, optional): A client side used tooltip can be defined for each field. It is stored in the
metadata SIGNDOCWEB_TOOLTIP_ + fieldname.

• widgets (List<RestWidget>, optional): A list of widget objects. A widget (annotation) structure
contains information about the visible part of a field like the position and size. In PDF documents,
a field may have multiple visible "widgets". For instance, a radio button group (radio button field)
usually has multiple visible buttons, i.e, widgets.

RestWidget

• index (integer, optional): The 0-based index number of the widget. The index number is needed if
the field contains more than one widget, e.g. in case of a radio button (group). Default is 0 in case
of a field with one widget (e.g. for a signature field and usually a text field or a checkbox).

• pageNumber (integer, optional): The page number within the document.
• top (double, optional): Set the top coordinate. The origin is in the bottom left corner of the page.

See Document coordinate system.
• left (double, optional): Set the left coordinate. The origin is in the bottom left corner of the page.

See Document coordinate system.
• right (double, optional): Set the right coordinate. The origin is in the bottom left corner of the

page.See Document coordinate system.
• bottom (double, optional): Set the bottom coordinate. The origin is in the bottom left corner of

the page. See Document coordinate system.
• imageUrl (string, optional): The URL for requesting the field related image snippet.
• locked (boolean, optional): The flag locked=true indicates that the widget cannot be deleted or

modified, but its value can be changed.

Field attributes for text fields

• textJustification (ERestTextJustification, optional): The justification for text fields. Can be LEFT,
CENTER or RIGHT.

89

Kofax SignDoc Web Developer's Guide

• fontName (string, optional): The font name of the text field.
• fontSize (double, optional): 0.0 means auto size of text field font
• textColor (RestColorRGB, optional): The RGB (Red, Green, Blue) color value of the text. An RGB

value is specified with: rgb(red, green, blue).
Each parameter (red, green, and blue) defines the intensity of the color as an integer between 0
and 255.
For example, rgb(0, 0, 255) is rendered as blue, because the blue parameter is set to its highest
value (255) and the others are set to 0.
No text color is specified if the attribute textColor is omitted.

Field attributes for checkboxes and radio button (group) fields

• selected (boolean, optional): Indicates whether the checkbox or a specific radio button (widget) is
selected or not.

• buttonValue (string, optional): For radio button fields and check box fields, each widget also has
a "button value". The field proper has a value which is either "Off" or one of the button values of
its widgets.
Each widget of a radio button field or a check box field is either off or on. If all widgets of a radio
button field or a check box are off, the field's value is "Off". If at least one widget is on, the field's
value is that widget's "button value". As the value of a field must be different for the on and off
states of the field, the button values must not be "Off".

RestColorRGB

• red (integer, optional): The intensity of the red color, 0-255
• green (integer, optional): The intensity of the green color, 0-255
• blue (integer, optional): The intensity of the blue color, 0-255

The following example shows a response JSON body with requested pageInfoList and include
MetaData list.

Example response body (JSON)

{
 "restDocumentOutput" : {
 "id" : "f6305e93_-_ff3c76ba-b650-4c12-a7d8-0af248cbb20a",
 "description" : "f6305e93_-_ff3c76ba-b650-4c12-a7d8-0af248cbb20a",
 "pageTotalNumber" : 1,
 "pages" : [{
 "number" : 1,
 "width" : 595.3200073242188,
 "height" : 841.9199829101562,
 "description" : "Page 1",
 "tooltip" : "Page 1",
 "url" : "http://localhost:80/sdweb/rest/v5/documents/f6305e93_-_ff3c76ba-
b650-4c12-a7d8-0af248cbb20a/pages/1/image?spts=1521550395043",
 "conversionFactorX" : 72.0,
 "conversionFactorY" : 72.0
 }],
 "metaDataList" : {
 "list" : [{
 "key" : "SIGNDOCWEB_INTERNAL_DOCUMENT_ID",
 "value" : "f6305e93_-_ff3c76ba-b650-4c12-a7d8-0af248cbb20a"
 }, {
 "key" : "SIGNDOCWEB_FRIENDLYNAME_signature-1",

90

Kofax SignDoc Web Developer's Guide

 "value" : "signer 1"
 }, {
 "key" : "SIGNDOCWEB_INTERNAL_RESULTPARAMS_PLUGIN_ID",
 "value" : "de.softpro.sdweb.plugins.impl.DefaultResultParams"
 }, {
 "key" : "signature-1_SUBTYPE",
 "value" : "capture"
 }, {
 "key" : "SIGNDOCWEB_CAPTURE_SUBTYPES_CHOICE_signature-1",
 "value" : "CFST_C2SSIGNATURE,CFST_SIGNATURE,CFST_IMAGECAPTURE"
 }, {
 "key" : "SIGNDOCWEB_REQUIRED_signature-1",
 "value" : "true"
 }]
 },
 "signatureFields" : [{
 "name" : "signature-1",
 "required" : true,
 "readOnly" : false,
 "alternateName" : "",
 "widgets" : [{
 "index" : 0,
 "pageNumber" : 1,
 "top" : 834.0,
 "left" : 8.0,
 "right" : 158.0,
 "bottom" : 786.0,
 "imageURL" : "http://localhost:80/sdweb/rest/v5/documents/
f6305e93_-_ff3c76ba-b650-4c12-a7d8-0af248cbb20a/pages/1/image?
top=834.0&left=8.0&bottom=786.0&spts=1521550395043&zoomfactor=100&right=158.0",
 "locked" : false
 }],
 "captureFieldSubtypeChoice" : ["CFST_C2SSIGNATURE", "CFST_SIGNATURE",
 "CFST_IMAGECAPTURE"],
 "captureFieldSubtype" : "CFST_UNKNOWN",
 "signed" : false,
 "imageWidth" : 320,
 "imageHeight" : 240
 }]
 }
}

Example response body (XML)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<restDocumentOutput xmlns="http://www.kofax.com/ksd/sdweb/rest/v5">
 <id>f6305e93_-_ff3c76ba-b650-4c12-a7d8-0af248cbb20a</id>
 <description>f6305e93_-_ff3c76ba-b650-4c12-a7d8-0af248cbb20a</description>
 <pageTotalNumber>1</pageTotalNumber>
 <pages>
 <number>1</number>
 <width>595.3200073242188</width>
 <height>841.9199829101562</height>
 <description>Page 1</description>
 <tooltip>Page 1</tooltip>
 <url>http://localhost:80/sdweb/rest/v5/documents/f6305e93_-_ff3c76ba-b650-4c12-
a7d8-0af248cbb20a/pages/1/image?spts=1521550395043</url>
 <conversionFactorX>72.0</conversionFactorX>
 <conversionFactorY>72.0</conversionFactorY>
 </pages>
 <metaDataList>
 <list>
 <key>SIGNDOCWEB_INTERNAL_DOCUMENT_ID</key>
 <value>f6305e93_-_ff3c76ba-b650-4c12-a7d8-0af248cbb20a</value>

91

Kofax SignDoc Web Developer's Guide

 </list>
 <list>
 <key>SIGNDOCWEB_FRIENDLYNAME_signature-1</key>
 <value>signer 1</value>
 </list>
 <list>
 <key>SIGNDOCWEB_INTERNAL_RESULTPARAMS_PLUGIN_ID</key>
 <value>de.softpro.sdweb.plugins.impl.DefaultResultParams</value>
 </list>
 <list>
 <key>signature-1_SUBTYPE</key>
 <value>capture</value>
 </list>
 <list>
 <key>SIGNDOCWEB_CAPTURE_SUBTYPES_CHOICE_signature-1</key>
 <value>CFST_C2SSIGNATURE,CFST_SIGNATURE,CFST_IMAGECAPTURE</value>
 </list>
 <list>
 <key>SIGNDOCWEB_REQUIRED_signature-1</key>
 <value>true</value>
 </list>
 </metaDataList>
 <signatureFields>
 <name>signature-1</name>
 <required>true</required>
 <readOnly>false</readOnly>
 <alternateName/>
 <widgets>
 <index>0</index>
 <pageNumber>1</pageNumber>
 <top>834.0</top>
 <left>8.0</left>
 <right>158.0</right>
 <bottom>786.0</bottom>
 <imageURL>http://localhost:80/sdweb/rest/v5/documents/
f6305e93_-_ff3c76ba-b650-4c12-a7d8-0af248cbb20a/pages/1/image?
top=834.0&left=8.0&bottom=786.0&spts=1521550395043&zoomfactor=100&
 right=158.0</imageURL>
 <locked>false</locked>
 </widgets>
 <captureFieldSubtypeChoice>CFST_C2SSIGNATURE</captureFieldSubtypeChoice>
 <captureFieldSubtypeChoice>CFST_SIGNATURE</captureFieldSubtypeChoice>
 <captureFieldSubtypeChoice>CFST_IMAGECAPTURE</captureFieldSubtypeChoice>
 <captureFieldSubtype>CFST_UNKNOWN</captureFieldSubtype>
 <signed>false</signed>
 <imageWidth>320</imageWidth>
 <imageHeight>240</imageHeight>
 </signatureFields>
</restDocumentOutput>

Get document page image
This request returns an image of a document page of a previously loaded document which must be
available in the same session (see Preload PDF document with commands and prepare options and
Activate preloaded PDF document for processing).

URL

http://host_server:port_number/sdweb/rest/v5/documents/{docId}/pages/{pageNo}/image/{format}

92

Kofax SignDoc Web Developer's Guide

 host_server is the host domain name or IP address, and port_number is the host port number (if
applicable).

Produces

image/png, image/jpeg, image/gif, image/bmp, image/tiff

Header

Accept: image/png, image/jpeg, image/gif, image/bmp, image/tiff (optional, see description of path
parameter format), application/json, application/xml

Cookie: JSESSIONID

Method

GET

Example request

GET http://localhost:6610/sdweb/rest/v5/documents/123/pages/1/image

Path parameters
• docId (string, required): Document Id (which was returned from a document preload request with

init=true)
• pageNo (string, required): Requested page number of the document
• format (string, optional): Image format, can be defined alternatively to Accept-Header (if both is

defined then format has higher priority). Possible format values are png, jpeg, gif, bmp or tiff.

Query parameters
• zoomfactor (integer, optional): Requested zoom factor in percent. Minimum value is 25 (%),

maximum value is 200 (%). Default value: 100
• top (number, optional): It is possible to request only a page snippet of a document. The position

of the image is defined with the x and y document coordinates (*) of a rectangle within the
specified page. The snippet can be rendered only if all coordinates (top, bottom, left, right) are
provided in the request. The top parameter value which describes the upper y-coordinate must
be greater than the bottom value.

• bottom (number, optional): This value is lower y-coordinate of the requested page snippet (see
also parameter top).

• left (number, optional): The left parameter defines the left x-coordinate of the requested page
snippet (see also parameter top) and must not be equal or greater than the right value.

• right (number, optional): The right parameter specifies the right x-coordinate of the requested
page snippet (see also parameter top) and must be greater than the value of the parameter left.

* The origin of the document coordinate system is in the bottom left corner of the page (as
rendered, that is, taking rotation of PDF pages into account). Points having positive X coordinates
are to the right of the origin, points having positive Y coordinates are above the origin.

93

Kofax SignDoc Web Developer's Guide

For PDF documents, the origin is in that corner of the intersection of the CropBox and the MediaBox
of the page that corresponds to the bottom left corner of the image that would be rendered for that
page. The units are specified by the PDF document and are usually 1/72 inch.

For TIFF documents, the origin is in the bottom left corner of the page, the unit is one pixel.

Response status

Status 200 (OK): The page image could be rendered. Otherwise a SignDoc Web status code is
returned together with an explaining message.

The response body returns the binary page image in requested format. The request can
fail if the megapixels of the requested image are less than the value specified by the
"sdweb.document.image.max_mp" configuration property. The default is a maximum of 10
megapixels.

Get document
This request returns a snapshot of a previously loaded document which must be available in
the same session (see Preload PDF document with commands and prepare options and Activate
preloaded PDF document for processing).

URL

http://host_server:port_number/sdweb/rest/v5/documents/{docId}

 host_server is the host domain name or IP address, and port_number is the host port number (if
applicable).

Produces

application/pdf, image/tiff

Header

Accept: application/pdf, image/tiff, application/json, application/xml

Cookie: JSESSIONID=…

Method

GET

Example request

GET http://localhost:6610/sdweb/rest/v5/documents/123?flatten=true

Path parameters
• docId (string, required): Document Id (which was returned from a document preload request with

init=true)

94

Kofax SignDoc Web Developer's Guide

Query parameters
• flatten (boolean, optional):

If set to true all fields are flattened (no more fields are available which could be accessed or
even changed only the appearance of the last field state is visible in the document). This is only
supported for PDF documents.

• signid (string, optional): It is possible to create a document snapshot at the capture time of a
specific signature. The signid specifies the name of the signature field for this specific signature.

• content_disposition (string, optional):
There are situations (when downloading a PDF document) where you might want a hyperlink
leading to a file to present a SaveAs dialog in browser. This could (browser dependent) be
reached by setting the response header Content-Disposition: attachment; filename="<file
name.ext>".
The query parameter content_disposition sets this Content-Disposition header value in the
response. Usually "attachment" and "inline" are supported by a browser (see also http://
www.w3.org/Protocols/rfc2616/rfc2616-sec19.html - 19.5.1 Content-Disposition

Response status

Status 200 (OK): The requested document could be retrieved for download. Otherwise 404 (NOT
FOUND), if ID not found or invalid. A SignDoc Web status code is returned together with an
explaining message if the request was not successful. The response body returns the binary
document, either in PDF format or as TIFF document.

Get audit logs of document
This request gets all accumulated Audit Log entries from a previously loaded document available in
session workspace (see Preload PDF document with commands and prepare options and Activate
preloaded PDF document for processing). The response returns an Audit Trail specific XML structure
(could contain BASE64 encoded binaries, e.g. images) of all current audit logs. The XML schema
is available as AuditTrail.xsd in signdoc_xml_interfaces_x.x.jar (whereas x.x is the current version
number).

URL

http://host_server:port_number/sdweb/rest/v5/documents/{docId}/auditlogs

 host_server is the host domain name or IP address, and port_number is the host port number (if
applicable).

Produces

XML

Header

Accept: application/json, application/xml

Cookie: JSESSIONID=…

Method

95

http://www.w3.org/Protocols/rfc2616/rfc2616-sec19.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec19.html

Kofax SignDoc Web Developer's Guide

GET

Example request

GET http://localhost:6610/sdweb/rest/v5/documents/123/auditlogs

Path parameters
• docid (string, required): Document Id (was returned from a document preload request with

init=true)

Response status

Status 200 (OK): The requested audit log entries could be successfully retrieved from the document.
Otherwise the status is 404 (NOT FOUND), if ID not found or invalid. A SignDoc Web status code is
then returned together with an explaining message.

Add signature
This request adds a signature to an existing signature field of a previously loaded document
available in session workspace (see Preload PDF document with commands and prepare options
and Activate preloaded PDF document for processing).

URL

http://host_server:port_number/sdweb/rest/v5/documents/{docid}/signaturefields/{fname}/
signature/{sigtype}

 host_server is the host domain name or IP address, and port_number is the host port number (if
applicable).

Consumes

multipart/form-data

Produces

JSON, XML

Header

Accept: application/pdf, image/tiff, application/json, application/xml

Accept: application/json, application/xml

Content-Type: multipart/form-data

Method

POST

Example request

POST http://localhost/sdweb/rest/v5/documents/doc-1/signaturefields/sig-1/
signature/SIGNWARE

96

Kofax SignDoc Web Developer's Guide

Example Header

Accept: application/json

Content-Type: multipart/form-data; boundary=----
WebKitFormBoundaryNBRKRwormSsilT40

Cookie: JSESSIONID=5AD05ECF362772DA2846E72C1759515B

Path parameters
• docId (string, required): The id of the related PDF document
• fname (string, required): Signature field name in the PDF document
• sigType (string, required): The signature type (*). It can have one of the following values:

SIGNWARE, IMAGE_BMP_1BIT, IMAGE, C2S, SIGNATURE_A and SIGNATURE_B

Signature types (*)

• SIGNWARE The id of the related pdf document
• IMAGE_BMP_1BIT Monochrome image in BMP format
• C2S Click-to-Sign image is created from (mandatory) body part signer_name parameter value
• SIGNATURE_A SignDoc Web internal signature format
• SIGNATURE_B_A SignDoc Web internal signature format

Query parameters
• fid (string, optional): The id of the field in SignDoc
• packageid (string, optional): The id of the related package in SignDoc

 The query parameters are only required if the referenced document should be also updated in
SignDoc.

In order to add a signature to a signature field in a SignDoc document the request must contain a
valid X-S-AUTH-TOKEN header for authentication.

The following entries must be added in sdweb_config.groovy (for usage with SignDoc):

sdweb.plugins.loadlist <<
'de.softpro.sdweb.plugins.impl.cirrus.CirrusDocumentUpdate'

sdweb.plugins.default.impl.documentupdate='CirrusDocumentUpdate'

The following document data body parts are supported:
• sigdata (byte[] or string, optional (*)): The signature data, either binary with media type

application/octet-stream (of body part) or base64 encoded (media type: text/plain).
(*) the parameter is mandatory if sigType is not C2S

• signer_name (string, optional (**)): (**) The signer_name is mandatory if sigType=C2S is
provided. The signer name is rendered as signature image for a click-to-sign capture field.

97

Kofax SignDoc Web Developer's Guide

• encoding (string, optional): Describes the encoding of the provided signature in sigData.
Supported values are
binary
base64
Base64 encoded string. For SIGNATURE_A and SIGNATURE_B signatures the first byte contains the
qualifier for the format, 'a' for SIGNATURE_A and 'B' for SIGNATURE_B. This is also the case for a
base64 encoded signature in one of these both formats. That means that the only the part after
this preceding qualifier is base64 encoded
base64zip
Zip archived base64 encoded string
nibblehex
Hexadecimal encoded string
Default: If encoding parameter is not provided then either 'binary' is assumed if media type of
form part sigData is "application/octet-stream" or 'base64' if media type of form part sigData is
not "application/octet-stream"

• commonName (string, optional): CN signer name for self-signed (one-time) certificate (1024
bits). A one-time generated certificate is used for signing if no certificate is provided and if no
(configured) default certificate is available.

• esignkey (string, optional): The public key for encrypting the biometric signature data (RSA).
It is essential to encrypt biometric data asymmetrically and to keep the private key secret. To
create the RSA key pair, you can use either JRE KeyTool (which will use a proprietary file format for
encrypted private keys) or any tool that creates an RSA key pair and uses PKCS #1 format (DER or
PEM) for the public key and PKCS #12 format for the private key. Alternatively, the public key can
also be specified as X.509 certificate (DER or PEM).

• signer_misc (string, optional): Miscellaneous signer text which is passed to the click-
to-sign signature renderer plugin (not considered in the default implementation
DefaultC2SSignatureRenderer)

• CFSTChoice (string, optional): Important: Currently only supported in SignDoc Web without
SignDoc environment.
One or more possible capture field subtype definitions (separated by comma) which can be
used as input for a signature field. This choice is provided to the user in the client as possible
capture methods if he clicks on a signature. Allowed values are c2s (for click-to-sign), signature or
image_capture.
Example: c2s,signature,image_capture
Default: Either from metadata SIGNDOCWEB_CAPTURE_SUBTYPES_CHOICE_ + fieldname,
if available, or the derived (single) value from the path parameter sigtype, either signature
(for sigtype SIGNWARE, SIGNATURE_A or SIGNATURE_B) or image_capture (for sigtype
IMAGE_BMP_1BIT or IMAGE) or c2s for sigtype C2S.

• signing_certificate_key (string, optional): Important: Currently only supported in SignDoc
environment, not with SignDoc Web only.
The signing_certificate_key is a RSA encrypted AES key (base64 encoded) which is necessary for
decryption of the encrypted certificate and the encrypted password if provided.
Note: The intial vector (IV) for the AES encryption and the public key for RSA encryption (of the
AES key) can be retrieved by GET /v5/configuration request. The IV is provided as value for the
key client.signing.iv. The public key is available as value for the key client.signing.pubkey in PEM
(Privacy enhanced Mail) format (base64 encoded).

98

Kofax SignDoc Web Developer's Guide

• signing_certificate_encrypted (string, optional): Important: Currently only supported in SignDoc
environment, not with SignDoc Web only.
AES encrypted certificate (PKCS#12 base64 encoded) which should be used for signing. The
corresponding AES key must be provided with the parameter signing_certificate_key.

• signing_certificate_pass_encrypted (string, optional): Important: Currently only supported in
SignDoc environment, not with SignDoc Web only!.
AES encrypted certificate password (base64 encoded), if required for provided certificate. The
corresponding AES key must be provided with the parameter signing_certificate_key.

• signing_certificate (string, optional): Unencrypted certificate (PKCS#12 base64 encoded) which
should be used for signing.

• user_pkcs12 (binary, optional): Unencrypted certificate (PKCS#12 as binary) which should be used
for signing.

• user_certificate_password (string, optional): Unencrypted certificate password (as clear text), if
required for provided certificate for signing.

• user_certificate (string, optional): The file name of the PKCS#12 certificate with ".p12" suffix from
%SDWEB_HOME%/conf/user_certificates which should be used for signing:
Example: If you want to use %SDWEB_HOME%/conf/user_certificates/MyCert.p12 you must
provide user_certificate=MyCert as parameter.

Response

Status 201 (CREATED): The signature field was successfully signed.

The body of the response contains additional information in the RestAddSignatureResult structure
(JSON or XML).

 Calls to a Signature Archive plugin which can be defined via signaturearchiveid in the 'Upload
document' request are supported in this request.

Response body - restAddSignatureResult

Path parameters
• resultCode (string, optional): The result code could have one of the following values (see also

table "Result codes"):
SUCCESS, SIGNATURE_TOO_SIMPLE_OR_NOT_USABLE, SA_MATCH, SA_NO_MATCH,
SA_NOT_FOUND, SA_GENERIC_ERROR, SA_QUESTIONABLE_MATCH

• fieldsToUpdate (List<RestField>, optional): Contains a list of RestField objects of those fields
which has been changed after adding a signature to a signature field. Currently only the changed
signature field itself is included.

99

Kofax SignDoc Web Developer's Guide

• addSignatureResults (Map<String, String>, optional): A list of possible result attributes from the
signature archive plugin. Possible entries are:
GUI_MESSAGE
The message, that could be displayed on the GUI if the validation result from the archive plugin is
VALIDATION_RESULT is QUESTIONABLE_MATCH or NOT_FOUND
HIDDEN_PARAMETER
A hidden parameter, the plugin can use
REFERENCE_ID
The reference id of the signature within the session workspace if the archive plugin returns a
questionable match (QUESTIONABLE_MATCH)
REFERENCE_SIG_IMAGE_URL
The URL for retrieving the reference signature
TEST_SIG_IMAGE_URL
The URL for retrieving the reference signature

Result codes
• SUCCESS The signature could be successfully added to the signature field.
• SIGNATURE_TOO_SIMPLE_OR_NOT_USABLE If sigtype is not C2S then a signature must be

provided in the body in form parameter sigdata. This result code is returned if no sigdata element
is provided for this caseSignDoc

• SA_MATCH Result from the SignatureArchive plugin
• SA_NO_MATCH Result from the SignatureArchive plugin
• SA_NOT_FOUND Result from the SignatureArchive plugin
• SA_GENERIC_ERROR Result from the SignatureArchive plugin
• SA_QUESTIONABLE_MATCH Result from the SignatureArchive plugin

RestField structure
• name (string, optional): The name of the field within the document.
• type (string, optional): The field type, can be FT_TEXT, FT_CHECKBOX, FT_RADIOBUTTON or

FT_CAPTURE
• mandatory (string, optional): Defines whether the field is a required field in the document
• readOnly (string, optional): Defines whether the field is a read only field in the document which

cannot be changed.
• alternateName (string, optional): An alternate name of the field which could be used to display a

more readable name for the field.
• tooltip (string, optional): The tooltip of the field could be also displayed as a hint or for a better

understanding of the purpose of the field. The value is stored as metadata in the ‘encrypted’
collection of the SignDoc document properties with the key “SIGNDOCWEB_TOOLTIP_” + (field)
name.
Example: SIGNDOCWEB_TOOLTIP_sig1

• widget (string, optional): A widget (annotation) structure contains information about the visible
part of a field like the position and size. In PDF documents, a field may have multiple visible
"widgets". For instance, a radio button group (radio button field) usually has multiple visible
buttons, i.e, widgets.

100

Kofax SignDoc Web Developer's Guide

RestWidget structure
• index (integer, optional): The 0-based index number of the widget. The index number is needed if

the field contains more than one widget, e.g. in case of a radio button (group). Default is 0 in case
of a field with one widget (e.g. for a signature field and usually a text field or a checkbox).

• pageNumber (integer, optional): The page number within the document.
• top (string, optional): The top coordinate of the field in the page. The origin is in the bottom left

corner of the page. See Document coordinate system.
• left (string, optional): The bleft coordinate of the field in the page. The origin is in the bottom left

corner of the page. See Document coordinate system.
• right (string, optional): The right coordinate of the field in the page. The origin is in the bottom

left corner of the page. See Document coordinate system.
• bottom (string, optional): The bottom coordinate of the field in the page. The origin is in the

bottom left corner of the page. See Document coordinate system.

Example request

POST http://beaker:8081/sdweb/rest/v5/documents/8b055a9d_-_document-1/
signaturefields/aea1f1a7-8024-4f45-8455-9a007f8dd9d5/signature/SIGNWARE

Example header

Content-Type: multipart/form-data; boundary=----
WebKitFormBoundaryn1Wrf9HtKDXM2Qex

Content-Length: 2330

Accept: application/json, text/plain, */*

Cookie: JSESSIONID=D0204F744BE26DAF7AC895240337037B

Example request body (multi part form data)

------WebKitFormBoundaryn1Wrf9HtKDXM2Qex
Content-Disposition: form-data; name="sigdata"

98191107390A0000F8030000789C75D67F6895551807F073CF39AFF7C7F6D64C0925CD490E91B2A0A4FC
 63194A5A66B939078A8D68E05814692E3051318758A4242A4B44448D2815A59659991A1232344283B524
 2A0A23A184C2D608B152BFCF79BEB773881ADC9DCF1DEF3DE739CF793030303030303033A1C94CA78B3C
 762C6E269CC043BDFE1E138DBC87646AFA140B076F7290DC95660000000000000000AECBE7AC74F170FE
 D27647F04A83EB878BD6A6381D5272BF23A49ED5E6DB730C4E0AD9269046BA2E7AC8FBEE96FCF1C9D3E4
 BF8D455 69B41B1008AA398065CBD2D601E754C87A2C4D01771EFCD004D6BD54C8924D957862B9ED0C33
 39F7DED01496B97837B78586ABFFE24C2DB55713FB7DAAB3DA38CE92D741814C75A029BE72F5A4BFDB23
 2742C89AD7D33C4E898CDD9ADE1121B2752CE0832A0B594ECD388C3763A4041FE46B7E10B9EAEEDBE9F4
 0E1B50FB0E71D45F5A3DEAD3A4FFE4310BF4B1BC19C54E1DB08B0299F012FF617FA80E8682E982E137EF
 3F2773F087BA1C352981E10484BB72E2E58073DA43741FCE7F0087811FC097C1BDC0C1FA647E95AF66E3
 D3BDF4E63EF1E35686760FC1A319F575B9C99439E2CF264F0373781369A37DB4E7FFF2F2FFB1F77D3D89
 FDD4C0FD287F45CEC1EEC73906BC1F637FA1D8CFDD17E3B7D8279AE576753390F7291B56A1D561DD6FD8
 E3E93781F5EBFD25B12E36EDAABF44A9D37EBD43DB9B1F0B6E8503FB83B0EFD62D8CFBA96B888F374C8B
 1C3DD2AA1B6DC5AB5DC53A90DF7287C0AE345B5B41A9FC18FC3D88B1F454F87C7C0CFC088C73724BE075
 E05A33EBDEC7F039F9F4EDF4923BEF21F893FA6F7C35D70235DE05A1F69CFF115FA84D6B0FB54ED7E4F8
 C7EE9BED2DE227388C31E65BF3FC1725EB3D595B2E6D25D86D1636CBFBA06BDD2BE0BE33C6BDAB4FF04F
 7686F0C3E0AAFA34F263E9778303E5F9BE9F906DFAEFD2A78116310A357BA167A27C6AD89FBA2C3B954D
 D40CF83DBE25A7E698CDFAF5057503BFE2575F970E291D125C4E5BB69E4D03FCD6726F28CAA9F1DC1396
 5FD0BB4D4D1875C1739749B68C977172D712DA0659D07E95D18EFA37BF54E059FD17E5BCD67F5F9DA29D
 A1382254F6FABF33CE627DF1C737283D4520FBD5D7B94F846C49F591ADF5B591D2D7D7634BD3BF1A1C46
 713FF1D3F5B27FD738896FCFF402F89EBD621167F20714FE2A5C9671FA1D137FD78AEF59CF6C6B097D73

101

Kofax SignDoc Web Developer's Guide

 1BEC7FDCABD7F25D6987B329E7B356FA526ED51E2EC6AB4EF8A7673E359D823F1BC2C7ABB5B9F7853E2F
 DB4AC7F9CF3DC8CD717F4E5E8D00FE9F0BD4917B74697F03DEFCEB2DE56637C937B9913D7AD48AF5EC5D
 A407E5C078DFF83A45705B724F526B5F0585287556F4CBC37DEC1506F9CA7765A9C3FD45BB5F606125F8
 ACE65EF6B13AF4FCCF873C937EF782EBD794F62E6336F4C6ABB31DEAFE090E7EB6E0B75E0
------WebKitFormBoundaryn1Wrf9HtKDXM2Qex
Content-Disposition: form-data; name="encoding"

NIBBLEHEX
------WebKitFormBoundaryn1Wrf9HtKDXM2Qex--

Response

Status code 201 (OK): The signature could be successfully added.

Status code 404 (NOT FOUND): The document is not available in the requested session.

In case of status code 201 the response body contains the “add signature result” structure
restAddSignatureResult

Example of response body

{
 "restAddSignatureResult" : {
 "resultCode" : "SUCCESS",
 "fieldsToUpdate" : [{
 "name" : "signature-1",
 "type" : "FT_CAPTURE",
 "mandatory" : false,
 "readOnly" : false,
 "widgets" : [{
 "index" : 0,
 "pageNumber" : 1,
 "top" : 400.0,
 "left" : 100.0,
 "right" : 400.0,
 "bottom" : 300.0,
 "locked" : true,
 "fontName" : "Helvetica",
 "fontSize" : 8.0,
 "textColor" : {
 "red" : 128,
 "green" : 128,
 "blue" : 128
 }
 }],
 "captureFieldSubtype" : "CFST_SIGNATURE",
 "captureFieldSubtypeChoice" : ["CFST_C2SSIGNATURE, CFST_SIGNATURE"],
 "signed" : true
 }],
 "addSignatureResults" : {
 "entry" : []
 }
 }
}

Insert signature field
This request inserts a signature field into a pdf document.

102

Kofax SignDoc Web Developer's Guide

 The referenced pdf document must be available in the requested session. The document was
previously uploaded into the same session.

URL

http://host_server:port_number/sdweb/rest/v5/documents/{docid}/signaturefield

 host_server is the host domain name or IP address, and port_number is the host port number (if
applicable).

Consumes and produces

JSON, XML

Header

Accept: application/json, application/xml

Method

POST

Example request

POST http://localhost:6610/sdweb/rest/v5/documents/42/signaturefield

Example header

Accept: application/json

Path parameters
• docid (string, required): The id of the related pdf document

Query parameters
• fid (string, optional): The id of the field in SignDoc
• packageid (string, optional): The id of the related package in SignDoc

 The query parameters are only required if the referenced document should be also updated in
SignDoc.

In order to insert a field in a SignDoc document the request must contain a valid X-AUTH-TOKEN
header for authentication.

The following entries must be added in sdweb_config.groovy (for usage with SignDoc):

sdweb.plugins.loadlist <<
'de.softpro.sdweb.plugins.impl.cirrus.CirrusDocumentUpdate'

sdweb.plugins.default.impl.documentupdate='CirrusDocumentUpdate'

Body input

103

Kofax SignDoc Web Developer's Guide

The body contains the RestSignatureFieldInput structure in JSON or XML format.

The specification has to provide at least the field name and one widget definition with values for
left, right, top, bottom and pageNumber.

Body parameters in RestSignatureFieldInput structure
• captureFieldSubtypeChoice (List<ERestCaptureFieldSubtype>, optional): A signature subtype

can be a signature, an image or a “click to sign” (c2s) signature. The input is a comma separated
list of signature subtypes which should be offered to a signer for signing a signature field.
Possible input values: CFST_SIGNATURE, CFST_C2SSIGNATURE, CFST_IMAGECAPTURE

• id (string, optional): The id of the field in SignDoc.
• name (string, optional): The name of the field, must be unique within the document
• signerId (string, optional): If the signature should be captured by a specific person, the id of

this person can be set here. The value is stored as metadata in the ‘encrypted’ collection of the
SignDoc document properties with the key “SIGNDOCWEB_FIELD_SIGNER_” + (field) name.
Example: SIGNDOCWEB_FIELD_SIGNER_sig1

• signerName (string, optional): If the signature should be captured by a specific person, the name
of this person can be set here. The value is stored as metadata in the ‘encrypted’ collection of the
SignDoc document properties with the key “SIGNDOCWEB_FIELD_SIGNER_” + (field) name.
Example: SIGNDOCWEB_FIELD_SIGNER_sig1

• required (boolean, optional): Defines whether the new signature field is a required field in the
document which must be signed or if capturing of a signature is optional. Default is optional.
Allowed values are true or false.
Default value: false
Note: The flags required and readOnly cannot be set to true for the same field.

• readOnly (boolean, optional): Defines whether the new signature field is a read only field in the
document which cannot be signed. Default is signable. Allowed values are true or false.
Default value: false
Note: The flags required and readOnly cannot be set to true for the same field.

• value (string, optional): The value of the text field.
• alternateName (string, optional): An alternate name of the field which could be used to display a

more readable name for the field.
• tooltip (string, optional): The tooltip of the field could be also displayed as a hint or for a better

understanding of the purpose of the field. The value is stored as metadata in the ‘encrypted’
collection of the SignDoc document properties with the key “SIGNDOCWEB_TOOLTIP_” + (field)
name.
Example: SIGNDOCWEB_TOOLTIP_sig1

• widgets (List of RestWidget objects, required): A widget (annotation) structure contains
information about the visible part of a field like the position and size. In PDF documents, a field
may have multiple visible "widgets". For instance, a radio button group (radio button field) usually
has multiple visible buttons, ie, widgets.

RestWidget structure

• index (integer, optional): The 0-based index number of the widget. The index number is needed if
the field contains more than one widget, e.g. in case of a radio button (group). Default is 0 in case
of a field with one widget (e.g. for a signature field and usually a text field or a checkbox.

104

Kofax SignDoc Web Developer's Guide

• pageNumber (integer, required): The page number within the document.
• top (double, optional): Set the top coordinate. The origin is in the bottom left corner of the page

(see Document coordinate system).
• left (double, required): Set the left coordinate. The origin is in the bottom left corner of the page

(see Document coordinate system).
• right (double, required): Set the right coordinate. The origin is in the bottom left corner of the

page (see Document coordinate system).
• bottom (double, required): Set the bottom coordinate. The origin is in the bottom left corner of

the page (see Document coordinate system).

Example request

POST http://localhost:6610/sdweb/rest/v5/documents/42/signaturefield?
packageid=package1&fid=a2348a11-294b-4336-c11a-aaa34590887d

Example request body (JSON)

{
 "restSignatureFieldInput": {
 “captureFieldSubtypeChoice”: [“CFST_SIGNATURE”, “CFST_C2SSIGNATURE”],
 "name": "signature-1",
 "required": false,
 "alternateName": "Signature field 1",
 "tooltip": "This is signature field number 1",
 "widgets": [
 {
 "index": 0,
 "pageNumber": 1,
 "left": 511.12,
 "top": 120.02,
 "right": 591.12,
 "bottom": 80.12
 }
]
 }
}

Response status

Status code 201 (OK): The field could be successfully inserted.

Status code 404 (NOT FOUND): The document was not available in the requested session.

In case of status code 201 the response body contains the complete definition of the inserted
signature field in a RestDocumentOutput structure.

Examples of response body

{
 "restDocumentOutput" : {
 "id" : "signdocbdo_-_022fda5b-acc3-8825a-8348-a3e456afd9c4",
 "signatureFields" : [{
 “captureFieldSubtypeChoice”: [“CFST_SIGNATURE”, “CFST_C2SSIGNATURE”],
 "name" : "signature-1",
 "required" : false,
 "readOnly" : false,
 "alternateName" : "Signature field 1",
 "tooltip" : "This is signature field number 1",

105

Kofax SignDoc Web Developer's Guide

 "widgets" : [{
 "index" : 0,
 "pageNumber" : 1,
 "left": 511.12,
 "top": 120.02,
 "right": 591.12,
 "bottom": 80.12
 }]
 }
}

Update signature field
This request updates a signature field in a pdf document.

 The referenced pdf document must be available in the requested session. The document was
previously uploaded into the same session.

URL

http://host_server:port_number/sdweb/rest/v5/documents/{docid}/signaturefield/{fname}

 host_server is the host domain name or IP address, and port_number is the host port number (if
applicable).

Consumes and produces

JSON, XML

Header

Accept: application/json, application/xml

Method

PUT

Example request

PUT http://localhost:6610/sdweb/rest/v5/documents/42/signaturefield/
signature-1

Example header

Accept: application/json

Path parameters
• docid (string, required): The id of the related pdf document
• fname (string, required): The (form) field name

Query parameters
• fid (string, optional): The id of the field in SignDoc
• packageid (string, optional): The id of the related package in SignDoc

106

Kofax SignDoc Web Developer's Guide

 The query parameters are only required if the referenced document should be also updated in
SignDoc.

In order to update a field in a SignDoc document the request must contain a valid X-AUTH-TOKEN
header for authentication.

The following entries must be added in sdweb_config.groovy (for usage with SignDoc):

sdweb.plugins.loadlist <<
'de.softpro.sdweb.plugins.impl.cirrus.CirrusDocumentUpdate'

sdweb.plugins.default.impl.documentupdate='CirrusDocumentUpdate'

Body input

The body contains the RestSignatureFieldInput structure in JSON or XML format.

Body parameters in RestSignatureFieldInput structure
• captureFieldSubtypeChoice (List<ERestCaptureFieldSubtype>, optional): A signature subtype

can be a signature, an image or a “click to sign” (c2s) signature. The input is a comma separated
list of signature subtypes which should be offered to a signer for signing a signature field.
Possible input values: CFST_SIGNATURE, CFST_C2SSIGNATURE, CFST_IMAGECAPTURE

• id (string, optional): The id of the field in SignDoc.
• name (string, optional): The name of the field, must be unique within the document
• signerId (string, optional): If the signature should be captured by a specific person, the id of

this person can be set here. The value is stored as metadata in the ‘encrypted’ collection of the
SignDoc document properties with the key “SIGNDOCWEB_FIELD_SIGNER_” + (field) name.
Example: SIGNDOCWEB_FIELD_SIGNER_sig1

• signerName (string, optional): If the signature should be captured by a specific person, the name
of this person can be set here. The value is stored as metadata in the ‘encrypted’ collection of the
SignDoc document properties with the key “SIGNDOCWEB_FIELD_SIGNER_” + (field) name.
Example: SIGNDOCWEB_FIELD_SIGNER_sig1

• required (boolean, optional): Defines whether the new signature field is a required field in the
document which must be signed or if capturing of a signature is optional. Default is optional.
Allowed values are true or false.
Default value: false
Note: The flags required and readOnly cannot be set to true for the same field.

• readOnly (boolean, optional): Defines whether the new signature field is a read only field in the
document which cannot be signed. Default is signable. Allowed values are true or false.
Default value: false
Note: The flags required and readOnly cannot be set to true for the same field.

• alternateName (string, optional): An alternate name of the field which could be used to display a
more readable name for the field.

• tooltip (string, optional): The tooltip of the field could be also displayed as a hint or for a better
understanding of the purpose of the field. The value is stored as metadata in the ‘encrypted’

107

Kofax SignDoc Web Developer's Guide

collection of the SignDoc document properties with the key “SIGNDOCWEB_TOOLTIP_” + (field)
name.
Example: SIGNDOCWEB_TOOLTIP_sig1

• widgets (List of RestWidget objects, required): A widget (annotation) structure contains
information about the visible part of a field like the position and size. In PDF documents, a field
may have multiple visible "widgets". For instance, a radio button group (radio button field) usually
has multiple visible buttons, i.e, widgets.

RestWidget structure

• index (integer, optional): The 0-based index number of the widget. The index number is needed if
the field contains more than one widget, e.g. in case of a radio button (group). Default is 0 in case
of a field with one widget (e.g. for a signature field and usually a text field or a checkbox.

• pageNumber (integer, optional): The page number within the document.
• top (double, optional): Set the top coordinate. The origin is in the bottom left corner of the page

(see Document coordinate system).
• left (double, optional): Set the left coordinate. The origin is in the bottom left corner of the page

(see Document coordinate system).
• right (double, optional): Set the right coordinate. The origin is in the bottom left corner of the

page (see Document coordinate system).
• bottom (double, optional): Set the bottom coordinate. The origin is in the bottom left corner of

the page (see Document coordinate system).

Example request

PUT http://localhost:6610/sdweb/rest/v5/documents/42/signaturefield/
signature-1?packageid=package1&fid=a2348a11-294b-4336-c11a-aaa34590887d

Example request body (JSON)

{
 {
 "restSignatureFieldInput": {
 “captureFieldSubtypeChoice”: [“CFST_SIGNATURE”],
 "required": true,
 }
}

Response status

Status code 200 (OK): The field could be successfully updated.

Status code 404 (NOT FOUND): The document was not available in the requested session.

In case of status code 200 the response body contains the complete definition of the updated
signature field in a RestDocumentOutput structure

Examples of response body

{
 "restDocumentOutput" : {
 "id" : "signdocbdo_-_022fda5b-acc3-8825a-8348-a3e456afd9c4",
 "signatureFields" : [{
 “captureFieldSubtypeChoice”: [“CFST_SIGNATURE”],

108

Kofax SignDoc Web Developer's Guide

 "name" : "signature-1",
 "required" : true,
 "readOnly" : false,
 "alternateName" : "Signature field 1",
 "tooltip" : "This is signature field number 1",
 "widgets" : [{
 "index" : 0,
 "pageNumber" : 1,
 "left": 511.12,
 "top": 120.02,
 "right": 591.12,
 "bottom": 80.12
 }]
 }
}

Clear signature field
This request returns a snapshot of a previously loaded document which must be available in
the same session (see Preload PDF document with commands and prepare options and Activate
preloaded PDF document for processing).

URL

http://host_server:port_number/sdweb/rest/v5/documents/{docId}/signaturefields/{fname}/signature

 host_server is the host domain name or IP address, and port_number is the host port number (if
applicable).

Produces

JSON, XML

Header

Accept: application/json, application/xml

Cookie: JSESSIONID=…

Method

DELETE

Example request

DELETE http://localhost:6610/sdweb/rest/v5/documents/203932-12342-fdbdfg/
signaturefields/2r3-h546h63-234523/signature

Path parameters
• docId (string, required): Document Id (which was returned from a document preload request with

init=true)
• fname (string, required): Signature field name from the PDF document

109

Kofax SignDoc Web Developer's Guide

Query parameters

• fid (string, optional): The field id in SignDoc. This value is passed as parameter to the configured
plugin.

• fname (string, optional): The id of the signing package in SignDoc that is passed as parameter to
the configured plugin.

Response status

Status code 200 (OK): The signature field was successfully cleared.

Insert text field
This request inserts a text field into a pdf document.

 The referenced pdf document must be available in the requested session. The document was
previously uploaded into the same session.

URL

http://host_server:port_number/sdweb/rest/v5/documents/{docid}/textfield

 host_server is the host domain name or IP address, and port_number is the host port number (if
applicable).

Consumes and produces

JSON, XML

Header

Accept: application/json, application/xml

Method

POST

Example request

POST http://localhost:6610/sdweb/rest/v5/documents/0815/textfield

Example header

Accept: application/json

Path parameters
• docid (string, required): The id of the related pdf document

Query parameters
• fid (string, optional): The id of the field in SignDoc
• packageid (string, optional): The id of the related package in SignDoc

110

Kofax SignDoc Web Developer's Guide

 The query parameters are only required if the referenced document should be also updated in
SignDoc.

In order to insert a field in a SignDoc document the request must contain a valid X-AUTH-TOKEN
header for authentication.

The following entries must be added in sdweb_config.groovy (for usage with SignDoc):

sdweb.plugins.loadlist <<
'de.softpro.sdweb.plugins.impl.cirrus.CirrusDocumentUpdate'

sdweb.plugins.default.impl.documentupdate='CirrusDocumentUpdate'

Body input

The body contains the RestTextFieldInput structure in JSON or XML format.

The specification has to provide at least the field name and one widget definition with values for
left, right, top, bottom and pageNumber.

Body parameters in RestTextFieldInput structure
• id (string, optional): The id of the field in SignDoc.
• name (string, optional): The name of the field, must be unique within the document
• value (string, optional): The value of the text field.
• multiLine (boolean, optional): Defines whether the new field is a single line or a multiline text

field. Default is a single line text. Allowed values are true or false. Default value: false
• maxLength (integer, optional): Defines the maximum length of the text field value. A maximum

length of a text field must between 1 and 1024 in size. Default value: 1024
• signerId (string, optional): If the text value should be entered by a specific person, the id of

this person can be set here. The value is stored as metadata in the ‘encrypted’ collection of the
SignDoc document properties with the key “SIGNDOCWEB_FIELD_SIGNER_” + (field) name.
Example: SIGNDOCWEB_FIELD_SIGNER_text1

• signerName (string, optional): If the text value should be entered by a specific person, the name
of this person can be set here. The value is stored as metadata in the ‘encrypted’ collection of the
SignDoc document properties with the key “SIGNDOCWEB_FIELD_SIGNER_” + (field) name.
Example: SIGNDOCWEB_FIELD_SIGNER_text1

• required (boolean, optional): Defines whether the new field is a required field in the document
which must be filled out or if entering a text is optional. Default is optional. Allowed values are
true or false.
Default value: false
Note: The flags required and readOnly cannot be set to true for the same field.

• readOnly (boolean, optional): Defines whether the new field is a read only field in the document
which cannot be changed or if entering and changing a text value is allowed. Default is writable.
Allowed values are true or false.
Default value: false
Note: The flags required and readOnly cannot be set to true for the same field.

111

Kofax SignDoc Web Developer's Guide

• alternateName (string, optional): An alternate name of the field which could be used to display a
more readable name for the field.

• tooltip (string, optional): The tooltip of the field could be also displayed as a hint or for a better
understanding of the purpose of the field. The value is stored as metadata in the ‘encrypted’
collection of the SignDoc document properties with the key “SIGNDOCWEB_TOOLTIP_” + (field)
name.
Example: SIGNDOCWEB_TOOLTIP_text1

• widgets (List of RestWidget objects, required): A widget (annotation) structure contains
information about the visible part of a field like the position and size. In PDF documents, a field
may have multiple visible "widgets". For instance, a radio button group (radio button field) usually
has multiple visible buttons, i.e, widgets.

RestWidget structure

• index (integer, optional): The 0-based index number of the widget. The index number is needed if
the field contains more than one widget, e.g. in case of a radio button (group). Default is 0 in case
of a field with one widget (e.g. for a signature field and usually a text field or a checkbox

• pageNumber (integer, required): The page number within the document.
• top (double, optional): Set the top coordinate. The origin is in the bottom left corner of the page

(see Document coordinate system).
• left (double, required): Set the left coordinate. The origin is in the bottom left corner of the page

(see Document coordinate system).
• right (double, required): Set the right coordinate. The origin is in the bottom left corner of the

page (see Document coordinate system).
• bottom (double, required): Set the bottom coordinate. The origin is in the bottom left corner of

the page (see Document coordinate system).

Example request

POST http://localhost:6610/sdweb/rest/v5/documents/0815/fields?
packageid=package1&fid=f5858b96-294e-46f6-a2f4-bb6d5e90886e

Example request body (JSON)

{
 "restTextFieldInput": {
 "name": "text-1",
 "required": false,
 "maxLength": 1024,
 "alternateName": "Text field 1",
 "tooltip": "This is text field number 1",
 "widgets": [
 {
 "index": 0,
 "pageNumber": 1,
 "left": 332.25,
 "top": 489.52,
 "right": 557.25,
 "bottom": 467.02
 }
]
 }
}

112

Kofax SignDoc Web Developer's Guide

Response status

Status code 201 (OK): The field could be successfully inserted.

Status code 404 (NOT FOUND): The document was not available in the requested session.

In case of status code 201 the response body contains the complete definition of the inserted text
field in a RestDocumentOutput structure.

Examples of response body

{
 "restDocumentOutput" : {
 "id" : "signdocbdo_-_057f085c-b124-420b-89b0-18ee56afd9f0",
 "textFields" : [{
 "name" : "text-1",
 "required" : false,
 "readOnly" : false,
 "alternateName" : "Text field 1",
 "tooltip" : "This is text field number 1",
 "widgets" : [{
 "index" : 0,
 "pageNumber" : 1,
 "top" : 489.52,
 "left" : 332.25,
 "right" : 557.25,
 "bottom" : 467.02
 }],
 "multiLine" : false,
 "maxLength" : 1024
 }]
 }
}

Update text field
This request updates a text field in a pdf document.

 The referenced pdf document must be available in the requested session. The document was
previously uploaded into the same session.

URL

http://host_server:port_number/sdweb/rest/v5/documents/{docid}/textfield/{fname}

 host_server is the host domain name or IP address, and port_number is the host port number (if
applicable).

Consumes and produces

JSON, XML

Header

Accept: application/json, application/xml

113

Kofax SignDoc Web Developer's Guide

Method

PUT

Example request

PUT http://localhost:6610/sdweb/rest/v5/documents/0815/textfield/text-1

Example header

Accept: application/json

Path parameters
• docid (string, required): The id of the related pdf document
• fname (string, required): The (form) field name

Query parameters
• fid (string, optional): The id of the field in SignDoc
• packageid (string, optional): The id of the related package in SignDoc

 The query parameters are only required if the referenced document should be also updated in
SignDoc.

In order to update a field in a SignDoc document the request must contain a valid X-AUTH-TOKEN
header for authentication.

The following entries must be added in sdweb_config.groovy (for usage with SignDoc):

sdweb.plugins.loadlist <<
'de.softpro.sdweb.plugins.impl.cirrus.CirrusDocumentUpdate'

sdweb.plugins.default.impl.documentupdate='CirrusDocumentUpdate'

Body input

The body contains the RestTextFieldInput structure in JSON or XML format.

Body parameters in RestTextFieldInput structure
• id (string, optional): The id of the field in SignDoc.
• name (string, optional): The name of the field cannot be changed.

Note: If provided in the update request, the name of the field is ignored.
• value (string, optional): The value of the text field.
• multiLine (boolean, optional): Defines whether the new field is a single line or a multiline text

field. Default is a single line text. Allowed values are true or false. Default value: false
• maxLength (integer, optional): Defines the maximum length of the text field value. A maximum

length of a text field must between 1 and 1024 in size. Default value: 1024
• signerId (string, optional): If the text value should be entered by a specific person, the id of

this person can be set here. The value is stored as metadata in the ‘encrypted’ collection of the
SignDoc document properties with the key “SIGNDOCWEB_FIELD_SIGNER_” + (field) name.
Example: SIGNDOCWEB_FIELD_SIGNER_text1

114

Kofax SignDoc Web Developer's Guide

• signerName (string, optional): If the text value should be entered by a specific person, the name
of this person can be set here. The value is stored as metadata in the ‘encrypted’ collection of the
SignDoc document properties with the key “SIGNDOCWEB_FIELD_SIGNER_” + (field) name.
Example: SIGNDOCWEB_FIELD_SIGNER_text1

• required (boolean, optional): Defines whether the new field is a required field in the document
which must be filled out or if entering a text is optional. Default is optional. Allowed values are
true or false.
Note: The flags required and readOnly cannot be set to true for the same field.

• readOnly (boolean, optional): Defines whether the new field is a read only field in the document
which cannot be changed or if entering and changing a text value is allowed. Default is writable.
Allowed values are true or false.
Note: The flags required and readOnly cannot be set to true for the same field.

• alternateName (string, optional): An alternate name of the field which could be used to display a
more readable name for the field.

• tooltip (string, optional): The tooltip of the field could be also displayed as a hint or for a better
understanding of the purpose of the field. The value is stored as metadata in the ‘encrypted’
collection of the SignDoc document properties with the key “SIGNDOCWEB_TOOLTIP_” + (field)
name.
Example: SIGNDOCWEB_TOOLTIP_text1

• widgets (list of RestWidget objects, optional): A widget (annotation) structure contains
information about the visible part of a field like the position and size. In PDF documents, a field
may have multiple visible "widgets". For instance, a radio button group (radio button field) usually
has multiple visible buttons, ie, widgets.

RestWidget structure
• bottom (double, optional): Set the bottom coordinate. The origin is in the bottom left corner of

the page (see Document coordinate system).
• index (integer, optional): The 0-based index number of the widget. The index number is needed if

the field contains more than one widget, e.g. in case of a radio button (group). Default is 0 in case
of a field with one widget (e.g. for a signature field and usually a text field or a checkbox).

• left (double, optional): Set the left coordinate. The origin is in the bottom left corner of the page
(see Document coordinate system).

• pageNumber (integer, optional): The page number within the document.
• right (double, optional): Set the right coordinate. The origin is in the bottom left corner of the

page (see Document coordinate system).
• top (double, optional): Set the top coordinate. The origin is in the bottom left corner of the page

(see Document coordinate system).

Example request

PUT http://localhost:6610/sdweb/rest/v5/documents/0815/textfield/text-1?
packageid=package1&fid=f5858b96-294e-46f6-a2f4-bb6d5e90886e

Example request body (JSON)

{
 "restTextFieldInput": {
 “value”: “text value”
 }

115

Kofax SignDoc Web Developer's Guide

}

Response

Status code 200 (OK): The field could be successfully updated.

Status code 404 (NOT FOUND): The document was not available in the requested session.

In case of status code 200 the response body contains the complete definition of the updated text
field in a RestDocumentOutput structure.

Examples of response body

{
 "restDocumentOutput" : {
 "id" : "signdocbdo_-_057f085c-b124-420b-89b0-18ee56afd9f0",
 "textFields" : [{
 "name" : "text-1",
 "required" : false,
 "readOnly" : false,
 "alternateName" : "Text field 1",
 "tooltip" : "This is text field number 1",
 "widgets" : [{
 "index" : 0,
 "pageNumber" : 1,
 "top" : 489.52,
 "left" : 332.25,
 "right" : 557.25,
 "bottom" : 467.02
 }],
 “value” : “text value”,
 "multiLine" : false,
 "maxLength" : 1024
 }]
 }
}

Insert checkbox field
This request inserts a checkbox field into a pdf document.

 The referenced pdf document must be available in the requested session. The document was
previously uploaded into the same session.

URL

http://host_server:port_number/sdweb/rest/v5/documents/{docid}/checkboxfield

 host_server is the host domain name or IP address, and port_number is the host port number (if
applicable).

Consumes and produces

JSON, XML

Header

116

Kofax SignDoc Web Developer's Guide

Accept: application/json, application/xml

Method

POST

Example request

POST http://localhost:6610/sdweb/rest/v5/documents/4711/checkboxfield

Example header

Accept: application/json

Path parameters
• docid (string, required): The id of the related pdf document

Query parameters
• fid (string, optional): The id of the field in SignDoc
• packageid (string, optional): The id of the related package in SignDoc

 The query parameters are only required if the referenced document should be also updated in
SignDoc.

In order to insert a field in a SignDoc document the request must contain a valid X-AUTH-TOKEN
header for authentication.

The following entries must be added in sdweb_config.groovy (for usage with SignDoc):

sdweb.plugins.loadlist <<
'de.softpro.sdweb.plugins.impl.cirrus.CirrusDocumentUpdate'

sdweb.plugins.default.impl.documentupdate='CirrusDocumentUpdate'

Body input

The body contains the RestCheckboxFieldInput structure in JSON or XML format.

The specification has to provide at least the field name and one widget definition with values for
left, right, top, bottom and pageNumber.

Body parameters in RestCheckboxFieldInput structure
• id (string, optional): The id of the field in SignDoc.
• name (string, optional): The name of the field, must be unique within the document
• signerId (string, optional): If the checkbox state should be changed by a specific person, the id

of this person can be set here. The value is stored as metadata in the ‘encrypted’ collection of the
SignDoc document properties with the key “SIGNDOCWEB_FIELD_SIGNER_” + (field) name.
Example: SIGNDOCWEB_FIELD_SIGNER_cbox1

• signerName (string, optional): If the checkbox state should be changed by a specific person, the
name of this person can be set here. The value is stored as metadata in the ‘encrypted’ collection
of the SignDoc document properties with the key “SIGNDOCWEB_FIELD_SIGNER_” + (field) name.
Example: SIGNDOCWEB_FIELD_SIGNER_cbox1

117

Kofax SignDoc Web Developer's Guide

• required (boolean, optional): Defines whether the new checkbox is a required field in the
document which must be set to ‘checked’ by the signer if it is optional. Default is optional. Allowed
values are true or false.
Default value: false
Note: The flags required and readOnly cannot be set to true for the same field.

• readOnly (boolean, optional): Defines whether the new checkbox is a read only field in the
document which cannot be changed or if toggling the state by clicking on the checkbox is
allowed. Default is changeable. Allowed values are true or false.
Default value: false
Note: The flags required and readOnly cannot be set to true for the same field.

• alternateName (string, optional): An alternate name of the field which could be used to display a
more readable name for the field.

• tooltip (string, optional): The id of the field in SignDoc.
displayed as a hint or for a better understanding of the purpose of the field. The value is stored
as metadata in the ‘encrypted’ collection of the SignDoc document properties with the key
“SIGNDOCWEB_TOOLTIP_” + (field) name.
Example: SIGNDOCWEB_TOOLTIP_cbox1

• widgets (List of RestWidget objects, required): A widget (annotation) structure contains
information about the visible part of a field like the position and size. In PDF documents, a field
may have multiple visible "widgets". For instance, a radio button group (radio button field) usually
has multiple visible buttons, i.e, widgets.

RestWidget structure

• index (integer, optional): The 0-based index number of the widget. The index number is needed if
the field contains more than one widget, e.g. in case of a radio button (group). Default is 0 in case
of a field with one widget (e.g. for a signature field and usually a text field or a checkbox

• pageNumber (integer, required): The page number within the document.
• top (double, required): Set the top coordinate. The origin is in the bottom left corner of the page

(see chapter Document coordinate system).
• left (double, required): Set the left coordinate. The origin is in the bottom left corner of the page

(see chapter Document coordinate system).
• right (double, required): Set the right coordinate. The origin is in the bottom left corner of the

page (see chapter Document coordinate system).
• bottom (double, required): Set the bottom coordinate. The origin is in the bottom left corner of

the page (see chapter Document coordinate system).
• selected (boolean, optional): This flag indicates whether the inserted checkbox should be

‘On’ (selected=true) or ‘Off’, which is the default state. Default value: false
• buttonValue (string, optional):

Set the buttonValue only if needed! For radio button fields and check box fields, each widget also
has a "button value". The button value should remain constant after the field has been created
(but it can be changed if needed). The field proper has a value which is either "Off" or one of the
button values of its widgets.
Each widget of a radio button field or a check box field is either off or on. If all widgets of a radio
button field or a check box are off, the field's value is "Off". If at least one widget is on, the field's
value is that widget's "button value". As the value of a field must be different for the on and off
states of the field, the button values must not be "Off". Default value: On

118

Kofax SignDoc Web Developer's Guide

Example request

POST http://localhost:6610/sdweb/rest/v5/documents/4711/checkboxfield?
packageid=package1&fid=f5858b96-294e-46f6-a2f4-bb6d5e90886e

Example request body (JSON)

{
 "restCheckboxFieldInput": {
 "name": "checkbox-1",
 "required": false,
 "alternateName": "Checkbox field 1",
 "tooltip": "This is checkbox field number 1",
 "widgets": [
 {
 "index": 0,
 "pageNumber": 1,
 "left": 120.0,
 "top": 350.23,
 "right": 140.0,
 "bottom": 330.25,
 “selected”: true
 }
]
 }
}

Response

Status code 201 (OK): The field could be successfully inserted.

Status code 404 (NOT FOUND): The document was not available in the requested session.

In case of status code 201 the response body contains the complete definition of the inserted
checkbox field in a RestDocumentOutput structure.

{
 "restDocumentOutput" : {
 "id" : "signdocbdo_-_072f085b-abc4-3220c-8540-23eb56aff9d2",
 "checkboxFields" : [{
 "name" : "checkbox-1",
 "required" : false,
 "readOnly" : false,
 "alternateName" : "Checkbox field 1",
 "tooltip" : "This is checkbox field number 1",
 "widgets" : [{
 "index" : 0,
 "pageNumber" : 1,
 "top" : 489.52,
 "left" : 332.25,
 "right" : 557.25,
 "bottom" : 467.02,
 “selected”: true
 }]
 }
}

Update checkbox field
This request updates a checkbox field in a pdf document.

119

Kofax SignDoc Web Developer's Guide

 The referenced pdf document must be available in the requested session. The document was
previously uploaded into the same session.

URL

http://host_server:port_number/sdweb/rest/v5/documents/{docid}/checkboxfield/{fname}

 host_server is the host domain name or IP address, and port_number is the host port number (if
applicable).

Consumes and produces

JSON, XML

Header

Accept: application/json, application/xml

Method

PUT

Example request

PUT http://localhost:6610/sdweb/rest/v5/documents/4711/checkboxfield/
checkbox-1

Example header

Accept: application/json

Path parameters
• docid (string, required): The id of the related pdf document
• fname (string, required): The (form) field name

Query parameters
• fid (string, optional): The id of the field in SignDoc
• packageid (string, optional): The id of the related package in SignDoc

 The query parameters are only required if the referenced document should be also updated in
SignDoc.

In order to update a field in a SignDoc document the request must contain a valid X-AUTH-TOKEN
header for authentication.

The following entries must be added in sdweb_config.groovy (for usage with SignDoc):

sdweb.plugins.loadlist <<
'de.softpro.sdweb.plugins.impl.cirrus.CirrusDocumentUpdate'

120

Kofax SignDoc Web Developer's Guide

sdweb.plugins.default.impl.documentupdate='CirrusDocumentUpdate'

Body input

The body contains the RestCheckboxFieldInput structure in JSON or XML format.

Body parameters in RestCheckboxFieldInput structure
• alternateName (string, optional): An alternate name of the field which could be used to display a

more readable name for the field.
• clickedIndex (integer, optional): It is possible to toggle the state of the checkbox by setting the

widget index in this parameter in the update request. This simulates the click on the checkbox
field from ‘On’ to ‘Off’ or from ‘Off’ to ‘On’. This parameter can be set to change the state of the
checkbox instead of the selected flag in the RestWidget structure (which has higher priority).

• id (string, optional): The id of the field in SignDoc.
• name (string, optional): The name of the field, must be unique within the document.
• required (boolean, optional): Defines whether the new checkbox is a required field in the

document which must be set to ‘checked’ by the signer if it is optional. Default is optional. Allowed
values are true or false.
Note: The flags required and readOnly cannot be set to true for the same field.

• readOnly (boolean, optional): Readonly field in the document which cannot be changed or if
toggling the state by clicking on the checkbox is allowed. Default is changeable. Allowed values
are true or false.
Note: The flags required and readOnly cannot be set to true for the same field.

• signerId (string, optional): If the checkbox state should be changed by a specific person, the id
of this person can be set here. The value is stored as metadata in the ‘encrypted’ collection of
the SignDoc document properties with the key “SIGNDOCWEB_FIELD_SIGNER_” + (field) name.
Example: SIGNDOCWEB_FIELD_SIGNER_cbox1

• signerName (string, optional): If the checkbox state should be changed by a specific person, the
name of this person can be set here. The value is stored as metadata in the ‘encrypted’ collection
of the SignDoc document properties with the key “SIGNDOCWEB_FIELD_SIGNER_” + (field) name.
Example: SIGNDOCWEB_FIELD_SIGNER_cbox1

• tooltip (string, optional): The tooltip of the field could be also displayed as a hint or for a better
understanding of the purpose of the field. The value is stored as metadata in the ‘encrypted’
collection of the SignDoc document properties with the key “SIGNDOCWEB_TOOLTIP_” + (field)
name. Example: SIGNDOCWEB_TOOLTIP_cbox1

• widgets (list of RestWidget objects, optional): A widget (annotation) structure contains
information about the visible part of a field like the position and size. In PDF documents, a field
may have multiple visible "widgets". For instance, a radio button group (radio button field) usually
has multiple visible buttons, i.e. widgets.

RestWidget structure
• bottom (double, optional): Set the bottom coordinate. The origin is in the bottom left corner of

the page (see Document coordinate system).
• buttonValue (string, optional): Set the buttonValue only if needed! For radio button fields and

check box fields, each widget also has a "button value". The button value should remain constant
after the field has been created (but it can be changed if needed). The field proper has a value
which is either "Off" or one of the button values of its widgets. Each widget of a radio button
field or a check box field is either off or on. If all widgets of a radio button field or a check box are

121

Kofax SignDoc Web Developer's Guide

off, the field's value is "Off". If at least one widget is on, the field's value is that widget's "button
value". As the value of a field must be different for the on and off states of the field, the button
values must not be "Off".

• index (integer, optional): The 0-based index number of the widget. The index number is needed if
the field contains more than one widget, e.g. in case of a radio button (group). Default is 0 in case
of a field with one widget (e.g. for a signature field and usually a text field or a checkbox).

• left (double, optional): Set the left coordinate. The origin is in the bottom left corner of the page
(see Document coordinate system).

• pageNumber (integer, optional): The page number within the document.
• right (double, optional): Set the right coordinate. The origin is in the bottom left corner of the

page (see Document coordinate system).
• selected (boolean, optional): This flag indicates whether the updated checkbox should be

‘On’ (selected=true) or ‘Off’, which is the default state. Alternatively you can set the clickedIndex to
toggle the state of a checkbox.

• top (double, optional): Set the top coordinate. The origin is in the bottom left corner of the page
(see Document coordinate system).

Example request

PUT http://localhost:6610/sdweb/rest/v5/documents/4711/checkboxfield/
checkbox-1?packageid=package1&fid=f5858b96-294e-46f6-a2f4-bb6d5e90886e

Example request body (JSON)

{
 "restCheckboxFieldInput": {
 "widgets": [
 {
 "index": 0,
 “selected”: true
 }
]
 }
}

Response status

Status 200 (OK): The checkbox field could be successfully updated. In case of status code
200 the response body contains the complete definition of the updated checkbox field in a
RestDocumentOutput structure.

Status 404 (NOT FOUND): The document was not available in the requested session.

Examples of response body

{
 "restDocumentOutput" : {
 "id" : "signdocbdo_-_072f085b-abc4-3220c-8540-23eb56aff9d2",
 "checkboxFields" : [{
 "name" : "checkbox-1",
 "required" : false,
 "readOnly" : false,
 "alternateName" : "Checkbox field 1",
 "tooltip" : "This is checkbox field number 1",
 "widgets" : [{
 "index" : 0,

122

Kofax SignDoc Web Developer's Guide

 "pageNumber" : 1,
 "top" : 489.52,
 "left" : 332.25,
 "right" : 557.25,
 "bottom" : 467.02,
 “selected”: true
 }]
 }
}

Delete document field
This request deletes a field of a pdf document.

 The referenced pdf document must be available in the requested session. The document was
previously uploaded into the same session.

URL

http://host_server:port_number/sdweb/rest/v5/documents/{docid}/fields/{fname}

 host_server is the host domain name or IP address, and port_number is the host port number (if
applicable).

Produces

JSON, XML

Header

Accept: application/json, application/xml

Method

DELETE

Example request

DELETE http://localhost:6610/sdweb/rest/v5/documents/4711/fields/field1

Example header

Accept: application/json

Path parameters
• docid (string, required): The id of the related pdf
• fname (string, required): The name of the field within the referenced document

Query parameters
• fid (string, required): The id of the field in SignDoc
• packageid (string, required): The name of the field within the referenced document

123

Kofax SignDoc Web Developer's Guide

 The query parameters are only required if the referenced document is loaded from SignDoc.

In order to delete a field from a SignDoc document the request must contain a valid X-AUTH-TOKEN
header for authentication.

The following entries must be added in sdweb_config.groovy (for usage with SignDoc):

sdweb.plugins.loadlist <<
'de.softpro.sdweb.plugins.impl.cirrus.CirrusDocumentFieldDelete'

sdweb.plugins.default.impl.fielddelete='CirrusDocumentFieldDelete'

Example request

DELETE http://localhost:6610/sdweb/rest/v5/documents/4711/fields/field1?
packageid=pac1&fid=7e6d2be9-b5f7-466a-be62-97955cdc5b25

Response status

Status 200 (OK): The field could be successfully deleted.

Status 404 (NOT FOUND): The document was not available in the requested session or the field does
not exist in the referenced document.

Archive document
This request archives the current session document (see Preload PDF Document with Commands
and Prepare Options and Activate Preloaded PDF Document for Processing). The document is
archived via preconfigured and preloaded DMS plugin (see Plugin interface).

It is necessary to provide the DMS id for addressing a specific DMS plugin. This DMS id can be
specified as value for dmsid either during upload and prepare of the document (see Preload PDF
Document with Commands and Prepare Options) or with parameter dmsid (with higher priority)
directly in the archive document call.

URL

http://host_server:port_number/sdweb/rest/v5/documents/{docId}/archive

Produces

JSON, XML

Header

Accept: application/json, application/xml

Cookie: JSESSIONID=…

Method

POST

124

Kofax SignDoc Web Developer's Guide

Example request

POST http://localhost:6610/sdweb/rest/v5/documents/203932-12342-fdbdfg/
archive?dmsid=de.softpro.sdweb.plugins.impl.FileDms

Path parameters
• docId (string, required): Document Id (which was returned from a document preload request with

init=true)

The request body must hold a checkbox field object with the following structure.

Query parameters
• dmsid (string, optional): The id of the DMS plugin that should archive the document. The DMS

plugin must be configured and loaded in the SignDoc Web server before it can be used.

Response status

Status is 200 (OK): The document could be successfully archived.

 The Validator plugin (with method validateDocumentBeforeArchive) which can be defined via
validatepluginid in 'Upload document' request is not called with 'Archive document' request.

Remove document
This request removes the previously loaded document from session workspace.

URL

http://host_server:port_number/sdweb/rest/v5/documents/{docId}

Produces

JSON, XML

Header

Accept: application/json, application/xml

Cookie: JSESSIONID=…

Method

DELETE

Example request

DELETE http://localhost:6610/sdweb/rest/v5/documents/123

Path parameters
• docId (string, required): Document Id (which was returned from a document preload request with

init=true)

Response status

125

Kofax SignDoc Web Developer's Guide

Status is 200 (OK): The requested document could be successfully removed from the session
workspace. Otherwise 404 (NOT FOUND), if ID not found or invalid. A SignDoc Web status code is
then returned together with an explaining message.

Document coordinate system
The origin of the document coordinate system is in the bottom left corner of the page (as rendered,
that is, taking rotation of PDF pages into account). Points having positive X coordinates are to the
right of the origin, points having positive Y coordinates are above the origin.

For PDF documents, the origin is in that corner of the intersection of the CropBox and the MediaBox
of the page that corresponds to the bottom left corner of the image that would be rendered for that
page. The units are specified by the PDF document and are usually 1/72 inch.

For TIFF documents, the origin is in the bottom left corner of the page, the unit is one pixel.

126

Chapter 5

Plugin interface

For plugin interface description see separate documentation shipped with SignDoc Web.

Documentation:

SDWEB_HOME/interfaces/plugins/sdweb-plugins-<VERSION_NUMBER>-javadoc.zip

Samples with sources:

SDWEB_HOME/interfaces/plugins/sdweb-samples-plugins-<VERSION_NUMBER>-
sources.zip

 Plugins developed for previous SignDoc Web versions can usually be used with SignDoc Web
5.1. To enable this the SignDoc Web administrator has to rename or copy the plugin directory to
SDWEB_HOME/plugins/V3/default.

SignDoc Web plugins general information
Description

SignDoc Web provides many plugin interfaces enabling the customer to adapt the server to their
own needs. The plugin interfaces are available as Java interfaces.

 All SignDoc Web plugins need to implement their interface methods in a thread-safe way, since
each plugin is instantiated only once by the server.

Plugin development

The Java development package is available in the directory:

SDWEB_HOME/interfaces/plugins

When developing a plugin, all of the files of this directory should be added to the build class path.
The relevant files are:
• sdweb-plugins-VERSION_NUMBER.jar

Example
sdweb-plugins-2.1.0.0.0.34.jar

This is the main jar file that contains all plugin interfaces.

127

Kofax SignDoc Web Developer's Guide

• sdweb-plugins-VERSION_NUMBER-javadoc.zip
Example
sdweb-plugins-2.1.0.0.0.34-javadoc.zip

This is the JavaDoc jar file for the corresponding sdweb-plugins-VERSION_NUMBER.jar file.
• sppluguin-fw-VERSION_NUMBER.jar and sppluguin-if-VERSION_NUMBER.jar

Example
sppluguin-fw-2.1.0.0.0.34.jar and sppluguin-if-2.1.0.0.0.34.jar
Required dependenies for sdweb-plugins-VERSION_NUMBER.jar

General information

Each plugin must have its own plugin id (PLUGIN_ID) which the SDWEB server uses to reference it.

Best practices

When writing your own plugin, it is recommended to derive your plugin class from the class
de.softpro.sppluginif.AbstractPlugin and implement the required interface. This ensures,
that the PLUGIN_ID (see above) equals the class name of the plugin.

Example

public class MyPlugin extends AbstractPlugin implements IDms {
...plugin code…
}

Supported plugin packaging

The SignDoc Web server supports different kinds of plugin packagings.

Simple class files (TYPE-1-PACKAGE)

This is applicable, if the plugin has no dependencies to 3rd party libraries and only uses classes of
the JRE and classes available in the SignDoc Web Context's classpath.

Jar file (TYPE-2-PACKAGE)

This is basically the same as above. The only difference is that the class files are packed as a
standard jar file.

Zip file (TYPE-3-PACKAGE)

This is applicable, if the plugin is more complex and has dependencies on other 3rd party libraries
that are not available on the class path. If the package method shall be used, the zip file needs to
have the following sub structure:

MyPlugin.zip
 |
 --> /classes
 | |
 | --> simple class, properties, xml files
 |
 --> /lib
 |
 --> jar files

128

Kofax SignDoc Web Developer's Guide

 The plugin class path overrides the web-app classpath. This means that if a class of the
plugin package references a class, and the same class exists in the server context and the plugin
package. The class of the plugin package will be used.

Classpath order:

1. classes directory

This directory contains simple class files and other files like e.g. properties or other
configuration files.

2. lib

directory
This directory contains standard java jar files.

3. SignDoc Web Context
The standard class path of the signdoc web context as provided by the application container

Plugin installation and usage

The plugin and usage consists usually of the following steps:

1. Copy the plugin package in the SignDoc Web plugin directory.

2. Load the plugin in sdweb_config.groovy.

3. Verify that the plugin was loaded.

4. Use the plugin.

The plugin directory is located in:

SDWEB_HOME/plugins/V3

The default deployment structure looks like this:

SDWEB_HOME/plugins/V3/default
 |
 --> /classes
 | |
 | --> simple class, properties, xml files (TYPE-1-PACKAGE)
 |
 --> /lib
 | |
 | --> jar files (TYPE-2-PACKAGE)
 |
 --> myPlugin1.zip (TYPE-3-PACKAGE)
 |
 --> /myPlugin1 (directory will be automatically created on SignDoc Web start and
 contains the contents of myPlugin1.zip)
 | |
 | --> classes
 | |
 | --> lib
 |
 --> myPlugin2.zip (TYPE-3-PACKAGE)
 |
 --> /myPlugin2 (directory will be automatically created on SignDoc Web start and
 contains the contents of myPlugin2.zip)

129

Kofax SignDoc Web Developer's Guide

 | |
 | --> classes
 | |
 | --> lib
 |
 --> … (more TYPE-3-PACKAGEs)

Step 1 - Copy the plugin package in the SignDoc Web plugin directory

If your plugin is packaged as:
• TYPE-1-PACKAGE put your class files in the directory:
SDWEB_HOME/plugins/V3/default/classes

• TYPE-2-PACKAGE put your jar files in the directory:
SDWEB_HOME/plugins/V3/default/lib

• TYPE-3-PACKAGE put your zip files in the directory:
SDWEB_HOME/plugins/V3/default

These zip files must conform to the schema described above (see Supported Plugin packaging
TYPE-3-PACKAGE) to be used correctly.

Step 2 - Load the plugin in sdweb_config.groovy

You need to know the class name (PLUGIN_CLASSNAME) of your plugin to load it.

Open the sdweb_config.groovy file in an editor:

SDWEB_HOME/conf/sdweb_config.groovy

Search for a line starting with sdweb.plugins.loadlist.

If the line does not exits add a new line at the end of the sdweb_config.groovy file.

 The PLUGIN_CLASSNAME below needs to be put in quotes. If not, this will result in an
configuration error and the plugins are not loaded.

sdweb.plugins.loadlist = ["PLUGIN_CLASSNAME"]

Example

sdweb.plugins.loadlist = ["com.example.MyPlugin"]

If you want to load multiple plugins you just extend the list:

sdweb.plugins.loadlist = ["PLUGIN_CLASSNAME_1", "PLUGIN_CLASSNAME_2", ...]

Example

sdweb.plugins.loadlist = ["com.example.MyPlugin", "com.example.AnotherPlugin"]

 Restart the SignDoc Web server to load the plugins.

Step 3 - Verify that the plugin was loaded

130

Kofax SignDoc Web Developer's Guide

The easiest way to do this, is to open the SignDoc Web About page and look in the plugins section.
If the plugin was loaded, it should appear in the list. If there is a problem, a red or yellow line will
report the issue.

Step 4 - Use the plugin

The plugin usage depends on the type of the plugin:

DMS-Plugin (IDms, IDmsEx1)

The plugin is specified, when opening a document as servlet parameter dmsid.

Example request for using the plugin with the id com.example.MyPlugin:

<form action="http://www.signdocweb.com/sdweb/load/byurl" target="_blank" method="post"
 >
 <input name="docurl" value="DOCUMENT_URL" type="hidden"/>
 <input name="dmsid" value="com.example.MyPlugin" type="hidden"/>
 <input type="submit" value="open"/>
</form>

Available plugin interfaces
Prepare plugin interface

This plugin is called just after the document is created and form and metadata is prefilled. The
plugin can parse the provided metadata and set new metadata or populate form field by returning
an IDocumentData object to the caller.
• Java interface to implement

Name: IPrepare
Package: de.softpro.sdweb.plugins.prepare

• Servlet parameter
Name: preparepluginid
Value: Plugin ID

Signature archive plugin interface

131

Kofax SignDoc Web Developer's Guide

This plugin is called whenever a taken signature needs to be validated against a reference signature
or a signature should be stored in the signature archive.
• Java interface to implement

Name: ISignatureArchive
Package: de.softpro.sdweb.plugins.sigarchive

• Servlet parameter
Name: signaturearchiveid
Value: Plugin ID

Document validator plugin interface

This plugin is called whenever the contents of a document needs to be validated for correctness.
• Java interface to implement

Name: IDocumentValidator
Package: de.softpro.sdweb.plugins.validate

• Servlet parameter
Name: validatepluginid
Value: Plugin ID

DMS plugin interface

This plugin is called whenever a document needs to be archived in the DMS. A document can also
be loaded by this interface (optional).
• Java interface to implement

Name: IDms
Package: de.softpro.sdweb.plugins.dms

• Servlet parameter
Name: dmsid
Value: Plugin ID

IAuthenticate plugin interface

This plugin is called to authenticate the load request to the server. It may reject the request to only
allow requests that are considered as valid for the implementing plugin.
• Java interface to implement

Name: IAuthenticate
Package: de.softpro.sdweb.plugins.authenticate

The used plugin is enabled in sdweb_config.groovy setting property:

sdweb.defaults.defaultauthenticator.impl

Example

sdweb.defaults.defaultauthenticator.impl=
"de.softpro.sdweb.plugins.impl.BasicAuthenticator"

ISignRSA plugin interface

132

Kofax SignDoc Web Developer's Guide

ISignRSA allows SignDoc Web to delegate the signature computing process to an independent
process/location.

This is especially useful, if the digital signatures should be created by a CA or by using an HSM.
• Java interface to implement

Name: ISignRSA
Package: de.softpro.sdweb.plugins.signing

To use the ISignRSA interface, implement a de.softpro.sdweb.plugins.signing.ISignRSA as
documented in the SignDoc Web plugin developer documentation (JavaDoc). A sample plugin with
source code is also provided in the samples package.

To use it the plugin has to be
• loaded in sdweb_config.groovy as any other plugin
• set as signign plugin in sdweb_config.groovy

Setting the SignRSA plugin as singing plugin:

[sdweb_config.groovy]
sdweb.rsa.pluginid=<THE_PLUGIN_ID>

Example

sdweb.rsa.pluginid="de.softpro.sdweb.plugins.impl.demo.SignRSADemo"

Resources:
• JavaDoc is located in %SDWEB_HOME%\interfaces\plugins\sdweb_plugins-VERSION_NUMBER-

javadoc.zip
• Sample code can be found in: %SDWEB_HOME%\interfaces\plugins\sdweb-samples-plugins-

VERSION_NUMBER-sources.zip

General SignDoc Web plugin interface
The SignDoc Web plugin interface makes a plugin usable from within SignDoc Web.

The interface definition is located in the directory:

%SDWEB_HOME%/interfaces/plugins/sdweb-plugins-VERSION_NUMBER.jar

The documentation is located in:

%SDWEB_HOME%/interfaces/plugins/sdweb-plugins-VERSION_NUMBER-javadoc.zip

Load configuration

Which plugins should be loaded is defined in the configuration file:

[[sdweb_config.groovy]]

The following entry has to be added or modified in this configuration file:

loadlist = ['PLUGIN', 'PLUGIN',]

133

Kofax SignDoc Web Developer's Guide

 sdweb{
 plugins {
 loadlist = ['de.softpro.sdweb.plugins.impl.FileDms',
 'de.softpro.sdweb.plugins.impl.SignArchive',]
 }
}

Each plugin that should be loaded on startup must appear in this loadlist and be in the class path of
the web application. The contents of the loadlist is the class name of the plugin. The plugins

'de.softpro.sdweb.plugins.impl.FileDms',
'de.softpro.sdweb.plugins.impl.SignArchive'

will be loaded as default.

Install plugin

Plugins are loaded from the following directory:

%SDWEB_HOME%/plugins/V3/default

Deploy plugin

The Kofax recommended way to deploy a plugin is to create a ZIP file name PLUGINNAME.zip
containing the following structure:

PLUGINNAME.jar
\classes ()
\lib(containing other necessary libs to run the plugin)

If the plugin directory contains files with extension '.zip' then the SignDoc Web plugin deploy
mechanism tries to create a (sub)directory with the name of the ZIP file (without extension '.zip').
Within that directory the two sub-directories will be created:

/classes

/lib

If the PLUGINNAME.jar contains a package structure, that package structure will be created within
the classes sub-directory and the classes will be deployed according to the package structure.

Example

A file MyDMS.zip containing MyDMS.jar would result in creating the sub-directories MyDMS,

MyDMS/classes

MyDMS/lib

The deploy process of MYDMS.jar based on the package structure
de.softpro.sdweb.plugins.impl.MYDMS creates the following structure:

MYDMS.jar
\classes
 \de
 \softpro
 \sdweb
 \plugins
 \impl

134

Kofax SignDoc Web Developer's Guide

 \MYDMS.classes
\lib

IPlugin

All SignDoc Web plugins must implement the Java interface

de.softpro.sppluginif.IPlugin

If this interface is implemented a plugin can be loaded in SignDoc Web.

AbstractPlugin

The class

de.softpro.sppluginif.AbstractPlugin

is a recommended convenience class for implementing a plugin, since it implements already a
number for functions with sensible values:
• PluginId is mapped to the class name
• PluginInterfaceVersion is mapped to the correct server version

A plugin extending this class can be loaded in SignDoc Web.

Interesting functions

Injecting plugin configuration

void injectPluginConfiguration(Map<String,Object> configMap);

This method gets called in the loading phase of a plugin and it passes a map of plugin configuration
values using key/value pairs.

The configuration is done in the sdweb_config.groovy file using this convention:

sdwebplugins {
 "<pluginid_as_defined_in_IPlugin>" {
 key=value
 }
}

where

key: is always treated as string

value: can be any Java type like e.g. boolean, int, string

Example

sdwebplugins {
 "de.softpro.sdweb.plugins.impl.FileDms" {
 dmsFolder = "$sdWebHome/dms/de.softpro.sdweb.plugins.impl.FileDms"
 fileLockTimeout = 10
 }
 "de.softpro.sdweb.plugins.impl.SignArchive" {
 webservice {
 url = "http://localhost:2100/services/signature"
 }

135

Kofax SignDoc Web Developer's Guide

 }
}

The values of the above settings can be accessed in the following way:

"de.softpro.sdweb.plugins.impl.FileDms"

String myDmsFolder = configMap.get('dmsFolder');
int myFileLockTimeout = configMap.get('fileLockTimeout');

"de.softpro.sdweb.plugins.impl.SignArchive"

String myWwebserviceUrl = configMap.get('webservice.url');

Returning error messages

String getErrorMessage(IPluginError pluginError, Locale locale);

Each plugin is responsible for returning its own error messages.

Every plugin should throw an:

de.softpro.sppluginif.PluginException

that implements the IError interface in case of a bad error and wait for the server to query the
error string from the plugin.

The parameter locale can be used to provide a translated error message.

Trusted service provider
The trusted service provider interface is used to add a TSP digital signature to the document if a
signer is registered with the TSP.

This interface is used both by SignDoc Standard and SignDoc Web, which accounts for some
peculiarities with the configuration. In SignDoc Standard the IConfigurablePlugin interface and
the account-specific instantiation is used to inject account-specific configuration data via IPlugin.
SignDoc Web does not support account-specific configuration. Therefore, the event interfaces will
use an optional settings parameter that SignDoc Web will pass with every call and that will override
general settings. Thus, if a settings parameter is present, it should be given precedence over any
settings injected via IPlugin at plugin instantiation.

Supported events

The trusted service provider interface supports three events:
• TSP info event

Provides information about the TSP provider the plugin implements.
• TSP validation event

Used to validate the credentials of a signer for a specific type of digital signature, before the
actual signing takes place.

• TSP signing event
Used to actually sign a document via the trusted service provider.

136

Kofax SignDoc Web Developer's Guide

In case a specific provider does not support the validation step, the validation event does not need
to be supported.

TSP info event

The de.softpro.cirrus.plugins.event.tsp.TSPInfoEvent returns information specific to
the TSP provider this plugin supports:

• IN_LOCALE
Optional. The locale information should be returned in (IETF BCP 47 tag). If not specified the
default locale is English.

• IN_SETTINGS
Optional. If present, the settings map will completely override the settings provided at plugin
instantiation via IPlugin.injectPluginConfiguration. This is necessary, because SignDoc
Web has no account-specific plugin mechanism, thus the account-specific parameters need to be
passed for each call. The plugin has to be able to re-initialize on a ‘by call’ basis.

The output will provide provider-specific information needed to display input and information pages
related to the TSP validation and signing process:
• OUT_PROVIDER_NAME

The (localized) name of the trusted service provider implemented by this plugin.
• OUT_PROVIDER_INFO

Provider-specific information that will be used when displaying input pages (descriptions, help,
registration URL). This returns a map of settings described below.

• OUT_CREDENTIALS_DESCRIPTION
The list of validation credentials needed by the TSP to perform a validation and/or signing. See
below.

Currently supported provider info fields are:

PI_VALIDATION_TEXT ("validation_text"): An optional text that describes the provider-specific
validation procedure.

PI_SIGNING_TEXT ("signing_text"): An optional text that describes the provider-specific signing
procedure.

PI_HELP_TEXT ("help_text"): An optional text that provides help and background information
regarding the TSP provider.

PI_REGISTRATION_URL ("registration_url"): An optional URL to the provider registration page where
a signer can register a new user with this provider.

Each validation credential description element
(de.softpro.cirrus.plugins.event.tsp.TSPParameterDescription) will consist of:
• A parameter id.
• A label to be shown for the entry field.
• A description (to be provided as a help text).
• A type.
• An indicator if the parameter is optional or mandatory.

137

Kofax SignDoc Web Developer's Guide

• A placeholder text to be used in the entry field if needed.
• A Java regular expression to be used to validate the user input.

The calling application can use the TSP info event to query the plugin on the information needed.
The TSP name and the validation text will be displayed in the validation window, together with a list
of entry fields defined by the validation credentials descriptions. If a registration URL is present, the
application will display it, as part of a message where new users can create credentials if they are
not yet registered.

TSP validation event

The de.softpro.cirrus.plugins.event.tsp.TSPValidationEvent describes the actual
validation call. The input parameters are:
• IN_CREDENTIALS

The credentials, according to the information provided by the info event. Credentials are provided
as a map with the parameter id as a key and the value given for that parameter. To avoid
exceptions, parameters should be validated with the regular expression returned by the info
event.

• IN_SIGNATURE_TYPE
The type of the digital signature requested. Currently BASIC, ADVANCED or QUALIFIED.

• IN_SETTINGS
Optional. If present, the settings map will completely override the settings provided at plugin
instantiation via IPlugin.injectPluginConfiguration. This is necessary, because SignDoc
Web has no account-specific plugin mechanism, thus the account-specific parameters need to be
passed for each call. The plugin has to be able to re-initialize on a ‘by call’ basis.

The output only provides a true / false condition depending on the validation outcome:
• OUT_RESULT

A boolean value indicating the result of the validation. True denotes a successful validation of the
credentials for the specified signature type.

In case of processing errors, an appropriate exception will be thrown.

TSP post document signature event

The de.softpro.cirrus.plugins.event.tsp.PostDocumentSignatureEvent starts the
signing process with the TSP provider. The input parameters are:
• IN_CREDENTIALS

The credentials, according to the information provided by the info event. Credentials are provided
as a map with the parameter id as a key and the value given for that parameter. To avoid
exceptions, parameters should be validated with the regular expression returned by the info
event.

• IN_AUTHENTICATION_TOKEN
An authentication token, if available.
In case the TSP uses a short lived authentication token to authenticate the service, the token can
be passed here.

• IN_SIGNATURE_TYPE
The requested signature type (BASIC, ADVANCED or QUALIFIED).

138

Kofax SignDoc Web Developer's Guide

• IN_DOCUMENT
The document to be signed (byte array).

• IN_DOCUMENT_NAME
The name of the document to be signed.

• IN_REDIRECT_URL_OK
URL to be redirected to if signing was successful.

• IN_REDIRECT_URL_CANCEL
URL to be redirected to if signing has been canceled.

• IN_REDIRECT_URL_ERROR
URL to be redirected to if a signing error occurred.

• IN_SETTINGS
Optional. If present, the settings map will completely override the settings provided at plugin
instantiation via IPlugin.injectPluginConfiguration. This is necessary, since SignDoc Web
has no account-specific plugin mechanism, thus the account-specific parameters need to be
passed for each call. The plugin has to be able to re-initialize on a ‘by call’ basis.

The output data includes:
• OUT_AUTHENTICATION_TOKEN

A new authentication token after successful authentication, in case the TSP uses an
authentication token mechanism.

• OUT_DOCUMENT_VERIFICATION_URL
The TSP document verification URL.
The Signing Client will redirect to this TSP URL letting the signer authenticate with the TSP service
and sign the document.

• OUT_SIGNATURE_PROCESS_TOKEN
The signature token returned by the TSP after initiating the document signing. This token is used
to identify this particular signing process.

TSP get document signature event

The de.softpro.cirrus.plugins.event.tsp.GetDocumentSignatureEvent is used to
retrieve a signed document from the TSP previously sent for signing.

The input parameters are:
• IN_AUTHENTICATION_TOKEN

An authentication token, if available.
In case the TSP uses a short lived authentication token to authenticate the service, the token can
be passed here.

• IN_SETTINGS
Optional. If present, the settings map will completely override the settings provided at plugin
instantiation via IPlugin.injectPluginConfiguration. This is necessary, because SignDoc
Web has no account-specific plugin mechanism, thus the account-specific parameters need to be
passed for each call. The plugin has to be able to re-initialize on a ‘by call’ basis.

• IN_SIGNATURE_PROCESS_TOKEN
The signature token that identifies this signing process (received by
PostDocumentSignatureEvent).

139

Kofax SignDoc Web Developer's Guide

The output data includes:
• OUT_AUTHENTICATION_TOKEN

A new authentication token after successful authentication, in case the TSP uses an
authentication token mechanism.

• OUT_DOCUMENT
The content of the signed document (byte array).

• OUT_DOCUMENT_NAME
The name of the document being returned.

140

Chapter 6

Script plugins

SignDoc Web can execute plugins that are written in a script language. Unlike traditional plugins
that are developed with the Java plugin SDK, the script plugins do not need an SDK and do not need
the Java language.

Supported script Languages [as of SignDoc Web 5.1]
• Groovy 2.2

Plugins providing script implementation [as of SignDoc Web 5.1]
• de.softpro.sdweb.plugins.impl.ScriptIPrepareEx

provides script implementation for these interfaces
• de.softpro.sdweb.plugins.prepare.IPrepareEx

General usage

After starting the server, you will find certain script files that represent a plugin interface in
SDWEB_HOME/plugins/<version>/scripts. To fill the interface with life just edit the files with a
text editor. The files can be edited while the server is running. The semantics and documentation of
the plugin functions can be found in the JavaDoc of the SignDoc Web plugin SDK.

 If a plugin method expects a return value then this is always of type AtomicReference.

The header of the script file already contains many useful information on how to use the plugin.
To use this plugin as default plugin for every document loaded you set it as default plugin in
sdweb_config.groovy.

// define this plugin as default plugin...
sdweb.plugins.global.preparepluginid.pluginid=
 "de.softpro.sdweb.plugins.impl.ScriptIPrepareEx" // (written as one
 line)

Example for SignDoc Web 5.1 / IPrepareEx plugin

Directory: plugins/V3/scripts/de.softpro.sdweb.plugins.impl.ScriptIPrepareEx

File: getCmdStatements.groovy (implements the functionality as described in JavaDoc of the
SignDoc Web plugin SDK)

Appending the following lines to the end of the getCmdStatements.groovy file will
insert 2 signature fields at the bottom of every loaded pdf document that uses the plugin
de.softpro.sdweb.plugins.impl.ScriptIPrepareEx

println "********** !!! script plugin was called !!! *************"

def command_list = [

141

Kofax SignDoc Web Developer's Guide

'name=sig1|page=1|bottom=10|left=10|width=100|height=50|type=formfield|
subtype=signature',
'name=sig2|page=1|bottom=10|left=120|width=100|height=50|type=formfield|
subtype=signature'
]
// return value is an AtomicReference Object
my_sdweb_plugin_return_value.set(command_list)

142

Chapter 7

Online signature verification enhancements

SignDoc Web and the plugin interface ISignatureArchiveEx2 was extended to support a more
sophisticated "Online Signature Verification" workflow.

Prerequisites

Resources for plugin developers

See General SignDoc Web plugin interface

Plugin interfaces to implement
• extend de.softpro.sppluginif.AbstractPlugin
• implement de.softpro.sdweb.plugins.sigarchive.ISignatureArchiveEx2

alternative way
• implement de.softpro.sdweb.plugins.sigarchive.ISignatureArchiveEx2
• implement de.softpro.sppluginif.IPlugin

Description

If the SignDoc Web plugin interface
de.softpro.sdweb.plugins.sigarchive.ISignatureArchiveEx2 is implemented by a plugin,
the plugin is usually used to compare a test signature against a reference signature. The result of
such a compare action is ValidationResult object. This object can return a VALIDATION_RESULT state
back to SignDoc Web and so control the further workflow.

 The implementing plugin is called every time, after signature is captured and before the
document is signed. This allows the workflow to check a signature before actually using it.

143

Kofax SignDoc Web Developer's Guide

Possible VALIDATION_RESULT values and their implication on the workflow:

VALIDATION_RESULT Description

MATCH The signature to validate will be accepted and the signature field is
signed.

NO_MATCH The signature to validate will be rejected and the signature field is
not signed.

NOT_FOUND The GUI will display a message, that the reference signature is
missing. The signature field is not signed.

GENERIC_ERROR The GUI will display a message, that an error occurred. The signature
field is not signed

QUESTIONABLE_MATCH The GUI will display a dialog box where the user can decide, if a
signature is acceptable or not. If the signature is accepted, the
document will be signed.

Possible values for ValidationResult.OPTION:

Value Java
Type

Description Applicable with

IMAGE_TEST_SIGNATURE byte[] An image of the test signature QUESTIONABLE_MATCH

IMAGE_REFERENCE_SIGNATURE byte[] An image of the reference
signature

QUESTIONABLE_MATCH

SIMPLE_GUI_MESSAGE string A message, the GUI should
display to the user

QUESTIONABLE_MATCH

IMAGE_MIME_TYPE string The mime type of the test and
reference image

QUESTIONABLE_MATCH

HIDDEN_PARAMETER string A String value, that is not touched
or evaluated by the server. If
a plugin needs to transport
information (e.g. the match rate)
from the validateSignatureEx1(..)
method to the
questionableSignatureDecision(..)
method, it can use this parameter

QUESTIONABLE_MATCH

Usage

To use the plugin the following conditions have to be fulfilled:
• The plugin has to be loaded by SignDoc Web on Startup
• When opening a document, the load request needs to specify:

• the ISignatureArchive plugin to use
• the signerid for each signature field that should use the ISignatureArchive

sdweb_config.groovy - Load the plugin

Syntax

144

Kofax SignDoc Web Developer's Guide

sdweb.plugins.loadlist = ["plugin class 1", "plugin class 2", ..]

Example

sdweb.plugins.loadlist = ["de.softpro.SignArchiveTestPlugin"]

Servlet request parameters

Parameter name Description Parameter value
Example

signaturearchiveid Defines which ISignatureArchive
plugin to use by specifying the
plugin's pluginid

de.softpro.SignArchiveTestPlugin

cmd_[unique_number Defines which signature
field should be checked
against which signer id before
accepting the signature

name=sig1|type=signaturearchive|
subtype=validate|
value=a_user_id_the_plugin_understands

Optional configuration options sdweb_config.groovy
• sdweb.plugins.signaturearchive.validation.signWithoutReference (boolean): If set to false,

that server will not accept a signature, when the signer has no reference signature. Default: true

Code example

public class TestPlugin extends AbstractPlugin implements ISignatureArchiveEx2 {

 @Override
 public ValidationResult validateSignatureEx1(byte[] signature, String signerid,
 IDocumentData documentData, Map<String, Object> params) throws PluginException {

 byte[] referenceSignaturePng;
 byte[] testSignaturePng;
 String simpleGuiMessage;
 String mimeType = "image/png";

 /* Example (not useful in production)
 that sets the result based on the signerid */
 VALIDATION_RESULT valResult;
 if (signerid.equals("MATCH")) {
 valResult = VALIDATION_RESULT.MATCH;
 } else if (signerid.equals("NO_MATCH")) {
 valResult = VALIDATION_RESULT.NO_MATCH;
 } else if (signerid.equals("NOT_FOUND")) {
 valResult = VALIDATION_RESULT.NOT_FOUND;
 } else if (signerid.equals("QUESTIONABLE_MATCH")) {
 valResult = VALIDATION_RESULT.QUESTIONABLE_MATCH;
 } else if (signerid.equals("GENERIC_ERROR")) {
 valResult = VALIDATION_RESULT.GENERIC_ERROR;
 } else {
 valResult = VALIDATION_RESULT.GENERIC_ERROR;
 }

 /******************/
 /* more code here */
 /******************/

 /* set the GUI message (only used, when valResult==QUESTIONABLE_MATCH) */

145

Kofax SignDoc Web Developer's Guide

 simpleGuiMessage = "Please verifiy the signature!
Date: " + new
 Date().toString();

 /* a hidden parameter, the plugin can use */
 options.put(OPTION.HIDDEN_PARAMETER, signerid);
 /* the image of the reference signature */
 options.put(OPTION.IMAGE_REFERENCE_SIGNATURE, referenceSignaturePng);
 /* the image of the test signature */
 options.put(OPTION.IMAGE_TEST_SIGNATURE, testSignaturePng);
 /* a message, that is displayed on the GUI if VALIDATION_RESULT is
 QUESTIONABLE_MATCH or NOT_FOUND*/
 options.put(OPTION.SIMPLE_GUI_MESSAGE, "Please verifiy the signature!
Date: "
 + new Date().toString());
 /* a valid mime-type for the images - both images must have the same file
 format*/
 options.put(OPTION.IMAGE_MIME_TYPE, mimeType);

 ValidationResult result = new ValidationResult(valResult, options);

 return result;
 }

 @Override
 public VALIDATION_RESULT validateSignature(byte[] signature, String signerid,
 IDocumentData documentData, Map<String, Object> params) throws PluginException {
 throw new IllegalAccessError("this method sould not be used");
 }

 @Override
 public void questionableSignatureDecision(String documentId, String fieldId, String
 signerId, String guiQuestion, QUESTIONABLE_SIGNATURE_DECISION decision, String
 hiddenParameter) {
 log.info("questionableSignatureDecision: docId=" + documentId + " fieldId=" +
 fieldId + " signerId=" + signerId + " guiQuestion=" + guiQuestion + " decision=" +
 decision + "hiddenParameter=" + hiddenParameter);
 }

}

146

Chapter 8

Configuration file sdweb_config.groovy

Parameters can fall into one of the below categories which are listed on the SignDoc Web About
page for each parameter:
• RT: Changes made to the parameter will take effect immediately during RunTime (as per

parameter sdweb.config.autoupdate.interval the config is read every 5 seconds per default)
• SR: For changes to take effect a ServerRestart will be required.
• SU: These parameters fall into the category Specification Undefined which means it depends on

the runtime scenario how they behave with regards to a server restart being required or not.
• UV: These parameters have a User Value i.e. the default value was changed.
• DV: These parameters have their Default Value set.
• NA: These parameters are not available for configuration by the user but are merely listed for

information purposes.

Find below a complete list of available configuration parameters in the same order as listed on the
SignDoc Web About page.
• gwtutils.config.directory (string): Set location of folder where configuration files are located.

Default: "${sdweb.home}/conf"
• gwtutils.config.readerclass (string): Set class that should be used to read the configuration.

Default: "de.softpro.sdweb.gwt.server.configuration.SDConfigurationReader"
• sdweb.about.display_help_url (boolean): Defines if direct links to the help topics are displayed

in the About page. Default: true
• sdweb.about.include.config_infos (boolean): Show or hide configuration section of About page.

Default: true
• sdweb.about.include.general_infos (boolean): Show or hide general section of About page.

Default: true
• sdweb.about.include.hostname_section (boolean): Show or hide host name section of About

page. Default: false
• sdweb.about.include.license_infos (boolean): Show or hide license section of About page

Default: true
• sdweb.about.include.plugin_infos (boolean): Show or hide plugin section of About page.

Default: true
• sdweb.about.include.problem_infos (boolean): Show or hide problem section of About page.

Default: true
• sdweb.about.include.usersetting_infos (boolean): Show or hide user settings section of About

page. Default: true
• sdweb.about.settings_page_url (string): Defines the URL to the Help Topics. The page should

provide HTML anchors for the configuration settings. Default: ""/help/en/adminguide/html/
configuration_file_sdweb_config_groovy.htm""

147

Kofax SignDoc Web Developer's Guide

• sdweb.aboutbox.excludelist (string list): Each entry in the configuration list of the About page
which contains in the last parameter of a key such an exclude string is marked as a password.
The value of a password is not printed, it is masked with the value xxxxx. Default: ["password",
"configlink_proapp"]
Example: If sdweb.aboutbox.excludelist contains the string "password", the value for
configuration key sdweb.certificate.store.pkcs12.password is displayed in the about page as
"xxxxx".

• sdweb.action.allow.clearsignature (boolean): Allow the removal of a signature within a
signature field after it has been signed. Default: true

• sdweb.action.allow.deletesignature (boolean): Specifies if it is allowed to delete a signature or
not. Default: true

• sdweb.action.allow.imagesignature (boolean): Allow the capturing of an image in a document's
image field. Default: true

• sdweb.add_custom_http_header_entries (boolean): Enabling the custom http header
option enables the user to set arbitrary information in the http responses of SignDoc Web.
Supported http header types are: String, Date and Integer values. To be used together with
sdweb.http.servlet_response_header.list.xxx. Default: false
Example
sdweb.add_custom_http_header_entries=true
sdweb.http.servlet_response_header.list.string=["string_entry_1=1234", "string_entry_2=5678"]
sdweb.http.servlet_response_header.list.date=["time config read=" +
java.lang.System.currentTimeMillis()]
sdweb.http.servlet_response_header.list.integer=["a_custom_number=" + 123456]

• sdweb.audittrail.defaults.did (string): Default value that is used in the AuditTrail, if the
document id (docid parameter) is not available for an AuditTrail statement. Default: ""

• sdweb.audittrail.defaults.tid (string): Default value that is used in the AuditTrail, if the
transaction id (tid parameter) is not available for an AuditTrail statement. Default: ""

• sdweb.audittrail.defaults.uid (string): Default value that is used in the AuditTrail, if the user id
(uid parameter) is not available for an AuditTrail statement. Default: ""

• sdweb.audittrail.enabled (boolean): Enables or disables the audit trail. Default: true
• sdweb.audittrail.locale (string): Parameter to set the locale that the audit trail will be written in.

Default: "en"
• sdweb.audittrail.log.field_changes_as_image (boolean): Determines whether field changes

such as text entry in a document will be recorded not only in a protocol style report but also with
a screenshot of the area that has changed. Default: true

• sdweb.audittrail.log.signature_image.after_digsig(boolean): Determines whether the
signature and its surrounding area in the document will be recorded in the audit as an image.
Default: false

• sdweb.audittrail.log.signature_image.before_digsig (boolean): Determines whether the
signature image will be recorded on its own before being placed in the document´s signature
field. Default: true

• sdweb.audittrail.plugin.impl (string): Determines the plugin which is used for audit purposes.
Default: "de.softpro.sdweb.plugins.impl.SimpleAuditLog"

• sdweb.audittrail.ressource.xls.default (string): Determines the eXtensible Stylesheet Language
file which is used for the displaying of the Audit Trail. Default: "de/softpro/signdoc/audittrail/
at2html_plain.xsl"

148

Kofax SignDoc Web Developer's Guide

• sdweb.authenticate.pluginid (string): Can be used to set an Authentication Plugin in SignDoc
Web. Default: ""

• sdweb.browserplugin.padclass (string): The setting sdweb.browserplugin.padclass can be
used to fix a specific search sequence for capture devices in SignDoc Web. For more details
see SignDoc Web Administrator's Guide, chapter "Configure server", section "Description of
sdweb.browserplugin.padclass". Default: ""

• sdweb.browserplugin.padconfiguration(string): This setting can be used for additional tablet
configuration. Configuration data equals the options as described in tablet.ini, depending on the
detected tablet model. For more details see SignDoc Web Administrator's Guide, chapter "Configure
server, section "Description of sdweb.browserplugin.padclass". Default: ""

• sdweb.browserplugin.padconfiguration_remotetablet.setlanguage (boolean): Defines, if a
remote tablet should use the sessions language setting. Default: true

• sdweb.browserplugin.querypad.always (boolean): The default setting "true" makes sure that
the 'QueryPad' function call to the browser plugin is invoked at each signature capturing in the
browser client. This enables the user to select various capture devices for signature capture
within a document. Default: true

• sdweb.c2s.defaults.signaturerenderer.impl (string): Default rendering engine for Click-to-Sign
signatures. Default: "de.softpro.sdweb.plugins.impl.c2s.DefaultC2SSignatureRenderer"

• sdweb.c2s.signaturereimage.dpi (integer): Determines the resolution of the Click-to-Sign
signature image. Default: 300

• sdweb.capture.html5_desktop (string): Define instruction for client to offer HTML5 capturing on
the desktop
Possible values:
"auto" - no explicit presetting, client has to decide (not yet supported)
"force" - the client is only allowed to offer HTML5 capturing via JavaScript
"deny" - the client must not offer HTML5 capturing (default for now will be replaced by auto later)
For this parameter to become effective sdweb.gui.desktop.impl="showjsmobile" needs to be set.
Default: "deny"

• sdweb.capture.html5_mobile (string): Define instruction for client to offer HTML5 capturing on
mobile devices
Possible values:
"auto" - no explicit presetting, client has to decide (not yet supported)
"force" - the client is only allowed to offer HTML5 capturing via JavaScript
"deny" - the client must not offer HTML5 capturing (default for now will be replaced by auto later)
Default: "deny"

• sdweb.capture.subtype.choice (string list): If a signature field was inserted via command
interface as capture field the user is enabled to select from a capture method choice list if he
clicks on the field. The possible choice list default entries are 'signature', Image_capture' and
'c2s' (for Click-to-Sign). These default values can be overwritten for each field via command
interface. This choice list is also available for signature fields without a specific subtype definition
('signature', 'image_capture' or 'c2s') if sdweb.digsig.unspecified.allow.subtype.choice=true is
configured. Default: ['signature', 'image_capture', 'c2s']

• sdweb.capture.tabletpc.background_image.height (integer): Sets height of capture dialog
when using Tablet PC with browser plugin. Default: 480

149

Kofax SignDoc Web Developer's Guide

• sdweb.capture.tabletpc.background_image.width (string): Sets width of capture dialog when
using Tablet PC with browser plugin. Default: Default: 800

• sdweb.certificate.store.pkcs12.file (string): Path to default PKCS12 Certificate which is used to
digitally sign the signatures. Default: "${sdweb.home}/conf/cert_store.p12"

• sdweb.certificate.store.pkcs12.password (string): Password for default PKCS12 Certificate
which is used to digitally sign the signatures. Default: "secret"

• sdweb.cmd.allow.update.readonly.editfields (boolean): Allow the updating of read-only
document fields via a SignDoc Web command. Default: true

• sdweb.cmd.error.throwException (boolean): Throws an Exception if a passed command is
invalid, otherwise (false) only an error (or info) is logged and processing continues without the
(invalid) command. Default: true

• sdweb.command.list_separator (string): Separator sign for commands. Default: "\|"
• sdweb.config.autoupdate.enabled (boolean): Automatic update of the configuration.

If set to true the configuration will be update regularly as per parameter
sdweb.config.autoupdate.interval. Default: true

• sdweb.config.autoupdate.interval (integer): The update interval for automatic configuration
updates in milliseconds. The server periodically check for changes of the configuration files using
this interval. The check is executed independently and asynchronously of other processes/events
of the server. I.e. the maximum time that passes until a config change is recognized, is the value
of this setting. Default: 5000

• sdweb.custom.help (string): URL to customized user guide. Default: ""
• sdweb.custom.help_admin (string): URL to customized administration guide. Default: ""
• sdweb.custom.help_dev(string): URL to customized developer guide. Default: ""
• sdweb.debug.performancewatch.name.'10-00' (string): Can be used to change the

name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "LOADER-PHASE"

• sdweb.debug.performancewatch.name.'11-00' (string): can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "LP-CL

• sdweb.debug.performancewatch.name.'12-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "LP-DL"

• sdweb.debug.performancewatch.name.'20-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "PREPARE-PHASE"

• sdweb.debug.performancewatch.name.'21-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "PP-CORE-PREFILL"

• sdweb.debug.performancewatch.name.'22-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "PP-PLUGIN-COMPLETE"

• sdweb.debug.performancewatch.name.'22-01' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "PP-PLUGIN-EXT"

150

Kofax SignDoc Web Developer's Guide

• sdweb.debug.performancewatch.name.'22-02' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "PP-PLUGIN-STD"

• sdweb.debug.performancewatch.name.'22-03' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "PP-PLUGIN-POPULATE"

• sdweb.debug.performancewatch.name.'22-04' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "PP-MISC

• sdweb.debug.performancewatch.name.'23-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "PP-INIT-DOCUMENT"

• sdweb.debug.performancewatch.name.'24-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "PP-OPTIMIZE-SIZE"

• sdweb.debug.performancewatch.name.'25-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "PP-READONLY-MODE"

• sdweb.debug.performancewatch.name.'26-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "PP-CREATE-KEY"

• sdweb.debug.performancewatch.name.'30-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "CONVERSION-PHASE"

• sdweb.debug.performancewatch.name.'40-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "INTERACTIVE-PHASE"

• sdweb.debug.performancewatch.name.'41-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "IP_PREP_SIG_PLUGIN"

• sdweb.debug.performancewatch.name.'42-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "IP_PREP_IMG_PLUGIN"

• sdweb.debug.performancewatch.name.'43-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "IP-ADD-SIG"

• sdweb.debug.performancewatch.name.'44-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "IP-DEL-SIG"

• sdweb.debug.performancewatch.name.'45-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "IP-FIELD-UPDATE"

• sdweb.debug.performancewatch.name.'45-01' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "IP-FIELD-VALIDATE-UPDATE"

151

Kofax SignDoc Web Developer's Guide

• sdweb.debug.performancewatch.name.'46-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "IP-VALIDATE"

• sdweb.debug.performancewatch.name.'47-00' string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "IP_ADD_IMAGE"

• sdweb.debug.performancewatch.name.'50-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "FINALIZE-PHASE"

• sdweb.debug.performancewatch.name.'51-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "FP-VALIDATE"

• sdweb.debug.performancewatch.name.'52-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "FP-STORE-DMS

• sdweb.debug.performancewatch.name.'90-00' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "MISC-LAST-RENDERED-PAGE"

• sdweb.debug.performancewatch.name.'90-01' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "MISC-RENDER-PRINT"

• sdweb.debug.performancewatch.name.'90-02' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "MISC-DOWNLOAD-DOCUMENT"

• sdweb.debug.performancewatch.name.'90-03' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "PRINT_VIEW"

• sdweb.debug.performancewatch.name.'90-04' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "MISC-SERVERDONE"

• sdweb.debug.performancewatch.name.'90-05' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "MISC-FIRSTPAGE-SENT"

• sdweb.debug.performancewatch.name.'99-03' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "MISC-3"

• sdweb.debug.performancewatch.name.'99-04' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "MISC-4"

• sdweb.debug.performancewatch.name.'99-05' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "MISC-5"

• sdweb.debug.performancewatch.name.'99-06' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "MISC-6"

152

Kofax SignDoc Web Developer's Guide

• sdweb.debug.performancewatch.name.'99-07' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "MISC-7"

• sdweb.debug.performancewatch.name.'99-08' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "MISC-8"

• sdweb.debug.performancewatch.name.'99-09' (string): Can be used to change the
name of the respective phase as it appears in the log files. Specify with single quotes:
sdweb.debug.performancewatch.name.'xx-xx'="XYZ". Default: "MISC-9"

• sdweb.defaults.customloader.plugin.impl (string): Name of the default custom loader plugin
to be used. Default: ""

• sdweb.defaults.defaultpublickey.name (string): The public key file name which is used to
encrypt the biometric data of a signature. Default: "0001-public.key"

• sdweb.defaults.imagecapturefield.image.halignment (integer): The horizontal alignment
(ha_left, ha_center, or ha_right) of the image (in the appearance stream of PDF documents) of an
image capture field. Possible values: 0 - ha_left, 1 - ha_center, 2 - ha_right. Default: 1

• sdweb.defaults.imagecapturefield.image.margins (integer): Margins in millimeters around a
captured image within the rectangle. Default: 0

• sdweb.defaults.imagecapturefield.image.valignment (integer): The vertical alignment (va_top,
va_center, or va_bottom) of the image (in the appearance stream of PDF documents) of an image
capture field. Possible values: 0 - va_top, 1 - va_center, 2 - va_bottom. Default: 1

• sdweb.defaults.imagecapturefield.text.position (integer): Position of the text in an image
capture field. Possible values: 0 - tp_overlay (Text and image are independent and overlap, text
is painted on image), 1 - tp_below (Text is put below the image, the image is scaled to fit), 2 -
tp_underlay (Text and image are independent and overlap, text is painted under image). Default:
1

• sdweb.defaults.preload.plugin.impl (string): The Preload Plugin which is used per default.
Default: "de.softpro.sdweb.plugins.impl.SimpleFilePreloader"

• sdweb.defaults.prepare.plugin.impl (string): The Prepare Plugin which is used per default.
Default: ""

• sdweb.defaults.signature.date.format (string): Format in which the timestamp of the signature
is displayed if sdweb.signature.display.signtime=true. Pattern follows the rules defined in Java's
DateFormat class: http://docs.oracle.com/javase/7/docs/api/java/text/DateFormat.html. Default:
"yyyy-MM-dd HH:mm"

• sdweb.defaults.signature.date.locale (string): Locale of signature timestamp which is displayed
if sdweb.signature.display.signtime=true. Default: "en"

• sdweb.defaults.signature.displaytext (string): The signature field will show the specified
signer name if sdweb.signature.display.signer=true.This setting must be assigned a String value!
sdweb.defaults.signature.displaytext= is invalid!, sdweb.defaults.signature.displaytext="" is valid.
Default: "SignDoc"

• sdweb.defaults.signature.logo (string): Defines a free text that can be displayed in a C2S
signature. Default: "E-SIGN WITH KOFAX"

• sdweb.defaults.signature.penwidth (integer): Stroke width of signature image in document
independent of signer´s signature. Default: 750

• sdweb.defaults.signaturearchive.impl (string): The Signature Archive Plugin which is used per
default. Default: ""

153

Kofax SignDoc Web Developer's Guide

• sdweb.defaults.signaturefield.image.halignment (integer): The horizontal alignment (ha_top,
ha_center, or ha_bottom) of the image (in the appearance stream of PDF documents) of signature
field. Possible values: 0 - ha_top, 1 - ha_center, 2 - ha_bottom. Default: 1

• sdweb.defaults.signaturefield.image.margins (integer): Margins in millimeters around the
signature image within the rectangle. Default: 1

• sdweb.defaults.signaturefield.image.valignment (integer):The vertical alignment (va_top,
va_center, or va_bottom) of the image (in the appearance stream of PDF documents) of a
signature field. Possible values: 0 - va_top, 1 - va_center, 2 - va_bottom. Default: 1

• sdweb.defaults.signaturefield.text.color (string):
Color of the text in the signature field as Hexadecimal RGB value. See http://www.w3schools.com/
html/html_colors.asp. It is applicable if at least one of following settings are true:
sdweb.signature.display.signtime=true
sdweb.signature.display.signer=true
Default: "808080"

• sdweb.defaults.signaturefield.text.font.name (string): Font of the text in the signature field. It
is applicable if at least one of following settings is true:
sdweb.signature.display.signtime=true
sdweb.signature.display.signer=true
Default: "Helvetica"

• sdweb.defaults.signaturefield.text.font_size (integer): Font size of the text in the signature
field. It is applicable if at least one of following settings is true:
sdweb.signature.display.signtime=true
sdweb.signature.display.signer=true
Default: 0

• sdweb.defaults.signaturefield.text.halignment (integer): The horizontal alignment (ha_top,
ha_center, or ha_bottom) of the text (in the appearance stream of PDF documents) of signature
field. Possible values: 0 - ha_top, 1 - ha_center, 2 - ha_bottom. Default: 1

• sdweb.defaults.signaturefield.text.margins.horizontal (integer): Horizontal margins of text in
a signature field in millimeters. Default: 3

• sdweb.defaults.signaturefield.text.position (integer): Position of the text in a signature field.
Possible values: 0 - tp_overlay (text and image are independent and overlap, text is painted on
image), 1 - tp_below (text is put below the image, the image is scaled to fit), 2 - tp_underlay (text
and image are independent and overlap, text is painted under image). Default: 1

• sdweb.defaults.signaturefield.text.valignment (integer):Vertical alignment of the text within a
signature field. Possible values: 0 - va_top, 1 - va_center, 2 - va_bottom. Default: 2

• sdweb.demo_mode.enabled (boolean): In general a SOFTPRO demo logo is inserted into the
upper left corner of a document page if the user captures a signature with the SOFTPRO Mobile
App without having the Pro-App version enabled. For demo or test purposes the demo mode can
be activated for the desktop client also, to insert the demo logo after capturing by enabling this
setting. Default: false

• sdweb.digsig.unspecified.allow.subtype.choic (boolean): Signature fields in SignDoc Web can
be itemized via Command Interface as a specific subtype, like signature, image_capture or c2s
(for Click-to-Sign). In this case it is only possible to fill the signature fields with the predefined
capture methods according the specified subtype. If a digital signature field was inserted in the
document without SignDoc Web specific subtype definition it is possible to treat them as (also
SignDoc Web specific) capture field. With setting

154

http://www.w3schools.com/html/html_colors.asp
http://www.w3schools.com/html/html_colors.asp

Kofax SignDoc Web Developer's Guide

sdweb.digsig.unspecified.allow.subtype.choice=true
the user is enabled to select a capture method according the choice list which is specified by
default with sdweb.capture.subtype.choice definition.
With
sdweb.digsig.unspecified.allow.subtype.choice=false
these unspecified signature are treated as normal signature fields without the possibility to select
any other capture method (for image capturing or click to sign signatures). Default: false

• sdweb.document.signature.tsa.config (string): Determines the Timestamp Server Authority
Server URL according to RFC 3161 which will be used for the signature timestamp. See SignDoc
Web Administrator's Guide, topic "TSA Functionality" for further information. Default: ""

• sdweb.document.signature.tsa.use_metadata_config (boolean):This setting can be used to
enable TSA functionality via a document's metadata. See SignDoc Web Administrator's Guide, topic
"TSA functionality" for further information. Default: false

• sdweb.document.text.color (string): Changes text color of document to this Hexadecimal RGB
value. See http://www.w3schools.com/html/html_colors.asp. Default: "000000"

• sdweb.document.text.opacity (string): Changes opacity of document's text. Default: "1.0"
• sdweb.documentation.display.public (boolean): The product documentation is by default

available from everywhere. If you change the setting to "false" the help can only be accessed by
local users via http://localhost:6610/sdweb/help. Default: true

• sdweb.excluded.actions (string list): Contains the context relative links which are disabled in
SignDoc Web. A status code 404 (not found) will return if anybody tries to call one of the included
links. Default: ["test/", "tools/", "status/"]

• sdweb.external_server_url (string): The server can be configured to use a fixed URL for all
absolute links. This makes it possible to use SignDoc Web behind a proxy. Default: ""
Example
sdweb.external_server_url="http://MY_PROXYSERVER/sdweb"

• sdweb.external_server_url_list (string list): This is a highly specialized setting which can be used
to run SignDoc Web behind multiple Proxy Servers. It is not recommended to make use of this
setting in a production environment. Default: []

• sdweb.flatten_document.download (boolean): If set to true this parameter will remove the
possibility to edit the fields after downloading. The fields will not show as editable anymore.
Default: false

• sdweb.font.configfile(string): Path to the default font configuration file. Default:
"${sdweb.home}/fonts\SPFontConfig.xml"

• sdweb.gui.desktop.impl (string): Show different types of GUI. For Remote Interface it is required
to use the mobile GUI. Possible values: "showjs" - standard GUI, "showjsmobile" - mobile GUI.
Default: "showjs"

• sdweb.gui.impl (boolean): Checks if the text entered in the document fields has Latin characters.
If non-Latin characters are entered a warning will be displayed and the entry of the characters
refused. Default: true

• sdweb.gui.input.text.check.islatin (boolean): Checks if the text entered in the document fields
has Latin characters. If non-Latin characters are entered a warning will be displayed and the entry
of the characters refused. Default: true

• sdweb.gui.input.text.check.pattern (boolean): The verification of text input is done in SignDoc
Web client according the validation pattern (regular expression) which can be defined via

155

http://www.w3schools.com/html/html_colors.asp

Kofax SignDoc Web Developer's Guide

Textfield parameter (validpattern) in command. For security reason it is advisable to check
the entered text also on server side. This (additional) check is performed on server side if
sdweb.gui.input.text.check.pattern=true is set. Default: true

• sdweb.gui.mobile.impl (string): Default GUI that is used on mobile clients. Default:
"showjsmobile"

• sdweb.gui.mobile.ios.activecaching.enable (boolean): SignDoc Web mobile App under iOS
needs a specifc caching behavior for effective handling with data from the server which is
activated by default. It can be disabled by setting sdweb.gui.mobile.ios.activecaching.enable =
false, but it is not recommended. Default: true

• sdweb.gui.render.format (string): Document page image format displayed in desktop browser.
Supported image formats are "gif", "png", "bmp", "tiff" and "jpeg". See also SignDoc Web
Administrator's Guide, chapter "Reduce network data". Default: "png"

• sdweb.gui.render.format_mobile (string): Document page image format for (known) mobile
devices. Supported image formats are "gif", "png", "bmp", and "jpeg". See also SignDoc Web
Administrator's Guide, chapter "Reduce network data".

• sdweb.gui.render.index_color_model (string): Color Model to be used for rendering of
documents. See also SignDoc Web - Administrator's Guide, chapter Reduce Network Data for
more details on color models. Default: ""

• sdweb.gui.render.index_color_model_desktop(string): Color Model to be used for rendering of
documents on the Desktop client. See also SignDoc Web - Administrator's Guide, chapter Reduce
Network Data for more details on color models. Default: ""

• sdweb.gui.render.index_color_model_mobile (string): Color Model to be used for rendering of
documents on the Mobile client. See also See also SignDoc Web - Administrator's Guide, chapter
Reduce Network Data for more details on color models. Default: ""

• sdweb.gui.render.jpeg.quality (integer): Adjusts jpeg quality (range: 0-100) for rendered
document pages if jpeg image format is configured. It sets the compression quality to a value
between 0 and 100. For lossy compression schemes, the compression quality should control the
tradeoff between file size and image quality (for example, by choosing quantization tables when
writing JPEG images). For lossless schemes, the compression quality may be used to control the
tradeoff between file size and time taken to perform the compression. A compression quality
setting of 0 is most generically interpreted as "high compression is important", while a setting of
100 is most generically interpreted as "high image quality is important". Default: 60

• sdweb.gui.taborder (string): Set tab order in GUI. Possible values: "appearance" and "pdf".
Value "pdf" inherits tab order of the pdf document. The value "appearance" evaluates the
order according to the sequence of the fields appearance from top-down to left-right. Default:
"appearance"

• sdweb.http.servlet_response_header.list.date (string): This option allows the user to set
arbitrary Date information in the http responses of SignDoc Web. To be used together with
sdweb. dd_custom_http_header_entries=true. See example there. Default: []

• sdweb.http.servlet_response_header.list.integer (string list): This option allows the user to set
arbitrary Integer information in the http responses of SignDoc Web. To be used together with
sdweb. dd_custom_http_header_entries=true. See example there. Default: []

• sdweb.http.servlet_response_header.list.string (string list): This option allows the user to set
arbitrary String information in the http responses of SignDoc Web. To be used together with
sdweb. dd_custom_http_header_entries=true. See example there. Default: []

• sdweb.image_capture.dynamic_dimension_calculation (boolean): Alternative to fix image
capture size is the dynamic calculation of the image according the field size and configured

156

Kofax SignDoc Web Developer's Guide

resolution (see sdweb.image_capture.dynamic_dimension_calculation_resolution). The minimum
image height is the value of the setting sdweb.image_capture_height. The minimum image width
is the value of the setting sdweb.image_capture_width. If "false" is set then the fixed default
capture image sizes are used (maximum size, see settings: sdweb.image_capture_height and
sdweb.image_capture_width). Default: true

• sdweb.image_capture.dynamic_dimension_calculation_resolution (integer): Default
resolution as base for the calculation of the image capture size dependent from the field size.
Default: 96

• sdweb.image_capture_height (integer): Capture image setting: Height of captured image, mm
for Scanner, pixel for camera. Default: 240

• sdweb.image_capture_width (integer): Capture image setting: Width of captured image, mm for
Scanner, pixel for camera. Default: 320

• sdweb.internal_result_page.qrcode.height (integer): With this setting it is possible to change
the height of the QR code, that is shown after finalizing a document. Default: 250

• sdweb.internal_result_page.qrcode.width (integer): With this setting it is possible to change the
width of the QR code, that is shown after finalizing a document. Default: 250

• sdweb.internal_result_page.showloadbydms (boolean): With this setting it is possible to decide,
whether the DMS link to the finalized document should be shown in the result page. Default: true

• sdweb.internal_result_page.showxcb (boolean): With this setting on true, a x-callback-url and it
´s QR code are displayed in the result page after finalizing a document. Default: false

• sdweb.load.error.fail_fast (boolean): Per default a load error is redirected to the result page. If
set to true the setting sdweb.load.error.status_code is taken into account. Default: false

• sdweb.load.error.status_code (integer): HTTP response code that will be used in case that a load
error occurs and sdweb.load.error.fail_fast is set to true. Default: 404

• sdweb.load_page.open_in_new_window (boolean): With this setting it is possible to decide, if
the document that is loaded via a form opens in the same browser tab or in a new one. Default:
false

• sdweb.loader.upload.max_size (integer): This parameter specifies the file size limit for the
ByUpload method. Default: 5242880

• sdweb.loader.upload.temp_dir (string): This parameter specifies where temporary files for the
ByUpload method are to be stored. Default: "PATHTOWEBSERVER\temp"

• sdweb.lockfields.list_separator (string): This setting allows to change the separator sign
between the field names of the fields, which should be locked after signing the signature field(s).
Default: ","

• sdweb.lockfields.list_separator_uri (string): This setting allows to change the separator sign
between the field names of the fields, which should be locked after signing the signature field(s)
if used with URI syntax. Default: "\|"

• sdweb.monitor.allow_empty_filter (boolean): Allow the user to use enter an empty filter.
Default: true

• sdweb.pkcs7.pluginid (string): The plugin id of the ISignPKCS7 Plugin Interface. Default:
"" (empty) means that the internal signing method is used.

• sdweb.plugins.defaultloadlist (string list): A list of plugins which should be loaded by default.
Default: [VARIOUSPLUGINS]

• sdweb.plugins.dms.allowIdOverwriting (boolean): The dms id (e.g. FileDms) can be set in
metadata of a document (key:SIGNDOCWEB_INTERNAL_DMSPLUGIN_ID). Overwriting of a dms id

157

Kofax SignDoc Web Developer's Guide

for a document with a servlet parameter (key:dmsid) is this case only possible, if the configuration
setting sdweb.plugins.dms.allowIdOverwriting=true is set. Default: false

• sdweb.plugins.dms.allowLoadDocuments (boolean): Opens a document from DMS in 'read
only' mode (if set to true), which means that all fields are available but cannot be changed by the
user. Default: false

• sdweb.plugins.dms.openreadonly (boolean): Opens a document from DMS in 'read only' mode
(if set to true), which means that all fields are available but cannot be changed by the user.
Default: false

• sdweb.plugins.dms.useDocumentLocking (boolean): Setting
sdweb.plugins.dms.useDocumentLocking to true will lock a document which was loaded
by DMS. This means that nobody else can load the same document from DMS during this
time. A document will be unlocked earliest if the user, which locks the document, will close
the document, either by archiving it again, or by closing it with cancel (or after an error). The
document is automatically unlocked at the latest after 10 Minutes. Default: false

• sdweb.plugins.global.dmsid.pluginid (string): Defines a default dms plugin to be used in certain
cases. The behaviour depends on the value of sdweb.plugins.global.dmsid.strategy
sdweb.plugins.global.dmsid.strategy="enforce" means always use this plugin no matter, if a dms
plugin is specified by parameter and sdweb.plugins.global.dmsid.strategy="fallback" means use
this plugin only, if no dms plugin is specified by parameter. Default: ""

• sdweb.plugins.global.dmsid.strategy (string): Is only relevant for plugin (id) definition
within MetaData. If default pluginid is defined and no pluginid is defined in MetaData and
sdweb.plugins.global.xxxpluginidxxx.strategy="fallback" is set then default pluginid is used.
The default plugin is also used if the sdweb.plugins.global.xxxpluginidxxx.strategy="enforce" is
configured. Default: "fallback"

• sdweb.plugins.global.preparepluginid.pluginid (string): Use this parameter to define a global
Prepare plugin. Default: ""

• sdweb.plugins.global.preparepluginid.strategy (string): Is only relevant for plugin (id)
definition within MetaData. If default pluginid is defined and no pluginid is defined in MetaData
and sdweb.plugins.global.xxxpluginidxxx.strategy="fallback" is set then default pluginid is used.
The default plugin is also used if the sdweb.plugins.global.xxxpluginidxxx.strategy="enforce" is
configured. Default: "fallback"

• sdweb.plugins.global.resultparamspluginid.pluginid (string): Use this parameter to define a
global Result Parameters plugin. Default: ""

• sdweb.plugins.global.resultparamspluginid.strategy (string): Is only relevant for plugin (id)
definition within MetaData. If default pluginid is defined and no pluginid is defined in MetaData
and sdweb.plugins.global.xxxpluginidxxx.strategy="fallback" is set then default pluginid is used.
The default plugin is also used if the sdweb.plugins.global.xxxpluginidxxx.strategy="enforce" is
configured. Default: "fallback"

• sdweb.plugins.global.signaturearchiveid.pluginid (string): Use this parameter to define a
global Signature Archive plugin. Default: ""

• sdweb.plugins.global.signaturearchiveid.strategy (string): Is only relevant for plugin (id)
definition within MetaData. If default pluginid is defined and no pluginid is defined in MetaData
and sdweb.plugins.global.xxxpluginidxxx.strategy="fallback" is set then default pluginid is used.
The default plugin is also used if the sdweb.plugins.global.xxxpluginidxxx.strategy="enforce" is
configured. Default: "fallback"

• sdweb.plugins.global.validatepluginid.pluginid (string): Use this parameter to define a global
Validation plugin. Default: ""

158

Kofax SignDoc Web Developer's Guide

• sdweb.plugins.global.validatepluginid.strategy (string): Is only relevant for plugin (id)
definition within MetaData. If default pluginid is defined and no pluginid is defined in MetaData
and sdweb.plugins.global.xxxpluginidxxx.strategy="fallback" is set then default pluginid is used.
The default plugin is also used if the sdweb.plugins.global.xxxpluginidxxx.strategy="enforce" is
configured. Default: "fallback"

• sdweb.plugins.loadlist (string list): This parameter is used to specify the plugins which should be
loaded upon SignDoc Web startup. Default: []

• sdweb.preload.filedeletion (string): This setting defines, when the preloaded temp files will
be deleted by the server. "asap" - right after the SignDoc Document was created (as soon as
possible), "envcheck" - after the gui passed all env checks and document is visible, "alap" - after
successfully archiving the working document (as late as possible). Default: "envcheck"

• sdweb.prepare.allow.docid_as_parameter (boolean): Configuration options for overwriting
already existing document id via docid parameter. Default: true

• sdweb.prepare.allow.docid_parameter_overwrite_metadata (boolean): Configuration options
for overwriting already existing document id via docid parameter. Default: true

• sdweb.prepare.minimizefilesize (boolean): Tries to minimize the filesize to a minimum when
preparing a document. Default: true

• sdweb.prepare.open_readonly.flatten_threshold (integer): A document can be opened as 'read
only' if parameter openreadonly is defined (see also sdweb.plugins.dms.openreadonly). Each field
in the document must be set then to readonly.
If the document contains too many fields it needs some time to set all the fields manually to 'read
only'.
Therefore there is the possibility to define a threshold from where the document is flattened
(much faster), instead of setting each field flag (to readonly).
If sdweb.prepare.open_readonly.flatten_threshold is set to -1 every field is set to read only.
If the threshold is equal or greater than the number of fields in the document then the document
is flattened before it is displayed to the user. A flattened document means that the user can see
only the image of the document no fields are available any more. No signatures are listed then in
the signature treeview of the document.
Default: -1

• sdweb.prepare.type.addtext (string): With this setting it is possible to change the name of the
parameter for inserting text in a document via command. Default: "addtext"

• sdweb.prepare.type.addtextrect (string): With this setting it is possible to change the name of
the parameter for inserting a text area in a document via command. Default: "addtextrect"

• sdweb.prepare.type.formfield (string): With this setting it is possible to change the name of the
parameter for inserting a form field in a document via command. Default: "formfield"

• sdweb.prepare.type.metadata (string): With this setting it is possible to change the name of the
parameter that is used to add metadata to a document via command. Default: "metadata"

• sdweb.prepare.type.removefield (string): With this setting it is possible to change the name of
the parameter that can be used to delete formfields via command. Default: "removefield"

• sdweb.prepare.type.signature (string): With this setting it is possible to change the name of the
parameter for inserting a signature field in a document via command. Default: "signature"

• sdweb.requester.regex.android (string): The User Agent string from any client is evaluated
by a 3rd party software (UADetector) Unfortunately it could happen, that any client is not (yet)
recognized correctly nevertheless. For this cases it is necessary to evaluate specific user agent

159

Kofax SignDoc Web Developer's Guide

strings before the UADetector decides whether the requesting client is a mobile device or comes
from a desktop browser.
The configuration list with key sdweb.requester.regex.android contains all regular expressions
for user agent strings from android clients which are not recognized correctly (as android clients)
from UADetector.
Default: ".*(?:android)\b.*"

• sdweb.requester.regex.desktop_list (string list): The User Agent string from any client is
evaluated by a 3rd party software (UADetector) Unfortunately it could happen, that any client is
not (yet) recognized correctly nevertheless. For this cases it is necessary to evaluate specific user
agent strings before the UADetector decides whether the requesting client is a mobile device or
comes from a desktop browser.
The configuration list with key sdweb.requester.regex.desktop_list contains all regular
expressions for user agent strings from desktop clients which are not recognized correctly (as
desktop clients) from UADetector.
Default: ['^mozilla/.*\\(compatible; msie (\\d)\\.0; .*windows nt 6\\.(\\d).*wow64.*trident/7\\.0.*\
\).*$'] => IE11 under Windows 8.1 desktop

• sdweb.requester.regex.genericmobile (string): The User Agent string from any client is
evaluated by a 3rd party software (UADetector) Unfortunately it could happen, that any client is
not (yet) recognized correctly nevertheless. For this cases it is necessary to evaluate specific user
agent strings before the UADetector decides whether the requesting client is a mobile device or
comes from a desktop browser.
The configuration list with key sdweb.requester.regex.genericmobile contains all regular
expressions for user agent strings from generic mobile clients which are not recognized correctly
(as generic mobile clients) from UADetector.
Default: "VARIOUSDEVICES"

• sdweb.requester.regex.ipad (string): The User Agent string from any client is evaluated by a 3rd
party software (UADetector) Unfortunately it could happen, that any client is not (yet) recognized
correctly nevertheless. For this cases it is necessary to evaluate specific user agent strings before
the UADetector decides whether the requesting client is a mobile device or comes from a desktop
browser.
The configuration list with key sdweb.requester.regex.ipad contains all regular expressions for
user agent strings from ipad clients which are not recognized correctly (as ipad clients) from
UADetector.
Default: ".*\b(ipad)\b.*"

• sdweb.requester.regex.iphone (string): The User Agent string from any client is evaluated
by a 3rd party software (UADetector) Unfortunately it could happen, that any client is not (yet)
recognized correctly nevertheless. For this cases it is necessary to evaluate specific user agent
strings before the UADetector decides whether the requesting client is a mobile device or comes
from a desktop browser.
The configuration list with key sdweb.requester.regex.iphone contains all regular expressions for
user agent strings from iphone clients which are not recognized correctly (as iphone clients) from
UADetector.
Default: ".*\b(?:iphone)\b.*"

• sdweb.requester.regex.ipod (string): The User Agent string from any client is evaluated by a 3rd
party software (UADetector) Unfortunately it could happen, that any client is not (yet) recognized
correctly nevertheless. For this cases it is necessary to evaluate specific user agent strings before

160

Kofax SignDoc Web Developer's Guide

the UADetector decides whether the requesting client is a mobile device or comes from a desktop
browser.
The configuration list with key sdweb.requester.regex.ipod contains all regular expressions for
user agent strings from ipod clients which are not recognized correctly (as ipod clients) from
UADetector.
Default: ".*\b(?:ipod)\b.*"

• sdweb.requester.regex.metro (string): The User Agent string from any client is evaluated by
a 3rd party software (UADetector) Unfortunately it could happen, that any client is not (yet)
recognized correctly nevertheless. For this cases it is necessary to evaluate specific user agent
strings before the UADetector decides whether the requesting client is a mobile device or comes
from a desktop browser.
The configuration list with key sdweb.requester.regex.metro contains all regular expressions for
user agent strings from metro clients which are not recognized correctly (as metro clients) from
UADetector.
Default: ".*\b(?:windows.nt.6\.[2-9](.*touch|.*webview/)|windows.nt.6\.[2-9].*arm)\b.*"

• sdweb.requester.uadetector.use (boolean): Use UADetector library for User Agent recognition.
Default: true

• sdweb.response_headerinfos (string list): Default response headers
SignDoc Web can put some default information in the http response headers.
The sdweb_config.groovy option with its default values is:
sdweb.response_headerinfos=["version", "license-mode", "license-product"]
The following header information is available in every response by default:
sdweb-license-product (currently SDWEB for SignDoc Web or SDS for SignDoc Service)
sdweb-version (the version number of the server)
sdweb-license-mode (licensed or demo)
Example
sdweb-license-product:SDS
sdweb-version:5.0.104_182
sdweb-license-mode:licensed
Default: ["version", "license-mode", "license-product"]

• sdweb.rest.allow.update.readonly.editfields (boolean): Allow or deny changes of values for
locked/readonly (editable) fields via REST interface. Default: true

• sdweb.rest.text.cut.maxlength (boolean): Text value which is updated via REST interface will be
cut off (or not) up to the max length of the text field. Default: true

• sdweb.ria.css.custom.dir (string): With this setting it is possible to change the directory of the
custom css files. Default: "css"

• sdweb.ria.image.custom.dir (string): With this setting it is possible to change the directory of
the custom image files. Default: "resources"

• sdweb.ria.image.custom.enabled (boolean): With this setting it is possible to allow SignDoc Web
to use custom images for buttons etc. Default: false

• sdweb.ria.signdoc.css_list (string list): The default CSS list for the Desktop GUIs. Default:
[SignDoc.css]

• sdweb.ria.signdoc.css_list_custom (string list): With this setting the user has the possiblity to
define a list of CSS files, that should be used for a customized Desktop GUI. Default: []

161

Kofax SignDoc Web Developer's Guide

• sdweb.ria.signdoc_mobile.android.css_list (string list): The default CSS list for Android. Default:
[SignDocMobile_Android_1.css]

• sdweb.ria.signdoc_mobile.android.css_list_custom (string list): With this setting the user has
the possiblity to define a list of CSS files, that should be used for a customized Android Mobile
GUI. Default: [SignDocMobile_Android_1.css]

• sdweb.ria.signdoc_mobile.css_list (string list): The default CSS list for Mobile in general. Default:
[SignDocMobile_Desktop.css]

• sdweb.ria.signdoc_mobile.css_list_custom (string list): With this setting the user has the
possiblity to define a list of CSS files, that should be used for a customized General Mobile GUI.
Default: []

• sdweb.ria.signdoc_mobile.ios.css_list (string list): The default CSS list for iOS. Default:
[SignDocMobile_IPad_1.css]

• sdweb.ria.signdoc_mobile.ios.css_list_custom (string list): With this setting the user has the
possiblity to define a list of CSS files, that should be used for a customized iOS Mobile GUI.
Default: []

• sdweb.ria.signdoc_mobile.windows.css_list (string list): The default CSS list for Windows
Mobile. Default: [SignDocMobile_Windows.css]

• sdweb.ria.signdoc_mobile.windows.css_list_custom (string list): With this setting the user has
the possiblity to define a list of CSS files, that should be used for a customized Windows Mobile
GUI. Default: []

• sdweb.server.event.timeout.wait (integer): The maximum time the SignDocWeb server waits
for the entry of the signature on client side after clicking on a signature field. The value is the
time in milliseconds, e.g. 180000 means 180 seconds.
After this expiration the capture dialog is closed on client side and the capture process is aborted.
For this settings to become effective a server restart is required.
The settings only applies to capturing via browser plugin.
Default: 180000

• sdweb.server.logging.config.reload.enable (boolean): This setting allows to enable or disable
the automatic re-reading of the log settings. Default: true

• sdweb.server.logging.config.reload.interval (integer): This setting defines the time interval in
which the log file is re-read if sdweb.server.logging.config.reload.enable is set to true. Default:
5000

• sdweb.session.keepalive (boolean): When the GUI is open, the session will by default not expire
until either the document is archived or the browser is closed and the session times out. Default:
true

• sdweb.session.keepalive_session_timeout_percent (integer): The keepalive mechanism in
the browser page triggers a request for keeping session alive after xx percent of the configured
session timeout duration. Default: 90

• sdweb.session.keepalive_session_timeout_percent_android (integer): For Android devices: The
keepalive mechanism in the browser page triggers a request for keeping session alive after xx
percent of the configured session timeout duration. Default: 90

162

Kofax SignDoc Web Developer's Guide

• sdweb.session.timeout.display_information (boolean):
If a session timeout URL is defined (see sdweb.session.timeout.page.url) this setting determines
whether parameters are appended to the URL to not.
Note: This is only useful for Android App usage which could have problems if the redirect URL
have appended query parameters.
Default: false

• sdweb.session.timeout.interval (integer): Session timeout in seconds. If this parameter is not
set then the value from web.xml <session-timeout>...</session-timeout> is used. Default: 60

• sdweb.session.timeout.interval_mobile (integer): DSession timeout for mobile devices in
seconds. If this parameter is not set then the value from sdweb.session.timeout.interval is taken.
Default: 3600

• sdweb.session.timeout.interval_mobile_android (integer): Android specific session timeout. If
this parameter is set to -1 then the value from sdweb.session.timeout.interval_mobile is inherited.
Default: -1

• sdweb.session.timeout.interval_mobile_genericmobile (integer): Session timeout
for all other identified mobile devices. If this parameter is set to -1 then the value from
sdweb.session.timeout.interval_mobile is inherited. Default: -1

• sdweb.session.timeout.interval_mobile_ipad (integer): iPad specific session timeout. If this
parameter is set to -1 then the value from sdweb.session.timeout.interval_mobile is inherited.
Default: -1

• sdweb.session.timeout.page.url (integer): With this setting it is possible to define which URL
should be accessed, when a session timeout occurs. Default: -1

• sdweb.signature.biometricdata.remove (boolean): The biometric signature data is not stored
if the parameter value is true. Without biometric signature only the appearance (image) of the
signature is then available in the document. Default: false

• sdweb.signature.color.blue (integer): With this settings it is possible to change the amount of
blue colour in the signature. Default: 0

• sdweb.signature.color.green (integer): With this settings it is possible to change the amount of
green colour in the signature. Default: 0

• sdweb.signature.color.red (integer): With this settings it is possible to change the amount of red
colour in the signature. Default: 0

• sdweb.signature.display.signer (boolean): If set to true, the signature field will show the signer
name. Default: false

• sdweb.signature.display.signtime (boolean): If set to true, the signature field will show the
signing time. Default: false

• sdweb.signature.exif.auto_rotate (boolean): Auto rotate images which are captured (for a
signature field) with rotated (non left top) orientation. Orientation is included in exif metadata of
an image (if available). The image orientation can be influenced by the orientation of the camera
while the user takes a picture (e.g. with a mobile device). Default: true

• sdweb.signature.watermark.enable (boolean): Specifies whether a watermark image is placed
behind a captured signature in the signature field. If set to true, SignDoc Web will try to add a
configured watermark behind the signature. The actual captured signature is not affected by this
setting only the appearance in the document. The setting can be overwritten by an individual and
signature field specific command parameter during document loading. Default: false

• sdweb.signature.watermark.frame.height (integer): Height of the watermark frame (if the
value is not negative). A negative value means that the watermark frame has the same height as

163

Kofax SignDoc Web Developer's Guide

the signature field. The setting can be overwritten by an individual and signature field specific
command parameter during document loading. Default: -1

• sdweb.signature.watermark.frame.offset_x (integer): Horizontal offset (in pixels)
between top-left corner of the signature field and the top-left corner of the watermark
frame. Positive value means top-left corner of the watermark frame is on the right of
the top-left corner of the signature field. A negative value means that both offsets (x
and y) are not used for frame positioning within the signature field. In this case the
sdweb.signature.watermark.image.alignment setting is used. The watermark image alignment
is only applicable then if width and/or height of the frame is smaller than the signature field.
The setting can be overwritten by an individual and signature field specific command parameter
during document loading. Default: -1

• sdweb.signature.watermark.frame.offset_y (integer): Vertical offset (in pixels) between top-
left corner of the signature field and the top-left corner of the watermark frame . Positive value
means top-left corner of the watermark frame is below the top-left corner of the signature field.
A negative value means that both offsets (x and y) are not used for frame positioning within the
signature field. In this case the sdweb.signature.watermark.image.alignment setting is used.
The watermark image alignment is only applicable then if width and/or height of the frame is
smaller than the signature field. The setting can be overwritten by an individual and signature
field specific command parameter during document loading. Default: -1

• sdweb.signature.watermark.frame.width (integer): Width of the watermark frame (if the
value is not negative). A negative value means that the watermark frame has the same width as
the signature field. The setting can be overwritten by an individual and signature field specific
command parameter during document loading. Default: -1

• sdweb.signature.watermark.image.alignment (string): The watermark image alignment is only
applicable if width and/or height of the watermark image is smaller than the watermark frame
and the scale is set to "actual". If scale is set to "fit", it depends on whether the frame is longer
than the fitted image (horizontal alignment possible) or taller than the fitted image (vertical
alignment possible). Scale option "stretch" will not have any impact since it is stretched to fit the
frame. Possible alignment settings are "top-left", "top-center", "top-right", "middle-left", "middle-
center", "middle-right", "bottom-left", "bottom-center" and "bottom-right". The setting can be
overwritten by an individual and signature field specific command parameter during document
loading. Default: "middle-center"

• sdweb.signature.watermark.image.opacity (integer): Specifies the watermark image opacity
in percent. The value must be between 0 and 100. 100(%) means that the watermark image is
completely opaque. 0 would make the watermark invisible because it is completely transparent.
This setting can be useful to show the signature more prominent compared to the watermark
image which is behind the signature image. The setting can be overwritten by an individual and
signature field specific command parameter during document loading. Default: 100

• sdweb.signature.watermark.image.scale (string):
Specifies the scaling strategy of the watermark image within the watermark frame. The
watermark frame is the area where the watermark image is adjusted into. The watermark
frame itself is adjusted then into the signature field, either by frame offset coordinates

164

Kofax SignDoc Web Developer's Guide

(sdweb.signature.watermark.frame.offset_x and sdweb.signature.watermark.frame.offset_y) or
alternatively according the alignment setting (sdweb.signature.watermark.image.alignment).
"actual" will use the actual size of the watermark image when it is positioned in the watermark
frame.
"fit" will scale the image proportionately to the size of the watermark frame.
"stretch" will stretch the image disproportionately to fit the entire frame.
The setting can be overwritten by an individual and signature field specific command parameter
during document loading. Default: "actual"

• sdweb.signature.watermark.image.template (string): The name of the watermark image
which should be placed as background image for a captured signature (for the document view).
Supported image formats are JPG, PNG, GIF and BMP. The setting can be overwritten by an
individual and signature field specific command parameter during document loading. Default:
"watermark.bmp"

• sdweb.signature.watermark.image.template_dir (string):
Specifies the directory from where a watermark template (defined by
sdweb.signature.watermark.image.template) is loaded. The directory specification must contain
the complete path information. Subdirectories are separated by forward slashes or with double
back slashes under Windows.
Example for Windows:
'd:/sdweb_home/wm' or 'd:\\sdweb_home\\wm'
Note: Don't forget the drive letter under Windows!
If you want to specify another subdirectory under SDWEB_HOME directory you can specify it in
the format "${sdweb.home}/sub_dir_name"
Example
"${sdweb.home}/watermark"
Default: "${sdweb.home}/watermark"

• sdweb.signature_c2s.display.signer (boolean): Defines if the signers name should be displayed
below Click-to-Sign capture fields. Default: false

• sdweb.signature_c2s.display.signtime (boolean): Defines if the date should be displayed below
Click-to-Sign capture fields Default: false

• sdweb.signature_image.display.signer (boolean): Defines if the signers name should be
displayed below image capture fields. Default: false

• sdweb.signature_image.display.signtime (boolean): Defines if the date should be displayed
below image capture fields. Default: false

• sdweb.signature_parameters.one_time_cert.keysize (integer): For signing a signature it is
necessary to have a certificate and a private key. If no private key and no certificate is provided
it is possible to create both on the fly by SignDoc SDK. A key pair for the self-signed certificate is
generated. The value is the number of bits (1024 through 4096, multiple of 8). Default: 1024

• sdweb.signerspecific.store.pkcs12.password (string): With this setting it is possible to define a
password for the signer specific certificate. Default: "secret"

165

Kofax SignDoc Web Developer's Guide

• sdweb.signing.biometric_encryption (integer):
Defines the biometric encryption
0 - rsa (default, requires an public key)
1 - fixed (symmetric encryption), not save but the biometric data can be taken out without a
private key. Can be useful for document conversion in different format.
Default: 0

• sdweb.template.directory (string): With this setting it is possible to change the path and name
of the directory that contains the template documents. Default: "c:\sdweb_home/doctemplates"

• sdweb.template.monitor.enabled (boolean): If the parameter is set to true the
sdweb.template.directory will be monitored for new files located there which can be used via the
LoadByDMS method. Default: false

• sdweb.usage.enable.aboutpage (boolean): Enable or disable SDWeb "About"-page Default: true
• sdweb.usage.enable.loadpage (boolean):Enable or disable SDWeb "homepage". Default: true
• sdweb.usage.startpage.url (string): With this setting it is possible to change the SignDoc Web

startpage. Default: "load/form"
• sdweb.validate.before_archive_required_flag (boolean): By default the

required document fields are validated before archiving. When the parameter
sdweb.validate.before_archive_required_flag is set to false, the required fields from the document
are no longer validated before archiving. Default: true

• sdweb.validate.before_update.fieldtypes (string list):
List of field types which should be validated before update action is performed. The
validateFieldChange() method of Validator plugin (implementing IDocumentValidator) is called
if field type which should be updated is included in the list. Supported field types are, textfield,
checkbox, capture and radiobutton.
Example
If text fields and check boxes should be validated before update the setting must be
sdweb.validate.before_update.fieldtypes=['textfield', 'checkbox']
Default: []

• sdweb.web_page_options.document_domain (string):
Sets the allowed script origins to interact with the SignDoc Web UI. This is especially useful when
using the Remote Interface. The effect is that the JavaScript DOM property document.domain is
initialized with the specified value. Specify the setting in the format "[sub.domain.tld]"
Note: A value of "" (empty string) will disable the setting
Default: ""

• sdweb.ws.fault.disable_stacktrace (boolean): By default a web service (JAX-WS) marshals the
complete StackTrace of an exception, this is usually not wanted. Therefore it is set to true. Set to
false if the propagation of the StackTrace is needed on client side. Default: true

• sdwebplugins.de.softpro.sdweb.plugins.impl.BasicAuthenticator.keyfile
(boolean): If set to true a BasicAuthentication will be performed upon
accessing SignDoc Web. Parameter has to be used in conjunction with
sdweb.authenticate.pluginid="de.softpro.sdweb.plugins.impl.BasicAuthenticator". For more
information check the SignDoc Web Administrator's Guide, chapter "Standard plugins", section
"BasicAuthenticator plugin". Default: false

• sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.createRDYFile (string): With this setting
it is possible to decide, whether a RDY file should be created after finalizing a document or not.

166

Kofax SignDoc Web Developer's Guide

The RDY (Ready) file is created as the last file of the whole finalize process and can be used as a
trigger for a follow-on process. Default: "true"

• sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.createSignatureImageDPI (string):
With this setting the resolution in DPI of the signature image which is save upon finalize of the
document can be set. This is only applicable to image formats that contain DPI information e.g.
TIFF, PNG, ...The default resolution for HTML5 signatures is 96DPI and is reduced in relation to the
default of 300. For example if the DPI is set to 100 the HTML5 signature resolution is also reduced
to one third i.e. 32DPI. Default: "300"

• sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.createSignatureImageFile(string):
With this setting it is possible to decide, whether an image of the signature should be created
after finalizing a document or not. Default: "false"

• sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.createSignatureImageFormat (string):
With this setting it is possible to define the format of the signature image which will be saved if
sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.createSignatureImageFile is set to true.
Possible formats are "png", "gif", "bmp", "jpg", "tiff" (only supported for handwritten signatures
and not for photos or Click-to-Sign signatures). Default: "png"

• sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.createTIFFCopy (string): With this
setting it is possible to decide, whether a TIFF copy of the signed document should be created.
Default: "false"

• sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.createXMLFile (string): With this
setting it is possible to decide, whether an XML file should be created after finalizing a document.
Default: "false"

• sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.dmsFolder (string): With this setting
it is possible to change the path and the name of the folder where the finalized documents are
stored. Default: "c:\sdweb_home/dms/de.softpro.sdweb.plugins.impl.FileDms"

• sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.fileDecoration (string): The value of
this setting is placed in all generated filenames after the docid (also after the optional timestamp)
and before the optional filepostfix. A fileDecoration value could be useful for example if several
SignDoc Web servers write their files to one common (shared) directory. Default: ""

• sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.filenamePostfix (string): With this
setting it is possible to define a prefix for all the files related to the document. Default: ""

• sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.filenamePrefix (string): With this
setting it is possible to define a prefix for all the files related to the document. Default: ""

• sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.storeBiometricDataInXML
(string): With this setting it is possible to define whether the biometric
signature data should be stored in the XML file or not. Only applicable if
sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.createXMLFile="true". Default: "true"

• sdwebplugins.de.softpro.sdweb.plugins.impl.FileDms.storeStrategy (string): With this setting
it is possible to decide, if the documents in the DMS should be stored in folders or not. If the
storage strategy should be just files the value has to be set to "flat". Default: "folder"

• sdwebplugins.de.softpro.sdweb.plugins.impl.ServletDms.createSignatureImageDPI (string):
With this setting the resolution in DPI of the signature image which is save upon finalize of the
document can be set. This is only applicable to image formats that contain DPI information e.g.
TIFF, PNG,... The default resolution for HTML5 signatures is 96DPI and is reduced in relation to the
default of 300. For example if the DPI is set to 100 the HTML5 signature resolution is also reduced
to one third i.e. 32DPI. Default: "300"

167

Kofax SignDoc Web Developer's Guide

• sdwebplugins.de.softpro.sdweb.plugins.impl.ServletDms.createSignatureImageFile (string):
With this setting it is possible to decide, whether an image of the signature should be created
after finalizing a document or not. Default: "false"

• sdwebplugins.de.softpro.sdweb.plugins.impl.ServletDms.createSignatureImageFormat
(string): With this setting it is possible to define the format of the signature image which will be
saved if sdwebplugins.de.softpro.sdweb.plugins.impl.ServletDms.createSignatureImageFile is
set to true. Possible formats are "png", "gif", "bmp", "jpg", "tiff" (only supported for handwritten
signatures and not for photos or Click-to-Sign signatures). Default: "png"

• sdwebplugins.de.softpro.sdweb.plugins.impl.ServletDms.createXMLFile (string): With this
setting it is possible to decide, whether an XML file should be created after finalizing a document.
Default: "true"

• sdwebplugins.de.softpro.sdweb.plugins.impl.ServletDms.storeBiometricDataInXML
(string): With this setting it is possible to define whether the biometric
signature data should be stored in the XML file or not. Only applicable if
sdwebplugins.de.softpro.sdweb.plugins.impl.ServletDms.createXMLFile="true" Default: "true"

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.createRDYFile (string): With this setting
it is possible to decide, whether a RDY file should be created after finalizing a document or not.
The RDY (Ready) file is created as the last file of the whole finalize process and can be used as a
trigger for a follow-on process. Default: "true"

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.createSignatureImageDPI (string):
With this setting the resolution in DPI of the signature image which is save upon finalize of the
document can be set. This is only applicable to image formats that contain DPI information e.g.
TIFF, PNG,... The default resolution for HTML5 signatures is 96DPI and is reduced in relation to the
default of 300. For example if the DPI is set to 100 the HTML5 signature resolution is also reduced
to one third i.e. 32DPI. Default: "300"

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.createSignatureImageFile (string):
With this setting it is possible to decide, whether an image of the signature should be created
after finalizing a document or not. Default: "false"

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.createSignatureImageFormat (string):
With this setting it is possible to define the format of the signature image which will be saved if
sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.createSignatureImageFile is set to true.
Possible formats are "png", "gif", "bmp", "jpg", "tiff" (only supported for handwritten signatures
and not for photos or Click-to-Sign signatures).Default: "png"

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.createTIFFCopy (string): With this
setting it is possible to decide, whether a TIFF copy of the signed document should be created.
Default: "false"

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.createXMLFile (string): With this
setting it is possible to decide, whether an XML file should be created after finalizing a document.
Default: "false"

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.dmsFolder (string): With this setting
it is possible to change the path and the name of the folder where the finalized documents are
stored on the SFTP Server. Default: "dms/de.softpro.sdweb.plugins.impl.SftpDms

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.fileDecoration (string): The value of
this setting is placed in all generated filenames after the docid (also after the optional timestamp)
and before the optional filepostfix. A fileDecoration value could be useful for example if several
SignDoc Web servers write their files to one common (shared) directory. Default: ""

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.filenamePostfix (string): With this
setting it is possible to define a postfix for all the files related to the document. Default: ""

168

Kofax SignDoc Web Developer's Guide

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.filenamePrefix (string): With this
setting it is possible to define a prefix for all the files related to the document. Default: ""

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.password (string): This is the password
for the SFTP server used with the plugin. Default: ""

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.serverAddress (string): This is the
address for the SFTP server used with the plugin.Default: "localhost"

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.serverPort (integer): This is the port for
the SFTP server used with the plugin. Default: 22

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.storeBiometricDataInXML
(string): With this setting it is possible to define whether the biometric
signature data should be stored in the XML file or not. Only applicable if
sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.createXMLFile="true". Default: "true"

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.storeStrategy (string): With this
setting it is possible to decide, if the documents in the DMS should be stored in folders or not. If
the storage strategy should be just files the value has to be set to "flat". Default: "folder"

• sdwebplugins.de.softpro.sdweb.plugins.impl.SftpDms.user (string): This is the user name for
the SFTP server used with the plugin. Default: ""

• supportedApps.blackList (string list): With this parameter a blacklist can be defined, to block
specific apps or devices. Default: []

• supportedApps.whiteList (string list): With this parameter a whitelist can be defined, to only
allow specific apps or devices. Default: []

169

	Table of Contents
	Preface
	Related documentation
	Training
	Getting help with Kofax products
	SignDoc Web features

	Functional structure of SignDoc Web
	Architecture
	Important files and directories
	Communication with SignDoc Web server

	Integration
	Preload and prepare web service
	Example UploadAndPrepareDocument

	Integration in existing web applications
	Start SignDoc Web from external web application
	Request types
	Request parameters
	Create or update a field in the document
	Add text to a document
	Insert a form field by coordinates
	Insert a form field with position located by text phrase
	Insert a general capture field
	Update the value and attribute of an existing form field or signature field
	Convert an existing form field to a signature field
	Set metadata
	Signature archive interaction
	Field validation before update
	Field change during validation
	Signature watermark
	Remove an existing form field or signature field
	SignDoc Web field locking
	URI syntax
	Document metadata
	Signature and form fields
	Radio buttons

	Example of document load page
	Dynamic tablet screens

	Remote interface
	Same-origin policy
	Execute actions in mobile-gui
	Notification about action events
	mobile-app document sequence example
	Hints and examples
	Version history
	Dictionary

	REST interface
	REST URL
	REST error response
	REST API reference v5
	Preload PDF document with commands and prepare options
	Activate preloaded PDF document for processing
	Append PDF document to previously loaded document
	Attach PDF document to previously loaded document
	Remove attachment from previously loaded document
	Get document information
	Get document page image
	Get document
	Get audit logs of document
	Add signature
	Insert signature field
	Update signature field
	Clear signature field
	Insert text field
	Update text field
	Insert checkbox field
	Update checkbox field
	Delete document field
	Archive document
	Remove document
	Document coordinate system

	Plugin interface
	SignDoc Web plugins general information
	Available plugin interfaces
	General SignDoc Web plugin interface
	Trusted service provider

	Script plugins
	Online signature verification enhancements
	Configuration file sdweb_config.groovy

