Ephesoft Transact
Developer's Guide

Version: 2023.1.00

Date: 2023-08-18

cPHeSOFT

a KOFAX company

© 2023 Kofax. All rights reserved.

Kofax is a trademark of Kofax, Inc., registered in the U.S. and/or other countries. All other
trademarks are the property of their respective owners. No part of this publication may be
reproduced, stored, or transmitted in any form without the prior written permission of Kofax.

Table of Contents

o 1= - 1ol T 6
DISCIAIMIET ...ttt bbb 6

L= 1101 Lo TSP PP P PURRRURRPRURROI 6
Getting help wWith KOfaX ProQUCES......c.coeeiiieieieeeee ettt s 6
Chapter 1: CUSTOM PIUGINS......ccccreiiircerercnrienseriessnenesssnssessanssessnsssssansssssanssossnssssssnsssssansssssnsasssansasssans 8
Create CUSTOM PIUGINS. ..ottt sttt sttt ettt sb e s b st et et et e st e s besbesbeeue et eeenees 8
PrEIEQUISITES .ttt s s bbb re s 8

Create a CUSTOM PlUGIN PrOJEC....cciviiririrererertetereeste e e ses e seeseseessessessessessessesssessensessenns 9

Add TranSACt lIDrari@S......icueeiriereeietetetee ettt sttt et et sbe s sbe st et e e e b e sae b 9

Create @ NEW JAVA INTEITACE......iveee ettt ettt sare e e ebae e ssbeeesaaeeesanees 9

CrEAte @ JAVA ClASS...uuiiiuiicieicreecieecreecer e eeteeerteeeaeeesesessasesseeebeessseessssessssosssenseessseessssonsssen 10

Create folder structure for XML FE@SOUICES......coccvertevterienienieneneneeeete et ste e sresse st eneeees 11

Create XML fIlES. .. ettt ettt ettt ne e 11

Compile the cuStomM PIUGIN PrOJECE.....iviiviriiririiierrerinese st e e e e sseneesaenee 14

Prepare custom plugin for iMPOrt.....co ettt 15

IMPOIrt CUSTOM PIUGINS...ceiiiiiiieieteeeree ettt ettt ae b s sttt e e e e besbesmeeneeneene 15

Add plugins t0 @ DAtCh ClasS....cccivirviiriirieririenerereeteree e sresse e s e s aeseessens 16

REMOVE CUSTOM PIUGINS..cuiiiiiiiiieeieteteteterte ettt ettt st sttt et et be s b sbe st st e e et e nsesees 16
Chapter 2: External appliCations..........coo ittt sase e saessssaseseses 18
APPIICATION SECUITY.ceutiieiiriirierirtrestsrt ettt sese st se st e st et e sse st e sbesbessesseessessessessessessessessasssessensansenses 19

Add an exterNal aPPliCAtION. ..o ittt ettt sttt et et be e 19
ACCESS the APPIICATION. ...ttt b e s bttt ne e e 19
Transact Al Table Rule BUIler.........ccoeciiiiiiniiiiiniiiiiciiccr e 19

Chapter 3: RegUIar @XPreSSIONS........cciiiiviiiiiniieiseteninsiessantiesssstsessnssesssssessasssessssssssanssossasssossassssses 29
Predefined character classes of regular eXpresSions..........cocevevererenenenrceneeeesesese e 29

(@18 = a1 (1] TR 30
CAPLUINING GIOUPS. utteterieeieetereestesreetesstesstesst e st eeesstesseesessesatesseesseensesseessesnsesnsessnesseessessesneessesssesns 30
BaCKIEfEIENCES. ...ttt sttt ettt 30

Capturing groups and character classes with quantifiers.......c.ccccvevvevveneneninienenienenne 31

BOUNArY MAtCRErS. ..ottt ettt st ettt et e b e s b s b st et e e et eaenes 31
GrOUPING CONSEIUCES..cotiiiiiieiitiieeit ettt sttt st s a e s bt e b e s e e s bt e s bt e sbessaesmaesseens 31
RegeX Patterns iN TraNSACt......cocivvieriierirrierienteseenteetesteseesseestesstesseessaessesssesseessesssesssesssessaessesssanns 33
Usage of 'pattern' field in 'document Index Field Details'........cccocererirvernienenenenencnenne 33

Usage of multi-word in key pattern for k-v exXtraction......cc.cecceceeveevienenenenenieneneeeseene 33

Ephesoft Transact Developer's Guide

How not to capture certain values for key pattern and value pattern.......c..cccecceeevenene 34
Usage of multi-word capture in Table Extraction, which is different than Value
Pattern in K-V EXTraCtiON...c.coererereeeeeeseeeneeee ettt 34
Chapter 4: SCripting rESOUICES.......coocciiiiiiiiiietiinttiennttessnstesssesessssssssnssessasssessnsssssansssssasssossnsasessns 35
SCrIPtiNG FUNCHIONATITY . .cueirtieeeeeee ettt sb e s bt 35
Batch INStance GroUpP fRATUIE....cciiivirieeereriene sttt s e s e s esse s b srassessesnnens 35
FOrce REVIEW FRATUIE....ccuiieiieieetetctetee ettt ettt sttt a e 35
SCriptAANEWTADIEJAVA..c..iieiiiieieieeeeee ettt sttt 36
ScriptAutomMaticValidation.ava.........cecevirieninineneneeecreese et seene e e 36
SCriptDOCUMENtASSEMDIEIJAVA......iiciiiiiiiireetete ettt ettt sae b 37
SCFIPTEXPOITJAVA. ettt st st s s beenesae e 37
SCFIPEEXIrACHION.JAVA. c.utiiitiiiiiieieriesteeeste ettt et st e st beesbesbesatessaesbasssesasesaeessasnsesasenans 37
ScriptFieldValueChange.java......c.cc ettt ettt st see s 38
FUNCEIONKEY.JAVA .. uiiiiiiiiieieteeeeete et st st bbb s e b s ne s 38
SCriPtPAgEPIOCESSING.JAVA..uiiriiriieiiiriierienieieetenteseestestesteseessestesssesssesseessesssesssessassesssenns 39
SCriPtValidatioN. JAVa.....coirieeirieeieeeteteeeree ettt sttt st s sttt sne e 39
APPIICAtION LEVEI SCIIPT.. ettt ettt et sttt sae bbb s b et et et eneen 39
Create the Application Level SCript fil€.. ..ot 40
CONTIGUIALION. ...ttt ettt a e sttt e et e b s b e s st s st et et e s esenee 40
EXECULION ettt s st b e s e s sa e s b e ne e e sne e 41
DEPENUENCY...cuiiiiireieienirese et ete et este s e st st st et et e sessessesbessessaeseensessensansessessessesssensensensenns 41
TrOUDIESNOOTING. . .ciiieiireeeeeteee ettt sttt ettt be b s s 41
BatCh INSTANCE GIrOUP...ciiiieiieieieienteriee ettt et a et ettt sae st be s b e bt st et et e b e e e sbesbe s st emeeneeaeen 41
Batch.Xxml @and XSD SCR@MIA.....couiiiiiriiieieeceetete ettt sttt sttt 42
BatCh-1@VEI FIEIAS.... ettt st st ettt sb e s s s st 42
DOCUMENT FIRIAS. ...ttt 47
Document-level fIelds. ..ottt bbb 48
PAGE FIBIAS .ttt st ettt s b sttt et et bes 57
Page-l@Vel FIRIAS. ..ottt 61
Email metadata in the batch.xml schema.......cccocoeriininenneee e 62
Case studies for batCh XMlcocoiirieee ettt 62
ClieNt-SIA@ SCIIPLING. .t ettt ettt st ettt e st e b e s be e b e et e e et e e e s enseee 63
Error causes for default SCIIPLS. ..ttt et e sresre e e ssseseessesbessessessasssessassanses 65
Enable 10gging fOr CUSTOM SCIIPTS...cc.eviririeieieierieserere ettt sttt st ettt sbe s st eeenees 66
JDOM SCript CONFIGUIAtION.c..cuiiiieieeee ettt sttt et besneeae s 67
Sample scripts to compare IScript and JDOM......cocvcvivierieniinenineseereenresienesesesesseessessens 67
Implement .zip functionality to Older SCriPLS.....cociviririerieriererereeretere s 69
TOSTING SCIIPES ettt sttt s e b e b e s e e ssae s bt e bt e abesaaesneennesnness 70

Ephesoft Transact Developer's Guide

Trigger field value change script for table data fields........cccorrnnneneiee s 71
Chapter 5: Transact Web Services APL............iirreiercrerieseeiesssneressenssssnsssssassssssnssssssnsssssassssssnssssss 73
Transact Web Services optimized for workflow engines........c.coceeevereriinsenienieneneneneeeeeeeeeene 73
Web service definitions and code SamPIES........ccoi it 75
Authentication for Web ServiCes........coviicniiiiinicc s 75

Batch class management Web SErVICES.......ooiviiiivierieninenieeetetee et 76

Batch instance management Web SEIVICES.......ccoiiierireririeteeeeree ettt neens 86

Batch instance Processing WED SEIVICES......covvivireriererrienienieneneseseseseessessessessesessesseens 89
Image processing WED SEIVICES.......coiiiiviiriirereeetetete ettt s 119
REPOITING WED SEIVICES. ..ottt ettt st 124

WED SEIVICES MBOUESES....iitiieriiterertiresese st steteste e ssesbessessee s essessessessessessessesssessessensessessessessesssenes 126

Preface

The Ephesoft Transact Developer's Guide is designed for developers that are looking to add additional
functionality or customize their solution beyond the standard installation.

This guide includes the following topics:

* Custom plugins

« External applications

+ Regular expressions

+ Scripting resources

+ Transact Web Services API

Disclaimer

Any customization related to this Ephesoft Transact Developer's Guide is considered outside the scope
of a standard Transact deployment and is not covered under our support agreement. If you need
assistance in creating, implementing, or troubleshooting a custom solution, contact Professional
Services.

Training

Kofax offers both classroom and computer-based training that will help you make the most of your
Ephesoft Transact solution. Visit the Kofax Education Portal for details about the available training
options and schedules.

Getting help with Kofax products

The Kofax Knowledge Portal repository contains articles that are updated on a regular basis to
keep you informed about Kofax products. We encourage you to use the Knowledge Portal to obtain
answers to your product questions.

To access the Kofax Knowledge Portal, go to https://knowledge.kofax.com.

© The Kofax Knowledge Portal is optimized for use with Google Chrome, Mozilla Firefox, or
Microsoft Edge.

https://learn.kofax.com/
https://knowledge.kofax.com/

Ephesoft Transact Developer's Guide

The Kofax Knowledge Portal provides:
« Powerful search capabilities to help you quickly locate the information you need.
Type your search terms or phrase into the Search box, and then click the search icon.
+ Product information, configuration details and documentation, including release news.

To locate articles, go to the Knowledge Portal home page and select the applicable Solution
Family for your product, or click the View All Products button.

From the Knowledge Portal home page, you can:
+ Access the Kofax Community (for all customers).
On the Resources menu, click the Community link.
+ Access the Kofax Customer Portal (for eligible customers).
Go to the Support Portal Information page and click Log in to the Customer Portal.
+ Access the Kofax Partner Portal (for eligible partners).
Go to the Support Portal Information page and click Log in to the Partner Portal.

+ Access Kofax support commitments, lifecycle policies, electronic fulfillment details, and self-
service tools.

Go to the Support Details page and select the appropriate article.

https://knowledge.kofax.com/bundle/z-kb-articles-salesforce1/page/19280.html
https://knowledge.kofax.com/bundle/z-kb-articles-salesforce1/page/19280.html
https://knowledge.kofax.com/category/support_details

Chapter 1

Custom plugins

This chapter provides resources for developers looking to create and manage custom plugins.
Custom plugins can be used to alter the default workflow of Ephesoft Transact to meet a specific
use case. They can be Kofax-developed or user-developed, but they are maintained by the user.

Before proceeding, review the Disclaimer.

Create custom plugins

To create custom plugins, follow these general steps:

1.

Fulfill prerequisites by installing necessary programs.

2. Create a new project in Eclipse.

VNV AW

Add Transact libraries.

Create a new Java interface.

Create aJava class.

Create a folder structure for XML resources.

Create XML files to be used as resources for the plugin.
Compile the project.

Import the plugin into Transact.

Prerequisites

To create a custom plugin for Ephesoft Transact, you will need the following installed on your
system:

* Java DK

+ Apache Maven
+ Eclipse

* Maven

To install Maven, perform the following steps:

1.

Open Eclipse.

2. Go to Help > Eclipse Marketplace.

W

Search for Maven.
Click Install on Maven Integration for Eclipse.
Follow the installation steps as prompted.

https://www.oracle.com/java/technologies/javase-downloads.html
https://maven.apache.org/download.cgi
http://www.ninite.com/

Ephesoft Transact Developer's Guide

6. After the installation is complete, go to Window > Preferences.

Maven is listed in the left panel.

Create a custom plugin project

Follow these steps to create a custom plugin project in Eclipse. For more information about using
Eclipse and Maven, see the documentation provided with those products.

1.

oukwnhN

Open Eclipse.

Select File > New.

Select Maven Project.

Select Use default Workspace location.

Select the quickstart Maven archetype. The Artifact ID is maven-archetype-quickstart.
Enter the Group ID and Artifact ID.

The Group ID is the package structure for your project. The Artifact ID will be the name of
your project, and the final source folder of your package. For more information about the Java
specification for package names, refer to the Java SE specifications on the Oracle website.

* Group ID: com.ephesoft.customplugin
+ Artifact ID: ephesoft-custom-plugin

Your Eclipse project workspace is now set up for your project.

Add Transact libraries

Follow these steps to add the Transact libraries to your Eclipse project.

O custom script class files should not be added to any custom JAR files. Adding a custom script
class file into any JAR file will cause issues, as the default location for the custom script class file is
<Transact folder>\JavaAppServer\temp\DynamicCodeCompiler.

O NoOW AWM=

Open your project folder. Right-click on ephesoft-custom-plugin.
Select Build Path > Configure Build Path.

Select the Libraries tab.

Click Add External Jars.

Navigate to <Transact folder>\Application\WEB-INF\lib.
Select all JAR files.

Click Open.

Click OK.

Create a new Java interface

Follow these steps to create a new Java interface for your custom plugin.

1.
2.
3.

Open your package. Right-click com.ephesoft.customplugin.ephesoft.custom_plugin.
Select New > Interface.
Set the Name to CustomPlugin.

Ephesoft Transact Developer's Guide

4. Click Finish.

5. Replace the file contents with the following code:

package com.ephesoft.customplugin.ephesoft custom plugin;
import com.ephesoft.dcma.core.DCMAException;

import com.ephesoft.dcma.da.id.BatchInstancelID;

public interface CustomPlugin

{

void helloWorld(final BatchInstanceID batchInstanceID, final String

pluginWorkflow)

}

Create a Java class

throws DCMAException;

Follow these steps to create a Java class to implement the CustomPlugin interface.
1. Open your package. Right-click com.ephesoft.customplugin.ephesoft.custom_plugin.
2. Click New > Class.
3. Set the Name to CustomePluginImpl and click Finish.
4. Replace the file contents with the following code:

package com.ephesoft.customplugin.ephesoft custom plugin;
springframework.util.Assert;

import
import
import
import
import
import
import
import
public

}

org.
com.

com

com.
com.
com.

com

com.

ephesoft.
.ephesoft.
ephesoft.
ephesoft.
ephesoft.
.ephesoft.
ephesoft.

dcma.

dcma

dcma

core.DCMAException;

.core.annotation.PostProcess;
dcma.
dcma.
dcma.

core.annotation.PreProcess;
core.component.ICommonConstants;
da.id.BatchInstancelID;

.da.service.BatchClassPluginConfigService;
dcma.

util.BackUpFileService;

class CustomPluginImpl implements CustomPlugin, ICommonConstants {
private BatchClassPluginConfigService batchClassPluginConfigService;
@PreProcess
public void preProcess (final BatchInstanceID batchInstanceID, String
pluginWorkflow) {
Assert.notNull (batchInstancelID) ;
BackUpFileService.backUpBatch (batchInstanceID.getID()) ;

@PostProcess
public void postProcess (final BatchInstanceID batchInstanceID, String
pluginWorkflow) {
Assert.notNull (batchInstancelD) ;

}

public void helloWorld(BatchInstanceID batchInstanceID,

throws DCMAException {
//TODO Auto-generated method stub

String name = "";
String propertyName = "app.name";
name =

String pluginWorkflow)

batchClassPluginConfigService.getPluginPropertiesForBatch (batchInstanceID.getID(),
"EPHESOFT CUSTOM PLUGIN") .get (propertyName) ;

System.out.println ("**** Ephesoft Custom Plugin: Hello " + name + "
batchInstanceID.getID ()

}

" " .
+ KoKk kKM

public BatchClassPluginConfigService getBatchClassPluginService () {
return batchClassPluginConfigService;

}

public void setBatchClassPluginConfigService (BatchClassPluginConfigService

batchClassPluginConfigService) {
this.batchClassPluginConfigService = batchClassPluginConfigService;

}

RIS

10

Ephesoft Transact Developer's Guide

Create folder structure for XML resources

Follow these steps to create a folder structure for your XML resources.

1. Right-click your project in the Project Explorer.
2. Click New > Source Folder.

Set the Folder Name to src/main/resources.
Click Finish.

Create a META-INF folder:

W

a. Inthe project folder you just created, right-click src/main/resources.
b. Select New > Folder.
c. Setthe Folder Name to META-INF.

d. Click Finish.
6. Create a subfolder under META-INF.

a. Right-click the META-INF folder.
b. Select New > Folder.

c. Set the Folder Name to "ephesoft-custom-plugin” (or the name of your project, if
different).

d. Click Finish.

Create XML files

The following XML files provide resources that are used by the custom plugin:

<name of project>-plugin.xml (such as ephesoft-custom-plugin.xml)

applicationContext-<name of project>-plugin.xml (such as applicationContext-ephesoft-custom-
plugin.xml)

applicationContext.xml
pom.xml

The pom.xml file already exists. The other three XML files need to be created. You then need to add
or replace the content of the files with the information provided in this section. Follow these steps:

1. Create the ephesoft-custom-plugin.xml, applicationContext-<name of project>-plugin.xml, and

applicationContext.xml files as follows:

a. Right-click src/main/resources.

b. Select New > XML File.

0 If XML File is not available, click Other and search for XML File.

c. Set Name to the name of the file you are creating:
+ <name of project>-plugin.xml (such as ephesoft-custom-plugin.xml)

1

Ephesoft Transact Developer's Guide

+ applicationContext-<name of project>-plugin.xml (such as applicationContext-ephesoft-
custom-plugin.xml)

+ applicationContext.xml

d. Click Finish.
The file is created.

e. Repeat these steps to create all three files.
When you are finished, the folder structure looks similar to the following:

[
4 B srofmainfresources
4 [META-IMF
4 & ephesoft-custom- plugin
apphcationContextaml
1| applicaton ontext-ephesoft-custome-plugmaoml
ephesoft-custom-pluginaml
B\ IRE Systern Library

s a -

2. Open each file and add the contents in the following sections. Set the configurable elements if
indicated.

For pom.xml, locate it in the project, open it, and replace the contents with the code provided
in the applicable section below.

<name of project>-plugin.xml

Add the following content to the XML file you created:

<?xml version="1.0" encoding="UTF-8"?>
<plugin>
<jar—-name>ephesoft-custom-plugin.jar</jar-name>
<plugin-name>EPHESOFT CUSTOM PLUGIN</plugin-name>
<plugin-desc>Ephesoft Custom Plugin</plugin-desc>
<plugin-workflow-name>CUSTOM PLUGIN</plugin-workflow-name>
<plugin-service-instance>CustomPlugin</plugin-service-instance>
<method-name>helloWorld</method-name>
<is-scripting>FALSE</is-scripting>
<back-up-file-name>EphesoftCustomPlugin</back-up-file-name>
<script-name>N/A</script-name>
<application-context-path>applicationContext-ephesoft-custom-plugin.xml</application-
context-path>
<plugin-properties>
<plugin-property>
<name>app .name</name>
<type>STRING</type>
<description>Name</description>
<is-mandatory>FALSE</is-mandatory>
<is-multivalue>FALSE</is-multivalue>
</plugin-property>
</plugin-properties>
<dependencies>
</dependencies>
</plugin>

The following elements are configurable. Change them as needed:

12

Ephesoft Transact Developer's Guide

Element Description

jar-name Name of the JAR file containing your plugin code. This
should be <name of the project>.

plugin-name Name of the plugin to display in the workflow.
The CustomPluginImpl.java class uses the name
EPHESOFT_CUSTOM_PLUGIN.

plugin-service-instance Name of the bean identifier to be referenced in the
applicationContext.xml file.

method-name Name of the method to call first when the plugin
executes in the workflow.

plugin-properties Defines the properties of the plugin to be configured
in the UL.The CustomPlugin.java class calls on one
property—app.name.

applicationContext-<name of project>-plugin.xml

Add the following content to the XML file you created:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans" xmlns:tx="http://
www.springframework.org/schema/tx" xmlns:p="http://www.springframework.org/
schema/p" xmlns:util="http://www.springframework.org/schema/util"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xmlns:aop="http://
www.springframework.org/schema/aop" xmlns:context="http://www.springframework.org/
schema/context" xsi:schemalocation="http://www.springframework.org/schema/
beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/util http://www.springframework.org/
schema/util/spring-util-3.0.xsd http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd http://
www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-
aop-3.0.xsd http://www.springframework.org/schema/tx http://www.springframework.org/
schema/tx/spring-tx-3.0.xsd" default-autowire="byName">
<import resource="classpath:/META-INF/ephesoft-custom-plugin/applicationContext.xml"/
>
</beans>

applicationContext.xml

Add the following content to the XML file you created:

<?xml version="1.0" encoding="UTF-8"?>
<beans xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd http://
www.springframework.org/schema/util http://www.springframework.org/schema/
util/spring-util-3.0.xsd http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd http://
www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-
aop-3.0.xsd http://www.springframework.org/schema/tx http://www.springframework.org/
schema/tx/spring-tx-3.0.xsd" default-autowire="byName">
<import resource="classpath:/META-INF/applicationContext-data-access.xml"/>
<import resource="classpath:/META-INF/applicationContext-batch.xml"/>
<import resource="classpath:/META-INF/applicationContext-core.xml"/>
<bean id="CustomPlugin"
class="com.ephesoft.customplugin.ephesoft custom plugin.CustomPluginImpl">
<property name="batchClassPluginConfigService" ref="batchClassPluginConfigService"/
>

13

Ephesoft Transact Developer's Guide

</bean>

<context:component-scan base-
package="com.ephesoft.customplugin.ephesoft custom plugin"/>
</beans>

pom.xml

Replace the content of the pom.xml file with the following:

<?xml version="1.0"?2>

<project xsi:schemalLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/

xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.ephesoft.customplugin</groupId>
<artifactId>ephesoft-custom-plugin</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging>
<name>ephesoft-custom-plugin</name>
<url>http://maven.apache.org</url>
<properties>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

</properties>
<dependencies>

<dependency>
<groupId>com.ephesoft.dcma</groupIld>
<artifactId>dcma-core</artifactId>
<version>0.0.1</version>
<scope>system</scope>
<systemPath>${project.basedir}/src/main/resources/ephesoft.jar</systemPath>

</dependency>

<dependency>
<groupld>org.springframework</groupIld>
<artifactId>spring-core</artifactId>
<version>3.0.5.RELEASE</version>

</dependency>

<dependency>
<groupld>junit</groupld>
<artifactId>junit</artifactId>
<version>4.8.1</version>
<scope>test</scope>

</dependency>

<dependency>
<groupld>org.springframework</groupId>
<artifactId>spring-beans</artifactId>
<version>3.0.5.RELEASE</version>

</dependency>

</dependencies>
</project>

Compile the custom plugin project

1.

oukswN

Copy and paste the ephesoft.jar file from <Transact Folder>\Application\WEB-INF\lib

to your project's src/main/resources folder.
Right-click the project folder.

Select Run As > Maven build.

Set Goals as clean install.

Click Apply.

Click OK.

14

Ephesoft Transact Developer's Guide

O After compiling, you may need to refresh your project to update the folder structure.

Prepare custom plugin for import

1.

b

After compiling your project in Eclipse, locate the .jar file under the target folder.
Example: If the project name is ephesoft-custom, the .jar file is called ephesoft-custom-
plugin.0.0.1-SNAPSHOT jar.

Temporarily copy the .jar file to your Desktop.

Rename the .jar file to remove <version number>-SNAPSHOT from the file name.
Example: If the .jar file is named ephesoft-custom-plugin.0.0.1-SNAPSHOT.jar, rename it to
ephesoft-custom-plugin.jar.

Locate <project name>-plugin.xml (such as ephesoft-custom-plugin.xml) under your project.

Temporarily copy the .xml file to your Desktop.

Compress the .jar and .xml files into a single .zip file.
Example: If you have ephesoft-custom-plugin.jar and ephesoft-custom-plugin.xml, your
compressed file should be ephesoft-custom-plugin.zip.

O The .zip file must have the same name as the .jar file.

The plugin you created is now ready to import into Transact. Follow these steps:
a. InTransact, select System Configuration > Workflow Management.
b. Drag your created .zip file into the Import Plugin section.

c. Restart Transact.

The custom plugin you created is now available for use. For more information about importing

custom plugins, see the next section.

Import custom plugins

In addition to custom plugins you create, Transact administrators can import custom plugins
provided by Kofax and other vendors. This procedure is provided for Transact administrators
working in an on-promises environment. For Transact Cloud environments, free custom plugins are
available in your instance by default.

i I purchase a premium custom plugin, contact Sales.

Custom plugins are imported as a ZIP file, which contains a plugin JAR file and an XML file with
information about the plugin, as shown in Prepare custom plugin for import. Once a custom plugin
is uploaded into Transact, the system creates an entry in the database where all default plugins are
listed. The plugin .jar is copied to the customPluginJars folder in SharedFolders, along with the
associated .xml file.

15

Ephesoft Transact Developer's Guide

To import a custom plugin, perform the following steps. To remove a custom plugin, see Remove

custom plugins.

1.

2.
3.
4.

In Transact, select System Configuration > Workflow Management.

In the Import Plugin panel, click Select Files.

From the window that appears, select the .zip file for the plugin and click Open.
Restart Transact.

The custom plugin is now available for use.

Add plugins to a batch class

To use the plugin, navigate to the associated module, and add the plugin to the Selected Plugins

column. For instructions, see the Ephesoft Transact Administrator's Help.

Remove custom plugins

To remove custom plugins from Transact, you must remove them from all batch classes and then

modify the database.

Back up the database before removing a custom plugin from your workflow.

plugin need to be redeployed once the plugin is removed from the system.

. Identify the affected batch classes using the query below. Any batch classes currently using the

O 1n this and the following step, replace PLUGIN_NAME with the name of the custom plugin

you want to remove.

SELECT identifier,
batch class name
FROM batch class
WHERE is deleted = 0
AND id IN (SELECT batch class id
FROM batch class module
WHERE id IN (SELECT batch class module id
FROM batch class plugin
WHERE plugin id IN (SELECT id
FROM plugin
WHERE
plugin name LIKE '3PLUGIN NAMES3')));

Remove all database entries pertaining to the custom plugin by using the following query.

DELETE FROM batch class plugin config
WHERE plugin config id IN (SELECT id
FROM plugin config
WHERE plugin id IN (SELECT id
FROM plugin
WHERE
plugin_name LIKE ‘%PLUGIN_NAME%‘));

DELETE FROM plugin config sample value
WHERE plugin config id IN (SELECT id
FROM plugin config
WHERE plugin id IN (SELECT id

16

Ephesoft Transact Developer's Guide

FROM plugin
WHERE
plugin name LIKE 'S$PLUGIN NAMES'));

DELETE FROM batch class plugin
WHERE plugin id IN (SELECT id
FROM plugin
WHERE plugin name LIKE '$PLUGIN NAMES');

DELETE FROM plugin config
WHERE plugin id IN (SELECT id
FROM plugin
WHERE plugin name LIKE '3%PLUGIN NAMES') ;

DELETE FROM plugin dependency
WHERE plugin id IN (SELECT id
FROM plugin
WHERE plugin name LIKE '3%PLUGIN NAMES') ;

DELETE FROM plugin

WHERE plugin name LIKE '$PLUGIN NAMES';
3. If AUTOCOMMIT is OFF, issue a commit:

COMMIT;

4. Remove the following files from the customPluginjarsfolder, located at <Transact Folder>
\SharedFolders\customPluginJars:

« Custom plugin .jar file (such as plugin-export-multipage.jar)

+ Custom plugin .xml file (such as applicationContext-pluginExportMultiPage.xml)
5. Remove the custom plugin folder from the workflow.

This folder is located at <Transact Folder>\SharedFolders\workflows\plugins.
6. Redeploy the batch classes identified in step 1.
7. Restart Transact.

17

Chapter 2

External applications

You can integrate external applications with the Transact Review and Validation modules. External
applications are technology-independent and can be written in any language, such as HTML,
JavaScript, GWT, JSP, Servlet, or a combination thereof.

Transact interacts with external applications by appending the application's URL with the following
two parameters:

* The path of the batch.xml for the current batch using the batch xml path parameter.
* The document identifier, using the document id parameter.

The batch.xml path is encoded using java.net.URLEncoder and UTF-8 encoding. The following is a
sample URL for an external application, as fired by Transact:

<Ext. App URL>&document id=<Document Identifier>&batch xml path=<Path of
batch.xml>&ticket=<Security Token>

External applications need to include the following method in their code. They need to invoke this

method on the respective button (OK or close) calls they have implemented. External applications

signal Transact to perform a specified operation by passing the appropriate operation string in the
method argument.

GWT-based applications

private native void fireEvent (String operation) /*—{
window.top.postMessage (operation, "*") ;

Y=*/;
JavaScript-based applications

function fireEvent (var operation) {window.top.postmessage (operation, "*");}

The following table describes the actions performed in Transact based on the arguments passed to
this method in the external application's code:

Argument Passed by External Application Result in Transact

Save The dialog box containing the external application
on the Review and Validate screen closes and the
changes made in batch.xml are reflected on the
screen.

Cancel The dialog box containing the external application
on the Review and Validate screen closes, without
refreshing the screen.

Any other string No change.

18

Ephesoft Transact Developer's Guide

Application security

A dynamic token is generated each time an external application is called. This token is sent to the
external application by appending the ticket parameter to the URL. Once this token is received, the
external application checks the provided URL to determine the authenticity of the token.

Example URL:
http://<EphesoftServerIP>:<port>/dcma/authenticate?ticket=<ticket>

If the token is not valid, you will receive a 401 error message. A valid token becomes invalid in the
following scenarios:

+ If the token has already been sent to the Transact server for authentication.
+ After an hour has passed since the token was issued.

Add an external application

Perform the following steps to integrate your external application.

O These steps describe how to add the application to the Validate module, but the same can be
applied to the Review module if needed.

1. From the Batch Class Management screen, select your batch class and click Open.
2. Select Modules > Validate Document > VALIDATE_ DOCUMENT.
3. Set the External Application Switch to ON.
4. Assign the URL of the application to one of the shortcuts, and add a title. This will be the
shortcut used to access the application during validation. The available shortcuts are:
o Ctrl+4
« Ctrl+7
+ Ctrl+8
« Ctrl+9

Access the application
From the Review or Validate screens, use your configured shortcut to call the external application.

You can also call the application manually by clicking More > External Application and selecting
your application from the list. Your application opens in a separate window.

Transact Al Table Rule Builder

The Ephesoft Transact Al Table Rule Builder enables operators to create extraction rules for
invoice table line items during the Validation stage in Transact. This feature also provides

19

Ephesoft Transact Developer's Guide

improved extraction accuracy by excluding rows that are not needed. With Al Table Rule Builder,
users can configure and save extraction rules that are unique to vendor-specific invoices. The
Transact Al Table Rule Builder is provided as an external application that is configured in the
VALIDATE_DOCUMENT plugin and integrated with the Validation module.

© The Transact Al Table Rule Builder is currently limited to creating rules for single-page
basic invoices. It was designed for invoice document types, and has not been tested with other

document types.

Prerequisites

To use the Transact Al Table Rule Builder, the following prerequisites must be in place:

* Transact must be installed.

+ Install and enable the Transact Al Table Rule Builder. Follow the steps in the InstallationNotes.txt
packaged with the Transact Al Table Rule Builder .zip file.

+ Ensure the TABLE_EXTRACTION plugin is added to the Extraction module and turned on.

+ Add the table and table columns to your document type. Transact can only create extraction rules
for existing tables. For steps, refer to "Add table columns" in the Ephesoft Transact Administrator's

Help.

Each Column Name must exactly match the column header for the table; otherwise, the table

is not extracted and the rule is not created.

Installation of Transact Al Table Rule Builder

1. Download the current version of the Transact Al Table Rule Builder plugin.

. Stop the Transact server.

2
3. Extract the .zip file to a temporary location.
4

. Install the Transact Al Table Rule Builder plugin for your operating system as described in the

table.

Operating System

Procedure

Windows

a.

Navigate to the folder where you
extracted the plugin files.

Open a command prompt and run the
following command:

install auto table rule builder.bat

Linux

Navigate to the directory where you
extracted the plugin files.

Open the terminal and run the following
command:

o

install auto table rule builder.sh

20

Ephesoft Transact Developer's Guide

5.

Operating System Procedure

i B you are unable to run the
command because of a permission
issue, run the following:

chmod +x

install auto table rule builder.sh

Start the server.

© For Transact Cloud users, the Technical Operations Team installs the Transact Al Table
Rule Builder for you. However, you will need to configure the VALIDATE_DOCUMENT plugin.
For configuration instructions, see the VALIDATE_DOCUMENT plugin instructions in the
Ephesoft Transact Administrator's Help.

Configure the VALIDATE_DOCUMENT plugin

You must configure the VALIDATE_DOCUMENT plugin to use the Transact Al Table Rule Builder.
Once configured, the Transact Al Table Rule Builder appears in the Validate screen as a selectable
link from the More External Application menu.

1.
2.
3.
4.

5.
6.

From the Batch Class Management page, select your batch class and click Open.
Expand the Validate Document module and select the VALIDATE_DOCUMENT plugin.
In the Plugin Configuration screen, set the External Application Switch to ON.

Type http://<Server Name>:8080/dcma/autoTable or an HTTPS URL in one of the
following fields:

* URL1(Ctrl+4)

* URL2(Ctrl+7)

* URL3(Ctrl+8)

* URL4(Ctrl+9)

In the corresponding URL Title field, type a name for the External Application link.
Click Deploy.

Launch the application

Operators can launch the application from the Validation page for a batch instance by clicking
More > External Application and then selecting the link assigned to the Transact Al Table Rule
Builder.

Operators can use shortcuts to launch the Al Table Rule Builder. The shortcut is dependent on which

External Application URL is associated with the Al Table Rule Builder. For example, if it is registered

as the first External Application URL for the batch class, then the shortcut CTRL+4 opens it. Other
shortcuts are as follows:

External Application URL Shortcut

URL1 Ctrl+4

21

Ephesoft Transact Developer's Guide

External Application URL Shortcut
URL2 Ctrl+7
URL3 Ctrl+8
URL4 Ctrl+9

Table Extraction Rule Builder modes

Using one of four modes (Automatic, Standard, Advanced or Manual), operators can select the
configuration mode that best suits their skill level. The guided in-app configuration screen helps
users identify line item information to extract. Transact then creates the extraction rules and uses
them to extract data from any subsequent invoices submitted by the same vendor.

The Table Extraction Rule builder includes multiple modes depending on your needs.

Extraction Mode

Description

Automated mode

This is the Al Table Rule Builder default mode. If you
need to edit the extraction results or rule, you can
select one of the other modes to make changes.

Standard mode

Recommended edit mode for most use cases. This
wizard walks you through each step in configuring an
extraction rule.

Advanced mode

Alternative edit mode for operators, administrators,
or developers familiar with regular expressions.

Manual mode

Use this mode to extract table data without creating
new table extraction rules.

Automated mode

Automated Mode is the default configuration mode for Transact Al Table Rule Builder. Operators
define the location of the table data on the document using an overlay, select a table name from
a menu, and click Next. Then, Transact uses an Al engine to extract and analyze the data and
generate extraction rules. If needed, operators can manually adjust column names or select

an alternative mode (Standard, Advanced, or Manual) to refine the new extraction rule. Once
configured, Transact populates the table Validation screen using the new table extraction rule.
Operators can then finish validating the extracted data.

To create an extraction rule using the wizard:

1. From the field, select the table for which you want to build the rule.
If no tables are listed, or if your desired table is missing, make sure you completed the

requirements listed in Prerequisites.

2. Use the overlay to draw a box around your table on the preview image. This should include the
header row, and span the full height and width of the table.

3. Click Next.

4. Review the extracted results.

+ If you are satisfied with the results, click Next to review the extraction rule, then click Save.
Your extraction rule is created and the wizard is closed.

22

Ephesoft Transact Developer's Guide

+ If the columns contain the correct data, but are mapped incorrectly, select the correct
header name using the label button and proceed as normal.

Note these important items:

* When adding a new table and table columns for a document type, the Column Name must
exactly match the column header, or the table is not extracted, and the rule is not created.
Alternatively, the dictionary synonyms should be defined to properly match the column header.
See Automated Mode Dictionary for more information on configuring the dictionary synonymes.

* When using Automated Mode, column data may merge together if data in columns are closely
aligned. See the Ephesoft Transact Release Notes for more information.

+ If the columns do not contain the correct data, or are missing data, click Edit and select your edit
mode.

Select one of the following edit modes based on your use case:
¢ Standard mode (recommended)

+ Advanced mode

* Manual mode

Automated Mode Dictionary

Batch class administrators can use the Automated Mode Dictionary to define a set of table header
synonyms. The Transact Al Table Rule Builder uses synonym-based detection if it is unable to detect
headers by matching column names using the Transact table header detection algorithm.

To configure the Automated Mode Dictionary:
1. From the Batch Class Management page, select your batch class and click Open.

2. Go to Document Types > <Document Type name> > Tables > <Table Name> > Table
Columns.

3. In the Column Synonym column, create regex patterns for each synonym.
4. Click Deploy once you have created the synonyms.

Standard mode

Standard mode is the recommended edit mode for most use cases. Standard Mode uses a guided
wizard to dynamically build table extraction rules. Once a rule is created, operators can review the
rule and tune it for improved extraction results. Standard mode also includes the option to select

any rows in the table that should be excluded from the extraction rule.

This wizard walks you through creating an extraction rule for your table step by step. To access this
wizard, click Edit when available and select Standard Mode (recommended).

The wizard separates creating an extraction rule into the following steps:

Step in Wizard Action

Step 1: Header Row Select whether a header row exists for this table or
not. If yes, draw the provided overlay over the full
height and width of the header row. The header row
is the preferred option when creating an extraction
rule.

23

Ephesoft Transact Developer's Guide

Step in Wizard Action

Step 2: Preceding Text Select whether the table has preceding text (text
immediately before the table). If yes, draw the
overlay over a single line of preceding text. Note: The
system needs some header row or preceding text to
create an extraction rule. If both the header row and
preceding text are selected, then Transact will default
to using the header row text to create the extraction
rule. For help, see Preceding and trailing text.

Step 3: Trailing Text Select whether the table has trailing text (text
immediately after the table rows). If yes, draw the
provided overlay over a single line of trailing text. For
help, see Preceding and trailing text.

Steps 4 and up: Columns (varies depending on number | Select whether the table has the mentioned column.
of columns) If yes, draw the overlay over the full height and width
of the column, not including the header. This step will
repeat based on the number of columns configured
for the selected table.

Final step: Ignore Rows Select whether any extracted rows should be ignored
using the sample extracted table. For example, on

an invoice you may want to ignore the subtotal

rows. Note: If you reach this step and no data is
populated in the sample table, Transact is not able to
create an extraction rule. Try the wizard again, or use
Automated mode Otherwise, you can perform a one-
time extraction using Manual mode.

Preceding and trailing text

Identifying preceding and trailing text helps Transact determine where a table begins and ends. Use
the following guidelines to select the best preceding and trailing text:

+ This text should be immediately before or after your table. If anything is between your text and
the table it is treated as part of the table, and may result in incorrect extraction results.

* This text should be static, which means it does not change from document to document.
+ This text should only span a single line.

The following are examples of good and poor images for extracting trailing text.

Good images

The following example shows a sample invoice with the line Sub Total selected as the trailing text.
This works well for this invoice because:

+ There is nothing between the table and the highlighted text.
* The text is an invoice field name, which means it does not change.
* The text only spans a single line.

24

https://ephesoft.com/docs/products/transact/developers/external-applications/transact-ai-table-rule-builder/#post-48882-_d4zbbo1oleit

Ephesoft Transact Developer's Guide

INVOICE
ACME Company Imvoice Mo 5432000
Bebhoary Hills Blhed Invoice Date: O4/08/08
Irwine, (CA 90210 PO Nurmiber 2005012345
Tel 948-331-T500
|Part No fQuantity [Unit Price than Discount [Total
988 10000001 56| i __30.16(F5 BAW Card Stock 0. 00) _I-ﬂ__ﬁ‘_
S8 100000 1990/ $1.09|Cutting-Fer Raeim 0.00%] £0.81

b' ’ Sub Totaly F
=12/ [=] Tax 7.75%

B -

Thank you for your business,
MAIN Corporate Office

Page 1 of 1

Poor images

The following example shows the same sample invoice with the line "Thank you for your business"
selected as the trailing text. This is a poor selection because there are multiple lines between this

line and the table, including a QR code.

$17.81
$1.38
$18.19

25

Ephesoft Transact Developer's Guide

INVOICE
ACME Company Imvoice Mo 54232000
Belverty Hills Blvd Invoice Date: O4/08/08
Irine, CA 90210 PO Nurmber 2005012345

Tel S489-331-7500

[Part No _Quantity [Unit Price [Deacription Discount [Total
~9981000000156| 50) SO16FS BAW Card Stock | 0.00%] $8 00/
998 100000 19940] L I-‘I.U‘Elﬂuthng Per Reim - DDG'!’: £0 81

Sub Total $17.81
E Tax 7.75% $1.38
Total $19.19

-ﬁ‘

B

Thank you F'or your DUESiness

MAIN Cu-rpﬂratva Dl‘ﬁl::e

Page 1 of 1

Advanced mode

Advanced mode provides operators with additional flexibility to create extraction rules using
column overlays and custom regex patterns. Operators can also test regex patterns within the rule
builder or exclude rows from the rule for additional fine tuning. This mode is ideal for users with
advanced knowledge of regex.

To access this mode, click Edit when available and select Advanced Mode.

To create an advanced rule using regular expressions:
1. Create the following regular expressions (regex):

+ Start Pattern Regex: Defines the starting point of the table. This must be unique across all
extraction rules in a document type. A good choice for a start pattern is often part of the
table column headers. For example, "Code Description Price."

+ End Pattern Regex: Defines the end point of the table. See Preceding and trailing text for
more information.

+ Column Regex: Defines the pattern for the column data. You will need to define a regular
expression for each available column.

© Each column includes selectable Anchor and Required options.

26

Ephesoft Transact Developer's Guide

Checkbox Description

Anchor This option enables you to indicate the start of a
new row if a value from this column is extracted.
This is useful when table rows span more than

a single line and enables text to wrap. For best
results, select a single value from the end of the
wrapped line that will always be present. You can
only select one Anchor checkbox at a time.

Required Selecting the required checkbox will make the
column mandatory for operator validation. The
extraction algorithm will always expect this
column to be present in the document.

* Row Exclusion Regex: Define a pattern for table rows that should be ignored, such as the
subtotal row in an invoice. If a row is extracted that fully or partially matches the regex, that
row will be removed from the table results.

2. Resize the provided overlays over the full height and width of each column.
These overlays are color-coded and labeled to match each column.

3. Click Test Extraction and review the extracted results.
You may need to test multiple times as you fine-tune your rule.

4. When you are satisfied, click Save. The extraction rule will be created and you will return to the
Validation screen.

Manual mode

Manual mode enables users to extract table data without creating new table extraction rules. It is
ideal to use when operators need to quickly extract and validate data but no rule exists, documents
have poor OCR quality, or contain a complex table layout. Although Manual mode will extract and
save data to the batch instance, it does not create and save extraction rules to the batch class.

Using this mode will not create an extraction rule for the table.
Refer to the following section for help performing manual edits. When you are satisfied with your
changes, click Update Batch to return to the Validation screen.
Performing manual edits

The following section provides a summary of the table editing tools and how to use them.

Edit cells
Click any non-header cell to enter edit mode and begin typing.

Map incorrect headers
Fix any incorrect headers by clicking the label icon and selecting a header from the field.

© A header can only be mapped to one column at a time. Selecting a header that is already
mapped to another column will swap the mapping with the existing column.

27

Ephesoft Transact Developer's Guide

You can also insert, merge, or delete rows.

Insert a row

Click the three-dot icon to the right of a row and select either Insert row above or Insert row
below.

Merge rows

Click the three-dot icon to the right of a row and select either Merge row above or Merge row
below.

Delete a row
Click the ellipsis icon to the right of the row you want to delete and select Delete row.

You can also clear an entire column.

Clear column
Click the three-dot icon to the right of a row and select Clear column.

Limitations

The following types of tables are not good candidates for the Transact Al Table Rule Builder, and
may receive inaccurate results:

+ Tables with overlapping columns.

+ Tables with closely packed column data.

+ Tables within the cell of another table (such as nested tables).
+ Tables with hidden columns.

+ Tables that span more than one page.

28

Chapter 3

Reqgular expressions

Transact uses regular expression patterns in the Extraction module to search, edit, or manipulate
text and data. Regular expressions describe a set of strings based on common characteristics

shared by each string in the set.

The following table lists basic regular expression constructs.

Construct Description

[abc] a, b, or c (simple class)

[Mabc] Any character except a, b, or ¢ (negation)
[a-zA-Z] a through z, or A through Z, inclusive (range)
[a-d[m-p]] a through d, or m through p: [a-dm-p] (union)

[a-z&&[def]]

d, e, or f (intersection)

[a-z&&[bc]]

a through z, except for b and c: [ad-z] (subtraction)

[a-2&&[*m-p]]

a through z, and not m through p: [a-19-z]
(subtraction)

Predefined character classes of reqular expressions

Commonly used regular expressions are organized into a set of predefined character classes. The
following table lists the constructs assigned to the predefined character classes.

Construct Description
Any character (may or may not match line
terminators)

\d A digit: [0-9]

\D A non-digit: [*0-9]

\s A whitespace character: [\t\n\x0B\f\r]

\S A non-whitespace character: [M\s]

\w A word character: [a-zA-Z_0-9]

\W A non-word character: ["\w]

29

Ephesoft Transact Developer's Guide

Quantifiers
Quantifiers enable you to specify the number of occurrences to match against.
Pattern Meaning
X? X, once or not at all
X* X, zero or more times
X+ X, one or more times
X{n} X, exactly n times
X{n,} X, at least n times
X{n,m} X, at least n but not more than m times

Capturing groups

Capturing groups treat multiple characters as a single unit. They are created by placing the
characters to be grouped inside a set of parentheses. For example, the regular expression (dog)
creates a single group containing the letters d, o, and g. The portion of the input string that
matches the capturing group will be saved in memory for later recall with backreferences.

Capturing groups are numbered by counting their opening parentheses from left to right. In the
expression ((A)(B(C))), for example, there are four such groups:

* ((AXB(Q))
© (A

* (B(Q))

+ (O

Backreferences

The section of the input string matching the capturing group(s) is saved in memory for later recall
with backreferences. A backreference is specified in the regular expression as a backslash (\)

followed by a digit indicating the number of the group to be recalled. For example, the expression
(\d\d) defines one capturing group matching two digits in a row, which can be recalled later in the

expression via the backreference \1.

For example, to match any 2 digits, followed by the exact same two digits, use (\d\d)\1 as the

regular expression:

Regular expression

(\d\d)\1

Input string

1212

Result

Found the text "1212" starting at index 0 and ending
atindex 4.

30

Ephesoft Transact Developer's Guide

Capturing groups and character classes with quantifiers

Examples:
+ (abo)+ (the group "abc", one or more times).
* [abc]+ (a or b or ¢, one or more times)

Boundary matchers

With boundary matchers the location of the match can be found within a particular input string (for
example, the beginning or end of a line), on a word boundary, or at the end of the previous match.
The following table lists and explains all the boundary matchers.

Boundary Construct

Description

A

The beginning of a line

$ End of a line

\b A word boundary

\B Non-word boundary

\A Beginning of the input

\G The end of a previous match

\Z The end of the input for the final terminator, if any
\z The end of the input

Examples:

Regular expression

Adcma\w*

Input string

dcma ephesoft

Match Found

true

Grouping constructs

Use grouping constructs to capture groups of sub-expressions and to increase the efficiency of
regular expressions with non-capturing lookahead and lookbehind modifiers. The following table
describes the Regular Expression Grouping Constructs.

Grouping Construct

Description

(i)

Turn on case insensitivity for the remainder of the
regular expression. (Older regex flavors may turn it
on for the entire regex.) For example, te(? i)st matches
teST but not TEST.

()

Non-capturing group.

31

Ephesoft Transact Developer's Guide

Grouping Construct Description

?=) Zero-width positive lookahead assertion. Continues
match only if the sub-expression matches at this
position on the right. For example, \w+(?=\d) matches
a word followed by a digit, without matching the digit.
This construct does not backtrack.

@) Zero-width negative lookahead assertion. Continues
match only if the sub-expression does not match at
this position on the right. For example, \b(?!un)\w+\b
matches words that do not begin with un.

(?<=) Zero-width positive lookbehind assertion. Continues
match only if the sub-expression matches at this
position on the left. For example, (?<=19)99 matches
instances of 99 that follow 19. This construct does not
backtrack.

(2<!) Zero-width negative lookbehind assertion. Continues
match only if the sub-expression does not match at
the position on the left.

Sample regular expressions:

Regular expression for email address: [A-Za-z0-9-1+(\.[_A-Za-z0-9-]+)*@[A-Za-z0-9]+(\.[A-Za-
z0-91+)*(\.[A-Za-z]{2,})

Regular expression for date: (0[1-9]| 1[012])[- /.](O[1-9]| [12][0-9]| 3[01])[- /.\d\d([0-91{2})?
Matches the date in the following formats: mm/dd/yyyy or mm.dd.yyyy or mm-dd-yyyy or mm/
dd/yy or or mm.dd.yy or mm-dd-yy

Regular expression for time in 12-Hour Format: (1[012]][1-9]):[0-5][0- 9](\s)?(?i)(am | pm)
Matches the time in the following format: 12:45am or 1:34pm or 7:56AM or 2:57PM or 1:45 PM or
2:34 AM

Regular expression for the price: \d+[,]{0,1)\d+[\.]\d{1,2}

Matches the prices in the following formats: 123.89 or 12,889.90 It will not match a single digit or
two digit prices.

Word boundary match example: To match whole word only,"\b" is used in the regular

expressions. For example, to match a word "dcma" but only if it is whole word, for the input data:
"dcma dcmaEphesoftData," use the regular expression listed below.

Lookahead and lookbehind example: To match something not followed or preceded by
something else, use lookahead and lookbehind assertions. Matching "date" not preceded by
"due."

Input data due date is 22/11/2012 and the end date is
11/11/1999

Regular expressions (?<!' due\s)date
\bdcma\b

Matching "date" not followed by "due"

Input data Payment date due is 22/11/2012 and actual date is
11/11/1999

32

Ephesoft Transact Developer's Guide

Regular expression date(?!\sdue)
Matching In both the cases there will be only one match of
"date" string.

+ Pattern matching two words near each other: This pattern consists of three parts:
* The first word
+ A certain number of unspecified words
* The second word
An unspecified word can be matched with the shorthand character class "\w+'. The spaces and

other characters between the words can be matched with \W+' (uppercase W this time). Finding
any pair of two words such as "payment" and "bank" in the data:

Regex pattern payment\W+(2:\w+\W+){1,6}?bank

Matching Pair of words (payment, bank) separated by at least
one word and at most six words between them.

Regex patterns in Transact

In table extraction, regular expressions support multi-word capture. In KV extraction, regular
expressions use word-based extraction.

Usage of 'pattern’ field in 'document Index Field Details'

In the document index field details, the administrator can enter some comma-separated values

in the "pattern” field. The last value in the pattern field is a regular expression used to match the
data and the previous values are used as key values. There may be multiple matches for the regex
pattern but you want only those matches preceded by some specific values (key values specified in
the pattern list).

Example:

Regex pattern Invoice; Date; [0-9]{2}/ [0-9] {2}/[0-91{2,4}

Matching Only dates preceded by the strings "Invoice" and
"date".

Usage of multi-word in key pattern for k-v extraction

The multi-word capturing in KV extraction is present only in the key extraction and not in value
extraction. For example, to capture the value "22/09/2011" for the input data: Invoice date
22/09/2011 The following key and value patterns can be used.

Key pattern Invoice date
Value pattern (0[1-97 | 1[012]) [- /.1(O[1-91] [12][0-91| 3[01])[-/.]\d\d
([0-9K2})?

33

Ephesoft Transact Developer's Guide

How not to capture certain values for key pattern and value pattern

To match something not followed or preceded by something else, use lookahead and lookbehind

assertions. For example:

Input data

due date is 22/11/2012 and end date is 11/11/1999

Regular expression

(?<!'due\s)date

Matching

"date" not preceded by "due"

Input data

Payment date due is 22/11/2012 and the actual date
is 11/11/1999

Regular expression

date (?'\sdue)

Matching

"date" not followed by "due"

In both, the cases there will be only one match of "date" string.

Usage of multi-word capture in Table Extraction, which is different than
Value Pattern in K-V Extraction

Multi-word capture in Table Extraction is different from the value pattern in Key-Value Extraction.
For example, consider the following image data:

Date Product Quantity Price
11/22/2012 iPod Touch 5 25000.00
05/22/2012 Laptop 2 30000.50

In this table, the multi-word data "iPod touch". can be captured using the regular expression: [A-Za-
Z\s].

But in K-V Extraction, multi-word data capturing is not supported for "value" pattern.

34

Chapter 4

Scripting resources

This chapter covers resources related to scripting in Transact.

Scripting functionality

Scripting functionality in Transact is supported where a custom requirement can be handled.
Transact includes power to perform custom functionality during different stages of batch
processing. This functionality is supported through the scripts present inside the batch class

folder in the scripts folder. These scripts are Java scripts which access batch.xml through two
techniques: DOM Parser and JDOM Parser. All the scripts present should be developed using one of
the earlier mentioned parser only.

Batch Instance Group feature

This feature is used to provide the roles on the batch instance. If a user role has access to a batch
instance using batch instance group feature than that batch will display on the BatchList screen.
User will able to review/validate the same batch instance.

The database table batch instance groups is used to store the batch instance identifier and all
the mapped user roles with the batch instances. The following database structure is used.

Method for assigning roles in batch instance group table

public void assignedBatchInstanceGroup (String batchInstanceldentifier, String userRole)
throws DCMAException

Configurable parameters
Example file: ScriptDocumentAssembler_BatchInstanceGroupFeature.java

Force Review feature

The Force Review feature is implemented as follows:

+ The ForceReview tag is added to batch.xml for any document-level fields. This tag has the
following characteristics:

+ Itis only used when a document is invalid. When it does, the ForceReview tag is set to true.

+ Itis not a mandatory tag. If the ForceReview tag does not exist for that document class, or the
tag is not set to true, the document is processed as normal.

35

http://download.ephesoft.com/Ephesoft_Product/Wiki_links/partner_resources/scripts/ScriptDocumentAssembler_BatchInstanceGroupFeature.java

Ephesoft Transact Developer's Guide

* When this batch opens for validation, and there is an invalid document that sets the ForceReview
tag to true, the following happens:

+ Before the user saves the document (either by pressing Ctrl+S or Ctrl+Q), the invalid field
appears red, regardless of Regex validation.

+ Once the user presses Ctrl+S or Ctrl+Q on a field, the ForceReview tag is set to false for the
field. Validation can continue as usual (such as by using Regex validation).
+ The script must handle the setting of the ForceReview tag in sync with the document validity
setting.
+ The ForceReview tag of a field does not make a document invalid. It will only prevent a document-
level field from getting validated in a document in an invalid state if set to true.

+ This ForceReview tag does not exist by default (before validation).

Provided is a sample script for the generation of this ForceReview tag(or modifying it if it is already
present) with a value "true" for every alternate(note the i+=2 in the script) document level field
encountered in a batch.xml.

Example file; Force_Review_Feature_SampleScript.java

ScriptAddNewTable.java

The Add New Table script is useful for being able to generate a predefined table on the fly in the
Validation view.

Example Scenario: If you are processing invoice documents and have defined table extraction
during the normal means, it is still possible that if the document is of poor image quality the table
you have defined for extraction may not be detected, or may be incomplete. In this case, you can
use the Add New Table script to automatically generate a table for your invoice document type
with the click of a button. You could create a new empty table of your required structure, or even a

populated one, using other extracted values from the documents fields to populate the table values
from a database table.

Example file: ScriptAddNewTable.java

ScriptAutomaticValidation.java

The Automatic Validation script is executed in the Transact batch class workflow prior to reaching
the Validation stage. This is the opportune time to implement any custom logic you may require by
running verification against the values that have been extracted for the fields defined.

Example Scenario:You may wish to retrieve the extracted value from one field, perhaps a Social
Security Number, and use it to perform a look-up operation to an external database, retrieving an
associated name. You could then in turn us the results of these SQL query to populate the values of
other document level fields defined in Transact.

Example location: <Transact install directory>\SharedFoldersBClscripts

Example file: ScriptAutomaticValidation.java

36

http://download.ephesoft.com/Ephesoft_Product/Wiki_links/partner_resources/scripts/Force_Review_Feature_SampleScript.java
http://download.ephesoft.com/Ephesoft_Product/Wiki_links/partner_resources/scripts/ScriptAddNewTable.java
http://download.ephesoft.com/Ephesoft_Product/Wiki_links/partner_resources/scripts/ScriptAutomaticValidation.java

Ephesoft Transact Developer's Guide

ScriptDocumentAssembler.java

The Document Assembler script is executed in the Transact Batch Class work flow following the
Page Processing Module, and Prior to reaching the Document Review stage. At this point the

batch .xml has undergone Transact's classification routines and the batch's contents are structured
into documents, with confidence scores assigned. However, perhaps you have a unique situation
where the default Transact classification behavior alone will not organize your batch's documents as
your require. This script is the ideal location to implement any logic to customize the classification
organization of your batch. Although Document Level Fields are not yet present in the batch .xml at
this point, page level fields are making Script

Example Scenario: You may be using cover sheets to aid in the classification accuracy for your
documents. However by the time the work flow reaches the ScriptDocumentAssembler Transact's
classification routines have already worked their magic and you may no longer have any use for
the cover sheets. You can use this script to define some logic to remove the first page of every
document, which in this case would be the cover sheets.

We provided as an example resource, a script that does exactly this:
ScriptDocumentAssembler_remove-1st-page.java

ScriptExport.java

The Export script is executed in the Transact Batch Class work flow during the processing of the
Export Module. At this point all of Transact's separation, classification, extraction, and validation
have been performed and the batch is in the process of leaving the Transact system. Consequently,
ScriptExport.java is the ideal place to implement logic facilitating custom export requirements.

Example Scenario 1: As a batch is leaving Transact, you may intend to import its .xml and image
files into a document repository system. Your targeted system may have its own internal XML
schema for describing its contents, and to make the transition a seamless one you want to
consider applying an XSLT translation to the batch.xml so that it can be automatically imported and
recognized by its destination system without manual effort.

Example Scenario 2: Perhaps you have a specific document management system such as
FileBound in mind. FileBound uses Divider and Separator values to index its contents. Transact
provides a FileBound Plugin in the Export Module. However, in addition to this you can implement
logic in the ScriptExport.java file to populate the batch documents' divider and separator fields
based on a captured extraction value, barcode, or other means. Through Transact scripting, you can
use an extracted bar code value as a look up key in a SQL query to an external database table to
retrieve the appropriate divider and separator values for a given document type.

Example location: <Transact install directory>\SharedFoldersBClscripts

Example file: ScriptExport.java

ScriptExtraction.java

The Extraction script, although similar in sequence position to the ScriptAutomaticValidation.java, is
useful for the purpose of separating extraction from validation.

37

http://download.ephesoft.com/Ephesoft_Product/Wiki_links/partner_resources/scripts/ScriptDocumentAssembler_remove-1st-page.java
http://download.ephesoft.com/Ephesoft_Product/Wiki_links/partner_resources/scripts/ScriptExport.java

Ephesoft Transact Developer's Guide

Example Scenario: Assume you have some OMR field extraction defined to extract check boxes
denoting credit card type. For example there could three boxes total, signifying a choice of Visa,
American Express, or MasterCard. If filled out correctly the form should only have a check mark

in one of the boxes. RecoStar OMR extraction will represent these three check boxes as a three
character string of binary values, with the box containing a mark being represented by a 1 value
(the others, 0). Your Extraction script function could analyze the binary values to determine which of
the three credit card vendors is being represented and set a document level field value to a string
value of visa, amex, or mastercard.

Example location: <Transact install directory>\SharedFoldersBClscripts

ScriptFieldValueChange.java

The Field Value Change script can be toggled through the Validation Module, and when enabled will
fire when the value of a field is changed in the user Validation View. This can be extremely useful if
you want to have the changes you make to one field automatically produce a change in value of one
or more other fields.

Example Scenario 1: Consider the case where you have a field that is of the drop down list
type. This field contains a list of various departments within an organization (eg: HR, IT, etc). In
addition to this field you have another drop down field that serves as a list of users. You can use
the Field Change script to implement logic such that change the department value for field #1
will automatically update the drop down list of field #2 with users that correspond to that newly
selected department.

Example Scenario #2: Perhaps you have had a document arrive in Validation View with a loan
number field that has been extracted, and some corresponding fields that contain information
related to the loan number. However, consider if the loan number is incorrect, and your user
manually needs to change it. Instead of having to also manually look up and change all of the
corresponding fields, the Field Change Value script could make it so that changing the Loan
Number field value automatically performs a look up operation to a database and populates the
additional fields with the information on file for that loan number.

Example location: <Transact install directory>\SharedFoldersBClscripts

Example file: ScriptFieldValueChange.java

FunctionKey.java

The Function Key script allows for multiple methods to be defined within the FunctionKey.java and
have these individual methods bound to keys on the users keyboard to act as keyboard shortcuts
for executing pieces of custom functionality.

Example Scenario: Consider that you may have a default set of values for a given document type
that you want the option to populate its fields with in Validation View at the push of a button. In
FunctionKey.java you would implement a method to set the fields of that document type to a set of
default values. In the Validation Module you can define the Function Key that you want to associate
with this method. You must specify both the name of the function as well as the key that you wish
you bind it to. Having done so you should now see the Function Key that you specified as an icon in
the Validation View. The custom function key method can now be invoked by clicking this button or
striking the specified key itself.

38

http://download.ephesoft.com/Ephesoft_Product/Wiki_links/partner_resources/scripts/ScriptFieldValueChange.java

Ephesoft Transact Developer's Guide

Example location: <Transact install directory>\SharedFoldersBClscripts

Example file: ScriptFunctionKey.java

ScriptPageProcessing.java

The Page Processing script is useful for conducting operations on the XML representation of a
batch's pages before they have undergone classification and encapsulation into documents.

Example Scenario: To reduce batch processing time it is possible to use ScriptPageProcessing

to remove pages that are garbarge and does not contain valid OCR data. You could implement a
function that would iterate through the collection of pages, and from each page element retrieve
the corresponding OCR file (.html) and image file name. If the OCR data for the page is nonexistent,
and the original image size is below a certain threshold you can deem the page to be junk and
remove it from the batch.xml. By removing these useless pages your batch will be able to traverse
the rest of the batch class workflow more efficiently and with an improved processing time.

Example location: <Transact install directory>\SharedFoldersBClscripts

ScriptValidation.java

The Validation script differs from the Automatic Validation script in that it is run during the user
Validation User Interface experience, where as Automatic Validation executes and performs custom
validation steps immediately before the batch is presented to the user in the Validation UL The
benefit is this is that as the user is making changes to the document field values in the Valdiation UI,
the Validation Script can be triggered to run after each change to ensure that the changes are put
through custom validation processing requirements.

Example Scenario: You may have some a document level field, AccountNum, where the value being
extracted should correspond to an existing account number in an external database. Perhaps due
to poor image quality, the OCR'd value for the account number is either incomplete or incorrect

and so the document appears in Validation with its field highlighted in red. The user is able to see
the corresponding image and keys in what they believe to the the account number appearing on
the image, but you want to ensure that they haven't made a mistake and what they are inputting

is indeed a valid account number. In this case it is possible to implement a function that takes the
value of the AccountNum field and performs a database look up to verify that the value does in fact
exist. This check can run each time after the user has modified the AccountNum document field
value and attempts to save their changes.

Example location: <Transact install directory>\SharedFoldersBClscripts

Application Level script

The Application Level script is global to the Transact environment and is fully configurable to add
additional logic. Transact will execute the Application Level script at the system or service level.
Some common customizations to the script include:

* Running stored procedures in the database.
+ Restarting batch instances upon error.

39

http://download.ephesoft.com/Ephesoft_Product/Wiki_links/partner_resources/scripts/ScriptFunctionKey.java

Ephesoft Transact Developer's Guide

+ Executing custom imports into a batch instance.
+ Sending email notifications to users.

The script is executed by a cron schedule, which sets how frequently Transact executes a task. To
configure an Application Level script, perform the following steps:

1. Write the script.
2. Determine how often Transact executes the script.

3. Add the script to the dcma-scripting-plugin.properties file, located in <Transact
Installation Folder>:\Ephesoft\Application\WEB-INF\classes\META-INF\dcma-
scripting-plugin\dcma-scripting-plugin-properties

This feature provides users with an option to execute a script repeatedly in specific time intervals to
automate application jobs and execute a script without initiating a batch.

Create the Application Level script file

The script file is a simple java class implementing an ApplicationScripts

1. To execute a script at the application level, import the script project and define what the java
class implements and executes.

The following is a sample of the script file structure:

import com.ephesoft.dcma.script.ApplicationScripts;
public class MyApplicationLevelScript implements ApplicationScripts {

public Object execute (String shareFolderPath) ({

/**************task to be done **************/

}

}
2. Save the file with a .java extension.

i default script file will be available in the application-scriptfolder inlocated in
Transact SsharedFolders for reference.

Configuration
1. Specify the following properties in the META-INF/dcma-scripting-plugin/dcma-
scripting-plugin.properties file:
* script file name
+ folder name
* cron expression
2. Save and close the file.

i] Application Level scripts are enabled by default. The script on/off switch

(script.scriptSwitch) available in the properties file does not control the execution of the
Application Level script. It only enables or disables execution of batch class level scripts.

40

Ephesoft Transact Developer's Guide

Execution

1. Navigate to Transact SharedFolders and create a folder with the same name as configured in

the property file.

2. Create a script file with the same name as specified in property file.

Save the file with .java extension.

3. Create a folder in Transact SharedFolders with the same name as specified in property file.

4. Copy the script file to the new folder.

5. You have configured and set up the Application Level script on your Transact server.
The script will begin executing at your specified time interval.

Dependency

For this feature to function in a multi-server environment with the restore mechanism, you will need
the heartbeat module to be running on all the servers.

Troubleshooting

Following error messages may appear in the log files due to issues with configuration and

execution:

Error Message

Possible Cause

Script not found

Either the script file or folder doesn't exist as specified
in the property file. Verify the script folder and folder
name present in the Ephesoft SharedFolders.

Script errored out

The script file was not correct. Verify the script file
syntax. It must implement an ApplicationScripts

Failed to compile

A java compilation error occurred in the script file.
Verify the java code in a java editor.

Batch Instance Group

Users can assign a group to every batch instance using scripts by making entry in the
batch_instance_groups table in database. The assigned group will only have access to that batch

instance.

In case there is no group assigned to the batch instance in the batch_instance_groups table, users
belonging to the groups in the corresponding batch class will have access to that batch instance.

Users belonging to the group mapped in batch_instance_groups will be given preference over the
users belong to the group specified in batch class. For example, if a particular batch instance, say
BI1, is mapped to group A in batch_instance_groups table and corresponding batch class, say BC1 is
mapped to group B, in that case group A will be given preference and only users belonging to that

group will be able to access the batch instance.

41

Ephesoft Transact Developer's Guide

O The only way to utilize this functionality is by script.

Batch.xml and XSD schema

You can modify batch.xml and the XSD schema to add functionality and customize solutions beyond
a regular Transact installation.

The batch.xml file schema and matching XSD contain metadata and multi-level information for
every batch processed in the Transact workflow. The batch.xml file contains metadata for each

batch instance at the batch level, document level and page levels.

The batch.xml file and XSD support the following field levels. This hierarchy of fields applies to the
batch.xml schema for each batch instance that has begun the workflow process:

Batch-level fields The fields on this level apply to the entire batch instance as a whole.
Document fields: The fields on this level apply to all documents in the batch instance.
Document-level Fields: The fields on this level apply to individual documents within the batch

instance.

Page Fields: The fields on this level apply to all pages within the batch instance.
Page-Level Fields: The fields on this level apply to each individual page within the batch instance.
Email Metadata in the Batch.xml Schema: Email heading metadata is available on multiple levels

of the batch.xml schema for any batch instance that uses email import.

Batch-level fields

Refer to the following table for the batch-level fields in the Transact batch.xml schema and XSD.

0 For information on email metadata, refer to the Email metadata in the batch.xml schema
section of this document.

Batch-Level Field Name

Description

Module

Plugin

BatchInstanceldentifier

This value is the
Identifier column in the
batch_instance table.
Each batch in Transact
has a unique batch
identifier.

Folder Import

IMPORT_BATCH_FOLDER_
PLUGIN

BatchClassldentifier

This value is the Identifier
column in the batch_class
table. Each batch in
Transact is run under a
batch class that is a single
unit for all configurations
and workflow definitions.

Folder Import

IMPORT_BATCH_FOLDER_
PLUGIN

42

Ephesoft Transact Developer's Guide

Batch-Level Field Name

Description

Module

Plugin

BatchClassName

This value is the
batch_class_name column
in the batch_class table.
Each batch in Transact is
run under a batch class
that is a single unit for
all configurations and
workflow definitions.

A foreign key relation

is established between
the ID column of the
batch_class table and the
batch_class_id column in
the batch_instance table.

Folder Import

IMPORT_BATCH_FOLDER_
PLUGIN

Signature

This value is added only
when batch encryption is
enabled. This is used to
ensure that the batch.xml
file can only be read and
updated by Ephesoft
Transact.

Folder Import

IMPORT_BATCH_FOLDER_
PLUGIN

BatchClassDescription

This is the value of the
batch_class_description
column in the batch_class
table. Each batch in
Transact is run under a
batch class that is a single
unit for all configurations
and workflow definitions.
A foreign key relation

is established between
the ID column of the
batch_class table and the
batch_class_id column in
the batch_instance table.

Folder Import

IMPORT_BATCH_FOLDER_
PLUGIN

43

Ephesoft Transact Developer's Guide

Batch-Level Field Name

Description

Module

Plugin

BatchClassVersion

This is the version
number of the batch
class under which the
batch was processed.
This is the value of the
batch_class_version
column in the batch_class
table. Each batch in
Ephesoft Transact is

run under a batch class
that is a single unit for
all configurations and
workflow definitions.

A foreign key relation

is established between
the ID column of the
batch_class table and the
batch_class_id column in
the batch_instance table.

Folder Import

IMPORT_BATCH_FOLDER_
PLUGIN

BatchName

This is the value of the
batch_name column in
the batch_instance table.

Folder Import

IMPORT_BATCH_FOLDER_
PLUGIN

BatchDescription

This is the batch instance
description that is
provided at the time of
batch creation.

Folder Import

IMPORT_BATCH_FOLDER_
PLUGIN

BatchPriority

This is the value of the
batch_priority column in
the batch_instance table.
Priority can be a value
between 1 to 100 with
the lower number having
higher priority. If not
assigned using custom
code the batch priority
will be the priority from
the batch class which

is assigned when the
batch class is created or
imported.

Folder Import

IMPORT_BATCH_FOLDER_
PLUGIN

44

Ephesoft Transact Developer's Guide

Batch-Level Field Name

Description

Module

Plugin

BatchStatus This value specifies the All modules can modify All plugins can modify this
current batch status. this field field
Possible values for this
field are:
* New
* Ready
* Running
+ ReadyForReview
* ReadyForValidation
* Error
* Finished
BatchReviewedBy This field cites users Page Process SEARCH_CLASSIFICATION

who performed batch
review and enables
administrators to audit
users who are active in
the batch instance. This
node applies at the batch
level and the individual
page level.

+ Batch level - This node
indicates a single user
who completed the
batch.

MULTIDIMENSIONAL _
CLASSIFICATION_PLUGIN

BatchValidatedBy

This field cites users who
performed validation and
enables administrators
to audit all users who

are active in the batch
instance, and this node
applies at the batch

level and the individual
page level, with these
parameters.

+ Batch level - This node
indicates a single user
who completed the
batch.

Page Process

SEARCH_CLASSIFICATION
MULTIDIMENSIONAL _
CLASSIFICATION_PLUGIN

BatchCreationDate

This is the value of the
creation_date column

in the batch_class table.
This is the date and time
of when the batch was
created in Transact.

Folder Import

IMPORT_BATCH_FOLDER_
PLUGIN

45

Ephesoft Transact Developer's Guide

Batch-Level Field Name

Description

Module

Plugin

BatchLocalPath

This is the Transact
system folder path where
the batch instance folder
will be available. This
value will be the same
across all batches in the
system.

Folder Import

IMPORT_BATCH_FOLDER_
PLUGIN

BatchSource

This value states which
ingestion mechanism was
used to import the batch
into system. Possible
values are:

+ Upload Batch
+ Web Scanner
+ Email Import
+ UNC Folder

+ Web Service
* CMIS Import
+ Snapdoc

Folder Import Module

IMPORT_BATCH_FOLDER

UNCFolderPath

This is the path where the
source file for the batch is
available. This is a unique
path for each batch in the
system.

Folder Import

IMPORT_BATCH_FOLDER_
PLUGIN

ETextMode

The batch.xml will

have an additional tag,
ETextMode, at the root
level to define the EText
mode. Values may be
Automatic, Always, and
Never. The value will be
populated based on the
plugin setting for the
following:

* For Windows, use
the EText Recostar
Project property value
in RECOSTAR_HOCR
plugin of the Page
Process module.

* For Linux, use the
Process PDFs as EText
Files property value
in OMNIPAGE_HOCR
plugin of Page Process
module.

Page Process

RECOSTAR_HOCR
OMNIPAGE_HOCR

46

Ephesoft Transact Developer's Guide

Batch-Level Field Name | Description Module Plugin
DocumentClassification This value specifies what | Assembly DOCUMENT_ASSEMBLER
Types classification type was

used for the document

assembly.

Document fields

The document fields in the batch.xml schema apply to all documents in the batch instance.
Document fields exist at a higher level than document-level fields.

0 For information on email document fields in the batch.xml schema, see Email metadata in the
batch.xml schema.

The following example illustrates the docField for a batch instance:

<xs:complexType name="docField”>
<xs:complexContent>
<xs:extension base="field”>
<xs:sequence>
<xs:element name="AlternateValues” minOccurs="0" maxOccurs="1">
<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" maxOccurs="unbounded”
name="AlternatevValue” type="field” />

</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="PreviousValue” type="docField” minOccurs="”0" maxOccurs="1" /

<xs:element name="Category” type="xs:string” minOccurs="0" maxOccurs="1" />
<xs:element name="hidden” type="xs:boolean” minOccurs="0" maxOccurs="1" />
<xs:element name="widgetType” type="xs:string” minOccurs="0" maxOccurs="1" />

<xs:element name="scriptEnabled” type="xs:boolean” minOccurs="0"
maxOccurs="1" />

<xs:element name="Message” type="xs:string” minOccurs="0" maxOccurs="1" />
</xs:sequence>
</xs:extension>

</xs:complexContent>

47

</xs:complexType>

Ephesoft Transact Developer's Guide

The following table lists and defines the fields contained in the docFieldsection of the batch.xml

schema.

Document Field Name Description Module Plugin

AlternateValues This field contains Page Process SEARCH_CLASSIFICATION
alternate values for a MULTIDIMENSIONAL_

page-level field. This
field stores alternative
classification information
with confidence levels.
The type with the highest
confidence value will

be set in the page-level
field value. All other
possible types for a

page will be present

in alternative values.
This tag will contain the
LearnedFileName tag for
all the alternate values.

During classification, the
default value for this field
isto 5.

CLASSIFICATION_PLUGIN

Document-level fields

The following table lists document-level fields in the Transact batch.xml schema and XSD.

0 For email document-level fields in the batch.xml schema, refer to Email metadata in the

batch.xml schema.

48

Ephesoft Transact Developer's Guide

Document-Level Field Description Module(s) Plugin(s)

Name

Identifier This value identifies a Folder Import IMPORT_BATCH_FOLDER_PLUGIN
document. The sequence | pocument Assembly DOCUMENT_ASSEMBLER_PLUGIN

for document numbering
is DOCO, DOC1...bOCn

Each file becomes a
separate batch, and there
is only one document

in the XML after Folder
Import. All pages will
belong to this one
document.

The page to document
grouping will

change after the
DOCUMENT_ASSEMBLER_PLUGIN
within the Page Process
module is executed. The
pages may be grouped
into multiple documents.

49

Ephesoft Transact Developer's Guide

Document-Level Field Description Module(s) Plugin(s)

Name

Type This is the document Folder Import IMPORT_BATCH_FOLDER_PLUGIN
type assigned to the Document Assembly DOCUMENT_ASSEMBLER_PLUGIN
document.

Each file becomes a
separate batch, so

there will only be one
document in the XML
after Folder Import. All
pages will belong to this
one document and named
Unknown. The page to
document grouping

will change after the
DOCUMENT_ASSEMBLER_PLUGIN
within the Page Process
module is executed. The
pages may be grouped
into multiple documents.
The document that
Transact used to
determine classification
for all pages is assigned
this tag. The document
types that belong to the
batch class assigned to
the batch is available

in the database table
document_type (field -
document_type_name).
This table has a foreign
key reference to the ID
column of the batch_class
table that associates
documents to batch class.

50

Ephesoft Transact Developer's Guide

Document-Level Field
Name

Description

Module(s)

Plugin(s)

ExtractionType

The possible values for
the element are:

+ System: When
the index field is
automatically extracted
and the operator does
not modify this value,
<ExtractionType> is set
to system. The original
XY coordinates for the
extracted values are
retained.

+ Clicked: When
the index field is
automatically extracted
and the operator
changes this value
by clicking on the full
image displayed and
extracting the OCR text,
<ExtractionType> is
set to clicked. The new
XY coordinates from
the image replace the
original XY coordinates.
These coordinates are
retained in batch.xml.

+ Edited: When the index
field is automatically
extracted and the
operator manually
edits this value, the
<ExtractionType> is set
to edited. The original
XY coordinates for the
extracted values are
retained.

Description

This tag contains
the corresponding
document_type_descriptior
of the assigned
document_type_name
above. It is picked up
from the database table
document_type.

Folder Import
Document Assembly

IMPORT_BATCH_FOLDER_PLUGIN
DOCUMENT_ASSEMBLER_PLUGIN

Size

This element contains the
document's multipage

PDF file size in bytes. This
field is only populated by

the IBM_CM_PLUGIN.

Export Module

IBM_CM_PLUGIN

51

Ephesoft Transact Developer's Guide

Document-Level Field Description Module(s) Plugin(s)

Name

Confidence This value is the Folder Import IMPORT_BATCH_FOLDER_PLUGIN
confidence with which DOCUMENT_ASSEMBLER_PLUGIN

the document was
assembled. If the
confidence is greater than
the minimum confidence
threshold assigned to

the document, then the
document is not marked
for operator review.

OcrConfidenceThreshold | This field helps Transact Document Assembly DOCUMENT_ASSEMBLER_PLUGIN
to decide if the document
should skip document
review automatically
when the classification
score is higher than

the threshold. The
document confidence
threshold is available in
the table document_type
(located in the field-
min_confidence_threshold
column). The best practice
is to set the threshold so
that false positives are
minimized.

OcrConfidence This is the confidence
value returned from the
OCR engine used with

Transact.
CoordinatesList This tag includes the
<ExtractionType> element.
ExtractionRuleID The Rule IDallows batch Extraction Module KEY_VALUE_EXTRACTION

class designers to identify
which rule has been
applied for the extraction
of each index field. The
Rule ID can be found as
an attribute listed for a
key-value extraction rule.

52

Ephesoft Transact Developer's Guide

the document would
stop for Document

Field Validation review.
This applies only when
data extraction is part

of the batch class. The
value of False indicates
that the document has
fields that need to stop
for Document Field
Validation review. The
value of True indicates
that all fields in the
document were extracted
with high confidence

and need not stop for
Document Field Validation
review. The value is set
to True after execution of
REVIEW_DOCUMENT_PLUG
if the extraction module
is not configured in the
batch class.

Document-Level Field Description Module(s) Plugin(s)
Name
Valid This tag determines if

Document Assembly
Review Document

IN

DOCUMENT_ASSEMBLER_P
REVIEW_DOCUMENT_PLUG

LUGIN
IN

53

Ephesoft Transact Developer's Guide

Document-Level Field
Name

Description

Module(s)

Plugin(s)

Reviewed

This tag indicates that

the document has

passed through the
REVIEW_DOCUMENT_PLUG
The value of False
indicates that the
document was
assembled/classified with
low confidence and needs
to stop for document
classification Review. The
value of True indicates
that the document was
assembled/classified

with high confidence and
does not need to stop for
document classification
Review. The value is set

to True after execution of
REVIEW_DOCUMENT_PLUG

0 Setting the value
to False will not force
the batch to stop in
Review. To stop the
batch, you will need
to set the confidence
score that is lower
than the threshold.

Document Assembly
Review Document

IN.

IN.

DOCUMENT_ASSEMBLER_PLUGIN

REVIEW_DOCUMENT_PLUGIN

ReviewedBy

This field lists users who
performed reviews in the
batch. This field enables
administrators to audit
users who are active in
the batch instance. This
node applies at the batch
level and the individual
page level:

+ Page level: This
node accommodates
multiple users
if multiple users
processed pages in the
batch.

See Case Study:
ReviewedBy Node in
Batch.xml.

Page Process

SEARCH_CLASSIFICATION

MULTIDIMENSIONAL_
CLASSIFICATION_PLUGIN

54

https://ephesoft.com/docs/products/transact/developers/scripting-guide/batch-xml-schema/#case-study-2-batchreviewedby-and-batchvalidatedby-nodes
https://ephesoft.com/docs/products/transact/developers/scripting-guide/batch-xml-schema/#case-study-2-batchreviewedby-and-batchvalidatedby-nodes
https://ephesoft.com/docs/products/transact/developers/scripting-guide/batch-xml-schema/#case-study-2-batchreviewedby-and-batchvalidatedby-nodes

Ephesoft Transact Developer's Guide

Document-Level Field
Name

Description

Module(s)

Plugin(s)

ValidatedBy

This field lists users who
performed validation
for the batch. This node
enables administrators
to audit all users who
are active in the batch
instance, and this node
applies at the batch
level and the individual
page level, with these
parameters:

+ Batch level: This node
indicates a single user
who completed the
batch.

+ Page level: This
node accommodates
multiple users
when multiple users
processed pages in the
batch.

Page Process

SEARCH_CLASSIFICATION

MULTIDIMENSIONAL_
CLASSIFICATION_PLUGIN

ErrorMessage

A string that contains

an error message to

be displayed on the
Review and Validate
screen corresponding to
a document. The value of
this tag can be set using a
scripting plugin. Transact
does not set a value for
this field.

Review/Validation

Review/Validation

Document DisplayInfo

This field can be used

to provide customized
names to documents on
the Review and Validate
screen. The value of this
tag can be set using a
scripting plugin. Transact
does not set a value for
this field.

Review/Validation

Review/Validation

Document LevelFields

This field contains the
parent node for all
index fields inside the
documents.

Extraction Module

All plugins inside
extraction module can
modify this field.

Pages

This field contains the
parent node for all pages
inside the document.

Document Assembly

DOCUMENT_ASSEMBLER

55

Ephesoft Transact Developer's Guide

Document-Level Field
Name

Description

Module(s)

Plugin(s)

DataTables

This is the root node
for all the extracted
table information in the
document.

Extraction Module

TABLE_EXTRACTION

AutoSuggestedDataTables

All the auto extraction
from documents is
present under this node.

Extraction Module

AUTO_TABLE_EXTRACTION |

MultiPage TiffFile

This value contains the
name of the multipage
TIFF file created. The
COPY_BATCH_XML plugin
changes this name to
the exact location while
exporting the file to a
user-defined location.
Please note the batch.xml
in the ephesoft-
system-folder in the
shared folders that still
contain the file name.

Export Module

CREATEMULTIPAGE_FILES
COPY_BATCH_XML

MultiPage PdfFile

This value contains the
name of the multipage
PDF file created. The
COPY_BATCH_XML plugin
changes this name to
the exact location while
exporting the file to a
user-defined location.
Please note the file

name of the batch.xml
contained in the shared
folders of the ephesoft-
system-folder.

Export Module

CREATEMULTIPAGE_FILES
COPY_BATCH_XML

FinalMultiPage
PdfFilePath

This element is present
in the batch.xml in the
ephesoft-system-
folder and contains
the absolute path of
the exported multipage
PDF document (by the

COPY_BATCH_XML plugin).

This value is different

from MultiPagePdfFile
which contains the file
name only.

Export Module

COPY_BATCH_XML

|IPLUGIN

56

Ephesoft Transact Developer's Guide

Document-Level Field
Name

Description

Module(s)

Plugin(s)

FinalMultiPage
TiffFilePath

This element is present
in the batch.xml in the
ephesoft-system-
folder and contains
the absolute path of
the exported multipage
TIFF document by the
COPY_BATCH_XML
plugin. It is different from
MultiPagePdfFile which
contains the file name
only.

Export Module

COPY_BATCH_XML

Page fields

Page fields in the batch.xml schema and XSD apply to all pages in the document. See the following

table for the page fields in the Transact batch.xml schema and XSD.

0 For email document-level fields in the batch.xml schema, refer to Email metadata in the

batch.xml schema.

Page Field Name

Description

Module

Plugin

Identifier

This is the document
identifier for a document.
The sequence for
document numbering is
PGO, PG1...PGn.

0 The
IMPORT_BATCH_FOLDER
breaks up each

page of the source

PDF into individual

TIFF files. Each TIFF

file is a page in the

XML file. The pages

can be grouped as
documents.

Folder Import

| PLUGIN

IMPORT_BATCH_FOLDER_P

LUGIN

OldFileName

This tag contains the
name of the mapped
individual TIFF file within
the input folder for the
batch. The input folder
path is available in the
tag UNCFolderPath under
batch-level fields.

Folder Import

IMPORT_BATCH_FOLDER_P

LUGIN

57

Ephesoft Transact Developer's Guide

Page Field Name

Description

Module

Plugin

NewFileName

This tag contains the
name of the mapped
individual TIFF file
within the Transact
system folder. The
Transact system folder
path is available in the
tag BatchLocalPath.
The path to the batch
instance folder is
<BatchLocalPath>
\<BatchInstanceIdenti
The name of the
associated file to this
page is a combination
of the batch instance
identifier and the page
sequence.

Folder Import

fier>.

IMPORT_BATCH_FOLDER_PLUGIN

SourceEmaillD

This element links the
page to the source email
from which the page
originated. It contains
only the identification (ID)
of the source email. This
ID can be searched for in
a separate section of the
batch.xml which contains
more details.

Folder Import Module

IMPORT_BATCH_FOLDER

SourceFileID

This element links the
page to the source file
which was originally
placed in the watch
folder. It only contains

id of the source file. This
id can be looked up in a
separate section in the
batch.xml which contains
more details.

Folder Import Module

IMPORT_BATCH_FOLDER

PageLevelFields

This value contains the
classification information
from different configured
plugins. The values in this
section are used while
assembling pages into
documents.

Document Assembly

DOCUMENT_ASSEMBLER

58

Ephesoft Transact Developer's Guide

Page Field Name Description Module Plugin
HocrFileName The RECOSTAR_HOCR_ Page Process RECOSTAR_HOCR_GENERATION_
GENERATION_PLUGIN PLUGIN

(for Windows) or the
OMNIPAGE_HOCR
(for Linux) extract

the contents of each
page (individual TIFF).
The contents are
stored in an XML file
which is located in the
batch instance folder
(<BatchLocalPath>
\<BatchInstanceIdentilffier>).
This tag stores the name
of the HOCR XML file for
the corresponding page.

ThumbnailFileName This tag stores Page Process IMAGE_PROCESS_CREATE_
the name of the THUMBNAILS_PLUGIN
corresponding thumbnail
for the page. The
IMAGE_PROCESS_CREATE_
THUMBNAILS_PLUGIN is
used to create thumbnail
images of the batch
images. These thumbnails
are displayed in the
Review and Validate
screen, where pages in
the documents are shown
as thumbnails under the
document name. The
thumbnails are stored in
the batch instance folder

(<BatchLocalPath>
\<BatchInstanceIdentilffier>).
ComparisonThumbnailFileN&higvalue contains the Page Process CREATE_THUMBNAILS

name of the thumbnail
file which can be used

by the CLASSIFY_IMAGES
plugin. This element will
be present only when

the Create Compare
Thumbnail Switchis on in
the CREATE_THUMBNAILS

plugin.

59

Ephesoft Transact Developer's Guide

Page Field Name Description Module Plugin
DisplayFileName T Page Process IMAGE_PROCESS_CREATE_DISPLAY_
he IMAGE_PLUGIN

IMAGE_PROCESS_CREATE_DISPLAY_
IMAGE_PLUGIN performs
the functionality of
creating the display PNG
files for the images being
processed. This plugin
takes all the images and
creates PNG files for the
corresponding pages
and is displayed on the
Review and Validate
screens. The display
images are stored in the
batch instance folder
(<BatchLocalPath>
\<BatchInstanceIdentiffier>).
This tag stores the name
of the corresponding
display image for the

page.
OCRInputFileName This tag stores the Page Process RECOSTAR_HOCR_GENERATION_
name of the file that PLUGIN

was used by the
RECOSTAR_HOCR_GENERATION_
PLUGIN to extract
the contents of the
page. The image will
be the corresponding
individual TIFF for the
page available in the
batch instance folder

(<BatchLocalPath>
\<BatchInstanceIdentiffier>).
Direction This field indicates the Folder Import IMPORT_BATCH_FOLDER_PLUGIN
direction of a rotated
document.
IsRotated This field indicates Folder Import IMPORT_BATCH_FOLDER_PLUGIN

whether a document is
rotated on the Review
and Validate screen.

60

Ephesoft Transact Developer's Guide

Page Field Name

Description

Module

Plugin

TreatAsEText

For a PDF, the batch.xml
is updated for each page
that is EText compatible
or not EText compatible.
The element at the page
level is <TreatAsEText>
with values of true or
false. The <TreatAsEText>
element will not display
for the pages having an
input file other than PDF
in UNC.

Page Process

RECOSTAR_HOCR
OMNIPAGE_HOCR

ImprintedString

Read the imprinted
string from serialized

file for each image.

If the imprinter was
enabled during scanning,
then add this string

as a page-level field in
batch.xml. This will be
used during rescan.
Insert the functionality on
the Review and Validate
screen.

Folder Import

IMPORT_BATCH_FOLDER

IsBlank

IsBlank under the Page
tag is used if there is no
HOCR content associated
with the page (i.e., if there
is a blank HOCR XML
associated with the page
or image).

Page Process

RECOSTAR_HOCR
OMNIPAGE_HOCR

Page-level fields

Page-level fields apply to each document page in the batch.xml file. See the following table for the
page-level fields in the Transact batch.xml schema and XSD.

0 For email document-level fields in the batch.xml schema, refer to Email metadata in the

batch.xml schema.

method used to classify
this page.

Page-Level Field Name | Description Module Plugins
Name This tag contains the Page Process SEARCH_CLASSIFICATION
name of the classification MULTIDIMENSIONAL

CLASSIFICATION_PLUGIN

61

Ephesoft Transact Developer's Guide

Page-Level Field Name | Description Module Plugins

Value Each document type Page Process SEARCH_CLASSIFICATION
within the batch class is MULTIDIMENSIONAL
subdivided into pages CLASSIFICATION_PLUGIN

(first, middle, and last).
This tag holds the
document page for which
this page was classified.

Type This tag is used in bar Page Process SEARCH_CLASSIFICATION
code classification onIy MULTIDIMENSIONAL
where it keeps the CLASSIFICATION_PLUGIN
information about the bar
code type.

Confidence This tag holds the Page Process SEARCH_CLASSIFICATION
confidence score MULTIDIMENSIONAL
with which the page CLASSIFICATION_PLUGIN

was classified. The
DOCUMENT_ASSEMBLER
plugin uses this
confidence score during
document assembly once
the workflow enters the
Document Assembly

module.

LearnedFileName This tag holds the name | Page Process SEARCH_CLASSIFICATION
of the lucene-search- MULTIDIMENSIONAL
classification-sample CLASSIFICATION_PLUGIN
matched against this
page/image.

Email metadata in the batch.xml schema

Transact supports email-specific metadata passing through to the batch.xml schema. For additional
information about accessing and ingesting email header information for batch instances and how
that metadata is passed through to the batch.xml, see "Accessing email headers in the batch.xml
schema" in the Ephesoft Transact Help.

Case studies for batch.xml

The following case studies describe configuration steps that may be helpful to you when
customizing your Transact environment:

+ Accessing the batch.xml file case study.

+ Batch-level case study that uses the BatchReviewedBy and BatchValidatedBy fields in which there
are three active users.

« Document-level case study that shows the ReviewedBy and ValidatedBy Nodes in a sample
batch.xml.

62

Ephesoft Transact Developer's Guide

Case study 1: Accessing batch.xml

Follow these steps to access batch.xml for your deployment of Transact.
1. Open Transact, log in as Administrator and open the Batch Class Management screen.

2. Open a batch class that contains a fully configured Export module, and in which at least one
batch instance has been processed.

3. Inthe Export module, select the COPY_BATCH_XML plugin. The Plugin Configuration screen for
this plugin appears on the right.

This screen displays the path to the batch.xml file in the field titled Batch XML Export Folder
Location field.

4. Access the batch.xml file, navigate to this path on the Transact server. In the subfolder named
final-drop-folder, there will appear another subfolder that is named for the batch
instance.

The batch.xml file contained in this subfolder is also named according to the batch instance in
which it was created.

5. Open the batch.xml file with Notepad++ or a similar text editor by right-clicking the file,
selecting Open With, and choosing an application.

Client-side scripting

There are three JavaScript methods to handle different events on the Web Scanner and Upload
Batch screens.

+ Selecting a Batch Class when Ul renders.

Selecting a batch class when the user interface renders

Description: A method is called when the UI renders. A String Identifier is expected as a return
out of it. If the method returns null, then default view would be shown, else the Batch Class with
Identifier will be selected by default.

Purpose: This method provides additional functionality to auto select batch class on Upload batch
and web scanner screen, when screen is opened.
Prepopulating Field Values

Description:Method is called before displaying the pop up for the Batch Class Fields. Returned
Values is e prepopulated values for the fields.

Purpose: This method provides functionality to pre populating batch class fields depending on
batch class identifier.

63

Ephesoft Transact Developer's Guide

Calling JavaScript methods when field value changes

Description:Handled the event of Batch Class Fields Value change and provided an interface to call
a function to expect a JSON as a return, which sets the returned values to all the other fields.

Purpose: To set other batch class fields based on value of a batch class field.

Following are the new methods have been added to the utility.js file present at Ephesoft/
Application path for the required functionality.

/*
T * Method to pre populate batch class in web scanner and upload batch.
=/
function getBatchClass({) {
return null;

}

B/*
* Method to pre populate batch class fields on basis of batch class identifier
* and description in web scanner and upload batch.
L =/
Hfunction getBatchClassFields (batchClassIdentifier, batchClassDescription) {
var bef = '[{"key":"fieldl", "value™:"valuel™}, {"key":"field2", "value":"value2"}, {"key":"field3", "value":"value3"}1";

return bof;
=)
B/*

* Method to pre populate batch class fields on basis of batch class identifier,
* batch class field, value typed and description in web scanner and upload

* batch.
L =y
function getBatchClassFieldsWhileFieldValueChange (batchClassIdentifier,
=] batchClassDescription, key, value) {
var becf = '[{"key":"fieldl", "value":"valuel"}, {"key":"field2", "value":"value2"}, {"key":"field3", "value":"value3"}]";

return bcf;

The following lists the JavaScript methods.

getBatchClass

Function: Returns the batch class identifier that needs to be set on the Upload Batch and Web
Scanner screens.

Parameters: None
Example: Sets BC8 on Upload Batch and Web Scanner:

function getBatchClass () {
return "BC8";

}
getBatchClassFields

Function: Pre-populate batch class fields when the Fields button is clicked on the Upload Batch and
Web Scanner screens. You can configure different BCF keys and values on the basis of batch class
identifiers and descriptions.

Parameters: batchClassldentifier, batchClassDescription
Example:

function getBatchClassFields (batchClassIdentifier,batchClassDescription) {

var bcf='[{"key":"fieldl","value":"valuel"}, {"key":"field2", "value":"value2"},
{"key":"field3","value:"value3"}];

return bcf;

}

64

Ephesoft Transact Developer's Guide

getBatchClassFieldsWhileFieldvalueChange

Function: Populate batch class fields when the field changes. You can configure different values to
be set in BCF on the baiss of batch class identifer, batch class description, key, and value.

Parameters: batchClassldentifier, batchClassDescription, key, value

function
getBatchClassFieldsWhileFieldValueChange (batchClassIdentifier,batchClassDescription, key,value)
{

var bcf='[{"key":"fieldl","value":"valuel"}, {"key":"field2", "value":"value2"},
{"key":"field3", "value:"value3"}];

return bcf;

}

Error causes for default scripts

The default scripts contain descriptions of errors that occur. If an exception is thrown at any level
of the batch processing workflow, the error appears on the Batch Instance Management screen
under Batch Execution Details in the Error Cause field.

Error comments are included in all default scripts except ScriptPageProcessing and ScriptValidation.
Below is the list of error messages found in the Transact default scripts:

Default Script Error Message Scripts
Document doesn't exist. ScriptAddNewTable
Input document is null. ScriptAddNewTable

ScriptAutomaticValidation

ScriptDocumentAssembler

ScriptExport ScriptExtraction

ScriptFieldValueChange

ScriptFunctionKey

ScriptNewTableRowInsert ScriptTableCellValueChange

Unable to find the local folder path in batch xml file. | ScriptAddNewTable
ScriptAutomaticValidation
ScriptDocumentAssembler
ScriptExport
ScriptExtraction
ScriptFieldValueChange
ScriptFunctionKey
ScriptNewTableRowInsert
ScriptTableCellValueChange

65

Ephesoft Transact Developer's Guide

Default Script Error Message Scripts

Unable to find the batch instance ID in batch xml file. | ScriptAddNewTable
ScriptAutomaticValidation
ScriptDocumentAssembler
ScriptExport
ScriptExtraction
ScriptFieldValueChange
ScriptFunctionKey
ScriptNewTableRowInsert
ScriptTableCellValueChange

Unable to read the zip switch value. Taking default ScriptAddNewTable

value as true. Exception thrown is: ScriptAutomaticValidation

ScriptDocumentAssembler

ScriptExport

ScriptExtraction

ScriptFieldValueChange

ScriptFunctionKey

ScriptNewTableRowInsert ScriptTableCellValueChange

Fhkdkkkkdkkk* Error occurred in scripts. ScriptAddNewTable
ScriptAutomaticValidation
ScriptDocumentAssembler
ScriptExport
ScriptExtraction
ScriptFieldValueChange
ScriptFunctionKey
ScriptNewTableRowInsert
ScriptPageProcessing
ScriptTableCellValueChange
ScriptValidation

We recommend leaving error messages in default scripts unchanged. If required, you can
customize the entire script and provide any error message as needed. Default scripts are in the
batch class folder created at the time of batch class configuration (SharedFolders\<Batch
Class>\scripts).

Enable logging for custom scripts

Transact has a built-in logging functionality. When setting System.out.printin in the scripts, Transact
always print statements to the logs, which can cause the logs to grow large very quickly. By using
the built in log4j logger, the scripts will only print to the logs based on the logging level specified in
the log4j.xml file. Replace the messages to match your specific logging alerts.

Use the sample below to create logs for the script to print to the stdout and dcma-all log files.

66

Ephesoft Transact Developer's Guide

public Object execute (Document document, String methodName, String docIdentifier) ({
Exception exception = null;
try {
LOGGER.info ("**x*******44x*x Tngide ExportScript scripts.");
LOGGER.info ("*****x&xxxxx*x*x Start execution of the ExportScript scripts.");

if (null == document) {
LOGGER.error ("Input document is null.");
return null;

}

LOGGER.info ("*****x&*xxxxx*x EFEnd execution of the ScriptExport scripts.");

} catch (Exception e) {

LOGGER.error ("*****xxxxx*x** Error occurred in scripts." + e.getMessage())
exception = e;

}

return null;

}

JDOM script configuration

Update the dcma-scripting-plugin.properties in <Transact INSTALL DIR>
\EphesoftApplication\WEB-INF\classes\META-INF\dcma-scripting-plugin. Locate this
setting:

script.parser type= jdom

If anything other than jdom is specified for script.parser_type, the IScript parser will be used and
Scripts using IScript will be executed.

Sample scripts to compare IScript and JDOM

This simple example for converting IScript scripts into JDOM scripts. Changes to be made to convert

the present script to JDOM.
1. Change import statements from IScript to JDOM:

Change IScript statements To JDOM statements

import org.w3c.IScript.Document; import org.jdom.Document;

import org.w3c.IScript.Node; import org.jdom.Element;

import org.w3c.IScript.NodelList; import org.jdom.output.XMLOutputter;
import import
com.ephesoft.dcma.script.IScripts; com.ephesoft.dcma.script.IJbomScript;
import import
com.ephesoft.dcma.script.IScripts; com.ephesoft.dcma.script.IJDomScript;

2. Change the implements statement. JDomScript is the interface for running the JDOM Scripts.
Each scripts should implements IJDomScript for running the customize script using JDOM.

67

Ephesoft Transact Developer's Guide

Change IScript statement

To JDOM statement

public class ScriptAutomaticValidation
implements IScripts {

public class ScriptAutomaticValidation
implements IJDomScript {

3. Make API changes from IScript to JDOM.

Getting the list document object in JDOM is diffe
each node for getting the child element list beca
directly without accessing the parent tag of that

+ Getting page nodes:

IScript

// Getting directly PAGES tag without ac
documentList document.getElementsByTa

JDOM

// Getting PAGES tag with accessing its
// Getting first child of root nodeEleme

rent from IScript. In JDOM, we need to iterate
use JDOM does not access the child tag
child tag.

cessing its parent in batch.xmlNodelList
gName (PAGES) ;

parent in batch.xml
nt documents

document.getRootElement () .getChild (DOCUMENTS) ;

// Getting first child of DOCUMENTS node

List documentList documents.getChildre
0; documentIndex < documentList.size():;
= (Element)
document.getChild (PAGES) ;

}

Getting text content from element:

IScript

String elementValue

JDOM

String elementValue

element.getText () ;

Setting text context in element:

IScript
element.setTextContent ("String Data");

JDOM

element.setText ("String Data");

To get a child node for any particular node:

IScript

Element variableName (Element)
parentElement.getChild ("Name of child");

JDOM

Element variableName (Element)
parentElement.getChild ("Name of child");

documentList.get (documentIndex) ;

n (DOCUMENT) ; for
documentIndex++)
Element pages

(int documentIndex
{ Element document
(Element)

element.getTextContent () ;

To get the textual content of the named child element:

68

Ephesoft Transact Developer's Guide

IScript

String name = parentElement.getElementsByTagName (" Name
") .item(0) .getTextContent () ;

JDOM

Element.setText ("Text to be put as name");

+ To create a new child node in the parent:

IScript

Element childElement =
document.createElement ("Child") ;parentElement.appendChild (childElement) ;Here
document is the argument passed to the method.

Example:

"execute (Document document, String fieldName, String docIdentifier)"

JDOM

Element newElement = new Element (“Name of element”);
parentElement.addContent (newElement) ;

Implement .zip functionality to older scripts

If your older scripts do not have the ability to create .zip files, make the following changes to each
script.

1. Add the following import statements to the script java class file:

import java.util.zip.ZipEntry;

import java.util.zip.ZipOutputStream;
import java.io.File;

import java.io.FileWriter;

import java.io.OutputStream;

import java.io.FileOutputStream;
import java.io.IOException;

import java.io.FileNotFoundException;
import java.util.List;

2. Add the following property after the import statements:

private static String ZIP_FILE EXT = ".zip";
3. Replace the entire writeToxML method in each of the scripts with the following:

private void writeToXML (Document document) {
String batchLocalPath = null;
Element batchLocalPathElement =
document .getRootElement () .getChild (BATCH LOCAL PATH) ;

if (null != batchLocalPathElement) {
batchLocalPath = batchLocalPathElement.getText () ;}
if (null == batchLocalPath) {

System.err.println ("Unable to find the local folder path in batch xml
file.");
return;
}
String batchInstanceID = null;
Element batchInstanceIDElement =
document.getRootElement () .getChild (BATCH INSTANCE 1ID) ;
if (null != batchInstanceIDElement) {
batchInstanceID = batchInstanceIDElement.getText () ;

69

Ephesoft Transact Developer's Guide

}
if (null == batchInstanceID) {
System.err.println (“Unable to find the batch instance ID in batch xml
file.”);
return;

}
String batchXMLPath = batchLocalPath.trim() + File.separator +

batchInstanceID + File.separator + batchInstanceID+ EXT BATCH XML FILE;
String batchXMLZipPath = batchXMLPath + ZIP FILE EXT;
System.out.println ("batchXMLZipPath******xkksxxxnm + bhatchXMLZipPath) ;
OutputStream outputStream = null;
File zipFile = new File (batchXMLZipPath) ;
FileWriter writer = null;
XMLOutputter out = new XMLOutputter();
try {
if (zipFile.exists()) {
System.out.println ("Found the batch xml zip file.");
outputStream = getOutputStreamFromZip (batchXMLPath, batchInstanceID
+ EXT BATCH XML FILE);
out.output (document, outputStream) ;
}

else {
writer = new java.io.FileWriter (batchXMLPath) ;

out.output (document, writer);
writer.flush () ;
writer.close();
}
}

catch (Exception e) {
System.err.println (e.getMessage()) ;
}
finally {
if (outputStream != null) {
try {
outputStream.close() ;

}
catch (IOException e) {

}

}

4. Add the following method to the script java class file, as it is required by the new writeToXml()
function:
public static OutputStream getOutputStreamFromZip (final String zipName, final

String fileName) throws FileNotFoundException, IOException {

ZipOutputStream stream = null;
stream = new ZipOutputStream(new FileOutputStream(new File (zipName +

ZIP_FILE EXT)));
ZipEntry zipEntry = new ZipEntry (fileName) ;
stream.putNextEntry (zipEntry) ;
return stream;

Testing scripts

We recommend testing custom scripts outside of Transact. This speeds up development because
you do not need to wait for batches to process, and it does not affect a Transact installation in
production. You can test scripts in your choice of IDE, such as NetBeans and Eclipse.

70

Ephesoft Transact Developer's Guide

Follow these steps to test the script.

1.
2.

In your IDE, open the Transact custom script.
Write a main method in the script just before the execute method in the script.

This main method enables the script to be run outside of Transact. The filePath parameter
must be set to the path of the batch.xml file, as shown in this example.

public static void main (String args([]) {
//Define a path to the Batch XML. In this case the BI19 Batch.xml
was extracted and placed into a folder that was created call scriptdev
String filePath = "C:\Ephesoft\SharedFolders\ephesoft-system-
folder\BI19\Scriptdev\BI19 batch.xml";
DocumentBuilderFactory dbfac =
DocumentBuilderFactory.newInstance () ;
try {
SAXBuilder sb = new SAXBuilder () ;
Document doc = sb.build(filePath);
//Note that the name of the script is being used for
the execute
ScriptExtraction se = new ScriptExtraction();
se.execute (doc, null, null);
} catch (Exception x) {
}
}

If the script requires Transact-specific classes, add the .jar files in the class path located in
<Transact_ Home>/WEB-INF/lib/.

Run the script in your IDE.
When you are finished, comment out or delete the main method you added in step 2.

Trigger field value change script for table data fields

This feature helps users run custom scripts while changing the table data on the validation screen.
The system triggers a validation script if you change any table field. The system control defaults to
the first invalid entry on the table view if the script is on. This feature works the same way as the
field value change script works for document-level fields. Follow these steps

1.

Go to the Batch Class Management screen.

2. Select the batch class you want to modify or create a new one.

@ No WU AW

Create any tables for the batch class as needed.

In the table listing, select the Table Cell Value Change Script value for the table.
In Validate Document plugin, set Table Cell Value Change Script Switch to ON.
Configure the table columns and table extraction rules.

Apply and deploy the newly added configuration.

Modify the script file, ScriptTableCellValueChange.java, by doing the following:

a. GotoEphesoft\SharedFolders\Batch Identifier.

b. Open the script.

O The script is bound to the table.

c. Configure the script as required.

71

Ephesoft Transact Developer's Guide

10.

11.

The following information appears in the script:

Updated document object
Table Name

Document Identifier
Table Column Name

Row index(int)

(i) You can use the Ctrl+[(open bracket) shortcut to enable or disable the script.

You are now ready to execute the batch.

Run the batch once.

At the top of the Validation screen, click Table.

The Table View screen appears.

In the Table View screen, change the field value and press Tab.

The following should happen:

+ Intheimage, the application highlights the first invalid field on the table.
+ Any other changed fields are also highlighted.

72

Chapter 5

Transact Web Services API

Transact's OpenAPI-Compliant web services provide a simple method for real-time integration

and exposure of Ephesoft Transact capabilities to external applications, allowing developers to
embed advanced capture features in their own solutions without having to display the Transact user
interface.

Transact provides over 60 Transact web services to perform advanced capture actions in your
custom applications. These web services perform tasks that range from simple actions like
determining which batch instances can be seen by an individual user, to performing complete OCR,
classification, or extraction procedures on a collection of documents.

Transact web services support the self-documenting feature of the OpenAPI Specification v2.4.0
(formerly known as the Swagger Specification). This means that tools like Swagger UI can be used
to browse the collection of web services and view detailed documentation for each web service.
The Swagger Ul tool is bundled with Ephesoft Transact, and can be accessed by navigating to the
following URL in your Transact instance:

http://<server name>:<port>/dcma/rest/swagger-ui.html

Navigating to this URL will take the user to the Transact Web Services Explorer. This interface lists all
Transact web services on a single page, allowing both seasoned developers and "citizen developers"
to browse and navigate through the Transact web services available within their server.

This interface also allows the user to review detailed information about each web service. Clicking
a web service in the Web Services Explorer allows you to drill further into the web service to view
additional details, as shown below.

The overall Transact OpenAPI-compliant web services definition file for all API endpoints is
represented in JSON format. This definition file can be found at the following location in your
Transact instance:

http://<server name>:<port>/dcma/rest/v2/api-docs.json

Transact Web Services optimized for workflow engines

All Transact web services support the self-documenting capabilities of the OpenAPI Specification,
but only two Transact web services, v2/ocrClassifyExtract and v2/ocrClassifyExtractBase64, provide
simplified JSON responses, allowing them to be embedded into workflow engines like Nintex

and Microsoft Flow. These minimized JSON responses have a smaller footprint and improved
interoperability. An example of this minimized JSON response is shown below.

73

Ephesoft Transact Developer's Guide

Lo

=]

Type™: "UsInvoice”,
"Contidence™: 47.84,

1 - “DocumentlevelField™: |
o {
: "Hame": "PONumber™,

"Value™: "234 2655912345",|
“Confidence™: 3@,
“"OcrConfidenceThreshold™: 9@

18 "OcrConfidence™: 188

2

13 "Mame”: "City",

14 “Walue": “Irvine,”,

15 "Confidence™: 168,

16 "OcrConfidenceThreshold™: 98,
L7 "Ocrlonfidence™: 98

These two web services have been optimized specifically for advanced workflow engines. See the
following links for more information about these two web services:

« v2/ocrClassifyExtract
+ v2/ocrClassifyExtractBase64

Because they support minimized JSON responses, these two web services can be fully integrated
into advanced workflow engines such as Nintex or Microsoft Flow. These tools allow users to
develop complex workflows that can integrate different products and services together, enabling
decision-making processes with or without human intervention.

For example, a workflow can easily be constructed to monitor Box to look for any new

invoices created in the Incoming folder. When a new invoice is created in that folder, the v2/
ocrClassifyExtract web service can extract the invoice amount from the invoice and feed that data
into a decision tree. Invoices with amounts of $1000 or less can be approved automatically and
routed to a Processed folder in Box. Invoices with amounts greater than $1000 can trigger a
notification for an employee to review and approve the invoice before releasing it to the Processed
folder.

74

Ephesoft Transact Developer's Guide

i) Currently we support only basic authentication for Transact web services (base 64 encoded
user name and password). Token-based authentication usually used with SAML, OAuth, and other
Single Sign-On authentication frameworks are not supported.

Web service definitions and code samples

The Transact Web Services API provides a simple method for real-time integration and exposure of
Transact processes to external applications. This allows developers to embed and employ advanced
capture capabilities and technologies in content management systems and other workflows.

Transact web services support the OpenAPI standard, and the Transact Web Services Explorer uses
the Swagger interface to enable documentation and testing for Transact web services. Web services
that return XML responses can be tested directly in the Swagger interface, but due to a limitation

of the Swagger interface, web services that return non-XML responses cannot. See the Swagger/
OpenAPI Capabilities section of each web service for information about whether a web service
supports being tested directly in the Swagger interface or not. All Transact web services, including
those that cannot be tested in the Swagger interface, can still be tested in other web service testing
tools, such as Postman.

This section describes how to provide authentication for web services. It also includes a brief
description of each web service followed by a code sample showing how the web service can be
used. All code samples are written in Java and utilize the Apache Commons HttpClient library.

Web services are grouped into the following sections:

+ Batch class management web services

+ Batch instance management web services
+ Batch instance processing web services

« Image processing web services

* Reporting web services

Authentication for web services

When Transact web services are used in an API development tool like Postman or Swagger, basic
authentication must be provided in the http request header. For example:

Authorization:Basic ephesoft:demo

© Encode the user name and password in Base64.

When Transact web services are used in Java code, client call authentication can be handled like this:

Credentials defaultcreds = new UsernamePasswordCredentials ("username", "password");
client.getState () .setCredentials (new AuthScope ("serverName", 8080), defaultcreds);

75

Ephesoft Transact Developer's Guide

Batch class management web services

copyBatchClass
This web service creates a copy of an existing batch class.
Request Method

POST

Web Service URL
http://<serverName>:<port>/dcma/rest/batchClass/copyBatchClass

Sample client code using Apache Commons HttpClient

private static void createBatchClass () {
HttpClient client = new HttpClient();

String url = "http://{serverName}: {port}/dcma/rest/batchClass/copyBatchClass";

PostMethod mPost = new PostMethod (url);
// Adding Input XML file for processing
File file = new File("C:\sample\Input.xml") ;

Part[] parts = new Part[l];
try {
parts[0] = newFilePart (file.getName (), file);
MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;

mPost.setRequestEntity (entity) ;

int statusCode = client.executeMethod (mPost) ;

if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
String responseBody = mPost.getResponseBodyAsString() ;
// Generating result as responseBody.

System.out.println (statusCode + " *** " 4+ responseBody) ;
}
else if (statusCode == 403) {

System.out.println ("Invalid username/password.") ;
} else {

System.out.println (mPost.getResponseBodyAsString()) ;
}
} catch (FileNotFoundException e) {
System.err.println("File not found for processing.");
} catch (HttpException e) {
e.printStackTrace() ;
} catch (IOException e) {
e.printStackTrace () ;
} finally {
if (mPost != null) {
mPost.releaseConnection () ;

}

copyDocumentType

This web service copies an existing document type to create a new document type in the same

batch class.

76

Ephesoft Transact Developer's Guide

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/batchClass/copyDocumentType

Sample client code using Apache Commons HttpClient

private static void copyDocumentType () {
HttpClient client = new HttpClient();

String url = "http://localhost:8080/dcma/rest/batchClass/copyDocumentType";

PostMethod mPost = new PostMethod (url):;
// Adding Input XML file for processing
File file = new File("C:\sample\Input.xml") ;
Part[] parts = new Part[l];
try {
parts[0] = new FilePart(file.getName (), file);
MultipartRequestEntity entity = newMultipartRequestEntity (parts,
mPost.getParams ()) ;
mPost.setRequestEntity (entity) ;
int statusCode = client.executeMethod (mPost) ;
if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
String responseBody = mPost.getResponseBodyAsString() ;
// Generating result as responseBody.

System.out.println (statusCode + " *** " 4+ responseBody) ;
} else if (statusCode == 403) {

System.out.println ("Invalid username/password.") ;
} else {

System.out.println (mPost.getResponseBodyAsString()) ;
}
} catch (FileNotFoundException e) {
System.err.println ("File not found for processing.");
} catch (HttpException e) {
e.printStackTrace() ;
} catch (IOException e) ({
e.printStackTrace() ;
} finally {
if (mPost != null) {
mPost.releaseConnection () ;

}

documentTypeCreator
This web service creates a new document type.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/batchClass/documentTypeCreator

Sample client code using Apache Commons HttpClient

private static void createDocumentType () {
HttpClient client = new HttpClient();

String url = “http: //localhost:8080/dcma/rest/batchClass/documentTypeCreator™;

PostMethod mPost = new PostMethod (url);

77

Ephesoft Transact Developer's Guide

// Adding Input XML file for processing
File file = new File (“C: \sample\ Input.xml”);

Part[] parts = new Part[l];
try {
parts[0] = newFilePart (file.getName (), file);
MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;

mPost.setRequestEntity (entity) ;

int statusCode = client.executeMethod (mPost) ;

if (statusCode == 200) {
System.out.println (“Web service executed successfully.”);
String responseBody = mPost.getResponseBodyAsString() ;
// Generating result as responseBody.

System.out.println (statusCode + ” ** * “+4+responseBody) ;
}
else if (statusCode == 403) {

System.out.println (“Invalid username / password.”);
} else {

System.out.println (mPost.getResponseBodyAsString()) ;
}
} catch (FileNotFoundException e) {
System.err.println (“*File not found
for processing.”);
} catch (HttpException e) {
e.printStackTrace() ;
} catch (IOException e) {
e.printStackTrace() ;
} finally {
if (mPost != null) {
mPost.releaseConnection () ;

}

exportBatchClass
This web service exports a batch class.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/exportBatchClass

Sample client code using Apache Commons HttpClient

private static void exportBatchClass () {
HttpClient client = new HttpClient();
String url = "http://localhost:8080/dcma/rest/exportBatchClass";
PostMethod mPost = new PostMethod (url);
mPost.addParameter ("identifier", "BC1");

mPost.addParameter ("lucene-search-classification-sample", "true");
mPost.addParameter ("image-classification-sample", "false");
int statusCode;
try {
statusCode = client.executeMethod (mPost) ;
if (statusCode == 200) {

System.out.println ("Batch class exported successfully");
InputStream in = mPost.getResponseBodyAsStream() ;

File f = new File("C:\sample\serverOutput.zip");
FileOutputStream fos = new FileOutputStream(f);

78

Ephesoft Transact Developer's Guide

try {
byte[] buf = newbyte[1024];
int len = in .read (buf):;
while (len > 0) {
fos.write(buf, 0, len);

len = in .read (buf);
}
} finally {
if (fos != null) {

fos.close () ;
}
}
}

else if(statusCode == 403) {
System.out.println ("Invalid username/password.") ;
} else {

System.out.println (mPost.getResponseBodyAsString()) ;
}
} catch (HttpException e) {
e.printStackTrace() ;
} catch (IOException e) {
e.printStackTrace () ;
} finally {
if (mPost != null) {
mPost.releaseConnection () ;

}

getAllIModulesWorkflowNameByBatchClass

This web service returns the module names and module workflow names for the specified batch
class.

Request Method
GET

Web Service URL

http://<serverName>:<port>/dcma/rest/getAllModulesWorkflowNameByBatchClass/
<batchClassIdentifier>

Sample client code using Apache Commons HttpClient

private static void getAllModulesWorkflowNameByBatchClass () ({
HttpClient client = new HttpClient();
// URL path to be hit for getting the mdoule workflow name of the specified batch
class identifier
String url = "http://localhost:8080/dcma/rest/
getAllModulesWorkflowNameByBatchClass/BCl";
GetMethod getMethod = new GetMethod (url) ;
int statusCode;
try {
statusCode = client.executeMethod (getMethod) ;
if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
String responseBody = getMethod.getResponseBodyAsString() ;

System.out.println (statusCode + " *** " 4+ responseBody) ;
} else if (statusCode == 403) {

System.out.println ("Invalid username/password.");
} else {

79

Ephesoft Transact Developer's Guide

System.out.println (getMethod.getResponseBodyAsString()) ;
}
} catch (HttpException e) {
e.printStackTrace () ;
} catch (IOException e) {
e.printStackTrace () ;
} finally {
if (getMethod != null) {
getMethod.releaseConnection () ;

}

getBatchClassFields

This web service returns the batch class fields of the supplied batch class identifier. The batch class
fields are only returned if the batch class is accessible to the user.

Request Method
GET

Web Service URL

http://<serverName>:<port>/dcma/rest/getBatchClassFields/
<batchClassIdentifier>

getBatchClassForRole
This web service retrieves a list of all batch classes accessible to the specified user role.

Request Method
GET

Web Service URL
http://<serverName>:<port>/dcma/rest/getBatchClassForRole/<role>

Sample client code using Apache Commons HttpClient

private static void getBatchClassForRole () {
HttpClient client = new HttpClient();
// URL path to be hit for getting the batch class list having accessed by the role
specified.
String url = "http://localhost:8080/dcma/rest/getBatchClassForRole/admin";
GetMethod getMethod = new GetMethod (url) ;
int statusCode;
try {
statusCode = client.executeMethod (getMethod) ;
if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
String responseBody = getMethod.getResponseBodyAsString () ;

System.out.println (statusCode + " *** " 4+ responseBody) ;
} else if (statusCode == 403) {

System.out.println ("Invalid username/password.");
} else {

System.out.println (getMethod.getResponseBodyAsString()) ;

}
} catch (HttpException e) {
e.printStackTrace () ;

80

Ephesoft Transact Developer's Guide

} catch (IOException e) {
e.printStackTrace () ;
} finally {
if (getMethod != null) {
getMethod.releaseConnection () ;

}

getBatchClassList

This web service returns a list of all batch classes accessible by the authenticated user.

Request Method
GET

Web Service URL
http://<serverName>:<port>/dcma/rest/getBatchClassList

Sample client code using Apache Commons HttpClient

private static void getBatchClassList () {
HttpClient client = new HttpClient ()
String url = "http://localhost:8080/dcma/rest/getBatchClassList";
GetMethod mGet = new GetMethod (url) ;
int statusCode;

try {
statusCode = client.executeMethod (mGet) ;
if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
String responseBody = mGet.getResponseBodyAsString() ;
System.out.println (statusCode + " *** " 4+ responseBody) ;
}
else if(statusCode == 403) {
System.out.println ("Invalid username/password.");
} else {

System.out.println (mGet.getResponseBodyAsString()) ;
}
} catch (HttpException e) {
e.printStackTrace() ;
} catch (IOException e) {
e.printStackTrace () ;
} finally {
if (mGet != null) {
mGet.releaseConnection () ;

}

getRoles
This web service retrieves all roles for a given batch class.

Request Method
GET

81

Ephesoft Transact Developer's Guide

Web Service URL
http://<serverName>:<port>/dcma/rest/getRoles/<batchClassIdentifier>

Sample client code using Apache Commons HttpClient

private static void getRoles () {
HttpClient client = new HttpClient();
String url = "http://localhost:8080/dcma/rest/getRoles/BC1";
GetMethod mGet = new GetMethod (url) ;
int statusCode;

try {

statusCode = client.executeMethod (mGet) ;

if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
String responseBody = mGet.getResponseBodyAsString() ;
System.out.println (statusCode + " *** " 4+ responseBody) ;

}

else if (statusCode == 403) {
System.out.println ("Invalid username/password.") ;

} else {

System.out.println (mGet.getResponseBodyAsString()) ;
}
} catch (HttpException e) {
e.printStackTrace() ;
} catch (IOException e) {
e.printStackTrace () ;
} finally {
if (mGet != null) {
mGet.releaseConnection () ;

}

importBatchClass
This web service imports a batch class into Transact.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/importBatchClass

Sample client code using Apache Commons HttpClient

private static void importBatchClass () {
HttpClient client = new HttpClient();
String url = "http://localhost:8080/dcma/rest/importBatchClass";
PostMethod mPost = new PostMethod (url) ;
mPost.setDoAuthentication (true) ;
// Input XML for adding parameter.
File filel = new File("C:\sample\importbatchclass.xml") ;
// Input zip file for importing batch class.
File file2 = new File ("C:\sample\BCl 050712 1714.zip");

Part[] parts = new Part[2];

try {
parts[0] = new FilePart (filel.getName (), filel);
parts[l] = new FilePart (file2.getName (), file2);

MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;
mPost.setRequestEntity (entity) ;

Ephesoft Transact Developer's Guide

int statusCode = client.executeMethod (mPost) ;

if (statusCode == 200) {

System.out.println ("Batch class imported successfully");
} else if (statusCode == 403) {

System.out.println ("Invalid username/password.") ;
} else {

System.out.println (mPost.getResponseBodyAsString()) ;
}
} catch (FileNotFoundException e) {
System.out.println ("File not found for processing.");
} catch (HttpException e) {
e.printStackTrace() ;
} catch (IOException e) {
e.printStackTrace () ;
} finally {
if (mPost != null) {
mPost.releaseConnection() ;
}

learnFile

This web service will learn all the files present in the search classification and image classification
learning folders of the batch class. This web service supports using a PDF file's EText layer for OCR,
provided that the batch class has been configured accordingly to support that processing method.

Request Method
POST

Web Service URL

http://<serverName>:<port>/dcma/rest/batchClass/learnFile/
<BatchClassIdentifier>

Sample client code using Apache Commons HttpClient

private static void filelLearningService () {
HttpClient client = new HttpClient();
String url = "http://localhost:8080/dcma/rest/batchClass/learnFile/
{BatchClassIdentifier}";
PostMethod mPost = new PostMethod (url);
try {
int statusCode = client.executeMethod (mPost) ;
if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
String responseBody = mPost.getResponseBodyAsString() ;
// Generating result as responseBody.
System.out.println (statusCode + " *** " 4+ responseBody) ;

} else if (statusCode == 403) {
System.out.println ("Invalid username/password.");
} else {

System.out.println (mPost.getResponseBodyAsString()) ;
}
} catch (HttpException e) {
e.printStackTrace () ;
} catch (IOException e) {
e.printStackTrace () ;
} finally {
if (mPost != null) {
mPost.releaseConnection () ;

83

Ephesoft Transact Developer's Guide

learnFuzzyDatabase

This web service performs database learning for the Fuzzy DB feature. The database table to

be learned is based on the Document Fuzzy and Field Fuzzy configurations defined inside the
document type of the batch class. This web service emulates clicking the LearnDB command in the
Transact user interface.

Request Method
POST

Web Service URL
http://<hostname>:<port>/dcma/rest/batchClass/learnFuzzyDatabase

Sample client code using Apache Commons HttpClient

private static void learnFuzzyDatabase () {
HttpClient client = new HttpClient();
String url = "http://localhost:8080/dcma/rest/learnFuzzyDatabase";
PostMethod mPost = new PostMethod (url) ;
// adding file for sending

Part[] parts = new Part[4];

try {
parts[0] = new StringPart ("batchClassIdentifier", "BC1");
parts[l] = new StringPart ("documentType", "Invoice-Table");
parts[2] = new StringPart ("groupNames", "*");

MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;

mPost.setRequestEntity (entity) ;

int statusCode = client.executeMethod (mPost) ;

if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
String responseBody = mPost.getResponseBodyAsString() ;
// Generating result as responseBody.

System.out.println (statusCode + " *** " 4 responseBody) ;
} else if (statusCode == 403) {

System.out.println ("Invalid username/password.") ;
} else {

System.out.println (mPost.getResponseBodyAsString()) ;
}
} catch (FileNotFoundException e) {
System.err.println ("File not found for processing.");
} catch (HttpException e) {
e.printStackTrace() ;
} catch (IOException e) {
e.printStackTrace () ;
} finally {
if (mPost != null) {
mPost.releaseConnection () ;

}

Ephesoft Transact Developer's Guide

uploadLearningFile

This web service uploads learning files for one or more document types in a batch class. As opposed

to the uploadLearnFile web service, which automatically places pages in the appropriate first/
middle/last folders based on their positions in the uploaded files, this web service allows the

developer to choose the exact folder (first, middle or last) where individual pages will be placed. The

files are uploaded to one or more of the following folders depending on the 'learning_type' value

defined in the web service parameters file.

Request Method
POST

Web Service URL

http://<serverName>:<port>/dcma/rest/batchClass/uploadlLearningFile

Sample client code using Apache Commons HttpClient

private static void learnFile () {
HttpClient client = newHttpClient () ;

String url = "http://localhost:8080/dcma/rest/batchClass/uploadlLearningFile";

PostMethod mPost = new PostMethod (url);

// Adding Input XML file for processing

File file = new File("C:\sample\Input.xml") ;
File filel = new File ("C:\sample\first.tif");
File file2 = new File("C:\sample\second.tif");

Part[] parts = new Part[number of files need to be uploaded];
try {
parts[0] = new FilePart(file.getName (), file);
parts[l] = new FilePart(filel.getName (), filel);
parts[2] = new FilePart (file2.getName (), file2);
parts[n] = new FilePart(filen.getName (), filen);
1

MultipartRequestEntity entity = new MultipartRequestEntity (parts,

mPost.getParams ()) ;
mPost.setRequestEntity (entity) ;
// send post request to server
int statusCode = client.executeMethod (mPost) ;
if (statusCode == 200) {

System.out.println ("Web service executed successfully.");
String responseBody = mPost.getResponseBodyAsString() ;

// Generating result as responseBody.

System.out.println (statusCode + " *** " 4+ responseBody) ;

} else if (statusCode == 403) {

System.out.println ("Invalid username/password.");

} else {

System.out.println (mPost.getResponseBodyAsString()) ;

}

} catch (HttpException e) {
e.printStackTrace() ;

} catch (IOException e) {
e.printStackTrace () ;

} finally {
if (mPost != null) {

mPost.releaseConnection () ;

}

85

Ephesoft Transact Developer's Guide

uploadLearnFiles

This web service uploads files to the specified learning folder of a batch class based on the specified
learning type. This web service approximates the process of learning files through the Transact user
interface, where the user only needs to supply the batch class, document type, learning type, and
files, and the web services will distribute the individual pages into the appropriate first, middle and
last page folders in the operating system automatically.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/batchClass/uploadLearnFiles

Batch instance management web services

AddUserRolesToBatchInstance

This web service adds a user role to a batch instance.

Request Method
GET

Web Service URL

http://<serverName>:<port>/dcma/rest/AddUserRolesToBatchInstance/
<batchInstanceldentifier>/<userRole>

Sample client code using Apache Commons HttpClient

private static void addUserRolesToBatchInstance () {
HttpClient client = new HttpClient ()
// URL path to be hit for adding user roles to batch instance identifier
String url = "http://localhost:8080/dcma/rest/addUserRolesToBatchInstance/BI45/
admin";
GetMethod getMethod = new GetMethod (url) ;
int statusCode;
try {
statusCode = client.executeMethod (getMethod) ;
if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
String responseBody = getMethod.getResponseBodyAsString () ;
System.out.println (statusCode + " *** " 4+ responseBody) ;

} else if (statusCode == 403) {
System.out.println ("Invalid username/password.") ;
} else {

System.out.println (getMethod.getResponseBodyAsString()) ;
}
} catch (HttpException e) ({
e.printStackTrace () ;
} catch (IOException e) {
e.printStackTrace () ;
} finally {
if (getMethod != null) {
getMethod.releaseConnection () ;
}

86

Ephesoft Transact Developer's Guide

BatchInstancelList

This web service returns a list of batch instances with the specified status. If the user is the super
admin user, all batch instances with the specified status will be returned. If the user is not the super
admin user, only batch instances that can be accessed by the user will be returned. The following
details will be returned for each batch instance: batch name, executed modules, local folder, review
operator, batch identifier, drop folder.

Request Method
GET

Web Service URL
http://<serverName>:<port>/dcma/rest/BatchInstancelist/<status>

Sample client code using Apache Commons HttpClient

private static void getBatchInstanceList () {
HttpClient client = new HttpClient ()
String url = "http://localhost:8080/dcma/rest/BatchInstancelList/RUNNING";

GetMethod getMethod = new GetMethod (url) ;
int statusCode;
try {
statusCode = client.executeMethod (getMethod) ;
if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
String responseBody = getMethod.getResponseBodyAsString() ;
System.out.println (statusCode + " *** " 4+ responseBody) ;

} else if (statusCode == 403) {
System.out.println ("Invalid username/password.");
} else {

System.out.println (getMethod.getResponseBodyAsString()) ;

}

} catch (HttpException e) {
e.printStackTrace () ;

} catch (IOException e) ({
e.printStackTrace() ;

} finally {
if (getMethod != null) {

getMethod.releaseConnection () ;

}

deleteBatchInstance

This web service is used to delete a batch instance. The batch instance will be deleted only if the
batch instance is not locked by any user, and is in one of the following states: Error, Running, Ready
for Review, or Ready for Validation. Note that the user must be authenticated and must have access
to the batch instance being deleted.

Request Method
GET

87

Ephesoft Transact Developer's Guide

Web Service URL
http://<serverName>:<port>/dcma/rest/deleteBatchInstance/<identifier>

Sample client code using Apache Commons HttpClient

private static void deleteBatchInstance () {
HttpClient client = new HttpClient();
// User can only delete batch instances with statuses of ERROR, READY FOR REVIEW,
READY FOR VALIDATION, or RUNNING
String url = "http://localhost:8080/dcma/rest/deleteBatchInstance/BI1";
GetMethod getMethod = new GetMethod (url) ;
int statusCode;
try {
statusCode = client.executeMethod (getMethod) ;
if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
String responseBody = getMethod.getResponseBodyAsString () ;
System.out.println (statusCode + " *** " 4+ responseBody) ;

} else if (statusCode == 403) {
System.out.println ("Invalid username/password.") ;
} else {

System.out.println (getMethod.getResponseBodyAsString()) ;
}
} catch (HttpException e) {
e.printStackTrace () ;
} catch (IOException e) {
e.printStackTrace () ;
} finally {
if (getMethod != null) {
getMethod.releaseConnection () ;

}

getBatchInstanceForRole
This web service retrieves the list of batch instances accessible to a particular role.

Request Method
GET

Web Service URL
http://<serverName>:<port>/dcma/rest/getBatchInstanceForRole/<role>

Sample client code using Apache Commons HttpClient

private static void getBatchInstanceForRole () {
HttpClient client = new HttpClient();
String url = "http://localhost:8080/dcma/rest/getBatchInstanceForRoles/admin";
GetMethod getMethod = new GetMethod (url) ;
int statusCode;
try {
statusCode = client.executeMethod (getMethod) ;
if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
String responseBody = getMethod.getResponseBodyAsString () ;
System.out.println (statusCode + " *** " 4+ responseBody) ;

} else if (statusCode == 403) {
System.out.println ("Invalid username/password.") ;
} else {

System.out.println (getMethod.getResponseBodyAsString()) ;

Ephesoft Transact Developer's Guide

}

} catch (HttpException e) {
e.printStackTrace() ;

} catch (IOException e) {
e.printStackTrace () ;

} finally {
if (getMethod != null) {

getMethod.releaseConnection () ;

}

Batch instance processing web services

advancedBarcodeExtraction

This web service performs barcode extraction on the input document based on the configuration
options provided in the parameters.xml file. The settings for the ADVANCED_BARCODE_EXTRACTION
plugin for the supplied batch class identifier are retrieved and used to perform the extraction.

Request Method
POST

Web Service URL

http://<serverName>:8080/dcma/rest/advancedBarcodeExtraction

Sample client code using Apache Commons HttpClient

private static void advancedBarcodeExtraction () {
HttpClient client = new HttpClient();
String url = "http://localhost:8080/dcma/rest/advancedBarcodeExtraction";
PostMethod mPost = new PostMethod (url);
File filel = new File("C:\sample\sample.xml") ;
// adding xml file for taking input
File file2 = new File("C:\sample\US-Invoice.tif");
Part[] parts = new Part[2];
try {
parts[0] = new FilePart(filel.getName (), filel);
parts[l] = new FilePart(file2.getName (), file2);
MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;
mPost.setRequestEntity (entity) ;
int statusCode = client.executeMethod (mPost) ;
if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
System.out.println (mPost.getResponseBodyAsString()) ;

} else if (statusCode == 403) {
System.out.println ("Invalid username/password.") ;
} else {

System.out.println (mPost.getResponseBodyAsString()) ;
}
} catch (HttpException e) {
e.printStackTrace() ;
} catch (IOException e) {
e.printStackTrace () ;
} finally {
if (mPost != null) {
mPost.releaseConnection () ;

}

89

Ephesoft Transact Developer's Guide

advancedUploadBatch

This web service uploads a new batch to the identified batch class's drop folder.

Request Method
POST

Request URL
<ProtocolType>://<serverName>:<ServerPort>/dcma/rest/advancedUploadBatch

Sample URL
http://localhost:8080/dcma/rest/advancedUploadBatch

Sample input XML

<Upload Batch>
<BatchClassIdentifier>BCl</BatchClassIdentifier>
<BatchClassFields>
<BatchClassField>
<Name>Test1</Name>
<Value>123</Value>
</BatchClassField>
<BatchClassField>
<Name>Test2</Name>
<Value>456</Value>
</BatchClassField>
</BatchClassFields>
<BatchInstanceName>SampleBatch</BatchInstanceName>
<BatchDescription>SampleDesc</BatchDescription>
<BatchPriority>20</BatchPriority>
</Upload Batch>

Sample client code using Apache Commons HttpClient

HttpClient client = new HttpClient();

String url = "http://localhost:8080/dcma/rest/advancedUploadBatch";
PostMethod mPost = new PostMethod (url);

File filel = new File ("C:\sample\advancedUploadBatch.xml") ;

File file2 = new File("C:\sample\US-Invoice.tiff");

Part[] parts = new Part[2];

try {
// Input XML
parts[0] = new FilePart(filel.getName (), filel);
// File for processing
parts[l] = new FilePart(file2.getName (), file2);

MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;

mPost.setRequestEntity (entity) ;

int statusCode = client.executeMethod (mPost) ;

if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
String responseBody = mPost.getResponseBodyAsString() ;
System.out.println (statusCode + " *** " 4+ responseBody) ;

} else if (statusCode == 403) {
System.out.println ("Invalid username/password.");
} else {

System.out.println (mPost.getResponseBodyAsString()) ;
}

20

Ephesoft Transact Developer's Guide

} catch (FileNotFoundException e) {
System.err.println("File not found for processing.");
} catch (IOException e) {
e.printStackTrace() ;
} finally {
if (mPost != null) {
mPost.releaseConnection () ;

}

barcodeExtraction

This web service performs barcode extraction on the input document based on the configuration
options provided in the parameters.xml file. The settings for the ADVANCED_BARCODE_EXTRACTION
plugin for the supplied batch class identifier are retrieved and used to perform the extraction.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/barcodeExtraction

Sample client code using Apache Commons HttpClient

private static void barcodeExtraction () {
HttpClient client = new HttpClient();
String url = "http://localhost:8080/dcma/rest/barcodeExtraction”;
PostMethod mPost = new PostMethod (url);
File filel = new File("C:\sample\sample.tif");
// adding xml file for taking input

File file2 = new File("C:\sample\WebServiceParams-barcodeExtraction.xml") ;
Part[] parts = new Part[2];
try {

parts[0] = new FilePart(filel.getName (), filel);

parts[l] = new FilePart(file2.getName (), file2);

MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;
mPost.setRequestEntity (entity) ;
int statusCode = client.executeMethod (mPost) ;
if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
System.out.println (mPost.getResponseBodyAsString()) ;

} else if (statusCode == 403) {
System.out.println ("Invalid username/password.") ;
} else {

System.out.println (mPost.getResponseBodyAsString()) ;
}
} catch (HttpException e) {
e.printStackTrace () ;
} catch (IOException e) {
e.printStackTrace () ;
} finally {
if (mPost != null) {
mPost.releaseConnection () ;

}

91

Ephesoft Transact Developer's Guide

checkWSStatus

This web service queries the current status of the initiateOcrClassifyExtract web service.

Request Method
GET

Web Service URL
http://<serverName>:<port>/dcma/rest/checkWSStatus

Sample client code using Apache Commons HttpClient

private static void checkWSStatus () {
HttpClient client = new HttpClient();
String url = " http://localhost:8080/dcma/rest/checkWSStatus?ocrToken=1233232323 ";
GetMethod getMethod = new GetMethod (url) ;
int statusCode;
try {
statusCode = client.executeMethod (getMethod) ;
if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
String responseBody = getMethod.getResponseBodyAsString () ;
System.out.println (statusCode + " *** " 4+ responseBody) ;

} else if (statusCode == 403) {
System.out.println ("Invalid username/password.") ;
} else {

System.out.println (getMethod.getResponseBodyAsString()) ;
}
} catch (HttpException e) ({
e.printStackTrace() ;
} catch (IOException e) {
e.printStackTrace () ;
} finally {
if (getMethod != null) {
getMethod.releaseConnection () ;

}

classifyBarcodeImage

This web service is used to classify the supplied image using a bar code according to the specified
batch class. The image file should contain a bar code and the bar code value should represent a
document type that exists in the batch class.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/classifyBarcodeImage

Sample client code using Apache Commons HttpClient

private static void classifyBarcodeImage () {
HttpClient client = new HttpClient();
String url = "http://locahost:8080/dcma/rest/classifyBarcodeImage";

PostMethod mPost = new PostMethod (url);

922

Ephesoft Transact Developer's Guide

File filel = new File("C:\sample\US-Invoice.tif");

Part[] parts = new Part[2];

try {
parts[0] = new FilePart(filel.getName (), filel);
parts[l] = new StringPart ("batchClassId", "BC1");

MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;
mPost.setRequestEntity (entity) ;
int statusCode = client.executeMethod (mPost) ;
if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
String responseBody = mPost.getResponseBodyAsString() ;

System.out.println (statusCode + " *** " 4+ responseBody) ;
} else if (statusCode == 403) {

System.out.println ("Invalid username/password.") ;
} else {

System.out.println (mPost.getResponseBodyAsString()) ;
}
} catch (FileNotFoundException e) {
System.err.println ("File not found for processing.");
} catch (HttpException e) {
e.printStackTrace () ;
} catch (IOException e) {
e.printStackTrace () ;
} finally {
if (mPost != null) {
mPost.releaseConnection () ;

}

classifyHocr

This web service classifies the input HOCR.xml according to the batch class identifier provided. The
appropriate classification and assembly plugins must be configured in the batch class. Document
learning must be performed on the batch class before the web service is used. If the batch class
does not have the required plugins configured, the web service will not work.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/classifyHocr

Sample client code using Apache Commons HttpClient

private static void classifyHocr () {
HttpClient client = new HttpClient ()
String url = "http://localhost:8080/dcma/rest/classifyHocr";
PostMethod mPost = new PostMethod (url);
File filel = new File("C:\sample\US-Invoice.html") ;

Part[] parts = new Part[2];
try {
parts[0] = new FilePart(filel.getName (), filel);
parts[l] = new StringPart ("batchClassId", "BC1");
MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;

mPost.setRequestEntity (entity) ;
int statusCode = client.executeMethod (mPost) ;
if (statusCode == 200) {

Ephesoft Transact Developer's Guide

System.out.println ("Web service executed successfully..");
String responseBody = mPost.getResponseBodyAsString() ;
System.out.println (statusCode + " *** " 4+ responseBody) ;

} else if (statusCode == 403) {
System.out.println ("Invalid username/password.") ;

} else {

System.out.println (mPost.getResponseBodyAsString()) ;
}
} catch (FileNotFoundException e) {
System.err.println("File not found for processing.");
} catch (HttpException e) {
e.printStackTrace() ;
} catch (IOException e) {
e.printStackTrace () ;
} finally {
if (mPost != null) {
mPost.releaseConnection() ;
}

classifyImage

This web service allows developers to classify documents from third party applications without
creating batch instances. It performs layout-based classification based on the samples provided

in the batch class and returns the document type. The input file to be classified must be a single-
page TIFF file. This web service depends on the CREATE_THUMBNAILS, CLASSIFY_IMAGES and
DOCUMENT_ASSEMBLER plugins. If the batch class does not contain these plugins the web service
will not work.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/classifyImage

Sample client code using Apache Commons HttpClient

private static void classifyImage() {
HttpClient client = new HttpClient();
String url = "http://localhost:8080/dcma/rest/classifylmage";
PostMethod mPost = new PostMethod (url);
// Adding tif file for processing
File filel = new File("C:\sample\US-Invoice.tif");
Part[] parts = new Part[2];

try {
parts[0] = new FilePart(filel.getName (), filel);
// Adding parameter for batchClassId
parts[l] = new StringPart ("batchClassId", "BC1");
MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;

mPost.setRequestEntity (entity) ;

int statusCode = client.executeMethod (mPost) ;

if (statusCode == 200) {
System.out.println ("Web service executed successfully..");
String responseBody = mPost.getResponseBodyAsString() ;
System.out.println (statusCode + " *** " 4+ responseBody) ;

} else if (statusCode == 403) {
System.out.println ("Invalid username/password..");

} else {

Ephesoft Transact Developer's Guide

System.out.println (mPost.getResponseBodyAsString()) ;
}
} catch (FileNotFoundException e) {
System.err.println ("File not found for processing..");
} catch (HttpException e) {
e.printStackTrace () ;
} catch (IOException e) {
e.printStackTrace() ;
} finally {
if (mPost != null) {
mPost.releaseConnection () ;

}

classifyMultiPageHocr

This web service classifies multiple HOCR.xml files using the batch class identifier provided. The
batch class depends on the SEARCH_CLASSIFICATION and DOCUMENT_ASSEMBLER plugins.
Document learning must have been performed previously in the batch class.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/classifyMultiPageHocr

Sample client code using Apache Commons HttpClient

private static void classifyMultiPageHocr () {
HttpClient client = new HttpClient ()
String url = "http://localhost:8080/dcma/rest/classifyMultiPageHocr";
PostMethod mPost = new PostMethod (url);
File filel = new File("D:\sample\New folder.zip");

Part[] parts = new Part[2];
try {
parts[0] = new FilePart(filel.getName (), filel);
parts[l] = new StringPart ("batchClassId", "BC1");
MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;

mPost.setRequestEntity (entity) ;
int statusCode = client.executeMethod (mPost) ;
String responseBody = mPost.getResponseBodyAsString() ;
System.out.println (statusCode + "***" + responseBody) ;
mPost.releaseConnection () ;
} catch (FileNotFoundException e) {
e.printStackTrace () ;
} catch (HttpException e) {
e.printStackTrace () ;
} catch (IOException e) {
e.printStackTrace () ;

}

createHOCRforBatchClass

This web service generates HOCR.xml files for TIFF or PDF files.

Ephesoft Transact Developer's Guide

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/batchClass/createHOCRforBatchClass

Sample client code using Apache Commons HttpClient

private static void createHOCRXML () {
HttpClient client = new HttpClient();
String url = "http://localhost:8080/dcma/rest/batchClass/createHOCRforBatchClass";
PostMethod mPost = new PostMethod (url):;
// Adding Input XML file for processing
File file = new File (“C:\sample\Input.xml”) ;
File imageFile = new File (“C:\sample\SampleImage.tif”) ;

Part[] parts = new Part[2];
try {
parts[0] = new FilePart(file.getName (), file);
parts[l] = new FilePart (imageFile.getName (), imageFile);

MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;

mPost.setRequestEntity (entity) ;

int statusCode = client.executeMethod (mPost) ;

if (statusCode == 200) ¢{
System.out.println (“Web service executed successfully.”);
String responseBody = mPost.getResponseBodyAsString() ;
// Generating result as responseBody.

System.out.println (statusCode + " *** " 4+ responseBody) ;
} else if (statusCode == 403) {

System.out.println ("Invalid username/password.");
} else {

System.out.println (mPost.getResponseBodyAsString()) ;
}
} catch (FileNotFoundException e) {
System.err.println("File not found for processing.");
} catch (HttpException e) {
e.printStackTrace() ;
} catch (IOException e) {
e.printStackTrace () ;
} finally {
if (mPost != null) {
mPost.releaseConnection () ;

}

createOCR

This web service will create an HOCR.xml file for the provided image file. Tesseract, OmniPage and
RecoStar all support conventional OCR processes where a non-TIFF image is converted to TIFF and
then OCR'd accordingly. When RecoStar is used as the OCR engine, the EText layer of a PDF file can
be used for OCR purposes if the RSP file has ExtractFromEText chosen as the processing mode. If
a PNG or TIFF file is processed by the RecoStar OCR engine using an ExtractFromEText RSP file, a
blank HOCR.xml file will be returned.

This web service supports using a PDF file's EText layer for OCR and extraction, provided that the
batch class has been configured accordingly to support that processing method.

926

Ephesoft Transact Developer's Guide

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/createOCR

Sample client code using Apache Commons HttpClient

private static void createOCR() {
HttpClient client = new HttpClient();
String url = "http://localhost:8080/dcma/rest/createOCR";
PostMethod mPost = new PostMethod (url):;
File filel = new File("C:\sample\samplel.tif");
File file2 = new File ("C:\sample\WebServiceParams.xml") ;
File file3 = new File("C:\sample\Fpr.rsp");
Part[] parts = new Part[3];
try {
parts[0] ()
parts[l] = new FilePart (file2.getName ()
parts[2] = new FilePart (file3.getName ()
MultipartRequestEntity entity = new Mul
mPost.getParams ()) ;
mPost.setRequestEntity (entity) ;
int statusCode = client.executeMethod (mPost) ;
if (statusCode == 200) {

filel) ;
file2);
file3);

new FilePart(filel.getName

System.out.println ("Web service executed successfully.");

InputStream in = mPost.getResponseBodyAsStream() ;
// saving result generated.

File outputFile = new File("C:\sample\serverOutput.zip");
FileOutputStream fos = new FileOutputStream (outputFile) ;

try {
byte[] buf = newbyte[1024];
int len = in .read (buf):;

while (len > 0) {
fos.write (buf, 0, len);
len = in .read(buf);
}
} finally {
if (fos != null) {
fos.close () ;
}
}

} else if (statusCode == 403) {
System.out.println ("Invalid username/password.") ;
} else {

System.out.println (mPost.getResponseBodyAsString()) ;
}
} catch (FileNotFoundException e) {
System.err.println ("File not found for processing.");
} catch (HttpException e) {
e.printStackTrace () ;
} catch (IOException e) {
e.printStackTrace() ;
} finally {
if (mPost != null) {
mPost.releaseConnection () ;

}

4
4
r
tipartRequestEntity (parts,

97

Ephesoft Transact Developer's Guide

decryptBatchInstanceHocrXml

This web service decrypts an HOCR.xml file in a batch instance. When a batch is executed in an
encrypted batch class, the HOCR.xml files created for the image files are also encrypted. The name
of the HOCR.xml file and the batch instance identifier are passed in as parameters.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/decryptBatchInstanceHocrXml

Sample client code using Apache Commons HttpClient

private static void decryptBatchInstanceHocrXml () {
HttpClient client = new HttpClient();
String url = "http://localhost:8080/dcma/rest/decryptBatchInstanceHocrXml";
PostMethod mPost = new PostMethod (url);
mPost.setDoAuthentication (true) ;

Part[] parts = new Part[2];

try {
parts[0] = new StringPart ("hocrFileName", "BI3 0 HOCR.xml");
parts[l] = new StringPart ("batchInstanceIdentifier", "BI3");

MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;
mPost.setRequestEntity (entity) ;
int statusCode = client.executeMethod (mPost);
if (statusCode == 200) {
System.out.println ("HOCR XML decrypted successfully");
System.out.println (mPost.getResponseBodyAsString()) ;

} else if (statusCode == 403) {
System.out.println ("Invalid username/password.");
} else {

System.out.println (mPost.getResponseBodyAsString()) ;

}
} catch (FileNotFoundException e) {
System.out.println ("File not found for processing.");
} catch (HttpException e) {
e.printStackTrace () ;
} catch (IOException e) {
e.printStackTrace () ;
} finally {
if (mPost != null) ¢{
mPost.releaseConnection () ;

}

decryptBatchXml

This web service decrypts an encrypted batch.xml file (generally found in the final drop folder of a
batch instance). Encrypted batch.xml files can only be decrypted on Transact servers that use the
same encryption keys as the server that originally encrypted the batch.xml file.

Request Method
POST

98

Ephesoft Transact Developer's Guide

Web Service URL
http://<serverName>:<port>/dcma/rest/decryptBatchXml

Sample client code using Apache Commons HttpClient

private static void decryptBatchXml () {
HttpClient client = new HttpClient();
String url = "http://localhost:8080/dcma/rest/decryptBatchXml";
PostMethod mPost = new PostMethod (url);
mPost.setDoAuthentication (true) ;
File filel = new File ("F:\Ephesoft\SharedFolders\BC5\Final-drop-folder
\BI2\BI2 batch.xml");
Part[] parts = new Part[l];
try {
parts[0] = new FilePart (filel.getName (), filel);
MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;
mPost.setRequestEntity (entity) ;
int statusCode = client.executeMethod (mPost) ;
if (statusCode == 200) {
System.out.println ("Batch XML decrypted successfully");
System.out.println (mPost.getResponseBodyAsString()) ;

} else if (statusCode == 403) {
System.out.println ("Invalid username/password.") ;
} else {

System.out.println (mPost.getResponseBodyAsString()) ;
}
} catch (FileNotFoundException e) {
System.out.println ("File not found for processing.");
} catch (HttpException e) {
e.printStackTrace () ;
} catch (IOException e) {
e.printStackTrace() ;
} finally {
if (mPost != null) {
mPost.releaseConnection () ;

}

decryptLuceneClassificationHocrXml

This web service decrypts an HOCR.xml file in the lucene-search-classification-sample folder within
the batch class folder in the SharedFolders area.

Request Method
POST
Web Service URL

http://<serverName>:<port>/dcma/rest/decryptLuceneClassificationHocrXml

Sample client code using Apache Commons HttpClient

private static void decryptLuceneClassificationHocrXml () {
HttpClient client = new HttpClient();
String url = "http://localhost:8080/dcma/rest/decryptLuceneClassificationHocrXml";

PostMethod mPost = new PostMethod (url);
mPost.setDoAuthentication (true) ;

// Input zip file for importing batch class.
Part[] parts = new Part[4];

929

Ephesoft Transact Developer's Guide

try {
parts[0] = new StringPart ("hocrFileName", "US-Invoice HOCR.xml");
parts[l] = new StringPart ("batchClassIdentifier", "BC5");
parts[2] = new StringPart ("pageType", "First");
parts[3] = new StringPart ("documentType", "US Invoice");

MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;

mPost.setRequestEntity (entity) ;

int statusCode = client.executeMethod (mPost) ;

if (statusCode == 200) {
System.out.println ("HOCR XML decrypted successfully");
String responseBody = mPost.getResponseBodyAsString() ;
System.out.println (statusCode + " *** " 4+ responseBody) ;

} else if (statusCode == 403) {
System.out.println ("Invalid username/password.") ;
} else {

System.out.println (mPost.getResponseBodyAsString()) ;
}
} catch (FileNotFoundException e) {
System.out.println ("File not found for processing.");
} catch (HttpException e) {
e.printStackTrace () ;
} catch (IOException e) {
e.printStackTrace () ;
} finally {
if (mPost != null) {
mPost.releaseConnection () ;

}

decryptTestHocrXml

This web service decrypts an HOCR.xml file in one of the test folders within the batch class. Test

folders that can be used with the web service are test-advanced-extraction, test-classification, test-

extraction and test-table.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/decryptTestHocrXml

Sample client code using Apache Commons HttpClient

private static void decryptTestHocrXml () {
HttpClient client = new HttpClient ()
String url = "http://localhost:8080/dcma/rest/decryptTestHocrXml";
PostMethod mPost = new PostMethod (url);
mPost.setDoAuthentication (true) ;
Part[] parts = new Part[4];

try {
parts[0] = new StringPart ("hocrFileName", "US-Invoice-0000 HOCR.xml");
parts[l] = new StringPart ("batchClassIdentifier", "BC5");
parts[2] = new StringPart ("testType", "table");
parts[3] = new StringPart ("documentType", "US Invoice");

MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;

mPost.setRequestEntity (entity) ;

int statusCode = client.executeMethod (mPost);

100

Ephesoft Transact Developer's Guide

if (statusCode == 200) {
System.out.println ("HOCR XML decrypted successfully");
String responseBody = mPost.getResponseBodyAsString() ;

System.out.println (statusCode + " *** " 4+ responseBody) ;
} else if (statusCode == 403) {

System.out.println ("Invalid username/password.") ;
} else {

System.out.println (mPost.getResponseBodyAsString()) ;

}
} catch (FileNotFoundException e) {
System.out.println ("File not found for processing.");
} catch (HttpException e) {
e.printStackTrace() ;
} catch (IOException e) {
e.printStackTrace() ;
} finally {
if (mPost != null) {
mPost.releaseConnection () ;

}

extractFieldFromHocr

This web service executes key-value extraction for the requested field based on key-value rules
defined in the batch class.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/extractFieldFromHocr

Sample client code using Apache Commons HttpClient

private static void extractFieldFromHocr () {
HttpClient client = new HttpClient ()
String url = "http://localhost:8080/dcma/rest/extractFieldFromHocr";

PostMethod mPost = new PostMethod (url);
File filel = new File("C:\sample\Application-Checklist-hocr.xml") ;
Part[] parts = new Part[2];

try {
parts[0] = new FilePart(filel.getName (), filel);
// Adding field value for extracting Key Value Pattern.
parts[l] = new StringPart ("fieldValue", "APPLICATION") ;
MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;

mPost.setRequestEntity (entity) ;

int statusCode = client.executeMethod (mPost) ;

if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
String responseBody = mPost.getResponseBodyAsString() ;
System.out.println (statusCode + " *** " 4+ responseBody) ;

} else if (statusCode == 403) {
System.out.println ("Invalid username/password.") ;
} else {

System.out.println (mPost.getResponseBodyAsString()) ;

}
} catch (FileNotFoundException e) {
System.err.println ("File not found for processing.");
} catch (HttpException e) {

101

Ephesoft Transact Developer's Guide

e.printSt
} catch (IOEx
e.printSt

} finally {
if (mPost
mPost

}

extractFields

ackTrace () ;
ception e) {
ackTrace () ;

'= null) {
.releaseConnection () ;

This web service provides multiple ways to perform extraction. The header parameter extractionAPI
specifies the type of extraction to use.

Request Method
POST

Web Service URL

http://<serverName>:<port>/dcma/rest/extractFields

Sample client code using Apache Commons HttpClient using the
REGULAR_REGEX_EXTRACTION option

private static vo
HttpClient cl
String url =
PostMethod mP
File filel =
// adding xml
File file2 =
Part[] parts
try {
parts[0]
parts[1l]
Multipart
mPost.getParams (
// Pass t
RECOSTAR EXTRACT
OMNIPAGE EXTRACT
Header he
mPost.add
mPost.set
if (statu
Syste
Syste
} else if
Syste
} else {
Syste
}
} catch (Http
e.printSt
} catch (IOEx
e.printsSt
} finally {
if (mPost
mPost

}

id extractFields () {
ient = new HttpClient () ;
"http://localhost:8080/dcma/rest/extractFields";
ost = new PostMethod (url):;
new File ("C:\sample\input\samplel.html") ;

file for taking input
new File ("C:\sample\input\WebServiceParams.xml") ;
= new Part[2];

= new FilePart (filel.getName (), filel);
= new FilePart(file2.getName (), file2);
RequestEntity entity = new MultipartRequestEntity (parts,
));
he name of extraction api that is to be used: BARCODE EXTRACTION,
ION, REGULAR REGEX EXTRACTION, KV_EXTRACTION, FUZZY DB,
ION
ader = new Header ("extractionAPI", "REGULAR REGEX EXTRACTION") ;
RequestHeader (header) ;
RequestEntity (entity) ;
sCode == 200) {
m.out.println ("Web service executed successfully.");
m.out.println (mPost.getResponseBodyAsString()) ;
(statusCode == 403) {
m.out.println("Invalid username/password.") ;

m.out.println (mPost.getResponseBodyAsString()) ;

Exception e) {
ackTrace () ;
ception e) {
ackTrace () ;

= null) {
.releaseConnection () ;

102

Ephesoft Transact Developer's Guide

extractFieldsUsingRegex

This web service extracts values and coordinates based on regular expressions defined for all fields
of a particular document type of a particular batch class.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/extractFieldsUsingRegex

Sample client code using Apache Commons HttpClient

private static void extractFieldsUsingRegex () {
HttpClient client = new HttpClient();
String url = "http://localhost:8080/dcma/rest/extractFieldsUsingRegex";
PostMethod mPost = new PostMethod (url);
File filel = new File("C:\sample\samplel.xml") ;
File file2 = new File ("C:\sample\WebServiceParams.xml") ;
Part[] parts = new Part[3];

try {
parts[0] = new FilePart(filel.getName (), filel);
parts[l] = new FilePart(file2.getName (), file2);
parts[2] = new StringPart (“hocrFileName”, filel.getName ());

MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;
mPost.setRequestEntity (entity) ;
int statusCode = client.executeMethod (mPost) ;
if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
System.out.println (mPost.getResponseBodyAsString()) ;

} else if (statusCode == 403) {
System.out.println ("Invalid username/password.") ;
} else {

System.out.println (mPost.getResponseBodyAsString()) ;

}

} catch (HttpException e) {
e.printStackTrace() ;

} catch (IOException e) {
e.printStackTrace () ;

} finally {
if (mPost != null) {

mPost.releaseConnection () ;

}

extractFixedForm

This web service provides two different processing options for extracting fixed-form data. Different
XML parameter input file formats are needed depending on the option chosen.

Request Method
POST

103

Ephesoft Transact Developer's Guide

Web Service URL
http://<serverName>:<port>/dcma/rest/extractFixedForm

Sample client code using Apache Commons HttpClient

private static void extractFixedForm() {
HttpClient client = new HttpClient();
String url = "http://localhost:8080/dcma/rest/extractFixedForm";
PostMethod mPost = new PostMethod (url);
// adding file for sending
File filel = new File("C:\sample\fixedForm.xml") ;
File file2 = new File("C:\sample\Image.tif");
Part[] parts = new Part[2];
try {
parts[0] = new FilePart (filel.getName (), filel);
parts[l] = new FilePart (file2.getName (), file2);
MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;
mPost.setRequestEntity (entity) ;
int statusCode = client.executeMethod (mPost) ;
if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
String responseBody = mPost.getResponseBodyAsString() ;
// Generating result as responseBody.

System.out.println (statusCode + " *** " 4+ responseBody) ;
} else if (statusCode == 403) {

System.out.println ("Invalid username/password.") ;
} else {

System.out.println (mPost.getResponseBodyAsString()) ;
}
} catch (FileNotFoundException e) {
System.err.println ("File not found for processing.");
} catch (HttpException e) {
e.printStackTrace () ;
} catch (IOException e) {
e.printStackTrace() ;
} finally {
if (mPost != null) {
mPost.releaseConnection () ;

}

extractFuzzyDB

This web service extracts index field information using the Fuzzy Database Lookup feature (based
on the Document Fuzzy configurations).

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/extractFuzzyDB
Sample client code using Apache Commons HttpClient

private static void extractFuzzyDB () {
HttpClient client = new HttpClient();
String url = "http://localhost:8080/dcma/rest/extractFuzzyDB";
PostMethod mPost = new PostMethod (url);

104

Ephesoft Transact Developer's Guide

File file = new File("C:\sample\Application-Checklist 000-hocr.xml");

Part[] parts = new Part[4];
try {
parts[0] = new FilePart(file.getName (), file);
parts[l] = new StringPart ("documentType", "Application-Checklist");
parts[2] = new StringPart ("batchClassIdentifier", "BC1");
parts[3] = new StringPart ("hocrFile", "Application-Checklist 000-hocr.xml");

MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;

mPost.setRequestEntity (entity) ;

int statusCode = client.executeMethod (mPost) ;

if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
String responseBody = mPost.getResponseBodyAsString() ;
// Generating result as responseBody.

System.out.println (statusCode + " *** " 4+ responseBody) ;
} else if (statusCode == 403) {

System.out.println ("Invalid username/password.") ;
} else {

System.out.println (mPost.getResponseBodyAsString()) ;
}
} catch (FileNotFoundException e) {
System.err.println ("File not found for processing.");
} catch (HttpException e) {
e.printStackTrace() ;
} catch (IOException e) {
e.printStackTrace() ;
} finally {
if (mPost != null) {
mPost.releaseConnection () ;

}

extractFieldsForFuzzyDB

This web service extracts index field values utilizing both document- and field-level fuzzy database
configurations.

Request Method
POST

Web Service URL
http://<serverName>:8080/dcma/rest/extractFieldsForFuzzyDB

Sample client code using Apache Commons HttpClient

private static void extractFieldsForFuzzyDB () {
HttpClient client = new HttpClient();
String url = "http://localhost:8080/dcma/rest/extractFieldsForFuzzyDB";
PostMethod mPost = new PostMethod (url);
File webServInputFile = new File("C:\sample\FuzzyDBExtract Input.xml");
File hocrZipFile = new File("C:\sample\HOCR XML.zip");

Part[] parts = new Part[2];
try {
parts[0] = new FilePart (webServInputFile.getName (), webServInputFile);
parts[l] = new FilePart (hocrZipFile.getName (), hocrZipFile) ;
MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;

mPost.setRequestEntity (entity) ;
int statusCode = client.executeMethod (mPost) ;

105

Ephesoft Transact Developer's Guide

if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
String responseBody = mPost.getResponseBodyAsString() ;
// Generating result as responseBody.
System.out.println (statusCode + " *** " 4+ responseBody) ;

} else if (statusCode == 403) {
System.out.println ("Invalid username/password.") ;
} else {

System.out.println (mPost.getResponseBodyAsString()) ;
}
} catch (FileNotFoundException e) {
System.err.println ("File not found for processing.");
} catch (HttpException e) {
e.printStackTrace () ;
} catch (IOException e) {
e.printStackTrace() ;
} finally {
if (mPost != null) {
mPost.releaseConnection () ;

}

extractkV

This web service extracts the document-level fields using key-value extraction rule properties
specified in the parameters.xml file, using an HOCR.xml file as input. If the key-value pattern

does not find a match in the HOCR.xml file, empty document-level fields will be created. For best
results we recommend that you test the configuration options in the Transact user interface before
building the configuration files for use with the web service.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/extractKV

Sample client code using Apache Commons HttpClient

private static void extractKV () {
HttpClient client = new HttpClient ()
String url = "http://localhost:8080/dcma/rest/extractkv";
PostMethod mPost = new PostMethod (url);
File fl = new File("C:\sample\extractKV.xml") ;
File f2 = new File ("C:\sample\Application-Checklist-hocr.xml") ;
Part[] parts = new Part[3];

try {
parts[0] = new FilePart (fl.getName (), f1);
parts[l] = new FilePart (f2.getName (), £f2);
parts[2] = new StringPart ("hocrFileName", f2.getName())

MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;
mPost.setRequestEntity (entity) ;
int statusCode = client.executeMethod (mPost);
if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
String responseBody = mPost.getResponseBodyAsString() ;
// Generating result as responseBody.
System.out.println (statusCode + " *** " 4 responseBody) ;
} else if (statusCode == 403) {

106

Ephesoft Transact Developer's Guide

System.out.println ("Invalid username/password.") ;
} else {
System.out.println (mPost.getResponseBodyAsString()) ;
}
} catch (FileNotFoundException e) {
System.err.println("File not found for processing.");
} catch (HttpException e) {
e.printStackTrace() ;
} catch (IOException e) {
e.printStackTrace () ;
} finally {
if (mPost != null) {
mPost.releaseConnection() ;

}

ExtractKVForDocumentType

This web service performs key-value extraction on an HOCR.xml file. The batch class ID and
document type identified in the parameters.xml file are used to identify the key-value extraction
rules that will be executed.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/batchClass/ExtractKVForDocumentType

Sample client code using Apache Commons HttpClient

private static void performKeyValueExtraction () ({
HttpClient client = new HttpClient();
String url = "http://localhost:8080/dcma/rest/batchClass/ExtractKVForDocumentType";
PostMethod mPost = new PostMethod (url);
File file = new File("C:\sample\Input.xml") ;
File hocrZipFile = new File("C:\sample\Input HOCR.zip");
Part[] parts = new Part[2];

try {
parts[0] = new FilePart (file.getName (), file);
parts[l] = new FilePart (hocrZipFile.getName (), hocrZipFile);
MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;
mPost.setRequestEntity (entity) ;
int statusCode = client.executeMethod (mPost) ;
if (statusCode == 200) {

System.out.println ("Web service executed successfully.");
String responseBody = mPost.getResponseBodyAsString() ;

// Generating result as responseBody.

System.out.println (statusCode + " *** " 4+ responseBody) ;

} else if (statusCode == 403) {
System.out.println ("Invalid username/password.") ;
} else {

System.out.println (mPost.getResponseBodyAsString()) ;
}
} catch (FileNotFoundException e) {
System.err.println ("File not found for processing.");
} catch (HttpException e) {
e.printStackTrace () ;
} catch (IOException e) ({

107

Ephesoft Transact Developer's Guide

e.printStackTrace () ;
} finally {
if (mPost != null) {
mPost.releaseConnection () ;

}

initiateOcrClassifyExtract

This web service performs extraction on the supplied documents. The extraction plugins are
retrieved from the batch class corresponding to the supplied batch class identifier, and classification
and extraction will be performed based on those plugins. If the document type is provided as a
parameter, classification will be skipped, and only extraction will be performed.

Request Method

POST

Web Service URL

http://<serverName>:<port>/dcma/rest/initiateOcrClassifyExtract

Checklist

+ Extraction would be done only if Extraction module is configured for the particular batch class

+ Extraction would be performed only for the plugins which have extraction switch ON in batch
class configuration.

Sample client code using Apache Commons HttpClient

private static void initiateOcrClassifyExtract () {
HttpClient client = new HttpClient();
Credentials defaultcreds = new UsernamePasswordCredentials (“username”, “password”);
client.getState () .setCredentials (new AuthScope (“serverName”, 8080), defaultcreds);
client.getParams () .setAuthenticationPreemptive (true) ;
String url = "http://localhost:8080/dcma/rest/ initiateOcrClassifyExtract";

PostMethod mPost = new PostMethod (url);
// Adding HTML file for processing
File filel = new File("C:\sample\US-Invoice.tiff");

Part[] parts = new Part[2];
try {
parts[0] = new FilePart(filel.getName (), filel);
// Adding parameter for batchClassIdentifier
parts[l] = new StringPart ("batchClassIdentifier", "BC1");

MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;
mPost.setRequestEntity (entity) ;
int statusCode = client.executeMethod (mPost) ;
if (statusCode == 200) {
System.out.println ("Web service executed successfully..");
String responseBody = mPost.getResponseBodyAsString() ;

System.out.println (statusCode + " *** " 4+ responseBody) ;
} else if (statusCode == 403) {

System.out.println ("Invalid username/password..");
} else {

System.out.println (mPost.getResponseBodyAsString()) ;
}
} catch (FileNotFoundException e) {
System.err.println ("File not found for processing..");
} catch (HttpException e) {
e.printStackTrace() ;

108

Ephesoft Transact Developer's Guide

} catch (IOException e) {
e.printStackTrace () ;
} finally {
if (mPost != null) {
mPost.releaseConnection () ;

}

keywordClassification

This web service classifies images into documents based on key-value page process rules (both
page-level fields and classification rules). If classification is successful an XML object containing all
documents is sent back as a response. If the KV_PAGE_PROCESS plugin is not configured the web
service will return an error code.

This web service supports using a PDF file's EText layer for OCR and extraction, provided that the
batch class has been configured accordingly to support that processing method.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/keywordClassification

ocrClassify
This web service performs OCR and classification on the provided documents.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/ocrClassify

ocrClassifyExtract

This web service performs classification and extraction on the supplied documents. Classification
and extraction are performed based on the plugin configurations of the batch class identifier
supplied. This web service supports using a PDF file's EText layer for OCR and extraction, provided
that the batch class has been configured accordingly to support that processing method.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/ocrClassifyExtract

Sample client code using Apache Commons HttpClient

private static void ocrClassifyExtract () {
HttpClient client = new HttpClient();
String url = "http://localhost:8080/dcma/rest/ocrClassifyExtract";

109

Ephesoft Transact Developer's Guide

PostMethod mPost = new PostMethod (url) ;

// Adding HTML file for processing

File filel = new File("C:\sample\US-Invoice.tiff");
Part[] parts = new Part[2];

try {

parts[0] = new FilePart(filel.getName (), filel);

// Adding parameter for batchClassIdentifier

parts[l] = new StringPart ("batchClassIdentifier", "BC1");

MultipartRequestEntity entity = new MultipartRequestEntity (parts,

mPost.getParams ()) ;

mPost.setRequestEntity (entity) ;

int statusCode = client.executeMethod (mPost) ;

if (statusCode == 200) {
System.out.println ("Web service executed successfully..");
String responseBody = mPost.getResponseBodyAsString() ;
System.out.println (statusCode + " *** " 4+ responseBody) ;

} else if (statusCode == 403) {
System.out.println ("Invalid username/password..");

} else {

System.out.println (mPost.getResponseBodyAsString()) ;

}
} catch (FileNotFoundException e) {
System.err.println ("File not found for processing..");
} catch (HttpException e) {
e.printStackTrace() ;
} catch (IOException e) {
e.printStackTrace() ;
} finally {
if (mPost != null) {
mPost.releaseConnection () ;

}

OcrClassifyExtractSearchablePDF

This web service performs OCR, classification and extraction on the input documents, creating
searchable PDF files and a batch.xml file containing the extraction results. Classification and
extraction will be performed based on the plugins configured in the batch class.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/OcrClassifyExtractSearchablePDF

Sample client code using Apache Commons HttpClient

private static void OcrClassifyExtractSearchablePDF () {
HttpClient client = new HttpClient();

Credentials defaultcreds = new UsernamePasswordCredentials ("ephesoft", "demo"):;
client.getState () .setCredentials (new AuthScope ("localhost", 8080), defaultcreds);
client.getParams () .setAuthenticationPreemptive (true) ;

String url = "http://localhost:8080/dcma/rest/OcrClassifyExtractSearchablePDF";

PostMethod mPost = new PostMethod (url);
// Adding HTML file for processing
File filel = new File ("C:\sample\US-Invoice.tif");
Part[] parts = new Part[2];
try {
parts[0] = new FilePart(filel.getName (), filel);

110

Ephesoft Transact Developer's Guide

// Adding parameter for batchClassIdentifier
parts[l] = new StringPart ("batchClassIdentifier", "BC5");
MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;
mPost.setRequestEntity (entity) ;
int statusCode = client.executeMethod (mPost) ;
if (statusCode == 200) {
System.out.println ("Batch class exported successfully");
InputStream in = mPost.getResponseBodyAsStream() ;
File f = new File("C:\sample\Output.zip");
FileOutputStream fos = new FileOutputStream(f) ;
try {
byte[] buf = new byte[1024];
int len = in .read(buf);
while (len > 0) {
fos.write (buf, 0, len);
len = in .read (buf);
}
} finally {
if (fos != null) {
fos.close();
}
}

} else if (statusCode == 403) {
System.out.println ("Invalid username/password.") ;
} else {

System.out.println (mPost.getResponseBodyAsString()) ;
}
} catch (FileNotFoundException e) {
System.out.println ("File not found for processing..");
} catch (HttpException e) {
e.printStackTrace () ;
} catch (IOException e) {
e.printStackTrace () ;
} finally {
if (mPost != null) {
mPost.releaseConnection () ;

}

restartAllBatchInstance

This web service restarts all batch instances with states of Ready for Review or Ready for Validation.
The RestartAll switch must be set to TRUE in the properties file for this web service to work.

Request Method
GET

Web Service URL
http://<serverName>:<port>/dcma/rest/restartAllBatchInstance

Sample client code using Apache Commons HttpClient

private static void restartAllBatchInstance () {
HttpClient client = new HttpClient();
String url = "http://localhost:8080/dcma/rest/restartAllBatchInstance";
GetMethod getMethod = new GetMethod (url) ;
int statusCode;
try {
statusCode = client.executeMethod (getMethod) ;

111

Ephesoft Transact Developer's Guide

if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
String responseBody = getMethod.getResponseBodyAsString() ;
System.out.println (statusCode + " *** " 4+ responseBody) ;

} else if (statusCode == 403) {
System.out.println ("Invalid username/password.") ;
} else {

System.out.println (getMethod.getResponseBodyAsString()) ;

}

} catch (HttpException e) {
e.printStackTrace() ;

} catch (IOException e) {
e.printStackTrace() ;

} finally {
if (getMethod != null) {

getMethod.releaseConnection () ;

}

restartBatchInstance

This web service restarts a batch from the specified module. The user can only restart batch
instances that are accessible to their role. Only batches in the Running, Error, Ready for Review, or
Ready for Validation states can be restarted.

Request Method
GET

Web Service URL

http://<serverName>:<port>/dcma/rest/restartBatchInstance/
<batchInstancelIdentifier>/<restartAtModuleName>

Sample client code using Apache Commons HttpClient

private static void restartBatchInstance () {
HttpClient client = new HttpClient();
String url = "http://{serverName}: {port}/dcma/rest/restartBatchInstance/BI1l/

Folder Import Module";
GetMethod getMethod = new GetMethod (url) ;
int statusCode;
try {
statusCode = client.executeMethod (getMethod) ;
if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
String responseBody = getMethod.getResponseBodyAsString () ;
System.out.println (statusCode + " *** " 4+ responseBody) ;

} else if (statusCode == 403) {
System.out.println ("Invalid username/password.") ;
} else {

System.out.println (getMethod.getResponseBodyAsString()) ;
}
} catch (HttpException e) ({
e.printStackTrace() ;
} catch (IOException e) {
e.printStackTrace () ;
} finally {
if (getMethod != null) {
getMethod.releaseConnection () ;

}

112

Ephesoft Transact Developer's Guide

runBatchInstance

This web service takes a batch instance in the Ready for Review or Ready for Validation state
and moves it to the next phase in the workflow. The user can only run batch instances that are
accessible to their role.

Request Method
GET

Web Service URL

http://<serverName>:<port>/dcma/rest/runBatchInstance/
<batchInstanceIdentifier>

Sample client code using Apache Commons HttpClient

private String runBatchInstance () {
String webserviceURL = "http://localhost:8080/dcma/rest/runBatchInstance/BI15";
HttpClient httpClient = new HttpClient () ;
GetMethod mget = new GetMethod (webserviceURL) ;
String webserviceResponse = "";

try {
int statusCode = httpClient.executeMethod (mget) ;
System.out.println ("Webservice status code: " + statusCode);
if (statusCode == 200) {

System.out.println ("Web service executed successfully.");
String responseBody = mget.getResponseBodyAsString() ;
// Generating result as responseBody.

System.out.println (mget.getResponseBodyAsString()) ;
webserviceResponse = responseBody;

mget.releaseConnection () ;
return webserviceResponse;

}

} catch (HttpException e) {
e.printStackTrace () ;

} catch (IOException e) {
e.printStackTrace () ;

}

return webserviceResponse;

searchTextForDocFuzzy

This web service searches fuzzy database index data to look for matches with the supplied search
text. This web service emulates the document-level Fuzzy DB search field in the Validation screen in
the Transact user interface.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/searchTextForDocFuzzy

113

Ephesoft Transact Developer's Guide

Sample client code using Apache Commons HttpClient

private static void searchTextForDocFuzzy () {
HttpClient client = new HttpClient();

String url = "http://localhost:8080/dcma/rest/searchTextForDocFuzzy";
PostMethod mPost = new PostMethod (url):;
Part[] parts = new Part[4];
try {
parts[0] = new StringPart ("batchClassIdentifier", "BC1");
parts[l] = new StringPart ("documentType", "Invoice-Table");
parts[2] = new StringPart ("searchText", "*");
parts[3] = new StringPart ("searchType", "0");
MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;
mPost.setRequestEntity (entity) ;
int statusCode = client.executeMethod (mPost) ;
if (statusCode == 200) {

System.out.println ("Web service executed successfully.");
String responseBody = mPost.getResponseBodyAsString() ;
// Generating result as responseBody.
System.out.println (statusCode + " *** " 4+ responseBody) ;
} else if (statusCode == 403) {
System.out.println ("Invalid username/password.") ;
} else {
System.out.println (mPost.getResponseBodyAsString()) ;
}

catch (FileNotFoundException e) {

System.err.println ("File not found for processing.");

catch (HttpException e) {

e.printStackTrace () ;

catch (IOException e) {

e.printStackTrace() ;

finally {

if (mPost != null) {
mPost.releaseConnection () ;

}

searchTextForFieldFuzzy

This web service searches fuzzy database index data to look for matches with the supplied index
field-level text. This web service emulates the field-level Fuzzy DB search field in the Validation

screen in the Transact user interface.

Request Method

POST

Web Service URL
http://<serverName>:<port>/dcma/rest/searchTextForFieldFuzzy

Sample client code using Apache Commons HttpClient

private static void searchTextForDocFuzzy () {
HttpClient client = new HttpClient ()

String url = "http://localhost:8080/dcma/rest/searchTextForDocFuzzy";

PostMethod mPost = new PostMethod (url);
Part[] parts = new Part[4];
try {

parts[0] = new StringPart ("batchClassIdentifier", "BC1");
parts[1l] = new StringPart ("documentType", "Invoice-Table");

114

Ephesoft Transact Developer's Guide

parts[2] = new StringPart ("searchText", "*");
parts[3] = new StringPart ("searchType", "0");
MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;
mPost.setRequestEntity (entity) ;
int statusCode = client.executeMethod (mPost) ;
if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
String responseBody = mPost.getResponseBodyAsString() ;
// Generating result as responseBody.

System.out.println (statusCode + " *** " 4+ responseBody) ;
} else if (statusCode == 403) {

System.out.println ("Invalid username/password.") ;
} else {

System.out.println (mPost.getResponseBodyAsString()) ;
}
} catch (FileNotFoundException e) {
System.err.println("File not found for processing.");
} catch (HttpException e) {
e.printStackTrace() ;
} catch (IOException e) {
e.printStackTrace () ;
} finally {
if (mPost != null) {
mPost.releaseConnection() ;

}

setBatchClassField

This web service creates batch class fields in the supplied batch class identifier.
Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/setBatchClassField

Sample client code using Apache Commons HttpClient
private static void setBatchClassField() {

HttpClient client = new HttpClient();

Credentials defaultcreds = new UsernamePasswordCredentials ("ephesoft",
" demo n) ;

client.getState () .setCredentials (new AuthScope ("localhost", 8080),
defaultcreds) ;

client.getParams () .setAuthenticationPreemptive (true) ;

String url = "http://localhost:8080/dcma/rest/setBatchClassField";

PostMethod mPost = new PostMethod (url);
File filel = new File ("C:\\EpheWSTest\\setBatchClassField\\parameters.xml") ;
Part[] parts = new Part[l];

try {
parts[0] = new FilePart(filel.getName (), filel);
MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;

mPost.setRequestEntity (entity) ;

int statusCode = client.executeMethod (mPost) ;

System.out.println ("Status code is " + statusCode) ;

115

Ephesoft Transact Developer's Guide

if (statusCode == 200) {

String responseBody = mPost.getResponseBodyAsString() ;
System.out.println (statusCode + " *** " 4+ responseBody) ;
} else if (statusCode == 403) {

System.out.println ("Invalid username/password..");

} else {

System.out.println (mPost.getResponseBodyAsString()) ;
}

} catch (FileNotFoundException e) {
System.out.println ("File not found for processing..");
catch (HttpException e) {

}

e.printStackTrace () ;

} catch (IOException e) {
e.printStackTrace () ;

} finally {

if (mPost != null) {

mPost.releaseConnection () ;
}
}
}

tableExtractionHOCR

This web service will extract table data from the HOCR.xml file.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/batchClass/tableExtractionHOCR

Sample client code using Apache Commons HttpClient

private static void tableExtractionHOCR () {
HttpClient client = new HttpClient () ;
String url = "http://localhost:8080/dcma/rest/batchClass/tableExtractionHOCR";
PostMethod mPost = new PostMethod (url);
// adding file for sending
File filel = new File("C:\sample\sample.xml") ;
File file2 = new File("C:\sample\US-Invoice HOCR.xml");

Part[] parts = new Part[2];

try {
parts[0] = new FilePart(filel.getName (), filel);
parts[l] = new FilePart(file2.getName (), file2);

MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;

mPost.setRequestEntity (entity) ;

int statusCode = client.executeMethod (mPost) ;

if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
String responseBody = mPost.getResponseBodyAsString() ;
// Generating result as responseBody.

System.out.println (statusCode + " *** " 4+ responseBody) ;
} else if (statusCode == 403) {

System.out.println ("Invalid username/password.");
} else {

System.out.println (mPost.getResponseBodyAsString()) ;

}
} catch (FileNotFoundException e) {

116

Ephesoft Transact Developer's Guide

System.err.println ("File not found for processing.");
} catch (HttpException e) {

e.printStackTrace() ;
} catch (IOException e) {

e.printStackTrace () ;
} finally {

if (mPost != null) {

mPost.releaseConnection () ;

}

uploadBatch

This web service uploads a batch for a given batch class. The uploaded file is copied to the batch
class's drop folder as a single folder. The user must be authorized to execute a batch instance in
that batch class otherwise an error message will be generated.

Request Method
POST

Web Service URL

http://<serverName>:<port>/dcma/rest/uploadBatch/<batchClassIdentifier>/
<batchInstanceName>

Sample client code using Apache Commons HttpClient

private static void uploadBatch () {

HttpClient client = new HttpClient();

String url = "http://localhost:8080/dcma/rest/uploadBatch/{BatchClassIdentifier}/
{BatchInstanceName} ";

PostMethod mPost = new PostMethod (url);

File filel = new File("C:\sample\samplel.tif");

Part[] parts = new Part[l];

try {
parts[0] = new FilePart(filel.getName (), filel);
MultipartRequestEntity entity = new MultipartRequestEntity(parts,

mPost.getParams ()) ;
mPost.setRequestEntity (entity) ;
int statusCode = client.executeMethod (mPost) ;
String responseBody = mPost.getResponseBodyAsString() ;
// Generating result as responseBody.
System.out.println (statusCode + "***" + responseBody) ;

if (statusCode == 200) {

System.out.println ("Web service executed successfully.");
} else if (statusCode == 403) {

System.out.println ("Invalid username/password.");
} else {

System.out.println (mPost.getResponseBodyAsString()) ;
}
} catch (FileNotFoundException e) {
System.err.println("File not found for processing.");
} catch (HttpException e) ({
e.printStackTrace() ;
} catch (IOException e) {
e.printStackTrace () ;
} finally {
if (mPost != null) {
mPost.releaseConnection() ;

}

117

Ephesoft Transact Developer's Guide

v2/ocrClassifyExtract

This web service was designed primarily to work with the Nintex workflow engine. It performs OCR,
classification and extraction on the supplied input documents. Classification is based only on the
first page of each file before extracting the index fields defined in the corresponding batch class.
Classification and extraction are performed based on the plugins configured in the corresponding
batch class, with two exceptions: 1) The PAGE_PROCESS_SCRIPTING_PLUGIN plugin will not be
executed; and 2) Table extraction will be performed if the plugin is turned on, but extracted table
data will not be returned in the response.

Only one file can be supplied as input, but multiple files can be processed at one time by combining
them in a zip file and submitting the zip file to the web service. However, note that each physical file
inside the zip file will be treated as a single logical file, and will be classified based on the contents
of the first page only (no separation will occur within the individual files).

This web service supports using a PDF file's EText layer for OCR and extraction, provided that the
batch class has been configured accordingly to support that processing method.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/v2/ocrClassifyExtract

v2/ocrClassifyExtractBase64

This web service performs the same functionality as the v2/ocrClassifyExtract web service, but it
uses a Base64-encoded string as input. Many cloud technologies today (such as Box, Salesforce,
and Microsoft Flow) stream data using Base64 encoding. By supporting a Base64-encoded input
format, this web service provides greater flexibility to integrate Ephesoft Transact advanced capture
capabilities into users' custom solutions.

The v2/ocrClassifyExtractBase64 web service performs OCR, classification and extraction on

the supplied input documents. Classification is based only on the first page of each file before
extracting the index fields defined in the corresponding batch class. Classification and extraction
are performed based on the plugins configured in the corresponding batch class, with two
exceptions: 1) The PAGE_PROCESS_SCRIPTING_PLUGIN plugin will not be executed; and 2) Table
extraction will be performed if the plugin is turned on, but extracted table data will not be returned
in the response.

Only one file can be supplied as input, but multiple files can be processed at one time by combining
them in a zip file and submitting the zip file to the web service. However, note that each physical file
inside the zip file will be treated as a single logical file, and will be classified based on the contents
of the first page only (no separation will occur within the individual files).

This web service supports using a PDF file's EText layer for OCR and extraction, provided that the
batch class has been configured accordingly to support that processing method.

118

Ephesoft Transact Developer's Guide

The v2/ocrClassifyExtractBase64 web service returns a minimized JSON response.

Here's an example of a JSON input file for the v2/ocrClassifyExtractBase64 web service:

{
"batchClassIdentifier": "BCo",

"fileName": "Filename.pdf",
"fileContent": "<Baseb64-Encoded String>"

}
Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/v2/ocrClassifyExtractBase64

Image processing web services

convertTiffToPdf

This web service generates PDF files for the input TIFF file. If the input TIFF file is a multi-page file, a
multi-page PDF will be generated.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/convertTiffToPdf

Sample client code using Apache Commons HttpClient

private static void convertTiffToPdf () {
HttpClient client = new HttpClient();
String url = "http://localhost:8080/dcma/rest/convertTiffToPdf";
PostMethod mPost = new PostMethod (url);
File filel = new File("C:\sample\samplel.tif");
File file2 = new File("C:\sample\sample2.tif");
Part[] parts = new Part[5];

try {
parts[0] = new FilePart(filel.getName (), filel);
parts[l] = new FilePart (file2.getName (), file2);
parts[2] = new StringPart ("inputParams", "");
parts[3] = new StringPart ("outputParams", ""):;
parts[4] = new StringPart ("pdfGeneratorEngine", "IMAGE MAGICK") ;
MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;
mPost.setRequestEntity (entity) ;
int statusCode = client.executeMethod (mPost) ;
if (statusCode == 200) {

System.out.println ("Web service executed successfully.");
InputStream in = mPost.getResponseBodyAsStream() ;
// output file path for saving results.
String outputFilePath = "C:\sample\serverOutput.zip";
// retrieving the searchable pdf file
File f = new File (outputFilePath);
FileOutputStream fos = new FileOutputStream(f);
try {
byte[] buf = newbyte[1024];

119

Ephesoft Transact Developer's Guide

int len = in .read (buf);
while (len > 0) {
fos.write (buf, 0, len);
len = in .read (buf);
}
} finally {
if (fos != null) {
fos.close () ;
}
}

} else if (statusCode == 403) {
System.out.println ("Invalid username/password.");
} else {

System.out.println (mPost.getResponseBodyAsString()) ;
}
} catch (FileNotFoundException e) {
System.err.println ("File not found for processing.");
} catch (HttpException e) {
e.printStackTrace() ;
} catch (IOException e) {
e.printStackTrace() ;
} finally {
if (mPost != null) {
mPost.releaseConnection () ;

}

createMultiPageFile

This web service will create a multi-page PDF file from one or more single-page TIFF images. A
multi-page TIFF file can optionally be created at the same time.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/createMultiPageFile

Sample client code using Apache Commons HttpClient

private static void createMultiPage () {
HttpClient client = new HttpClient();
String url = "http://localhost:8080/dcma/rest/createMultiPageFile";
PostMethod mPost = new PostMethod (url) ;
File filel = new File("C:\sample\WebServiceParams.xml") ;
File file2 = new File("C:\sample\samplel.tif");
File file3 = new File("C:\sample\sample2.tif");
Part[] parts = new Part[3];

try {
parts[0] = new FilePart(filel.getName (), filel);
parts[1l] = new FilePart(file2.getName (), file2);
parts[2] = new FilePart(file3.getName (), file3);
1

MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;
mPost.setRequestEntity (entity) ;
int statusCode = client.executeMethod (mPost) ;
if (statusCode == 200) {
InputStream inputStream = mPost.getResponseBodyAsStream() ;
// Retrieving file from result
File file = new File ("C:\sample\serverOutput.zip");

120

Ephesoft Transact Developer's Guide

FileOutputStream fos = new FileOutputStream(file) ;

try {
byte[] buf = newbyte[1024];
int len = inputStream.read (buf) ;
while (len > 0) {
fos.write (buf, 0, len);
len = inputStream.read (buf) ;
}
} finally {
if (fos != null) {
fos.close();
}
}
System.out.println ("Web service executed successfully..");
} else if (statusCode == 403) {
System.out.println ("Invalid username/password..");
} else {

System.out.println (statusCode + " *** " 4+ mPost.getResponseBodyAsString());

}
} catch (FileNotFoundException e) {
System.err.println ("File not found for processing..");
} catch (HttpException e) {
e.printStackTrace() ;
} catch (IOException e) {
e.printStackTrace() ;
} finally {
if (mPost != null) {
mPost.releaseConnection () ;

}

createMultiPagePDFFromSinglePDFs

This web service creates a multi-page PDF file from a number of single page PDF files.

This web service supports using a PDF file's EText layer for OCR and extraction, provided that the
batch class has been configured accordingly to support that processing method. If any of the single-
page PDF files contain an EText layer, the resulting multi-page PDF file will also contain an EText
layer.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/createMultiPagePDFFromSinglePDFs

createSearchablePDF
This web service is used to generate a searchable PDF file.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/createSearchablePDF

121

Ephesoft Transact Developer's Guide

Sample client code using Apache Commons HttpClient

private static void createSearchablePDF () {
HttpClient client = new HttpClient();
// URL for webservice of create searchable pdf
String url = "http://localhost:8080/dcma/rest/createSearchablePDF";
PostMethod mPost = new PostMethod (url);

File filel = new File("C:\sample\samplel.tif");

File file2 = new File("C:\sample\sample2.tif");

File file3 = new File("C:\sample\sample3.tif");

File file4d = new File("C:\sample\sampled.tif");

File fileb5 = new File("C:\sample\Fpr.rsp");

Part[] parts = new Part[9];

try {
parts[0] = new FilePart (filel.getName(), filel);
parts[l] = new FilePart (file2.getName (), file2);
parts[2] = new FilePart(file3.getName (), file3);
parts[3] = new FilePart (filed.getName (), filed);
parts[4] = new FilePart (file5.getName (), fileb);
parts[5] = new StringPart ("isColorImage", "false");
parts[6] = new StringPart ("isSearchableImage", "true");

parts[7] = new StringPart ("outputPDFFileName", "OutputPDF.pdf");
parts[8] = new StringPart ("projectFile", "Fpr.rsp"):;
parts[9] = new StringPart ("ocrEngine", "Recostar");
MultipartRequestEntity entity = new MultipartRequestEntity (parts,

mPost.getParams ()) ;

mPost.setRequestEntity (entity) ;
int statusCode = client.executeMethod (mPost) ;

(statusCode == 200) {
InputStream inputStream = mPost.getResponseBodyAsStream() ;
// output file path for saving result
String outputFilePath = "C:\sample\serverOutput.zip";
// retrieving the searchable pdf file
File file = new File (outputFilePath) ;
FileOutputStream fileOutputStream = new FileOutputStream(file);
try {
byte[] buf = new byte[1024];
int len = inputStream.read (buf);
while (len > 0) {
fileOutputStream.write (buf, 0, len);
len = inputStream.read (buf) ;
}
} finally {
if (fileOutputStream != null) {
fileOutputStream.close () ;
}
}

System.out.println ("Web service executed successfully.");

} else if (statusCode == 403) {

System.out.println ("Invalid username/password.") ;

} else {

System.out.println (mPost.getResponseBodyAsString()) ;

} catch (FileNotFoundException e) {

System.err.println ("File not found for processing.");

} catch (HttpException e) {

e.printStackTrace() ;

} catch (IOException e) {

e.printStackTrace () ;

} finally {

(mPost != null) {
mPost.releaseConnection () ;

122

Ephesoft Transact Developer's Guide

splitMultipageFile

This web service takes an incoming multi-page PDF or TIFF file and splits it apart into single-page

TIFF files. ImageMagick is used for splitting multi-page TIFF files, and Ghostscript is used for
splitting multi-page PDF files.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/splitMultipageFile

Sample client code using Apache Commons HttpClient

private static
HttpClient
String url
PostMethod
File filel
File file2

void splitMultiPageFile () {
client = new HttpClient () ;

= "http://localhost:8080/dcma/rest/splitMultipageFile";
mPost = new PostMethod (url);
new File("C:\sample\sample.pdf") ;
new File ("C:\sample\sample.tif");

Part[] parts

try {

parts[0]
parts[1l]
parts[2]
sDEVICE=tiffl2nc
parts[3]
parts[4]

MultipartRequestEntity entity

= new FilePart(filel.getName (),
new FilePart (file2.getName (),
= new StringPart ("inputParams",

new Part([5];

—-dBATCH") ;
new StringPart ("isGhostscript", "true");

new StringPart ("outputParams",
new MultipartRequestEntity (parts,

mPost.getParams ()) ;

mPost.setRequestEntity (entity) ;

int statusCode = client.executeMethod (mPost) ;

if (statusCode == 200) {
InputStream in = mPost.getResponseBodyAsStream() ;

File file = new File ("C:\sample\serverOutput.zip");

new FileOutputStream(file) ;

FileOutputStream fos

try {
byte[] buf = newbyte[1024];
int len = in .read (buf):;

while (len > 0)
fos.write (buf,
len = in .read (buf);

}

} finally {

{

0,

len) ;

filel) ;
file2);
"gswin32c.exe -dNOPAUSE

"H);

if (fos != null) {
fos.close();
}
}
System.out.println ("Web service executed successfully..");
} else if (statusCode == 403) {
System.out.println ("Invalid username/password..");
} else {

System.out.println (mPost.getResponseBodyAsString()) ;

}

} catch (FileNotFoundException e)

{

System.err.println ("File not found for processing..");
} catch (HttpException e) {
e.printStackTrace () ;

-r300 -

123

Ephesoft Transact Developer's Guide

} catch (IOException e) {
e.printStackTrace () ;
} finally {
if (mPost != null) {
mPost.releaseConnection () ;

}

splitMultiPagePDFToSinglePagePDF

This web service splits a multi-page PDF file into single-page PDF files.

This web service supports using a PDF file's EText layer for OCR and extraction, provided that the
batch class has been configured accordingly to support that processing method. If any pages of the
incoming PDF file contain an EText layer, the single-page PDF files generated from those pages will
contain an EText layer.

Request Method
POST

Web Service URL
http://<serverName>:<port>/dcma/rest/splitMultiPagePDFToSinglePagePDF

Reporting web services

decryptReportingBatchXml

This web service decrypts the batch.xml file in the report-data folder contained in the SharedFolders
area. The web service will find the batch.xml.zip file corresponding to the provided plugin/module
name, then decrypt the XML file inside the .zip file.

Request Method
GET

Web Service URL

http://<serverName>:<port>/dcma/rest/decryptReportingBatchXml/
<batchInstanceldentifier>/<pluginName>

Sample client code using Apache Commons HttpClient

private static void decryptReportingBatchXml () {

HttpClient client = new HttpClient();

String url = "http://localhost:8080/dcma/rest/decryptReportingBatchXml/BI2/
Folder Import";

GetMethod getMethod = new GetMethod (url) ;

int statusCode;

try {

statusCode = client.executeMethod (getMethod) ;

if (statusCode == 200) {
System.out.println ("Web service executed successfully.");
String responseBody = getMethod.getResponseBodyAsString() ;
System.out.println (statusCode + " *** " 4+ responseBody) ;

} else if (statusCode == 403) {

124

Ephesoft Transact Developer's Guide

System.out.println ("Invalid username/password.") ;
} else {
System.out.println (getMethod.getResponseBodyAsString()) ;
}
} catch (HttpException e) {
e.printStackTrace () ;
} catch (IOException e) {
e.printStackTrace() ;
} finally {
if (getMethod != null) {
getMethod.releaseConnection () ;

}

runReporting
This web service synchronizes the reporting database.

Request Method

Web Service URL
http://<serverName>:<port>/dcma/rest/runReporting

Sample client code using Apache Commons HttpClient

private static void runReporting () {
HttpClient client = new HttpClient ()
String url = "http://localhost:8080/dcma/rest/runReporting”;
PostMethod mPost = new PostMethod (url);
File filel = new File("C:\sample\reporting.xml") ;

Part[] parts = new Part[l];
try {
parts[0] = new FilePart(filel.getName (), filel);
MultipartRequestEntity entity = new MultipartRequestEntity (parts,
mPost.getParams ()) ;
mPost.setRequestEntity (entity) ;
int statusCode = client.executeMethod (mPost) ;
if (statusCode == 200) {

System.out.println ("Web service executed successfully.");
String responseBody = mPost.getResponseBodyAsString() ;

System.out.println (statusCode + " *** " 4 responseBody) ;
} else if (statusCode == 403) {

System.out.println ("Invalid username/password.");
} else {

System.out.println (mPost.getResponseBodyAsString()) ;
}
} catch (FileNotFoundException e) {
System.out.println ("File not found for processing.");
} catch (HttpException e) {
e.printStackTrace () ;
} catch (IOException e) {
e.printStackTrace () ;
} finally {
if (mPost != null) {
mPost.releaseConnection () ;

}

125

Ephesoft Transact Developer's Guide

Web services requests

This section provides recommendations to prevent server overload and create request queues to
limit the number of web services requests to the Transact server. These recommendations ensure
optimal web service performance.

To perform these requests, Transact must be installed with web services enabled.

We recommend implementing a request queue to prevent the server from overloading with web
services requests. A request queue is not available in Transact. Users must create a request queue
to limit the number of requests to the Transact server.

When requests are sent without a queue, Transact will send the request for processing. This can
overload the server if the number of concurrent requests to the Transact server is not controlled
within a customer's queue.

The request queue allows a limited number of concurrent requests to the server. Respond to each
request individually only upon receiving a response. This is in support of the concurrent requests
allowed within a queue. The table below provides recommendations on the number of concurrent
requests users can send to Transact based on the CPU cores of the server.

CPU cores Number of concurrent web services requests
Small batches (<10 pages) Large batches (>50 pages)
4 2 1
8 6 2-3
16 12-14 6-8
32 20-24 10-15

© The values in this table are approximate and may vary according to your use case.

The following information outlines the number of concurrent requests a system can process based
on CPU core and web services response time.

+ CPU Core: The higher the number of CPU cores, the higher the number of concurrent requests a
system can process.

+ Web Services Response Time: The least amount of response time needed, the least number of
concurrent requests needed to send to the Transact server.

The number of concurrent web services requests should not exceed the number of concurrent
batch instances your system can process. Keep the number of web services requests at 25% less
than the number of batch instances a system can process.

126

	Table of Contents
	Preface
	Disclaimer
	Training
	Getting help with Kofax products

	Custom plugins
	Create custom plugins
	Prerequisites
	Create a custom plugin project
	Add Transact libraries
	Create a new Java interface
	Create a Java class
	Create folder structure for XML resources
	Create XML files
	<name of project>-plugin.xml
	applicationContext-<name of project>-plugin.xml
	applicationContext.xml
	pom.xml

	Compile the custom plugin project
	Prepare custom plugin for import

	Import custom plugins
	Add plugins to a batch class

	Remove custom plugins

	External applications
	Application security
	Add an external application
	Access the application
	Transact AI Table Rule Builder
	Prerequisites
	Installation of Transact AI Table Rule Builder
	Configure the VALIDATE_DOCUMENT plugin
	Launch the application
	Table Extraction Rule Builder modes
	Automated mode
	Automated Mode Dictionary

	Standard mode
	Preceding and trailing text

	Advanced mode
	Manual mode
	Performing manual edits

	Limitations

	Regular expressions
	Predefined character classes of regular expressions
	Quantifiers
	Capturing groups
	Backreferences
	Capturing groups and character classes with quantifiers

	Boundary matchers
	Grouping constructs
	Regex patterns in Transact
	Usage of 'pattern' field in 'document Index Field Details'
	Usage of multi-word in key pattern for k-v extraction
	How not to capture certain values for key pattern and value pattern
	Usage of multi-word capture in Table Extraction, which is different than Value Pattern in K-V Extraction

	Scripting resources
	Scripting functionality
	Batch Instance Group feature
	Force Review feature
	ScriptAddNewTable.java
	ScriptAutomaticValidation.java
	ScriptDocumentAssembler.java
	ScriptExport.java
	ScriptExtraction.java
	ScriptFieldValueChange.java
	FunctionKey.java
	ScriptPageProcessing.java
	ScriptValidation.java

	Application Level script
	Create the Application Level script file
	Configuration
	Execution
	Dependency
	Troubleshooting

	Batch Instance Group
	Batch.xml and XSD schema
	Batch-level fields
	Document fields
	Document-level fields
	Page fields
	Page-level fields
	Email metadata in the batch.xml schema
	Case studies for batch.xml
	Case study 1: Accessing batch.xml

	Client-side scripting
	Error causes for default scripts
	Enable logging for custom scripts
	JDOM script configuration
	Sample scripts to compare IScript and JDOM
	Implement .zip functionality to older scripts

	Testing scripts
	Trigger field value change script for table data fields

	Transact Web Services API
	Transact Web Services optimized for workflow engines
	Web service definitions and code samples
	Authentication for web services
	Batch class management web services
	copyBatchClass
	copyDocumentType
	documentTypeCreator
	exportBatchClass
	getAllModulesWorkflowNameByBatchClass
	getBatchClassFields
	getBatchClassForRole
	getBatchClassList
	getRoles
	importBatchClass
	learnFile
	learnFuzzyDatabase
	uploadLearningFile
	uploadLearnFiles

	Batch instance management web services
	AddUserRolesToBatchInstance
	BatchInstanceList
	deleteBatchInstance
	getBatchInstanceForRole

	Batch instance processing web services
	advancedBarcodeExtraction
	advancedUploadBatch
	barcodeExtraction
	checkWSStatus
	classifyBarcodeImage
	classifyHocr
	classifyImage
	classifyMultiPageHocr
	createHOCRforBatchClass
	createOCR
	decryptBatchInstanceHocrXml
	decryptBatchXml
	decryptLuceneClassificationHocrXml
	decryptTestHocrXml
	extractFieldFromHocr
	extractFields
	extractFieldsUsingRegex
	extractFixedForm
	extractFuzzyDB
	extractFieldsForFuzzyDB
	extractKV
	ExtractKVForDocumentType
	initiateOcrClassifyExtract
	keywordClassification
	ocrClassify
	ocrClassifyExtract
	OcrClassifyExtractSearchablePDF
	restartAllBatchInstance
	restartBatchInstance
	runBatchInstance
	searchTextForDocFuzzy
	searchTextForFieldFuzzy
	setBatchClassField
	tableExtractionHOCR
	uploadBatch
	v2/ocrClassifyExtract
	v2/ocrClassifyExtractBase64

	Image processing web services
	convertTiffToPdf
	createMultiPageFile
	createMultiPagePDFFromSinglePDFs
	createSearchablePDF
	splitMultipageFile
	splitMultiPagePDFToSinglePagePDF

	Reporting web services
	decryptReportingBatchXml
	runReporting

	Web services requests

